1
|
Huang X, Dai Z, Zeng B, Xiao X, Zahid KR, Lin X, Liu T, Zeng T. KIN17 functions in DNA damage repair and chemosensitivity by modulating RAD51 in hepatocellular carcinoma. Hum Cell 2024; 37:1489-1504. [PMID: 38935235 DOI: 10.1007/s13577-024-01096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
The limited response of hepatocellular carcinoma (HCC) to chemotherapy drugs has always been a bottleneck in therapy. DNA damage repair is a major reason for chemoresistance. Previous studies have confirmed that KIN17 affects chemosensitivity. In this study, we examined the impact of KIN17 on chemotherapy response and DNA repair in HCC cells treated with oxaliplatin (L-OHP). We evaluated the expression and biological roles of KIN17 in HCC using bioinformatic analysis. The correlation between KIN17 and RAD51, particularly their nuclear expression levels, was evaluated using immunofluorescence, immunoblotting after nucleocytoplasmic separation in HCC cells, and immunohistochemistry of mouse xenograft tumors and human HCC tissues. The results indicated a significant increase in KIN17 expression in HCC tissues compared to normal tissues. The GSEA analysis revealed that upregulation of KIN17 was significantly associated with DNA damage repair. Knockdown of KIN17 led to increased DNA damage and reduced cellular survival after exposure to L-OHP. On the other hand, overexpression of KIN17 was linked to decreased DNA damage and improved cell survival following L-OHP treatment. Further experiments indicated that KIN17 affects the expression of RAD51, particularly in the nucleus. KIN17 plays a crucial role in influencing the sensitivity of HCC to chemotherapy by triggering the DNA repair response. Increased expression of KIN17 is associated with a poor prognosis for HCC patients, indicating that KIN17 could serve as a prognostic marker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Xueran Huang
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, P. R. China
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, P. R. China
| | - Zichang Dai
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Biyun Zeng
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, Guangdong, P. R. China
| | - Xiangyan Xiao
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, P. R. China
| | - Kashif Rafiq Zahid
- Department of Radiation Oncology, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xiaocong Lin
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, 524023, Guangdong, P. R. China.
| | - Tiancai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, P. R. China.
| | - Tao Zeng
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, P. R. China.
| |
Collapse
|
2
|
Yang FS, Liu M, Guo X, Xu C, Jiang J, Mu W, Fang D, Xu YC, Zhang FM, Wang YH, Yang T, Chen H, Sahu SK, Li R, Wang G, Wang Q, Xu X, Ge S, Liu H, Guo YL. Signatures of Adaptation and Purifying Selection in Highland Populations of Dasiphora fruticosa. Mol Biol Evol 2024; 41:msae099. [PMID: 38768215 PMCID: PMC11156201 DOI: 10.1093/molbev/msae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
High mountains harbor a considerable proportion of biodiversity, but we know little about how diverse plants adapt to the harsh environment. Here we finished a high-quality genome assembly for Dasiphora fruticosa, an ecologically important plant distributed in the Qinghai-Tibetan Plateau and lowland of the Northern Hemisphere, and resequenced 592 natural individuals to address how this horticulture plant adapts to highland. Demographic analysis revealed D. fruticosa underwent a bottleneck after Naynayxungla Glaciation. Selective sweep analysis of two pairs of lowland and highland populations identified 63 shared genes related to cell wall organization or biogenesis, cellular component organization, and dwarfism, suggesting parallel adaptation to highland habitats. Most importantly, we found that stronger purging of estimated genetic load due to inbreeding in highland populations apparently contributed to their adaptation to the highest mountain. Our results revealed how plants could tolerate the extreme plateau, which could provide potential insights for species conservation and crop breeding.
Collapse
Affiliation(s)
- Fu-Sheng Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
- BGI Research, Wuhan 430074, China
| | - Xing Guo
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
- BGI Research, Wuhan 430074, China
| | - Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Juan Jiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weixue Mu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Dongming Fang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Yong-Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Fu-Min Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Hui Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Yang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Hongyun Chen
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
- BGI Research, Wuhan 430074, China
| | - Ruirui Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Guanlong Wang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Qiang Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Connell M, Xie Y, Deng X, Chen R, Zhu S. Kin17 regulates proper cortical localization of Miranda in Drosophila neuroblasts by regulating Flfl expression. Cell Rep 2024; 43:113823. [PMID: 38386552 PMCID: PMC10980573 DOI: 10.1016/j.celrep.2024.113823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 10/16/2022] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
During asymmetric division of Drosophila larval neuroblasts, the fate determinant Prospero (Pros) and its adaptor Miranda (Mira) are segregated to the basal cortex through atypical protein kinase C (aPKC) phosphorylation of Mira and displacement from the apical cortex, but Mira localization after aPKC phosphorylation is not well understood. We identify Kin17, a DNA replication and repair protein, as a regulator of Mira localization during asymmetric cell division. Loss of Kin17 leads to aberrant localization of Mira and Pros to the centrosome, cytoplasm, and nucleus. We provide evidence to show that the mislocalization of Mira and Pros is likely due to reduced expression of Falafel (Flfl), a component of protein phosphatase 4 (PP4), and defects in dephosphorylation of serine-96 of Mira. Our work reveals that Mira is likely dephosphorylated by PP4 at the centrosome to ensure proper basal localization of Mira after aPKC phosphorylation and that Kin17 regulates PP4 activity by regulating Flfl expression.
Collapse
Affiliation(s)
- Marisa Connell
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Yonggang Xie
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Xiaobing Deng
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Rui Chen
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Sijun Zhu
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
4
|
Huang X, Dai Z, Li Q, Lin X, Huang Q, Zeng T. Roles and regulatory mechanisms of KIN17 in cancers (Review). Oncol Lett 2023; 25:137. [PMID: 36909374 PMCID: PMC9996293 DOI: 10.3892/ol.2023.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
KIN17, which is known as a DNA and RNA binding protein, is highly expressed in numerous types of human cancers and was discovered to participate in several vital cell behaviors, including DNA replication, damage repair, regulation of cell cycle and RNA processing. Furthermore, KIN17 is associated with cancer cell proliferation, migration, invasion and cell cycle regulation by regulating pathways including the p38 MAPK, NF-κB-Snail and TGF-β/Smad2 signaling pathways. In addition, knockdown of KIN17 was found to enhance the sensitivity of tumor cells to chemotherapeutic agents. Immunohistochemical analysis revealed that there were significant differences in the expression of KIN17 between cancer tissues and adjacent tissues. Both the Kaplan-Meier survival analysis and multivariate Cox regression analysis indicated that KIN17 is aberrantly high expressed in various tumor tissues and is also associated with poor prognosis in patients with various tumor types. Taken together, KIN17 has key roles in tumorigenesis and cancer development. Investigating the relationship between KIN17 and neoplasms will provide a vital theoretical basis for KIN17 to serve as a diagnostic and prognostic biomarker for cancer patients and as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Xueran Huang
- Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Zichang Dai
- Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiuyan Li
- Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China.,Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Xiaocong Lin
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Qiyuan Huang
- Clinical Biobank Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Tao Zeng
- Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| |
Collapse
|
5
|
de Lourenço IO, Seixas FAV, Fernandez MA, Almeida FCL, Fossey MA, de Souza FP, Caruso ÍP. 1H, 15N, and 13C resonance assignments of the SH3-like tandem domain of human KIN protein. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:449-453. [PMID: 34417717 DOI: 10.1007/s12104-021-10044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
KIN is a DNA/RNA-binding protein conserved evolutionarily from yeast to humans and expressed ubiquitously in mammals. It is an essential nuclear protein involved in numerous cellular processes, such as DNA replication, class-switch recombination, cell cycle regulation, and response to UV or ionizing radiation-induced DNA damage. The C-terminal region of the human KIN (hKIN) protein is composed of an SH3-like tandem domain, which is crucial for the anti-proliferation effect of the full-length protein. Herein, we present the 1H, 15N, and 13C resonances assignment of the backbone and side chains for the SH3-like tandem domain of the hKIN protein, as well as the secondary structure prediction based on the assigned chemical shifts using TALOS-N software. This work prepares the ground for future studies of RNA-binding and backbone dynamics.
Collapse
Affiliation(s)
- Isabella Otenio de Lourenço
- Department of Physics, Institute of Biosciences, Letters and Exact Sciences (IBILCE), Multiuser Center for Biomolecular Innovation (CMIB), São Paulo State University "Júlio de Mesquita Filho" (UNESP), São José do Rio Preto, SP, 15054-000, Brazil
| | | | - Maria Aparecida Fernandez
- Department of Biotechnology, Genetics and Cell Biology, Maringá State University (UEM), Maringá, PR, 87020-900, Brazil
| | - Fabio Ceneviva Lacerda Almeida
- Institute of Medical Biochemistry Leopoldo de Meis (IBqM) and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brazil
| | - Marcelo Andrés Fossey
- Department of Physics, Institute of Biosciences, Letters and Exact Sciences (IBILCE), Multiuser Center for Biomolecular Innovation (CMIB), São Paulo State University "Júlio de Mesquita Filho" (UNESP), São José do Rio Preto, SP, 15054-000, Brazil
| | - Fátima Pereira de Souza
- Department of Physics, Institute of Biosciences, Letters and Exact Sciences (IBILCE), Multiuser Center for Biomolecular Innovation (CMIB), São Paulo State University "Júlio de Mesquita Filho" (UNESP), São José do Rio Preto, SP, 15054-000, Brazil
| | - Ícaro Putinhon Caruso
- Department of Physics, Institute of Biosciences, Letters and Exact Sciences (IBILCE), Multiuser Center for Biomolecular Innovation (CMIB), São Paulo State University "Júlio de Mesquita Filho" (UNESP), São José do Rio Preto, SP, 15054-000, Brazil.
- Institute of Medical Biochemistry Leopoldo de Meis (IBqM) and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brazil.
| |
Collapse
|
6
|
Wong JM, Eirin-Lopez JM. Evolution of methyltransferase like (METTL) proteins in Metazoa: A complex gene family involved in epitranscriptomic regulation and other epigenetic processes. Mol Biol Evol 2021; 38:5309-5327. [PMID: 34480573 PMCID: PMC8662637 DOI: 10.1093/molbev/msab267] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The methyltransferase-like (METTL) proteins constitute a family of seven-beta-strand methyltransferases with S-adenosyl methionine-binding domains that modify DNA, RNA, and proteins. Methylation by METTL proteins contributes to the epigenetic, and in the case of RNA modifications, epitranscriptomic regulation of a variety of biological processes. Despite their functional importance, most investigations of the substrates and functions of METTLs within metazoans have been restricted to model vertebrate taxa. In the present work, we explore the evolutionary mechanisms driving the diversification and functional differentiation of 33 individual METTL proteins across Metazoa. Our results show that METTLs are nearly ubiquitous across the animal kingdom, with most having arisen early in metazoan evolution (i.e., occur in basal metazoan phyla). Individual METTL lineages each originated from single independent ancestors, constituting monophyletic clades, which suggests that each METTL was subject to strong selective constraints driving its structural and/or functional specialization. Interestingly, a similar process did not extend to the differentiation of nucleoside-modifying and protein-modifying METTLs (i.e., each METTL type did not form a unique monophyletic clade). The members of these two types of METTLs also exhibited differences in their rates of evolution. Overall, we provide evidence that the long-term evolution of METTL family members was driven by strong purifying selection, which in combination with adaptive selection episodes, led to the functional specialization of individual METTL lineages. This work contributes useful information regarding the evolution of a gene family that fulfills a variety of epigenetic functions, and can have profound influences on molecular processes and phenotypic traits.
Collapse
Affiliation(s)
- Juliet M Wong
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, FL, United States
| | - Jose M Eirin-Lopez
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, FL, United States
| |
Collapse
|
7
|
Townsend C, Leelaram MN, Agafonov DE, Dybkov O, Will CL, Bertram K, Urlaub H, Kastner B, Stark H, Lührmann R. Mechanism of protein-guided folding of the active site U2/U6 RNA during spliceosome activation. Science 2020; 370:science.abc3753. [PMID: 33243851 DOI: 10.1126/science.abc3753] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/23/2020] [Indexed: 01/02/2023]
Abstract
Spliceosome activation involves extensive protein and RNA rearrangements that lead to formation of a catalytically active U2/U6 RNA structure. At present, little is known about the assembly pathway of the latter and the mechanism whereby proteins aid its proper folding. Here, we report the cryo-electron microscopy structures of two human, activated spliceosome precursors (that is, pre-Bact complexes) at core resolutions of 3.9 and 4.2 angstroms. These structures elucidate the order of the numerous protein exchanges that occur during activation, the mutually exclusive interactions that ensure the correct order of ribonucleoprotein rearrangements needed to form the U2/U6 catalytic RNA, and the stepwise folding pathway of the latter. Structural comparisons with mature Bact complexes reveal the molecular mechanism whereby a conformational change in the scaffold protein PRP8 facilitates final three-dimensional folding of the U2/U6 catalytic RNA.
Collapse
Affiliation(s)
- Cole Townsend
- Department of Structural Dynamics, MPI for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Majety N Leelaram
- Cellular Biochemistry, MPI for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Dmitry E Agafonov
- Cellular Biochemistry, MPI for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Olexandr Dybkov
- Cellular Biochemistry, MPI for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Cindy L Will
- Cellular Biochemistry, MPI for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Karl Bertram
- Department of Structural Dynamics, MPI for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, MPI for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany.,Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, D-37075 Göttingen, Germany
| | - Berthold Kastner
- Cellular Biochemistry, MPI for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany.
| | - Holger Stark
- Department of Structural Dynamics, MPI for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany.
| | - Reinhard Lührmann
- Cellular Biochemistry, MPI for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany.
| |
Collapse
|
8
|
Zhong M, Liu Z, Wu K, Hong Z, Zhang Y, Qu J, Zhu C, Ou Z, Zeng T. Kin17 knockdown suppresses the migration and invasion of cervical cancer cells through NF-κB-Snail pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:607-615. [PMID: 32269702 PMCID: PMC7137014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/06/2020] [Indexed: 06/11/2023]
Abstract
Cervical cancer is one of the most common cancers in women worldwide. Metastasis in cancer has been a Gordian knot due to unsatisfactory clinical treatments. KIN17, a highly conserved gene from yeast to human, up-regulation is associated with the pathogenesis and development of several common cancers. Our previous works revealed that elevated expression of kin17 observed in cervical cancer tissues showed a close association with lymph node metastasis. This study aimed to explore roles and mechanisms of kin17 in the migration and invasion of cervical cancer cells. Cervical cancer cell lines HeLa and SiHa with kin17 knockdown were constructed by using recombinant lentiviral vector that carry specific siRNA targeting KIN17 gene. The mRNA and protein levels of kin17 in cells were determined by RT-qPCR and western blotting, respectively. Wound healing assay and transwell assays were performed to assess the migration and invasion abilities of the cancer cells, respectively. The expression of signaling proteins involved in the NF-κB-Snail pathway was analyzed by western blotting. As our results showed, the mRNA and protein levels of kin17 in HeLa cells and SiHa cells showed a significant decrease by transfection with recombinant lentiviral vector carrying specific siRNA. Compared with control group, the migration rates were decreased in the kin17 knockdown group in both HeLa and SiHa cell lines in wound healing assay as well as transwell assay without matrigel. Kin17 knockdown also reduced the cell invasion number of both HeLa and SiHa cells. In addition, the phosphorylation of nuclear factor Kαppa B (NF-κB) p65, IKαppa B kinase α (IKKα), and IKαppa B α (IκBα) in NF-κB pathway and the expression of Snail were decreased in HeLa cells and SiHa cells by kin17 knockdown. Our results demonstrated that knockdown of kin17 in cervical cancer cells suppressed cell migration and invasion, and inhibited the activity of NF-κB signaling pathway and the expression of Snail. These findings suggested kin17 as an essential regulator of the cell migration and invasion and the underlying molecular mechanism involved NF-κB-Snail pathway in cervical cancer. This might serve as a novel molecular therapeutic target for treating cervical cancer metastasis.
Collapse
Affiliation(s)
- Meifeng Zhong
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical UniversityGuangzhou 510515, Guangdong, P. R. China
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, P. R. China
| | - Zhenping Liu
- Department of Laboratory Medicine, The People’s Hospital of ShajingShenzhen 518104, Guangdong, P. R. China
| | - Kunhe Wu
- Department of Pathology, Guangdong Women and Children’s HospitalGuangzhou 511400, Guangdong, P. R. China
| | - Ziyang Hong
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical UniversityGuangzhou 510515, Guangdong, P. R. China
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, P. R. China
| | - Yuzhao Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital, Guangzhou University of Chinese MedicineGuangzhou 510405, Guangdong, P. R. China
| | - Jing Qu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, P. R. China
| | - Chuiyu Zhu
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical UniversityGuangzhou 510515, Guangdong, P. R. China
| | - Zhiyu Ou
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical UniversityGuangzhou 510515, Guangdong, P. R. China
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, P. R. China
| | - Tao Zeng
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical UniversityGuangzhou 510515, Guangdong, P. R. China
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, P. R. China
| |
Collapse
|
9
|
Pattaro Júnior JR, Caruso ÍP, de Lima Neto QA, Duarte Junior FF, dos Santos Rando F, Gerhardt ECM, Fernandez MA, Seixas FAV. Biophysical characterization and molecular phylogeny of human KIN protein. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:645-657. [DOI: 10.1007/s00249-019-01390-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/07/2019] [Accepted: 07/06/2019] [Indexed: 11/24/2022]
|
10
|
Abstract
Green tea polyphenols may protect cells from UV damage through antioxidant activities and by stimulating the removal of damaged or cross-linked DNA. Recently, DNA repair pathways have been predicted as possible targets of epigallocatechin gallate (EGCG)-initiated signaling. However, whether and how green tea polyphenols can promote nucleotide excision repair and homologous recombination in diverse organisms requires further investigation. In this report, we used the budding yeast, Saccharomyces cerevisiae, as a model to investigate the effects of green tea extract on DNA repair pathways. We first showed that green tea extract increased the survival rate and decreased the frequency of mutations in yeast exposed to UVB-irradiation. Furthermore, green tea extract increased the expression of homologous recombination genes, RFA1, RAD51 and RAD52, and nucleotide excision repair genes, RAD4 and RAD14. Importantly, we further used a specific strand invasion assay to show that green tea extract promotes homologous recombination at double-strand breaks. Thus, green tea extract acts to preserve genome stability by activating DNA repair pathways in yeast. Because homologous recombination repair is highly conserved in yeast and humans, this study demonstrates yeast may be a useful platform for future research to investigate the underlying mechanisms of the bioactive compounds in DNA repair.
Collapse
|
11
|
Elevated Expression of Kin17 in Cervical Cancer and Its Association With Cancer Cell Proliferation and Invasion. Int J Gynecol Cancer 2018; 27:628-633. [PMID: 28346239 DOI: 10.1097/igc.0000000000000928] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Cervical cancer is one of the most common cancers in women worldwide. Emerging evidence suggests that kin17 is a tumor-promoting protein in some types of solid tumors. However, whether kin17 contributes to cervical cancer carcinogenesis remains unknown. METHODS Kin17 expression in clinical samples from Guangdong Women and Children's Hospital and Health Institute was detected by immunohistochemical staining. A series of functional experiments including 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, 5-bromo-2'-deoxyuridine assay, colony formation, transwell assay, flow cytometry of apoptosis, and cell cycle were performed to explore the roles of kin17 in cervical cancer cells HeLa. RESULTS In this study, we showed for the first time that the expression of kin17 was significantly increased in clinical cervical cancer samples, and associated with tumor differentiation, lymph node metastasis, and ki-67 expression in a clinicopathologic characteristics review. Furthermore, silence of kin17 in HeLa cells inhibited cell proliferation, clone formation, cell cycle progression, migration, and invasion, and also promoted cell apoptosis. CONCLUSION Our findings demonstrate that kin17 is closely related to the cell proliferation and invasion of cervical cancer and could be a novel diagnostic and therapeutic target for cervical cancer management. The underlying mechanisms should be elucidated in future research.
Collapse
|
12
|
Le MX, Haddad D, Ling AK, Li C, So CC, Chopra A, Hu R, Angulo JF, Moffat J, Martin A. Kin17 facilitates multiple double-strand break repair pathways that govern B cell class switching. Sci Rep 2016; 6:37215. [PMID: 27853268 PMCID: PMC5112545 DOI: 10.1038/srep37215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/13/2016] [Indexed: 11/09/2022] Open
Abstract
Class switch recombination (CSR) in B cells requires the timely repair of DNA double-stranded breaks (DSBs) that result from lesions produced by activation-induced cytidine deaminase (AID). Through a genome-wide RNAi screen, we identified Kin17 as a gene potentially involved in the maintenance of CSR in murine B cells. In this study, we confirm a critical role for Kin17 in CSR independent of AID activity. Furthermore, we make evident that DSBs generated by AID or ionizing radiation require Kin17 for efficient repair and resolution. Our report shows that reduced Kin17 results in an elevated deletion frequency following AID mutational activity in the switch region. In addition, deficiency in Kin17 affects the functionality of multiple DSB repair pathways, namely homologous recombination, non-homologous end-joining, and alternative end-joining. This report demonstrates the importance of Kin17 as a critical factor that acts prior to the repair phase of DSB repair and is of bona fide importance for CSR.
Collapse
Affiliation(s)
- Michael X. Le
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, Ontario, M5S1A8, Canada
| | - Dania Haddad
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, Ontario, M5S1A8, Canada
| | - Alexanda K. Ling
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, Ontario, M5S1A8, Canada
| | - Conglei Li
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, Ontario, M5S1A8, Canada
| | - Clare C. So
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, Ontario, M5S1A8, Canada
| | - Amit Chopra
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, Ontario, M5S1A8, Canada
| | - Rui Hu
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, Ontario, M5S1A8, Canada
| | - Jaime F. Angulo
- Laboratoire de Radio Toxicologie, CEA, Université Paris-Saclay, Arpajon, 91297, France
| | - Jason Moffat
- Donnelly Centre and Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5S1A8, Canada
| | - Alberto Martin
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, Ontario, M5S1A8, Canada
| |
Collapse
|
13
|
|
14
|
Sharif A, Akhtar N, Khan MS, Menaa A, Menaa B, Khan BA, Menaa F. Formulation and evaluation on human skin of a water-in-oil emulsion containing Muscat hamburg black grape seed extract. Int J Cosmet Sci 2014; 37:253-8. [PMID: 25402429 DOI: 10.1111/ics.12184] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/06/2014] [Indexed: 01/28/2023]
Abstract
BACKGROUND Vitis vinifera 'muscat hamburg' (Vitaceae) is a blue-black grape variety commonly found in Pakistan. It has been consumed and used in traditional medicine for centuries. Compared to other grapes, M. hamburg records one of the greatest amount of polyphenols and displays potent antioxidant activities, which make it a great candidate for its exploitation in the development of stable cream emulsions destined to improve the skin appearance. OBJECTIVE Evaluate the effects of stable water-in-oil (W/O) emulsion containing 2% M. hamburg grape seed extract ('formulation') on human cheek skin in comparison with the placebo ('base'). METHODS An occlusive patch test, containing either the formulation or the base, was topically tested for 8 weeks during a winter period in young adult and healthy Pakistani male volunteers. The subjects were instructed to use twice a day the base and the formulation on their right and left cheek skin, respectively. Non-invasive measurements on these skin areas were carried out every week to assess any effects produced on melanin, elasticity and sebum. Skin compatibility assay (Burchard test) was used to report any potential skin reactivity. ANOVA, paired sample t-test and LSD test were applied to determine the statistical data significance. RESULTS Significant differences (P ≤ 0.05) were found between the placebo and the formulation in terms of their respective skin effects elicited on melanin, elasticity and sebum content. Nevertheless, placebo and formulation exerted similar effects on skin erythema and moisture contents. Importantly, no skin hypersensitivity cases were reported during the whole course of the study. CONCLUSION The developed grape-based cream could be efficiently and safely applied to improve a number of skin conditions (e.g. hyper-pigmentation, premature ageing, acne).
Collapse
Affiliation(s)
- A Sharif
- Department of Pharmacy, Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | | | | | | | | | | | | |
Collapse
|
15
|
Menaa F, Menaa B, Sharts ON. Spectro-Fluor™ Technology for Reliable Detection of Proteins and Biomarkers of Disease: A Pioneered Research Study. Diagnostics (Basel) 2014; 4:140-52. [PMID: 26852682 PMCID: PMC4665559 DOI: 10.3390/diagnostics4040140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/22/2014] [Accepted: 09/09/2014] [Indexed: 12/12/2022] Open
Abstract
Quantitative and qualitative characterization of fluorinated molecules represents an important task. Fluorine-based medicinal chemistry is a fast-growing research area due to the positive impact of fluorine in drug discovery, and clinical and molecular imaging (e.g., magnetic resonance imaging, positron emission tomography). Common detection methods include fluorinated-based labelling using radioactive isotopes or fluorescent dyes. Nevertheless, these molecular imaging methods can be harmful for health due to the potential instability of fluorochromes and cytoxicity of radioisotopes. Therefore, these methods often require expensive precautionary measures. In this context, we have developed, validated and patented carbon-fluorine spectroscopy (CFS™), recently renamed Spectro-Fluor™ technology, which among a non-competitive family of in-house made devices called PLIRFA™ (Pulsed Laser Isochronic Raman and Fluorescence Apparatus™), allows reliable detection of Carbon-Fluorine (C-F) bonds. C-F bonds are known to be stable and safe labels once incorporated to any type of molecules, cells, compounds or (nano-) materials. In this pioneered research study, we used Spectro-Fluor™ to assess biomarkers. As a proof-of-principle experiment, we have established a three-step protocol intended to rapid protein detection, which simply consisted of: (i) incorporating a sufficient concentration of an aromatic amino-acid (fluorinated versus non-fluorinated) into cultured cells; (ii) simultaneously isolating the fluorinated protein of interest and the non-fluorinated form of the protein (control) by immune-precipitation; (iii) comparatively analyzing the respective spectrum obtained for the two protein forms by Spectro-Fluor™. Thereby, we were able to differentiate, from colon cancer cells HCT-116, the fluorinated and non-fluorinated forms of p21, a key transcriptional factor and downstream target of p53, the so-called “guardian of the genome”. Taken together, our data again demonstrates the beneficial alternative use of Spectro-Fluor™, which once combined with an innovative methodology permits one to quickly, reliably, safely and cost-effectively detect physiological or pathological proteins in cells.
Collapse
Affiliation(s)
- Farid Menaa
- Department of Engineering and Biomedical Technology, Fluorotronics USA, Inc. San Diego, CA 92081, USA.
| | - Bouzid Menaa
- HYMETEC SA, Infection Control, Isnes 5032, Belgium.
| | - Olga N Sharts
- Department of Engineering and Biomedical Technology, Fluorotronics USA, Inc. San Diego, CA 92081, USA.
| |
Collapse
|
16
|
Kou WZ, Xu SL, Wang Y, Wang LW, Wang L, Chai XY, Hua QL. Expression of Kin17 promotes the proliferation of hepatocellular carcinoma cells in vitro and in vivo.. Oncol Lett 2014; 8:1190-1194. [PMID: 25120685 PMCID: PMC4114639 DOI: 10.3892/ol.2014.2244] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 04/04/2014] [Indexed: 11/06/2022] Open
Abstract
Kin17 protein is ubiquitously expressed in mammals and is correlated with vital biological functions. However, little is known about the role of Kin17 in the proliferation of hepatocellular carcinoma cells. The aim of the present study was to investigate whether the upregulation of Kin17 can promote the growth of hepatocellular carcinoma cells. A series of assays was performed to study the effect of Kin17 in the proliferation of hepatocellular carcinoma cells in vitro and in vivo. The western blotting results revealed that Kin17 expression was increased in hepatocellular carcinoma tissues compared with that of the corresponding normal tissues. Moreover, ectopic upregulation of Kin17 expression promoted the growth of hepatocellular carcinoma cells in vitro and in vivo. These results indicated that Kin17 is involved in the tumorigenesis of hepatocellular carcinoma, and that Kin17 has the potential to serve as a therapeutic target for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Wei-Zheng Kou
- Department of Oncology, First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Su-Ling Xu
- Department of Oncology, First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Ying Wang
- Department of Oncology, First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Li-Wei Wang
- Department of Ultrasound, First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Lei Wang
- Department of Laboratory, First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Xiao-Yan Chai
- Department of Cardiology, First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Qin-Liang Hua
- Department of Oncology, First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| |
Collapse
|
17
|
Yu M, Zhang Z, Yu H, Xue C, Yuan K, Miao M, Shi H. KIN enhances stem cell-like properties to promote chemoresistance in colorectal carcinoma. Biochem Biophys Res Commun 2014; 448:63-9. [PMID: 24755081 DOI: 10.1016/j.bbrc.2014.04.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 04/11/2014] [Indexed: 11/20/2022]
Abstract
Chemotherapy is widely used in colorectal cancer (CRC) treatment, especially in advanced stage patients. However, it is inevitable to develop chemoresistance. Recently, cancer cells acquired stem cell-like properties or cancer stem cells (CSC) were proved to attribute to chemoresistance. Here, we found that KIN protein was elevated in CRC cell lines and tissue specimens as compared to normal controls. Upregulation of KIN positively correlates with the metastatic status of CRC patients. Patients with high KIN expression showed poor prognosis and were with a short survival time. Overexpression of KIN enhanced, while silencing KIN impaired, chemoresistance to oxaliplatin (Ox) or 5-fluorouracil (5-FU) in CRC cell lines. Further investigation demonstrated that overexpression of KIN rendered CRC cells enriching CSC markers and CSC phenotype, and silencing KIN reduced CSC markers and CSC phenotype. Our findings suggest that the KIN level may be a suitable marker for predicting chemotherapy response in CRC, and silencing KIN plus chemotherapy may be a novel therapy for CRC treatment.
Collapse
Affiliation(s)
- Miao Yu
- Department of Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080, China
| | - Zhenwei Zhang
- Department of Biochemistry and Molecular Biology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Honglan Yu
- Department of Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080, China
| | - Conglong Xue
- Department of Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080, China
| | - Kaitao Yuan
- Department of Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080, China
| | - Mingyong Miao
- Department of Biochemistry and Molecular Biology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China.
| | - Hanping Shi
- Department of Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
18
|
Maoz N, Gabay O, Waldman Ben-Asher H, Cohen HY. The yeast forkhead HCM1 controls life span independent of calorie restriction. J Gerontol A Biol Sci Med Sci 2014; 70:444-53. [PMID: 24835838 DOI: 10.1093/gerona/glu059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Regulation of life span by members of the forkhead transcription factor family of proteins is one of the most highly investigated pathways in the field of aging. Nevertheless, despite the existence of forkhead family homologues in yeast, our knowledge of these proteins' role in yeast longevity is limited. Here, we show that yeast Hcm1p forkhead is the closest homologue of the worm PHA-4 forkhead, which regulates Caenorhabditis elegans life span. Overexpressing the yeast forkhead HCM1 or its deficiency resulted in a significant extension or reduction in yeast replicative life span, respectively. HCM1 regulates stress resistance, significantly increases the mRNA levels of several stress response genes including the catalase enzymes CTA1 and CTT1, and positively regulates life span independently of calorie restriction. Thus, HCM1 is a key regulator of life span, through a mechanism independent of calorie restriction.
Collapse
Affiliation(s)
- Noam Maoz
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Orshay Gabay
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Hiba Waldman Ben-Asher
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Haim Y Cohen
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
19
|
Garcia-Molina A, Xing S, Huijser P. The Arabidopsis KIN17 and its homolog KLP mediate different aspects of plant growth and development. PLANT SIGNALING & BEHAVIOR 2014; 9:e28634. [PMID: 24713636 PMCID: PMC4091612 DOI: 10.4161/psb.28634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
Proteins harboring the kin17 domain (KIN17) constitute a family of well-conserved eukaryotic nuclear proteins involved in nucleic acid metabolism. In mammals, KIN17 orthologs contribute to DNA replication, RNA splicing, and DNA integrity maintenance. Recently, we reported a functional characterization of an Arabidopsis thaliana KIN17 homolog (AtKIN17) that uncovered a role for this protein in tuning physiological responses during copper (Cu) deficiency and oxidative stress. However, functions similar to those described in mammals may also be expected in plants given the conservation of functional domains in KIN17 orthologs. Here, we provide additional data consistent with the participation of AtKIN17 in controlling general plant growth and development, as well as in response to UV radiation. Furthermore, the Arabidopsis genome codes for a second homolog to KIN17, we referred to as KIN17-like-protein (KLP). KLP loss-of-function lines exhibited a reduced inhibition of root growth in response to copper excess and relatively elongated hypocotyls in etiolated seedlings. Altogether, our experimental data point to a general function of the kin17 domain proteins in plant growth and development.
Collapse
|
20
|
Martinez-Levasseur LM, Birch-Machin MA, Bowman A, Gendron D, Weatherhead E, Knell RJ, Acevedo-Whitehouse K. Whales use distinct strategies to counteract solar ultraviolet radiation. Sci Rep 2014; 3:2386. [PMID: 23989080 PMCID: PMC3757271 DOI: 10.1038/srep02386] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/23/2013] [Indexed: 12/24/2022] Open
Abstract
A current threat to the marine ecosystem is the high level of solar ultraviolet radiation (UV). Large whales have recently been shown to suffer sun-induced skin damage from continuous UV exposure. Genotoxic consequences of such exposure remain unknown for these long-lived marine species, as does their capacity to counteract UV-induced insults. We show that UV exposure induces mitochondrial DNA damage in the skin of seasonally sympatric fin, sperm, and blue whales and that this damage accumulates with age. However, counteractive molecular mechanisms are markedly different between species. For example, sperm whales, a species that remains for long periods at the sea surface, activate genotoxic stress pathways in response to UV exposure whereas the paler blue whale relies on increased pigmentation as the season progresses. Our study also shows that whales can modulate their responses to fluctuating levels of UV, and that different evolutionary constraints may have shaped their response strategies.
Collapse
|
21
|
Garcia-Molina A, Xing S, Huijser P. A conserved KIN17 curved DNA-binding domain protein assembles with SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE7 to adapt Arabidopsis growth and development to limiting copper availability. PLANT PHYSIOLOGY 2014; 164:828-40. [PMID: 24335506 PMCID: PMC3912109 DOI: 10.1104/pp.113.228239] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/07/2013] [Indexed: 05/19/2023]
Abstract
Proper copper (Cu) homeostasis is required by living organisms to maintain essential cellular functions. In the model plant Arabidopsis (Arabidopsis thaliana), the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE7 (SPL7) transcription factor participates in reprogramming global gene expression during Cu insufficiency in order to improve the metal uptake and prioritize its distribution to Cu proteins of major importance. As a consequence, spl7 null mutants show morphological and physiological disorders during Cu-limited growth, resulting in lower fresh weight, reduced root elongation, and chlorosis. On the other hand, the Arabidopsis KIN17 homolog belongs to a well-conserved family of essential eukaryotic nuclear proteins known to be stress activated and involved in DNA and possibly RNA metabolism in mammals. In the study presented here, we uncovered that Arabidopsis KIN17 participates in promoting the Cu deficiency response by means of a direct interaction with SPL7. Moreover, the double mutant kin17-1 spl7-2 displays an enhanced Cu-dependent phenotype involving growth arrest, oxidative stress, floral bud abortion, and pollen inviability. Taken together, the data presented here provide evidence for SPL7 and KIN17 protein interaction as a point of convergence in response to both Cu deficiency and oxidative stress.
Collapse
Affiliation(s)
- Antoni Garcia-Molina
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Shuping Xing
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Peter Huijser
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| |
Collapse
|
22
|
Cloutier P, Lavallée-Adam M, Faubert D, Blanchette M, Coulombe B. Methylation of the DNA/RNA-binding protein Kin17 by METTL22 affects its association with chromatin. J Proteomics 2013; 100:115-24. [PMID: 24140279 DOI: 10.1016/j.jprot.2013.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/25/2013] [Accepted: 10/07/2013] [Indexed: 02/06/2023]
Abstract
UNLABELLED Kin17 is a protein that was discovered through its immunoreactivity towards an antibody directed against prokaryotic RecA. Further study of Kin17 revealed a function in DNA replication and repair, as well as in pre-mRNA processing. Recently, it was found that Kin17 is methylated on lysine 135 by the newly discovered methyltransferase METTL22. To better understand the function of Kin17 and its regulation by methylation, we used multiple cell compartment protein affinity purification coupled with mass spectrometry (MCC-AP-MS) to identify novel interaction partners of Kin17 and to assess whether these interactions can take place on chromatin. Our results confirm that Kin17 interacts with METTL22 both in the soluble and chromatin fractions. We also show that many RNA-binding proteins, including the previously identified interactor BUD13 as well as spliceosomal and ribosomal subunits, associate with Kin17 in the soluble fraction. Interestingly, overexpression of METTL22 in HEK 293 cells displaces Kin17 from the chromatin to the cytoplasmic fraction, suggesting a role for methylation of lysine 135, a residue that lies within a winged helix domain of Kin17, in regulating association with chromatin. These results are discussed in view of the putative cellular function of Kin17. BIOLOGICAL SIGNIFICANCE The results shown here broaden our understanding of METTL22, a member of a family of newly-discovered non-histone lysine methyltransferases and its substrate, Kin17, a DNA/RNA-binding protein with reported roles in DNA repair and replication and mRNA processing. An innovative method to study protein-protein interactions in multiple cell compartments is employed to outline the interaction network of both proteins. Functional experiments uncover a correlative role between Kin17 lysine methylation and its association with chromatin. This article is part of a Special Issue entitled: Can Proteomics Fill the Gap Between Genomics and Phenotypes?
Collapse
Affiliation(s)
- Philippe Cloutier
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Mathieu Lavallée-Adam
- McGill Centre for Bioinformatics and School of Computer Science, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Denis Faubert
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Mathieu Blanchette
- McGill Centre for Bioinformatics and School of Computer Science, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Benoit Coulombe
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada; Department of Biochemistry, Université de Montréal, Montréal, Québec H3T 1J4, Canada.
| |
Collapse
|
23
|
Martinez-Levasseur LM, Gendron D, Knell RJ, Acevedo-Whitehouse K. Control and target gene selection for studies on UV-induced genotoxicity in whales. BMC Res Notes 2013; 6:264. [PMID: 23837727 PMCID: PMC3716943 DOI: 10.1186/1756-0500-6-264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/11/2013] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Despite international success in reducing ozone-depleting emissions, ultraviolet radiation (UV) is not expected to decrease for several decades. Thus, it is pressing to implement tools that allow investigating the capacity of wildlife to respond to excessive UV, particularly species like cetaceans that lack anatomical or physiological protection. One approach is to examine epidermal expression of key genes involved in genotoxic stress response pathways. However, quantitation of mRNA transcripts requires previous standardization, with accurate selection of control and target genes. The latter is particularly important when working with environmental stressors such as UV that can activate numerous genes. RESULTS Using 20 epidermal biopsies from blue, fin and sperm whale, we found that the genes encoding the ribosomal proteins L4 and S18 (RPL4 and RPS18) were the most suitable to use as controls, followed by the genes encoding phosphoglycerate kinase 1 (PGK1) and succinate dehydrogenase complex subunit A (SDHA). A careful analysis of the transcription pathways known to be activated by UV-exposure in humans and mice led us to select as target genes those encoding for i) heat shock protein 70 (HSP70) an indicator of general cell stress, ii) tumour suppressor protein P53 (P53), a transcription factor activated by UV and other cell stressors, and iii) KIN17 (KIN), a cell cycle protein known to be up-regulated following UV exposure. These genes were successfully amplified in the three species and quantitation of their mRNA transcripts was standardised using RPL4 and RPS18. Using a larger sample set of 60 whale skin biopsies, we found that the target gene with highest expression was HSP70 and that its levels of transcription were correlated with those of KIN and P53. Expression of HSP70 and P53 were both related to microscopic sunburn lesions recorded in the whales' skin. CONCLUSION This article presents groundwork data essential for future qPCR-based studies on the capacity of wildlife to resolve or limit UV-induced damage. The proposed target genes are HSP70, P53 and KIN, known to be involved in genotoxic stress pathways, and whose expression patterns can be accurately assessed by using two stable control genes, RPL4 and RPS18.
Collapse
|
24
|
Zeng T, Gao H, Yu P, He H, Ouyang X, Deng L, Zhang Y. Up-regulation of kin17 is essential for proliferation of breast cancer. PLoS One 2011; 6:e25343. [PMID: 21980430 PMCID: PMC3183049 DOI: 10.1371/journal.pone.0025343] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/01/2011] [Indexed: 12/02/2022] Open
Abstract
Background Kin17 is ubiquitously expressed at low levels in human tissue and participates in DNA replication, DNA repair and cell cycle control. Breast cancer cells are characterized by enabling replicative immortality and accumulated DNA damage. However, whether kin17 contributes to breast carcinogenesis remains unknown. Methodology/Principal Findings In this study, we show for the first time that kin17 is an important molecule related to breast cancer. Our results show that kin17 expression was markedly increased in clinical breast tumors and was associated with tumor grade, Ki-67 expression, p53 mutation status and progesterone receptor expression, which were assessed in a clinicopathologic characteristics review. Knockdown of kin17 inhibited DNA replication and repair, blocked cell cycle progression and inhibited anchorage-independent growth, while increasing sensitivity to chemotherapy in breast cancer cells. Moreover, kin17 silencing decreased EGF-stimulated cell growth. Furthermore, overexpression of kin17 promoted DNA replication and cell proliferation in MCF-10A. Conclusions/Significance Our findings indicate that up-regulation of kin17 is strongly associated with cellular proliferation, DNA replication, DNA damage response and breast cancer development. The increased level of kin17 was not only a consequence of immortalization but also associated with tumorigenesis. Therefore, kin17 could be a novel therapeutic target for inhibiting cell growth in breast cancer.
Collapse
Affiliation(s)
- Tao Zeng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hongyi Gao
- Department of Pathology, Guangdong Women and Children's Hospital and Health Institute, Guangzhou, People's Republic of China
| | - Pei Yu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Heng He
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiaoming Ouyang
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Lijuan Deng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yan Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
- * E-mail:
| |
Collapse
|
25
|
Renaud E, Miccoli L, Zacal N, Biard DS, Craescu CT, Rainbow AJ, Angulo JF. Differential contribution of XPC, RAD23A, RAD23B and CENTRIN 2 to the UV-response in human cells. DNA Repair (Amst) 2011; 10:835-47. [PMID: 21676658 DOI: 10.1016/j.dnarep.2011.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 04/29/2011] [Accepted: 05/09/2011] [Indexed: 02/06/2023]
Abstract
Several genes in human cells are activated by physical genotoxic agents in order to regenerate cell homeostasis. Among the pathways contributing to this response, nucleotide excision repair (NER) is unique in restoring the nucleotide sequence of the DNA molecule without generating mutations. The first step of NER is mediated by a protein complex composed of XPC, RAD23B, an ubiquitin receptor and CENTRIN 2, an EF-hand calcium binding protein. These three proteins are multifunctional and participate in other important biochemical pathways. We silenced the XPC, RAD23A or RAD23B genes in HeLa cells for a long period of time by using Epstein Barr Virus-derived plasmids carrying sequences coding for small interfering RNA. XPC silencing confirms an essential role for XPC in DNA repair and cell survival after ultraviolet light irradiation. RAD23A and RAD23B participate in DNA repair and cell survival with diverging functions. Our data also indicate that CENTRIN 2 is recruited onto nuclear damaged areas quickly after irradiation and that XPC plays an important role during its internalization into the nucleus of human cells. Furthermore, the inhibition of XPC expression correlates with a decreased amount of CENTRIN 2 transcript and protein, indicating that XPC is required for the fine tuning of CENTRIN 2 gene expression. Moreover, XPC-silenced cells present a reduced concentration of CENTRIN 2 that affects both its centrosomal and nuclear localization suggesting that XPC deficiency may indirectly slow down cell division.
Collapse
Affiliation(s)
- Emilie Renaud
- Laboratoire de Génétique de la Radiosensibilité, Institut de Radiobiologie Cellulaire et Moléculaire, CEA, Commissariat à l'Energie Atomique et aux Énergies Alternatives, Direction des Sciences du Vivant, B.P. 6, 92265, Fontenay aux Roses, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Seetharam A, Bai Y, Stuart GW. A survey of well conserved families of C2H2 zinc-finger genes in Daphnia. BMC Genomics 2010; 11:276. [PMID: 20433734 PMCID: PMC2889900 DOI: 10.1186/1471-2164-11-276] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 04/30/2010] [Indexed: 12/15/2022] Open
Abstract
Background A recent comparative genomic analysis tentatively identified roughly 40 orthologous groups of C2H2 Zinc-finger proteins that are well conserved in "bilaterians" (i.e. worms, flies, and humans). Here we extend that analysis to include a second arthropod genome from the crustacean, Daphnia pulex. Results Most of the 40 orthologous groups of C2H2 zinc-finger proteins are represented by just one or two proteins within each of the previously surveyed species. Likewise, Daphnia were found to possess a similar number of orthologs for all of these small orthology groups. In contrast, the number of Sp/KLF homologs tends to be greater and to vary between species. Like the corresponding mammalian Sp/KLF proteins, most of the Drosophila and Daphnia homologs can be placed into one of three sub-groups: Class I-III. Daphnia were found to have three Class I proteins that roughly correspond to their Drosophila counterparts, dSP1, btd, CG5669, and three Class II proteins that roughly correspond to Luna, CG12029, CG9895. However, Daphnia have four additional KLF-Class II proteins that are most similar to the vertebrate KLF1/2/4 proteins, a subset not found in Drosophila. Two of these four proteins are encoded by genes linked in tandem. Daphnia also have three KLF-Class III members, one more than Drosophila. One of these is a likely Bteb2 homolog, while the other two correspond to Cabot and KLF13, a vertebrate homolog of Cabot. Conclusion Consistent with their likely roles as fundamental determinants of bilaterian form and function, most of the 40 groups of C2H2 zinc-finger proteins are conserved in kind and number in Daphnia. However, the KLF family includes several additional genes that are most similar to genes present in vertebrates but missing in Drosophila.
Collapse
Affiliation(s)
- Arun Seetharam
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
| | | | | |
Collapse
|
27
|
Ma T, Shi T, Huang J, Wu L, Hu F, He P, Deng W, Gao P, Zhang Y, Song Q, Ma D, Qiu X. DCUN1D3, a novel UVC-responsive gene that is involved in cell cycle progression and cell growth. Cancer Sci 2008; 99:2128-35. [PMID: 18823379 PMCID: PMC11158747 DOI: 10.1111/j.1349-7006.2008.00929.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
DCUN1D3 (DCN1, defective in cullin neddylation 1, domain containing 3) was found during the process of high throughput screening of novel human genes associated with serum response element (SRE) pathway activation. The DCUN1D3 gene is highly conserved among vertebrates. Human DCUN1D3 complementary DNA (cDNA) encodes 304 amino acids with an apparent molecular mass of 34 kDa. However, there has been no report about the function of DCUN1D3. This study detected that DCUN1D3 was broadly expressed in several tumor tissues and cultured cell lines; however, UVC irradiation of different doses significantly increased DCUN1D3 expression level in these cancer cell lines. Over-expression of the DCUN1D3 inhibits cell growth in HeLa. When the DCUN1D3 gene was silenced by siRNA in UVC-treated HeLa, the cell cycle in S phase was remarkably blocked; furthermore, the UVC-induced cell death was inhibited. In addition, DCUN1D3 localized mainly in the cytoplasm and perinuclear, but after UVC treatment, the DCUN1D3 gradually entered the nucleus. All the results above indicate that DCUN1D3 is a novel UVC-response gene involved in cell cycle regulation and cell survival.
Collapse
Affiliation(s)
- Teng Ma
- Laboratory of Medical Immunology, School of Basic Medical Science, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Carlier L, Couprie J, le Maire A, Guilhaudis L, Milazzo-Segalas I, Courçon M, Moutiez M, Gondry M, Davoust D, Gilquin B, Zinn-Justin S. Solution structure of the region 51-160 of human KIN17 reveals an atypical winged helix domain. Protein Sci 2008; 16:2750-5. [PMID: 18029424 DOI: 10.1110/ps.073079107] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Human KIN17 is a 45-kDa eukaryotic DNA- and RNA-binding protein that plays an important role in nuclear metabolism and in particular in the general response to genotoxics. Its amino acids sequence contains a zinc finger motif (residues 28-50) within a 30-kDa N-terminal region conserved from yeast to human, and a 15-kDa C-terminal tandem of SH3-like subdomains (residues 268-393) only found in higher eukaryotes. Here we report the solution structure of the region 51-160 of human KIN17. We show that this fragment folds into a three-alpha-helix bundle packed against a three-stranded beta-sheet. It belongs to the winged helix (WH) family. Structural comparison with analogous WH domains reveals that KIN17 WH module presents an additional and highly conserved 3(10)-helix. Moreover, KIN17 WH helix H3 is not positively charged as in classical DNA-binding WH domains. Thus, human KIN17 region 51-160 might rather be involved in protein-protein interaction through its conserved surface centered on the 3(10)-helix.
Collapse
Affiliation(s)
- Ludovic Carlier
- Equipe de Chimie Organique et Biologie Structurale, IFRMP 23, CNRS UMR 6014, Université de Rouen, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Charbonnier JB, Renaud E, Miron S, Le Du MH, Blouquit Y, Duchambon P, Christova P, Shosheva A, Rose T, Angulo JF, Craescu CT. Structural, Thermodynamic, and Cellular Characterization of Human Centrin 2 Interaction with Xeroderma Pigmentosum Group C Protein. J Mol Biol 2007; 373:1032-46. [PMID: 17897675 DOI: 10.1016/j.jmb.2007.08.046] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 08/17/2007] [Accepted: 08/20/2007] [Indexed: 11/25/2022]
Abstract
Human centrin 2 (HsCen2), an EF-hand calcium binding protein, plays a regulatory role in the DNA damage recognition during the first steps of the nucleotide excision repair. This biological action is mediated by the binding to a short fragment (N847-R863) from the C-terminal region of xeroderma pigmentosum group C (XPC) protein. This work presents a detailed structural and energetic characterization of the HsCen2/XPC interaction. Using a truncated form of HsCen2 we obtained a high resolution (1.8 A) X-ray structure of the complex with the peptide N847-R863 from XPC. Structural and thermodynamic analysis of the interface revealed the existence of both electrostatic and apolar inter-molecular interactions, but the binding energy is mainly determined by the burial of apolar bulky side-chains into the hydrophobic pocket of the HsCen2 C-terminal domain. Binding studies with various peptide variants showed that XPC residues W848 and L851 constitute the critical anchoring side-chains. This enabled us to define a minimal centrin binding peptide variant of five residues, which accounts for about 75% of the total free energy of interaction between the two proteins. Immunofluorescence imaging in HeLa cells demonstrated that HsCen2 binding to the integral XPC protein may be observed in living cells, and is determined by the same interface residues identified in the X-ray structure of the complex. Overexpression of XPC perturbs the cellular distribution of HsCen2, by inducing a translocation of centrin molecules from the cytoplasm to the nucleus. The present data confirm that the in vitro structural features of the centrin/XPC peptide complex are highly relevant to the cellular context.
Collapse
Affiliation(s)
- Jean-Baptiste Charbonnier
- Laboratoire de Biologie Structurale et Radiobiologie, iBiTec-S, CEA, Commissariat à l'Energie Atomique, 91191 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Navarre WW, McClelland M, Libby SJ, Fang FC. Silencing of xenogeneic DNA by H-NS--facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. Genes Dev 2007; 21:1456-71. [PMID: 17575047 DOI: 10.1101/gad.1543107] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lateral gene transfer has played a prominent role in bacterial evolution, but the mechanisms allowing bacteria to tolerate the acquisition of foreign DNA have been incompletely defined. Recent studies show that H-NS, an abundant nucleoid-associated protein in enteric bacteria and related species, can recognize and selectively silence the expression of foreign DNA with higher adenine and thymine content relative to the resident genome, a property that has made this molecule an almost universal regulator of virulence determinants in enteric bacteria. These and other recent findings challenge the ideas that curvature is the primary determinant recognized by H-NS and that activation of H-NS-silenced genes in response to environmental conditions occurs through a change in the structure of H-NS itself. Derepression of H-NS-silenced genes can occur at specific promoters by several mechanisms including competition with sequence-specific DNA-binding proteins, thereby enabling the regulated expression of foreign genes. The possibility that microorganisms maintain and exploit their characteristic genomic GC ratios for the purpose of self/non-self-discrimination is discussed.
Collapse
Affiliation(s)
- William Wiley Navarre
- Department of Laboratory Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
31
|
Kuo WHW, Wang Y, Wong RPC, Campos EI, Li G. The ING1b tumor suppressor facilitates nucleotide excision repair by promoting chromatin accessibility to XPA. Exp Cell Res 2007; 313:1628-38. [PMID: 17379210 DOI: 10.1016/j.yexcr.2007.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 02/03/2007] [Accepted: 02/12/2007] [Indexed: 11/15/2022]
Abstract
ING1b is the most studied ING family protein and perhaps the most ubiquitously and abundantly expressed. This protein is involved in the regulation of various biological functions ranging from senescence, cell cycle arrest, apoptosis, to DNA repair. ING1b is upregulated by UV irradiation and enhances the removal of bulky nucleic acid photoproducts. In this study, we provide evidence that ING1b mediates nucleotide excision repair by facilitating the access to damaged nucleosomal DNA. We demonstrate that ING1b is not recruited to UV-induced DNA lesions but enhances nucleotide excision repair only in XPC-proficient cells, implying an essential role in early steps of the 'access, repair, restore' model. We also find that ING1b alters histone acetylation dynamics upon exposure to UV radiation and induces chromatin relaxation in microccocal nuclease digestion assay, revealing that ING1b may allow better access to nucleotide excision repair machinery. More importantly, ING1b associates with chromatin in a UV-inducible manner and facilitates DNA access to nucleotide excision repair factor XPA. Furthermore, depletion of the endogenous ING1b results to the sensitization of cells at S-phase to UV irradiation. Taken together, these observations establish a role of ING1b acting as a chromatin accessibility factor for DNA damage recognition proteins upon genotoxic injury.
Collapse
Affiliation(s)
- Wei-Hung W Kuo
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, Canada BC V6H 3Z6
| | | | | | | | | |
Collapse
|
32
|
le Maire A, Schiltz M, Stura EA, Pinon-Lataillade G, Couprie J, Moutiez M, Gondry M, Angulo JF, Zinn-Justin S. A tandem of SH3-like domains participates in RNA binding in KIN17, a human protein activated in response to genotoxics. J Mol Biol 2006; 364:764-76. [PMID: 17045609 DOI: 10.1016/j.jmb.2006.09.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 08/24/2006] [Accepted: 09/11/2006] [Indexed: 10/24/2022]
Abstract
The human KIN17 protein is an essential nuclear protein conserved from yeast to human and expressed ubiquitously in mammals. Suppression of Rts2, the yeast equivalent of gene KIN17, renders the cells unviable, and silencing the human KIN17 gene slows cell growth dramatically. Moreover, the human gene KIN17 is up-regulated following exposure to ionizing radiations and UV light, depending on the integrity of the human global genome repair machinery. Its ectopic over-expression blocks S-phase progression by inhibiting DNA synthesis. The C-terminal region of human KIN17 is crucial for this anti-proliferation effect. Its high-resolution structure, presented here, reveals a tandem of SH3-like subdomains. This domain binds to ribonucleotide homopolymers with the same preferences as the whole protein. Analysis of its structure complexed with tungstate shows structural variability within the domain. The interaction with tungstate is mediated by several lysine residues located within a positively charged groove at the interface between the two subdomains. This groove could be the site of interaction with RNA, since mutagenesis of two of these highly conserved lysine residue weakens RNA binding.
Collapse
|
33
|
le Maire A, Schiltz M, Braud S, Gondry M, Charbonnier JB, Zinn-Justin S, Stura E. Crystallization and halide phasing of the C-terminal domain of human KIN17. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:245-8. [PMID: 16511313 PMCID: PMC2197188 DOI: 10.1107/s174430910600409x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 02/02/2006] [Indexed: 11/10/2022]
Abstract
Here, the crystallization and initial phasing of the C-terminal domain of human KIN17, a 45 kDa protein mainly expressed in response to ionizing radiation and overexpressed in certain tumour cell lines, are reported. Crystals diffracting to 1.4 A resolution were obtained from 10% ethylene glycol, 27% PEG 6000, 500 mM LiCl and 100 mM sodium acetate pH 6.3 in space group P2(1)2(1)2(1), with unit-cell parameters a = 45.75, b = 46.31, c = 60.80 A and one molecule in the asymmetric unit. Since this domain has a basic pI, heavy-atom derivatives were obtained by soaking the crystals with negatively charged ions such as tungstate and iodine. The replacement of LiCl by KI in the cryosolution allowed the determination of phases from iodide ions to give an interpretable electron-density map.
Collapse
Affiliation(s)
- Albane le Maire
- Département d'Ingénierie et d'Etude des Protéines, Commissariat a l'Energie Atomique, 91191 Gif-sur-Yvette, France.
| | | | | | | | | | | | | |
Collapse
|
34
|
Millikan RC, Hummer A, Begg C, Player J, de Cotret AR, Winkel S, Mohrenweiser H, Thomas N, Armstrong B, Kricker A, Marrett LD, Gruber SB, Culver HA, Zanetti R, Gallagher RP, Dwyer T, Rebbeck TR, Busam K, From L, Mujumdar U, Berwick M. Polymorphisms in nucleotide excision repair genes and risk of multiple primary melanoma: the Genes Environment and Melanoma Study. Carcinogenesis 2005; 27:610-8. [PMID: 16258177 DOI: 10.1093/carcin/bgi252] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Polymorphisms in six genes involved in nucleotide excision repair of DNA were examined in a large population-based case-control study of melanoma. Genotyping was conducted for 2485 patients with a single primary melanoma (controls) and 1238 patients with second or higher order primary melanomas (cases). Patients were ascertained from nine geographic regions in Australia, Canada, Italy and the United States. Positive associations were observed for XPD 312 Asn/Asn versus Asp/Asp [odds ratio (OR) = 1.5, 95% confidence interval (CI) 1.2-1.9] and XPD 751 Gln/Gln versus Lys/Lys (OR = 1.4, 95% CI 1.1-1.7) genotypes and melanoma. The combined XPD Asn (A) 312 + Gln (C) 751 haplotype was significantly more frequent in cases (32%) compared with controls (29%) (P = 0.003) and risk of melanoma increased significantly with one and two copies of the haplotype (ORs 1.2, 95% CI 1.0-1.4, and 1.6, 95% CI 1.2-2.0, trend P = 0.002). No significant associations were observed for HR23B codon 249, XPG codon 1104, XPC codon 939, XPF codon 415, XPF nt 2063, ERCC6 codon 1213 or ERCC6 codon 1230. ORs for XPD and XPC genotypes were stronger for melanoma diagnosed at an early age, but tests for interaction were not statistically significant. The results provide further evidence for a role of XPD in the etiology of melanoma.
Collapse
Affiliation(s)
- Robert C Millikan
- Department of Epidemiology, CB #7435, School of Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Miccoli L, Frouin I, Novac O, Di Paola D, Harper F, Zannis-Hadjopoulos M, Maga G, Biard DSF, Angulo JF. The human stress-activated protein kin17 belongs to the multiprotein DNA replication complex and associates in vivo with mammalian replication origins. Mol Cell Biol 2005; 25:3814-30. [PMID: 15831485 PMCID: PMC1084281 DOI: 10.1128/mcb.25.9.3814-3830.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human stress-activated protein kin17 accumulates in the nuclei of proliferating cells with predominant colocalization with sites of active DNA replication. The distribution of kin17 protein is in equilibrium between chromatin-DNA and the nuclear matrix. An increased association with nonchromatin nuclear structure is observed in S-phase cells. We demonstrated here that kin17 protein strongly associates in vivo with DNA fragments containing replication origins in both human HeLa and monkey CV-1 cells. This association was 10-fold higher than that observed with nonorigin control DNA fragments in exponentially growing cells. In addition, the association of kin17 protein to DNA fragments containing replication origins was also analyzed as a function of the cell cycle. High binding of kin17 protein was found at the G(1)/S border and throughout the S phase and was negligible in both G(0) and M phases. Specific monoclonal antibodies against kin17 protein induced a threefold inhibition of in vitro DNA replication of a plasmid containing a minimal replication origin that could be partially restored by the addition of recombinant kin17 protein. Immunoelectron microscopy confirmed the colocalization of kin17 protein with replication proteins like RPA, PCNA, and DNA polymerase alpha. A two-step chromatographic fractionation of nuclear extracts from HeLa cells revealed that kin17 protein localized in vivo in distinct protein complexes of high molecular weight. We found that kin17 protein purified within an approximately 600-kDa protein complex able to support in vitro DNA replication by means of two different biochemical methods designed to isolate replication complexes. In addition, the reduced in vitro DNA replication activity of the multiprotein replication complex after immunodepletion for kin17 protein highlighted for a direct role in DNA replication at the origins.
Collapse
Affiliation(s)
- Laurent Miccoli
- Commissariat à l'Energie Atomique, Centre de Fontenay-aux-Roses, LGR/DRR/DSV, BP6, 92265 Fontenay-aux-Roses Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pinon-Lataillade G, Masson C, Bernardino-Sgherri J, Henriot V, Mauffrey P, Frobert Y, Araneda S, Angulo JF. KIN17 encodes an RNA-binding protein and is expressed during mouse spermatogenesis. J Cell Sci 2005; 117:3691-702. [PMID: 15252136 DOI: 10.1242/jcs.01226] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Genotoxic agents deform DNA structure thus eliciting a complex genetic response allowing recovery and cell survival. The Kin17 gene is up-regulated during this response. This gene encodes a conserved nuclear protein that shares a DNA-binding domain with the bacterial RecA protein. The KIN17 protein binds DNA and displays enhanced expression levels in proliferating cultured cells, suggesting a role in nuclear metabolism. We investigated this by studying the expression profile of KIN17 protein during mouse spermatogenesis. As expected, the expression level of Kin17 is higher in proliferating than in differentiated cells. KIN17 is selectively extracted from this tissue by detergents and a fraction was tightly associated with the nuclear matrix. Germinal cells ubiquitously express Kin17 and the protein is located mainly in the nucleus except in elongated spermatids where cytoplasmic staining is also observed. Sertoli and germ cells that are no longer mitotically active express KIN17, suggesting a general role in all testicular cell types. In adult testis a significant proportion of KIN17 co-purifies with polyadenylated RNA. KIN17 directly binds RNA, preferentially poly(G) and poly(U) homopolymers. These results together with the identification of KIN17 as a component of the human spliceosome indicate that this protein may participate in RNA processing.
Collapse
Affiliation(s)
- Ghislaine Pinon-Lataillade
- Laboratoire de Génétique de la Radiosensibilité, CEA, Direction des Sciences du Vivant, Département de Radiobiologie et de Radiopathologie, B.P. 6, 92265 Fontenay aux Roses CEDEX, France.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang G, Dombkowski A, Chuang L, Xu XXS. The involvement of XPC protein in the cisplatin DNA damaging treatment-mediated cellular response. Cell Res 2005; 14:303-14. [PMID: 15353127 DOI: 10.1038/sj.cr.7290375] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Recognition of DNA damage is a critical step for DNA damage-mediated cellular response. XPC is an important DNA damage recognition protein involved in nucleotide excision repair (NER). We have studied the XPC protein in cisplatin DNA damaging treatment-mediated cellular response. Comparison of the microarray data from both normal and XPC-defective human fibroblasts identified 861 XPC-responsive genes in the cisplatin treatment (with minimum fold change > or = 1.5). The cell cycle and cell proliferation-related genes are the most affected genes by the XPC defect in the treatment. Many other cellular function genes, especially the DNA repair and signal transduction-related genes, were also affected by the XPC defect in the treatment. To validate the microarray data, the transcription levels of some microarray-identified genes were also determined by an RT-PCR based real time PCR assay. The real time PCR results are consistent with the microarray data for most of the tested genes, indicating the reliability of the microarray data. To further validate the microarray data, the cisplatin treatment-mediated caspase-3 activation was also determined. The Western blot hybridization results indicate that the XPC defect greatly attenuates the cisplatin treatment-mediated Caspase-3 activation. We elucidated the role of p53 protein in the XPC protein DNA damage recognition-mediated signaling process. The XPC defect reduces the cisplatin treatment-mediated p53 response. These results suggest that the XPC protein plays an important role in the cisplatin treatment-mediated cellular response. It may also suggest a possible mechanism of cancer cell drug resistance.
Collapse
Affiliation(s)
- Gan Wang
- Institute of Environmental Health Sciences, Wayne State University, 2727 Second Avenue, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
38
|
Wang G, Chuang L, Zhang X, Colton S, Dombkowski A, Reiners J, Diakiw A, Xu XS. The initiative role of XPC protein in cisplatin DNA damaging treatment-mediated cell cycle regulation. Nucleic Acids Res 2004; 32:2231-40. [PMID: 15107491 PMCID: PMC407824 DOI: 10.1093/nar/gkh541] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
XPC is an important DNA damage recognition protein involved in DNA nucleotide excision repair. We have studied the role of the XPC protein in cisplatin treatment-mediated cell cycle regulation. Through the comparison of microarray data obtained from human normal fibroblasts and two individual XPC-defective cell lines, 486 genes were identified as XPC-responsive genes in the cisplatin treatment (with a minimal 1.5-fold change) and 297 of these genes were further mapped to biological pathways and gene ontologies. The cell cycle and cell proliferation-related genes were the most affected genes by the XPC defect in the cisplatin treatment. Many other cellular function genes were also affected by the XPC defect in the treatment. Western blot hybridization results revealed that the XPC defect reduced the p53 responses to the cisplatin treatment. The ability to activate caspase-3 was also attenuated in the XPC cells with the treatment. These results suggest that the XPC protein plays a critical role in initiating the cisplatin DNA damaging treatment-mediated signal transduction process, resulting in activation of the p53 pathway and cell cycle arrest that allow DNA repair and apoptosis to take place. These results reveal an important role of the XPC protein in the cancer prevention.
Collapse
Affiliation(s)
- Gan Wang
- Institute of Environmental Health Sciences, Wayne State University, 2727 Second Avenue, Room 4325, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Miccoli L, Biard DSF, Frouin I, Harper F, Maga G, Angulo JF. Selective interactions of human kin17 and RPA proteins with chromatin and the nuclear matrix in a DNA damage- and cell cycle-regulated manner. Nucleic Acids Res 2003; 31:4162-75. [PMID: 12853634 PMCID: PMC165974 DOI: 10.1093/nar/gkg459] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Several proteins involved in DNA synthesis are part of the so-called 'replication factories' that are anchored on non-chromatin nuclear structures. We report here that human kin17, a nuclear stress-activated protein, associates with both chromatin and non-chromatin nuclear structures in a cell cycle- and DNA damage-dependent manner. After L-mimosine block and withdrawal we observed that kin17 protein was recruited in the nucleus during re-entry and progression through S phase. These results are consistent with a role of kin17 protein in DNA replication. About 50% of the total amount of kin17 protein was detected on nuclear structures and could not be released by detergents. Furthermore, the amount of kin17 protein greatly increased in both G(1)/S and S phase-arrested cells in fractions containing proteins anchored to nuclear structures. The detection of kin17 protein showed for the first time its preferential assembly within non-chromatin nuclear structures in G(1)/S and S phase-arrested cells, while the association with these structures was found to be less stable in the G(2)/M phase, as judged by fractionation of human cells and immunostaining. In asynchronous growing cells, kin17 protein interacted with both chromatin DNA and non-chromatin nuclear structures, while in S phase-arrested cells it interacted mostly with non-chromatin nuclear structures, as judged by DNase I treatment and in vivo UV cross-linking. In the presence of DNA damage in S phase cells, the distribution of kin17 protein became mainly associated with chromosomal DNA, as judged by limited formaldehyde cross-linking of living cells. The physical interaction of kin17 protein with components of the nuclear matrix was confirmed and visualized by indirect immunofluorescence and immunoelectron microscopy. Our results indicate that, during S phase, a fraction of the human kin17 protein preferentially associates with the nuclear matrix, a fundamentally non-chromatin higher order nuclear structure, and to chromatin DNA in the presence of DNA damage.
Collapse
Affiliation(s)
- Laurent Miccoli
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Laboratoire de Génétique de la Radiosensibilité, Département de Radiobiologie et de Radiopathologie, F-92265 Fontenay-aux-Roses, France.
| | | | | | | | | | | |
Collapse
|