1
|
Gong D, Tao M, Xu L, Hu F, Wei Z, Wang S, Wang Y, Liu Q, Wu C, Luo K, Tang C, Zhou R, Zhang C, Wang Y, Liu S. An improved hybrid bream derived from a hybrid lineage of Megalobrama amblycephala (♀)×Culter alburnus (♂). SCIENCE CHINA. LIFE SCIENCES 2022; 65:1213-1221. [PMID: 34757543 DOI: 10.1007/s11427-021-2005-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Distant hybridization is an important technique in fish genetic breeding. In this study, based on the establishment of an allodiploid fish lineage (BT, 2n=48, F1-F6) derived from distant hybridization between female Megalobrama amblycephala (BSB, 2n=48) and male Culter alburnus (TC, 2n=48), and the backcross progeny (BTB, 2n=48) derived by backcrossing female F1 of BT to male BSB, an improved hybrid bream (BTBB, 2n=48) was obtained by backcrossing BTB (♀) to BSB (♂). Moreover, the morphological and genetic characteristics of BTBB individuals were investigated; BTBB was similar to BSB in appearance but had a higher body height than BSB. The study results regarding chromosome numbers and DNA content indicated that BTBB is a diploid hybrid fish. The 5S rDNA and Hox gene of BTBB were inherited from the original parents. Gonadal development in BTBB was normal. On the other hand, BTBB had a faster growth rate, higher muscle protein level, and lower muscle carbohydrate level than BSB. Hence, bisexual fertile BTBB is promoted and can be applied as a high-quality fish, and it can also be used as a new fish germplasm resource to develop high-quality fish further. Thus, this study is of great significance for fish genetic breeding.
Collapse
Affiliation(s)
- Dingbin Gong
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Lihui Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Fangzhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zehong Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yude Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Qingfeng Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Chang Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Kaikun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Chenchen Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Rong Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yuequn Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
2
|
Xu X, Cao Y, Qi H, Deng D, Zhang Y, Wu J, Peng S, Zhou Z. Effects of toxic Microcystis aeruginosa on the expression of Hox genes in Daphnia similoides sinensis. Ecol Evol 2022; 12:e8685. [PMID: 35342603 PMCID: PMC8928896 DOI: 10.1002/ece3.8685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Lake eutrophication and cyanobacterial blooms have become worldwide environmental issues. Under cyanobacterial blooms (especially Microcystis), Daphnia spp. can transfer beneficial information to their offspring in order to improve adaptability. Hox genes are important regulatory factors of transcription in metazoans, and are involved in the growth and development of organisms. However, the mechanisms of Microcystis on the expression of Hox genes in Daphnia are unclear. In this study, the effects of Microcystis aeruginosa on Hox gene expression in the mothers and offspring (F1) of two Daphnia similoides sinensis clones were investigated using a mixed diet of M. aeruginosa and Scenedesmus obliquus. Compared with the 100%S food treatment, the survival rates at the end of the experiment of clone 1-F1 in the food treatments containing M. aeruginosa were significantly lower, but it was significantly higher for clone 2-F1 in the 20%M + 80%S food treatment. Moreover, the survival rates at the end of the experiment of clone 1-F1 in the food treatments containing M. aeruginosa were significantly higher than those of their mother. Based on previous transcriptome data, 14 Hox genes of D. similoides sinensis were identified, including Abd-B, CDX-1, Dll, HOX-1, HOX-2, HOXA1, HOXA2, HOXB3, HOXB3-2, HOXB7, HOXC4, HOXC7, HOXC8, and HOXD10. The expressions of Abd-B, HOX-2, HOXA1, HOXC7, and HOXD10 of clone 2-mothers in the 40%M + 60%S food treatment were 2.9-22.5 times as high as in the 100%S food treatment, whereas the expressions of CDX-1, HOX-1, HOXB3, and HOXD10 of clone 1-mothers were 4.8-13.1 times at same food level. The expression of HOXA2, HOXC7, HOXC8, and HOXD10 of clone 1-F1 in the 40%M + 60%S food treatment was 8.2-21.1 times as high as in the 100%S food treatment. However, compared with the 100%S food treatment, the expressions of CDX-1 in the mothers and F1 of clone 2 and HOXB7 in the mothers of clone 1 in the food treatments containing M. aeruginosa were significantly lower (p < .05). Our results suggest that the offspring (F1) produced by D. similoides sinensis mother pre-exposed to toxic M. aeruginosa had stronger adaptability to M. aeruginosa than their mothers. Moreover, Hox gene expressions of D. similoides sinensis had obvious differences between clones under stress of toxic M. aeruginosa.
Collapse
Affiliation(s)
- Xiaoxue Xu
- School of Life ScienceHuaibei Normal UniversityHuaibeiAnhuiChina
- School of Resources and Environmental EngineeringAnhui UniversityHefeiAnhuiChina
| | - Yaqin Cao
- School of Life ScienceHuaibei Normal UniversityHuaibeiAnhuiChina
| | - Huiying Qi
- School of Life ScienceHuaibei Normal UniversityHuaibeiAnhuiChina
| | - Daogui Deng
- School of Life ScienceHuaibei Normal UniversityHuaibeiAnhuiChina
| | - Ya‐Nan Zhang
- School of Life ScienceHuaibei Normal UniversityHuaibeiAnhuiChina
| | - Jianxun Wu
- School of Life ScienceHuaibei Normal UniversityHuaibeiAnhuiChina
- School of Resources and Environmental EngineeringAnhui UniversityHefeiAnhuiChina
| | - Shuixiu Peng
- School of Life ScienceHuaibei Normal UniversityHuaibeiAnhuiChina
| | - Zhongze Zhou
- School of Resources and Environmental EngineeringAnhui UniversityHefeiAnhuiChina
| |
Collapse
|
3
|
Aase-Remedios ME, Ferrier DEK. Improved Understanding of the Role of Gene and Genome Duplications in Chordate Evolution With New Genome and Transcriptome Sequences. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.703163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Comparative approaches to understanding chordate genomes have uncovered a significant role for gene duplications, including whole genome duplications (WGDs), giving rise to and expanding gene families. In developmental biology, gene families created and expanded by both tandem and WGDs are paramount. These genes, often involved in transcription and signalling, are candidates for underpinning major evolutionary transitions because they are particularly prone to retention and subfunctionalisation, neofunctionalisation, or specialisation following duplication. Under the subfunctionalisation model, duplication lays the foundation for the diversification of paralogues, especially in the context of gene regulation. Tandemly duplicated paralogues reside in the same regulatory environment, which may constrain them and result in a gene cluster with closely linked but subtly different expression patterns and functions. Ohnologues (WGD paralogues) often diversify by partitioning their expression domains between retained paralogues, amidst the many changes in the genome during rediploidisation, including chromosomal rearrangements and extensive gene losses. The patterns of these retentions and losses are still not fully understood, nor is the full extent of the impact of gene duplication on chordate evolution. The growing number of sequencing projects, genomic resources, transcriptomics, and improvements to genome assemblies for diverse chordates from non-model and under-sampled lineages like the coelacanth, as well as key lineages, such as amphioxus and lamprey, has allowed more informative comparisons within developmental gene families as well as revealing the extent of conserved synteny across whole genomes. This influx of data provides the tools necessary for phylogenetically informed comparative genomics, which will bring us closer to understanding the evolution of chordate body plan diversity and the changes underpinning the origin and diversification of vertebrates.
Collapse
|
4
|
Zhao R, Wang Y, Zou L, Luo Y, Tan H, Yao J, Zhang M, Liu S. Hox genes reveal variations in the genomic DNA of allotetraploid hybrids derived from Carassius auratus red var. (female) × Cyprinus carpio L. (male). BMC Genet 2020; 21:24. [PMID: 32131722 PMCID: PMC7057633 DOI: 10.1186/s12863-020-0823-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/04/2020] [Indexed: 11/10/2022] Open
Abstract
Background Hox transcription factors are master regulators of animal development. Although highly conserved, they can contribute to the formation of novel biological characteristics when modified, such as during the generation of hybrid species, thus potentially serving as species-specific molecular markers. Here, we systematically studied the evolution of genomic sequences of Hox loci in an artificial allotetraploid lineage (4nAT, 4n = 200) derived from a red crucian carp (♀, RCC, 2n = 100) × common carp (♂, CC, 2n = 100) cross and its parents (RCC and CC). Results PCR amplification yielded 23 distinct Hox gene fragments from 160 clones in 4nAT, 22 fragments from 90 clones in RCC, and 19 fragments from 90 clones in CC. Sequence alignment of the HoxA3a and HoxC10a genes indicated both the inheritance and loss of paternal genomic DNA in 4nAT. The HoxA5a gene from 4nAT consisted of two subtypes from RCC and two subtypes from CC, indicating that homologous recombination occurred in the 4nAT hybrid genome. Moreover, 4nAT carried genomic pseudogenization in the HoxA10b and HoxC13a loci. Interestingly, a new type of HoxC9a gene was found in 4nAT as a hybrid sequence of CC and RCC by recombination in the intronic region. Conclusion The results revealed the influence of Hox genes during polyploidization in hybrid fish. The data provided insight into the evolution of vertebrate genomes and might be benefit for artificial breeding programs.
Collapse
Affiliation(s)
- Rurong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Yude Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Li Zou
- Fisheries Research Institute of Hunan Province, Changsha, 410153, People's Republic of China
| | - Yaxin Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Huifang Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Jiajun Yao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Minghe Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China. .,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
| |
Collapse
|
5
|
Luo K, Wang S, Fu Y, Zhou P, Huang X, Gu Q, Li W, Wang Y, Hu F, Liu S. Rapid genomic DNA variation in newly hybridized carp lineages derived from Cyprinus carpio (♀) × Megalobrama amblycephala (♂). BMC Genet 2019; 20:87. [PMID: 31779581 PMCID: PMC6883602 DOI: 10.1186/s12863-019-0784-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/14/2019] [Indexed: 11/24/2022] Open
Abstract
Background Distant hybridization can generate changes in phenotypes and genotypes that lead to the formation of new hybrid lineages with genetic variation. In this study, the establishment of two bisexual fertile carp lineages, including the improved diploid common carp (IDC) lineage and the improved diploid scattered mirror carp (IDMC) lineage, from the interspecific hybridization of common carp (Cyprinus carpio, 2n = 100) (♀) × blunt snout bream (Megalobrama amblycephala, 2n = 48) (♂), provided a good platform to investigate the genetic relationship between the parents and their hybrid progenies. Result In this study, we investigated the genetic variation of 12 Hox genes in the two types of improved carp lineages derived from common carp (♀) × blunt snout bream (♂). Hox gene clusters were abundant in the first generation of IDC, but most were not stably inherited in the second generation. In contrast, we did not find obvious mutations in Hox genes in the first generation of IDMC, and almost all the Hox gene clusters were stably inherited from the first generation to the second generation of IDMC. Interestingly, we found obvious recombinant clusters of Hox genes in both improved carp lineages, and partially recombinant clusters of Hox genes were stably inherited from the first generation to the second generation in both types of improved carp lineages. On the other hand, some Hox genes were gradually becoming pseudogenes, and some genes were completely pseudogenised in IDC or IDMC. Conclusions Our results provided important evidence that distant hybridization produces rapid genomic DNA changes that may or may not be stably inherited, providing novel insights into the function of hybridization in the establishment of improved lineages used as new fish resources for aquaculture.
Collapse
Affiliation(s)
- Kaikun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Yeqing Fu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Pei Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Xuexue Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Qianhong Gu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Wuhui Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, People's Republic of China
| | - Yude Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Fangzhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China. .,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
| |
Collapse
|
6
|
Wang YD, Qin QB, Yang R, Sun WZ, Liu QW, Huo YY, Huang X, Tao M, Zhang C, Li T, Liu SJ. Hox genes reveal genomic DNA variation in tetraploid hybrids derived from Carassius auratus red var. (female) × Megalobrama amblycephala (male). BMC Genet 2017; 18:86. [PMID: 29020918 PMCID: PMC5637053 DOI: 10.1186/s12863-017-0550-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 09/13/2017] [Indexed: 11/20/2022] Open
Abstract
Background Allotetraploid F1 hybrids (4nF1) (AABB, 4n = 148) were generated from the distant hybridization of Carassius auratus red var. (RCC) (AA, 2n = 100) (♀) × Megalobrama amblycephala (BSB) (BB, 2n = 48) (♂). It has been reported that Hox gene clusters are highly conserved among plants and vertebrates. In this study, we investigated the genomic organization of Hox gene clusters in the allotetraploid F1 hybrids and their parents to investigate the polyploidization process. Results There were three copies of Hox genes in the 4nF1 hybrids, two copies in RCC and one copy in BSB. In addition, obvious variation and pseudogenization were observed in some Hox genes from 4nF1. Conclusion Our results reveal the influence of polyploidization on the organization and evolution of Hox gene clusters in fish and also clarify some aspects of vertebrate genome evolution. Electronic supplementary material The online version of this article (10.1186/s12863-017-0550-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Y D Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Q B Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - R Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - W Z Sun
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Q W Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Y Y Huo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - X Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - M Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - C Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - T Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - S J Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China. .,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
| |
Collapse
|
7
|
Kim BM, Lee BY, Lee JH, Rhee JS, Lee JS. Conservation of Hox gene clusters in the self-fertilizing fish Kryptolebias marmoratus (Cyprinodontiformes; Rivulidae). JOURNAL OF FISH BIOLOGY 2016; 88:1249-1256. [PMID: 26822496 DOI: 10.1111/jfb.12898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
In this study, whole Hox gene clusters in the self-fertilizing mangrove killifish Kryptolebias marmoratus (Cyprinodontiformes; Rivulidae), a unique hermaphroditic vertebrate in which both sex organs are functional at the same time, were identified from whole genome and transcriptome sequences. The aim was to increase the understanding of the evolutionary status of conservation of this Hox gene cluster across fish species.
Collapse
Affiliation(s)
- B-M Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - B-Y Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - J-H Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - J-S Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, 22012, South Korea
| | - J-S Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| |
Collapse
|
8
|
Pallavicini A, Canapa A, Barucca M, Alfőldi J, Biscotti MA, Buonocore F, De Moro G, Di Palma F, Fausto AM, Forconi M, Gerdol M, Makapedua DM, Turner-Meier J, Olmo E, Scapigliati G. Analysis of the transcriptome of the Indonesian coelacanth Latimeria menadoensis. BMC Genomics 2013; 14:538. [PMID: 23927401 PMCID: PMC3750513 DOI: 10.1186/1471-2164-14-538] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 06/26/2013] [Indexed: 02/01/2023] Open
Abstract
Background Latimeria menadoensis is a coelacanth species first identified in 1997 in Indonesia, at 10,000 Km of distance from its African congener. To date, only six specimens have been caught and just a very limited molecular data is available. In the present work we describe the de novo transcriptome assembly obtained from liver and testis samples collected from the fifth specimen ever caught of this species. Results The deep RNA sequencing performed with Illumina technologies generated 145,435,156 paired-end reads, accounting for ~14 GB of sequence data, which were de novo assembled using a Trinity/CLC combined strategy. The assembly output was processed and filtered producing a set of 66,308 contigs, whose quality was thoroughly assessed. The comparison with the recently sequenced genome of the African congener Latimeria chalumnae and with the available genomic resources of other vertebrates revealed a good reconstruction of full length transcripts and a high coverage of the predicted full coelacanth transcriptome. The RNA-seq analysis revealed remarkable differences in the expression profiles between the two tissues, allowing the identification of liver- and testis-specific transcripts which may play a fundamental role in important biological processes carried out by these two organs. Conclusion Given the high genomic affinity between the two coelacanth species, the here described de novo transcriptome assembly can be considered a valuable support tool for the improvement of gene prediction within the genome of L. chalumnae and a valuable resource for investigation of many aspects of tetrapod evolution.
Collapse
|
9
|
|
10
|
Hoyle CH. Evolution of neuronal signalling: Transmitters and receptors. Auton Neurosci 2011; 165:28-53. [DOI: 10.1016/j.autneu.2010.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 05/09/2010] [Accepted: 05/18/2010] [Indexed: 11/16/2022]
|
11
|
Smith JJ, Sumiyama K, Amemiya CT. A living fossil in the genome of a living fossil: Harbinger transposons in the coelacanth genome. Mol Biol Evol 2011; 29:985-93. [PMID: 22045999 DOI: 10.1093/molbev/msr267] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Emerging data from the coelacanth genome are beginning to shed light on the origin and evolution of tetrapod genes and noncoding elements. Of particular relevance is the realization that coelacanth retains active copies of transposable elements that once served as raw material for the evolution of new functional sequences in the vertebrate lineage. Recognizing the evolutionary significance of coelacanth genome in this regard, we employed an ab initio search strategy to further classify its repetitive complement. This analysis uncovered a class of interspersed elements (Latimeria Harbinger 1-LatiHarb1) that is a major contributor to coelacanth genome structure and gene content (∼1% to 4% or the genome). Sequence analyses indicate that 1) each ∼8.7 kb LatiHarb1 element contains two coding regions, a transposase gene and a gene whose function is as yet unknown (MYB-like) and 2) copies of LatiHarb1 retain biological activity in the coelacanth genome. Functional analyses verify transcriptional and enhancer activities of LatiHarb1 in vivo and reveal transcriptional decoupling that could permit MYB-like genes to play functional roles not directly linked to transposition. Thus, LatiHarb1 represents the first known instance of a harbinger-superfamily transposon with contemporary activity in a vertebrate genome. Analyses of LatiHarb1 further corroborate the notion that exaptation of anciently active harbinger elements gave rise to at least two vertebrate genes (harbi1 and naif1) and indicate that the vertebrate gene tsnare1 also traces its ancestry to this transposon superfamily. Based on our analyses of LatiHarb1, we speculate that several functional features of harbinger elements may predispose the transposon superfamily toward recurrent exaptive evolution of cellular coding genes. In addition, these analyses further reinforce the broad utility of the coelacanth genome and other "outgroup" genomes in understanding the ancestry and evolution of vertebrate genes and genomes.
Collapse
Affiliation(s)
- Jeramiah J Smith
- Benaroya Research Institute at Virginia Mason Medical Center, Seattle, WA, USA.
| | | | | |
Collapse
|
12
|
Abstract
Genome walking is a molecular procedure for the direct identification of nucleotide sequences from purified genomes. The only requirement is the availability of a known nucleotide sequence from which to start. Several genome walking methods have been developed in the last 20 years, with continuous improvements added to the first basic strategies, including the recent coupling with next generation sequencing technologies. This review focuses on the use of genome walking strategies in several aspects of the study of eukaryotic genomes. In a first part, the analysis of the numerous strategies available is reported. The technical aspects involved in genome walking are particularly intriguing, also because they represent the synthesis of the talent, the fantasy and the intelligence of several scientists. Applications in which genome walking can be employed are systematically examined in the second part of the review, showing the large potentiality of this technique, including not only the simple identification of nucleotide sequences but also the analysis of large collections of mutants obtained from the insertion of DNA of viral origin, transposons and transfer DNA (T-DNA) constructs. The enormous amount of data obtained indicates that genome walking, with its large range of applicability, multiplicity of strategies and recent developments, will continue to have much to offer for the rapid identification of unknown sequences in several fields of genomic research.
Collapse
Affiliation(s)
- Claudia Leoni
- Department of Biochemistry and Molecular Biology, University of Bari, Bari, Italy
| | | | | | | | | |
Collapse
|
13
|
Raincrow JD, Dewar K, Stocsits C, Prohaska SJ, Amemiya CT, Stadler PF, Chiu CH. Hox clusters of the bichir (Actinopterygii, Polypterus senegalus) highlight unique patterns of sequence evolution in gnathostome phylogeny. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:451-64. [PMID: 21688387 DOI: 10.1002/jez.b.21420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/27/2011] [Accepted: 04/24/2011] [Indexed: 12/12/2022]
Abstract
Teleost fishes have extra Hox gene clusters owing to shared or lineage-specific genome duplication events in rayfinned fish (actinopterygian) phylogeny. Hence, extrapolating between genome function of teleosts and human or even between different fish species is difficult. We have sequenced and analyzed Hox gene clusters of the Senegal bichir (Polypterus senegalus), an extant representative of the most basal actinopterygian lineage. Bichir possesses four Hox gene clusters (A, B, C, D); phylogenetic analysis supports their orthology to the four Hox gene clusters of the gnathostome ancestor. We have generated a comprehensive database of conserved Hox noncoding sequences that include cartilaginous, lobe-finned, and ray-finned fishes (bichir and teleosts). Our analysis identified putative and known Hox cis-regulatory sequences with differing depths of conservation in Gnathostoma. We found that although bichir possesses four Hox gene clusters, its pattern of conservation of noncoding sequences is mosaic between outgroups, such as human, coelacanth, and shark, with four Hox gene clusters and teleosts, such as zebrafish and pufferfish, with seven or eight Hox gene clusters. Notably, bichir Hox gene clusters have been invaded by DNA transposons and this trend is further exemplified in teleosts, suggesting an as yet unrecognized mechanism of genome evolution that may explain Hox cluster plasticity in actinopterygians. Taken together, our results suggest that actinopterygian Hox gene clusters experienced a reduction in selective constraints that surprisingly predates the teleost-specific genome duplication.
Collapse
Affiliation(s)
- Jeremy D Raincrow
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Oulion S, Borday-Birraux V, Debiais-Thibaud M, Mazan S, Laurenti P, Casane D. Evolution of repeated structures along the body axis of jawed vertebrates, insights from the Scyliorhinus canicula Hox code. Evol Dev 2011; 13:247-59. [DOI: 10.1111/j.1525-142x.2011.00477.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Liang D, Wu R, Geng J, Wang C, Zhang P. A general scenario of Hox gene inventory variation among major sarcopterygian lineages. BMC Evol Biol 2011; 11:25. [PMID: 21266090 PMCID: PMC3038165 DOI: 10.1186/1471-2148-11-25] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 01/26/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hox genes are known to play a key role in shaping the body plan of metazoans. Evolutionary dynamics of these genes is therefore essential in explaining patterns of evolutionary diversity. Among extant sarcopterygians comprising both lobe-finned fishes and tetrapods, our knowledge of the Hox genes and clusters has largely been restricted in several model organisms such as frogs, birds and mammals. Some evolutionary gaps still exist, especially for those groups with derived body morphology or occupying key positions on the tree of life, hindering our understanding of how Hox gene inventory varied along the sarcopterygian lineage. RESULTS We determined the Hox gene inventory for six sarcopterygian groups: lungfishes, caecilians, salamanders, snakes, turtles and crocodiles by comprehensive PCR survey and genome walking. Variable Hox genes in each of the six sarcopterygian group representatives, compared to the human Hox gene inventory, were further validated for their presence/absence by PCR survey in a number of related species representing a broad evolutionary coverage of the group. Turtles, crocodiles, birds and placental mammals possess the same 39 Hox genes. HoxD12 is absent in snakes, amphibians and probably lungfishes. HoxB13 is lost in frogs and caecilians. Lobe-finned fishes, amphibians and squamate reptiles possess HoxC3. HoxC1 is only present in caecilians and lobe-finned fishes. Similar to coelacanths, lungfishes also possess HoxA14, which is only found in lobe-finned fishes to date. Our Hox gene variation data favor the lungfish-tetrapod, turtle-archosaur and frog-salamander relationships and imply that the loss of HoxD12 is not directly related to digit reduction. CONCLUSIONS Our newly determined Hox inventory data provide a more complete scenario for evolutionary dynamics of Hox genes along the sarcopterygian lineage. Limbless, worm-like caecilians and snakes possess similar Hox gene inventories to animals with less derived body morphology, suggesting changes to their body morphology are likely due to other modifications rather than changes to Hox gene numbers. Furthermore, our results provide basis for future sequencing of the entire Hox clusters of these animals.
Collapse
Affiliation(s)
- Dan Liang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Riga Wu
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jie Geng
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chaolin Wang
- Alligator Research Center of Anhui Province, Xuanzhou 242000, Anhui, China
| | - Peng Zhang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
16
|
Yuan J, He Z, Yuan X, Jiang X, Sun X, Zou S. Speciation of polyploid Cyprinidae fish of common carp, crucian carp, and silver crucian carp derived from duplicated Hox genes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:445-56. [PMID: 20700889 DOI: 10.1002/jez.b.21350] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recent studies on comparative genomics have suggested that a round of fish-specific whole genome duplication (3R) in ray-finned fishes might have occurred around 226-316 Mya. Additional genome duplication, specifically in cyprinids, may have occurred more recently after the divergence of the teleosts. The timing of this event, however, is unknown. To address this question, we sequenced four Hox genes from taxa representing the polyploid Cyprinidae fish, common carp (Cyprinus carpio, 2n=100), crucian carp (Carassius auratus auratus, 2n=100), and silver crucian carp (C. auratus gibelio, 2n=156), and then compared them with known sequences from the diploid Cyprinidae fish, blunt snout bream (Megalobrama amblycephala, 2n=48). Our results showed the presence of two distinct Hox duplicates in the genomes of common and crucian carp. Three distinct Hox sequences, one of them orthologous to a Hox gene in common carp and the other two orthologous to a Hox gene in crucian carp, were isolated in silver crucian carp, indicating a possible hybrid origin of silver crucian carp from crucian and common carp. The gene duplication resulting in the origin of the common ancestor of common and crucian carp likely occurred around 10.9-13.2 Mya. The speciations of common vs. crucian carp and silver crucian vs. crucian carp likely occurred around 8.1-11.4 and 2.3-3.0 Mya, respectively. Finally, nonfunctionalization resulting from point mutations in the coding region is a probable fate for some Hox duplicates. Taken together, these results suggested an evolutionary model for polyploidization in speciation and diversification of polyploid fish.
Collapse
Affiliation(s)
- Jian Yuan
- Key Laboratory of Aquatic Genetic Resources Certificated by the Ministry of Agriculture, Shanghai Ocean University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
17
|
Mouse and zebrafish Hoxa3 orthologues have nonequivalent in vivo protein function. Proc Natl Acad Sci U S A 2010; 107:10555-60. [PMID: 20498049 DOI: 10.1073/pnas.1005129107] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hox genes play evolutionarily conserved roles in specifying axial position during embryogenesis. A prevailing paradigm is that changes in Hox gene expression drive evolution of metazoan body plans. Conservation of Hox function across species, and among paralogous Hox genes within a species, supports a model of functional equivalence. In this report, we demonstrate that zebrafish hoxa3a (zfhoxa3a) expressed from the mouse Hoxa3 locus can substitute for mouse Hoxa3 in some tissues, but has distinct or null phenotypes in others. We further show, by using an allele encoding a chimeric protein, that this difference maps primarily to the zfhoxa3a C-terminal domain. Our data imply that the mouse and zebrafish proteins have diverged considerably since their last common ancestor, and that the major difference between them resides in the C-terminal domain. Our data further show that Hox protein function can evolve independently in different cell types or for specific functions. The inability of zfhoxa3a to perform all of the normal roles of mouse Hoxa3 illustrates that Hox orthologues are not always functionally interchangeable.
Collapse
|
18
|
Yuan J, He Z, Yuan X, Jiang X, Sun X, Zou S. Retracted: Evidence for duplicated Hox genes in polyploid Cyprinidae fish of common carp, crucian carp and silver crucian carp. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:i-xii. [PMID: 19790198 DOI: 10.1002/jez.b.21323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Notice of Withdrawal: The following article from the Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, "Evidence for duplicated Hox genes in polyploid Cyprinidae fish of common carp, crucian carp, and silver crucian carp" by Yuan J, He Z, Yuan X, Jiang X, Sun X, Zou S, published online on 29 Sept 2009 in Wiley InterScience (www.interscience.wiley.com), has been withdrawn from publication by agreement between the authors, the journal Editor-in-Chief, Gunter P. Wagner, and Wiley Periodicals, Inc.
Collapse
|
19
|
Complete HOX cluster characterization of the coelacanth provides further evidence for slow evolution of its genome. Proc Natl Acad Sci U S A 2010; 107:3622-7. [PMID: 20139301 DOI: 10.1073/pnas.0914312107] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The living coelacanth is a lobe-finned fish that represents an early evolutionary departure from the lineage that led to land vertebrates, and is of extreme interest scientifically. It has changed very little in appearance from fossilized coelacanths of the Cretaceous (150 to 65 million years ago), and is often referred to as a "living fossil." An important general question is whether long-term stasis in morphological evolution is associated with stasis in genome evolution. To this end we have used targeted genome sequencing for acquiring 1,612,752 bp of high quality finished sequence encompassing the four HOX clusters of the Indonesian coelacanth Latimeria menadoensis. Detailed analyses were carried out on genomic structure, gene and repeat contents, conserved noncoding regions, and relative rates of sequence evolution in both coding and noncoding tracts. Our results demonstrate conclusively that the coelacanth HOX clusters are evolving comparatively slowly and that this taxon should serve as a viable outgroup for interpretation of the genomes of tetrapod species.
Collapse
|
20
|
|
21
|
Chambers KE, McDaniell R, Raincrow JD, Deshmukh M, Stadler PF, Chiu CH. Hox cluster duplication in the basal teleost Hiodon alosoides (Osteoglossomorpha). Theory Biosci 2009; 128:109-20. [PMID: 19225820 PMCID: PMC2683926 DOI: 10.1007/s12064-009-0056-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 01/12/2009] [Indexed: 11/30/2022]
Abstract
Large-scale—even genome-wide—duplications have repeatedly been invoked as an explanation for major radiations. Teleosts, the most species-rich vertebrate clade, underwent a “fish-specific genome duplication” (FSGD) that is shared by most ray-finned fish lineages. We investigate here the Hox complement of the goldeye (Hiodon alosoides), a representative of Osteoglossomorpha, the most basal teleostean clade. An extensive PCR survey reveals that goldeye has at least eight Hox clusters, indicating a duplicated genome compared to basal actinopterygians. The possession of duplicated Hox clusters is uncoupled to species richness. The Hox system of the goldeye is substantially different from that of other teleost lineages, having retained several duplicates of Hox genes for which crown teleosts have lost at least one copy. A detailed analysis of the PCR fragments as well as full length sequences of two HoxA13 paralogs, and HoxA10 and HoxC4 genes places the duplication event close in time to the divergence of Osteoglossomorpha and crown teleosts. The data are consistent with—but do not conclusively prove—that Osteoglossomorpha shares the FSGD.
Collapse
Affiliation(s)
- Karen E Chambers
- Department of Genetics, Rutgers University, Piscataway, NJ, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Zou SM, Jiang XY. Retracted: Gene duplication and functional evolution of Hox genes in fishes. JOURNAL OF FISH BIOLOGY 2008; 73:329-354. [PMID: 20646134 DOI: 10.1111/j.1095-8649.2008.01852.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
With their power to shape animal morphology, few genes have captured the imagination of biologists as much as the evolutionarily conserved members of the Hox clusters. Hox genes encode transcription factors that play a key role in specifying the body plan in metazoans and are therefore essential in explaining patterns of evolutionary diversity. While each Hox cluster contains the same genes among the different mammalian species, this does not happen in ray-finned fish, in which both the number and organization of Hox genes and even Hox clusters are variable. Teleost fishes provide the first unambiguous support for ancient whole-genome duplication (third round) in an animal lineage. The number of genes differs in each cluster as a result of increased freedom to mutate after duplication. This has also allowed them to diverge and to adopt novel developmental roles. In this review, the authors have firstly focused on broadly outlining the duplication of Hoxgenes in fishes and discussing how comparative genomics is elucidating the molecular changes associated with the evolution of Hox genes expression and developmental function in the teleost fishes.Additional related research aspects, such as imaging of roles of microRNAs, chromatin regulation and evolutionary findings are also discussed.
Collapse
Affiliation(s)
- S M Zou
- Key Laboratory of Aquatic Genetic Resources and Aquacultural Ecosystem Certificated by the Ministry of Agriculture, Shanghai Fisheries University, Jungong Road 334, Shanghai 200090, China
| | | |
Collapse
|
23
|
Gwee PC, Amemiya CT, Brenner S, Venkatesh B. Sequence and organization of coelacanth neurohypophysial hormone genes: evolutionary history of the vertebrate neurohypophysial hormone gene locus. BMC Evol Biol 2008; 8:93. [PMID: 18366747 PMCID: PMC2315648 DOI: 10.1186/1471-2148-8-93] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 03/26/2008] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The mammalian neurohypophysial hormones, vasopressin and oxytocin are involved in osmoregulation and uterine smooth muscle contraction respectively. All jawed vertebrates contain at least one homolog each of vasopressin and oxytocin whereas jawless vertebrates contain a single neurohypophysial hormone called vasotocin. The vasopressin homolog in non-mammalian vertebrates is vasotocin; and the oxytocin homolog is mesotocin in non-eutherian tetrapods, mesotocin and [Phe2]mesotocin in lungfishes, and isotocin in ray-finned fishes. The genes encoding vasopressin and oxytocin genes are closely linked in the human and rodent genomes in a tail-to-tail orientation. In contrast, their pufferfish homologs (vasotocin and isotocin) are located on the same strand of DNA with isotocin gene located upstream of vasotocin gene separated by five genes, suggesting that this locus has experienced rearrangements in either mammalian or ray-finned fish lineage, or in both lineages. The coelacanths occupy a unique phylogenetic position close to the divergence of the mammalian and ray-finned fish lineages. RESULTS We have sequenced a coelacanth (Latimeria menadoensis) BAC clone encompassing the neurohypophysial hormone genes and investigated the evolutionary history of the vertebrate neurohypophysial hormone gene locus within a comparative genomics framework. The coelacanth contains vasotocin and mesotocin genes like non-mammalian tetrapods. The coelacanth genes are present on the same strand of DNA with no intervening genes, with the vasotocin gene located upstream of the mesotocin gene. Nucleotide sequences of the second exons of the two genes are under purifying selection implying a regulatory function. We have also analyzed the neurohypophysial hormone gene locus in the genomes of opossum, chicken and Xenopus tropicalis. The opossum contains two tandem copies of vasopressin and mesotocin genes. The vasotocin and mesotocin genes in chicken and Xenopus, and the vasopressin and mesotocin genes in opossum are linked tail-to-head similar to their orthologs in coelacanth and unlike their homologs in human and rodents. CONCLUSION Our results indicate that the neurohypophysial hormone gene locus has experienced independent rearrangements in both placental mammals and teleost fishes. The coelacanth genome appears to be more stable than mammalian and teleost fish genomes. As such, it serves as a valuable outgroup for studying the evolution of mammalian and teleost fish genomes.
Collapse
Affiliation(s)
- Pai-Chung Gwee
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, 138673, Singapore.
| | | | | | | |
Collapse
|
24
|
Abstract
To explain the evolutionary mechanisms by which populations of organisms change over time, it is necessary to first understand the pathways by which genomes have changed over time. Understanding genome evolution requires comparing modern genomes with ancestral genomes, which thus necessitates the reconstruction of those ancestral genomes. This chapter describes automated approaches to infer the nature of ancestral genomes from modern sequenced genomes. Because several rounds of whole genome duplication have punctuated the evolution of animals with backbones, and current methods for ortholog calling do not adequately account for such events, we developed ways to infer the nature of ancestral chromosomes after genome duplication. We apply this method here to reconstruct the ancestors of a specific chromosome in the zebrafish Danio rerio.
Collapse
Affiliation(s)
- Julian M Catchen
- Department of Computer and Information Science and Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | | | |
Collapse
|
25
|
Hoegg S, Boore JL, Kuehl JV, Meyer A. Comparative phylogenomic analyses of teleost fish Hox gene clusters: lessons from the cichlid fish Astatotilapia burtoni. BMC Genomics 2007; 8:317. [PMID: 17845724 PMCID: PMC2080641 DOI: 10.1186/1471-2164-8-317] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 09/10/2007] [Indexed: 11/10/2022] Open
Abstract
Background Teleost fish have seven paralogous clusters of Hox genes stemming from two complete genome duplications early in vertebrate evolution, and an additional genome duplication during the evolution of ray-finned fish, followed by the secondary loss of one cluster. Gene duplications on the one hand, and the evolution of regulatory sequences on the other, are thought to be among the most important mechanisms for the evolution of new gene functions. Cichlid fish, the largest family of vertebrates with about 2500 species, are famous examples of speciation and morphological diversity. Since this diversity could be based on regulatory changes, we chose to study the coding as well as putative regulatory regions of their Hox clusters within a comparative genomic framework. Results We sequenced and characterized all seven Hox clusters of Astatotilapia burtoni, a haplochromine cichlid fish. Comparative analyses with data from other teleost fish such as zebrafish, two species of pufferfish, stickleback and medaka were performed. We traced losses of genes and microRNAs of Hox clusters, the medaka lineage seems to have lost more microRNAs than the other fish lineages. We found that each teleost genome studied so far has a unique set of Hox genes. The hoxb7a gene was lost independently several times during teleost evolution, the most recent event being within the radiation of East African cichlid fish. The conserved non-coding sequences (CNS) encompass a surprisingly large part of the clusters, especially in the HoxAa, HoxCa, and HoxDa clusters. Across all clusters, we observe a trend towards an increased content of CNS towards the anterior end. Conclusion The gene content of Hox clusters in teleost fishes is more variable than expected, with each species studied so far having a different set. Although the highest loss rate of Hox genes occurred immediately after whole genome duplications, our analyses showed that gene loss continued and is still ongoing in all teleost lineages. Along with the gene content, the CNS content also varies across clusters. The excess of CNS at the anterior end of clusters could imply a stronger conservation of anterior expression patters than those towards more posterior areas of the embryo.
Collapse
Affiliation(s)
- Simone Hoegg
- Lehrstuhl für Evolutionsbiologie und Zoologie, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Jeffrey L Boore
- Program in Evolutionary Genomics, DOE Joint Genome Institute and Lawrence Berkeley National Laboratory, and University of California, Berkeley, California 94720, USA
- SymBio Corporation, 1455 Adams Drive, Menlo Park, CA 94025, and University of California, Berkeley, California 94720, USA
| | - Jennifer V Kuehl
- Program in Evolutionary Genomics, DOE Joint Genome Institute and Lawrence Berkeley National Laboratory, and University of California, Berkeley, California 94720, USA
| | - Axel Meyer
- Lehrstuhl für Evolutionsbiologie und Zoologie, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
26
|
Zou SM, Jiang XY, He ZZ, Yuan J, Yuan XN, Li SF. Hox gene clusters in blunt snout bream, Megalobrama amblycephala and comparison with those of zebrafish, fugu and medaka genomes. Gene 2007; 400:60-70. [PMID: 17618068 DOI: 10.1016/j.gene.2007.05.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 05/22/2007] [Accepted: 05/28/2007] [Indexed: 11/25/2022]
Abstract
Hox genes encode transcription factors that play a key role in specifying the body plan in metazoans and are therefore essential in explaining patterns of evolutionary diversity. While each Hox cluster contains the same genes among the different mammalian species, this does not happen in ray-finned fish, in which both the number and organization of Hox genes and even Hox clusters are variables. Here we reveal the organization of Hox genes loci in blunt snout bream. Forty-nine Hox genes including a pseudogene A9b in total have been found in seven clusters as follows: 8 Hox genes in the Aa cluster; 5 in Ab; 10 in Ba; 4 in Bb; 11 in Ca; 4 in Cb; and 7 in Da. In terms of gene content, clusters organization and sequence similarities of putative amino acids, blunt snout bream is more closely related to zebrafish than to fugu and medaka. In contrast to the situation in fugu and medaka, both blunt snout bream and zebrafish have duplicated HoxC cluster but only a single copy of the HoxD cluster. The result implies that the loss of the second HoxD cluster might be a shared feature of the Ostariophysi, to which zebrafish and blunt snout bream both belong. Phylogenetic analysis bases on the paralogous genes from twin clusters supports the duplication-first model, i.e., four original clusters may have duplicated in an event before the divergence of the blunt snout bream-plus-zebrafish lineage and the fugu-plus-medaka lineage. Additionally, the relationship between the decrease of GC level and the loss of conservation and function of one of the paralogous genes from twin clusters is discussed.
Collapse
Affiliation(s)
- Shu-Ming Zou
- Key Laboratory of Aquatic Genetic Resources and Aquacultural Ecosystem Certificated by the Ministry of Agriculture, Shanghai Fisheries University, Jungong Road 334, Shanghai 200090, China.
| | | | | | | | | | | |
Collapse
|
27
|
Venkatesh B, Kirkness EF, Loh YH, Halpern AL, Lee AP, Johnson J, Dandona N, Viswanathan LD, Tay A, Venter JC, Strausberg RL, Brenner S. Survey sequencing and comparative analysis of the elephant shark (Callorhinchus milii) genome. PLoS Biol 2007; 5:e101. [PMID: 17407382 PMCID: PMC1845163 DOI: 10.1371/journal.pbio.0050101] [Citation(s) in RCA: 265] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 02/07/2007] [Indexed: 02/04/2023] Open
Abstract
Owing to their phylogenetic position, cartilaginous fishes (sharks, rays, skates, and chimaeras) provide a critical reference for our understanding of vertebrate genome evolution. The relatively small genome of the elephant shark, Callorhinchus milii, a chimaera, makes it an attractive model cartilaginous fish genome for whole-genome sequencing and comparative analysis. Here, the authors describe survey sequencing (1.4x coverage) and comparative analysis of the elephant shark genome, one of the first cartilaginous fish genomes to be sequenced to this depth. Repetitive sequences, represented mainly by a novel family of short interspersed element-like and long interspersed element-like sequences, account for about 28% of the elephant shark genome. Fragments of approximately 15,000 elephant shark genes reveal specific examples of genes that have been lost differentially during the evolution of tetrapod and teleost fish lineages. Interestingly, the degree of conserved synteny and conserved sequences between the human and elephant shark genomes are higher than that between human and teleost fish genomes. Elephant shark contains putative four Hox clusters indicating that, unlike teleost fish genomes, the elephant shark genome has not experienced an additional whole-genome duplication. These findings underscore the importance of the elephant shark as a critical reference vertebrate genome for comparative analysis of the human and other vertebrate genomes. This study also demonstrates that a survey-sequencing approach can be applied productively for comparative analysis of distantly related vertebrate genomes.
Collapse
Affiliation(s)
| | - Ewen F Kirkness
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | | | - Aaron L Halpern
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Alison P Lee
- Institute of Molecular and Cell Biology, Singapore
| | - Justin Johnson
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | | | - Alice Tay
- Institute of Molecular and Cell Biology, Singapore
| | - J. Craig Venter
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | | |
Collapse
|
28
|
Gutiérrez V, Arezo MJ, García G. Characterization of partial Hox gene sequences in annual fish of the subfamily Cynolebiatinae (Cyprinodontiformes, Rivulidae). Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000300031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
29
|
Tvrdik P, Capecchi MR. Reversal of Hox1 gene subfunctionalization in the mouse. Dev Cell 2006; 11:239-50. [PMID: 16890163 DOI: 10.1016/j.devcel.2006.06.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 06/23/2006] [Accepted: 06/30/2006] [Indexed: 02/02/2023]
Abstract
In vertebrates, paralogous Hox genes play diverse biological roles. We examined the interchangeability of Hoxa1 and Hoxb1 in mouse development by swapping their protein-coding regions. Remarkably, the mice expressing the Hox-B1 protein from the Hoxa1 locus, and vice versa, are essentially normal. We noted, nonetheless, a specific facial nerve hypomorphism in hemizygous Hoxb1(A1/-) mice and decreased viability in homozygous Hoxa1(B1/B1) embryos. Further, we established a mouse line in which we have inserted the 107 bp Hoxb1 autoregulatory enhancer into the Hoxa1 promoter. Strikingly, the newly generated autoregulatory Hoxa1 gene can deliver the functionality of both paralogs in these mice, providing normal viability as well as proper facial nerve formation even in the Hoxb1 mutant background. This study affirms that subfunctionalization of the transcriptional regulatory elements has a principal role in the diversification of paralogous Hox genes. Moreover, we show that the ancestral vertebrate Hox1 gene can still be experimentally reconstructed.
Collapse
Affiliation(s)
- Petr Tvrdik
- Howard Hughes Medical Institute, University of Utah, 15 North 2030 East, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
30
|
Abstract
Duplication of genes, genomes, or morphological structures (or some combination of these) has long been thought to facilitate evolutionary change. Here we focus on studies of the teleost fishes to consider the conceptual similarities in the evolutionary potential of these three different kinds of duplication events. We review recent data that have confirmed the occurrence of a whole-genome duplication event in the ray-finned fish lineage, and discuss whether this event may have fuelled the radiation of teleost fishes. We then consider the fates of individual duplicated genes, from both a theoretical and an experimental viewpoint, focusing on our studies of teleost Hox genes and their functions in patterning the segmented hindbrain. Finally, we consider the duplication of morphological structures, once again drawing on our experimental studies of the hindbrain, which have revealed that experimentally induced duplicated neurons can produce functionally redundant neural circuits. We posit that the availability of duplicated material, independent of its nature, can lead to functional redundancy, which in turn enables evolutionary change.
Collapse
Affiliation(s)
- I Hurley
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E 57th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
31
|
Mannaert A, Roelants K, Bossuyt F, Leyns L. A PCR survey for posterior Hox genes in amphibians. Mol Phylogenet Evol 2006; 38:449-58. [PMID: 16198128 DOI: 10.1016/j.ympev.2005.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 08/22/2005] [Accepted: 08/23/2005] [Indexed: 10/25/2022]
Abstract
Hox genes encode transcription factors that play a key role in specifying the body plan in metazoans and are therefore essential in explaining patterns of evolutionary diversity. As an ancient tetrapod group with diverse limb types, amphibians are important for understanding the origin and diversification of limbs in land vertebrates. We conducted a PCR survey in two species of each amphibian order to identify Hox-9 to Hox-13, known to function in limb development. Fifteen distinct posterior Hox genes and one retro-pseudogene were identified, and the former confirm the existence of four Hox clusters in each amphibian order. Some genes expected to occur in all tetrapods, based on the posterior Hox complement of mammals, fishes and coelacanth, were not recovered from our survey, and may have been lost. Hoxd-12 is absent in frogs and possibly other amphibians. Considering its function in autopodial development, the loss of this gene may be related to the absence of the fifth finger in frogs and salamanders.
Collapse
Affiliation(s)
- An Mannaert
- Department of Biology, Unit of Ecology and Systematics, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050 Brussels, Belgium
| | | | | | | |
Collapse
|
32
|
Stadler PF, Fried C, Prohaska SJ, Bailey WJ, Misof BY, Ruddle FH, Wagner GP. Evidence for independent Hox gene duplications in the hagfish lineage: a PCR-based gene inventory of Eptatretus stoutii. Mol Phylogenet Evol 2005; 32:686-94. [PMID: 15288047 DOI: 10.1016/j.ympev.2004.03.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 02/13/2004] [Indexed: 11/22/2022]
Abstract
Hox genes code for transcription factors that play a major role in the development of all animal phyla. In invertebrates these genes usually occur as tightly linked cluster, with a few exceptions where the clusters have been dissolved. Only in vertebrates multiple clusters have been demonstrated which arose by duplication from a single ancestral cluster. This history of Hox cluster duplications, in particular during the early elaboration of the vertebrate body plan, is still poorly understood. In this paper we report the results of a PCR survey on genomic DNA of the pacific hagfish Eptatretus stoutii. Hagfishes are one of two clades of recent jawless fishes that are an offshoot of the early radiation of jawless vertebrates. Our data provide evidence for at least 33 distinct Hox genes in the hagfish genome, which is most compatible with the hypothesis of multiple Hox clusters. The largest number, seven, of distinct homeobox fragments could be assigned to paralog group 9, which could imply that the hagfish has more than four clusters. Quartet mapping reveals that within each paralog group the hagfish sequences are statistically more closely related to gnathostome Hox genes than with either amphioxus or lamprey genes. These results support two assumptions about the history of Hox genes: (1) The association of hagfish homeobox sequences with gnathostome sequences suggests that at least one Hox cluster duplication event happened in the stem of vertebrates, i.e., prior to the most recent common ancestor of jawed and jawless vertebrates. (2) The high number of paralog group 9 sequences in hagfish and the phylogenetic position of hagfish suggests that the hagfish lineage underwent additional independent Hox cluster/-gene duplication events.
Collapse
Affiliation(s)
- Peter F Stadler
- Lehrstuhl für Bioinformatik, Institut für Informatik, Universität Leipzig, Kreuzstrasse 7b, D-04103 Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Shashikant C, Bolanowski SA, Danke J, Amemiya CT. Hoxc8 early enhancer of the Indonesian coelacanth, Latimeria menadoensis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 302:557-63. [PMID: 15470754 DOI: 10.1002/jez.b.21018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hoxc8 early enhancer controls the initiation and establishment phase of Hoxc8 expression in the mouse. Comparative studies indicate the presence of Hoxc8 early enhancer sequences in different vertebrate clades including mammals, birds and fish. Previous studies have shown differences between teleost and mammalian Hoxc8 early enhancers with respect to sequence and organization of protein binding elements. This raises the question of when the Hoxc8 early enhancer arose and how it has become modified in different vertebrate lineages. Here, we describe Hoxc8 early enhancer from the Indonesian coelacanth, Latimeria menadoensis. Coelacanths are the only extant lobefinned fish whose genome is tractable to genome analysis. The Latimeria Hoxc8 early enhancer sequence more closely resembles that of the mouse than that of Fugu or zebrafish. When assayed for enhancer activity by reporter gene analysis in transgenic mouse embryos, Latimeria Hoxc8 early enhancer directs expression to the posterior neural tube and mesoderm similar to that of the mouse enhancer. These observations support a close relationship between coelacanths and tetrapods and place the origin of a common Hoxc8 early enhancer sequence within the sarcopterygian lineage. The divergence of teleost (actinopterygii) Hoxc8 early enhancer may reflect a case of relaxed selection or other forms of instability induced by genome duplication events.
Collapse
Affiliation(s)
- Cooduvalli Shashikant
- Department of Dairy and Animal Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, 324 Henning Building, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
34
|
Santini S, Bernardi G. Organization and base composition of tilapia Hox genes: implications for the evolution of Hox clusters in fish. Gene 2005; 346:51-61. [PMID: 15716008 DOI: 10.1016/j.gene.2004.10.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 10/05/2004] [Accepted: 10/21/2004] [Indexed: 11/18/2022]
Abstract
Hox genes encode DNA binding proteins that specify cell fate in the anterior-posterior axis of metazoan animal embryos. While each Hox cluster contains the same genes among the different mammalian species, this does not happen in ray-finned fish, in which both the number and organization of Hox genes and even Hox clusters are variables. Ray-finned fish are believed to have undergone an additional genome duplication that led to the presence of 8 Hox clusters (four twin pairs) in their ancestor. Here we describe the Tilapia (Oreochromis niloticus) Hox genes set in terms of gene content, clusters organization and base composition and compare it with those of pufferfish and zebrafish. We observed that in all these fish, when paralogous genes are conserved in both the twin clusters, the gene which has a lower GC level generally: (i) belongs to the less gene-rich (less conserved) cluster; (ii) has a reduced field of embryonic expression; or (iii) is a pseudogene. The relationship between the decrease of GC level and the loss of conservation and function of one of the paralogous genes from twin clusters is discussed.
Collapse
Affiliation(s)
- Simona Santini
- Molecular Evolution Laboratory, Stazione Zoologica "A. Dohrn", Villa Comunale, 80121 Napoli, Italy.
| | | |
Collapse
|
35
|
Abstract
Hox genes have been regarded to play a central role in anterior-posterior patterning of the animal body. Variations of Hox genes among animal species in the number, order on a chromosome, and the developmental expression pattern may reflect an evolutionary history. Therefore, it is definitely necessary to characterize Hox genes of wide variety of animal species, especially the species occupying key positions in the animal phylogeny. Ascidians, belonging to the subphylum Urochordata, are one of the sister groups of vertebrates in the phylum Chordata. Recent studies have shown that nine Hox genes of Ciona intestinalis, an ascidian species, are present on two chromosomes in the genome. In this review, we discuss the present state of Hox genes in ascidians, focusing on their novel chromosomal organization and expression pattern with unique features and how the novel organization has evolved in relation to the unique body plan of ascidians.
Collapse
Affiliation(s)
- Tetsuro Ikuta
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachiohji, Tokyo, Japan
| | | |
Collapse
|
36
|
Noonan JP, Grimwood J, Danke J, Schmutz J, Dickson M, Amemiya CT, Myers RM. Coelacanth genome sequence reveals the evolutionary history of vertebrate genes. Genome Res 2004; 14:2397-405. [PMID: 15545497 PMCID: PMC534663 DOI: 10.1101/gr.2972804] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The coelacanth is one of the nearest living relatives of tetrapods. However, a teleost species such as zebrafish or Fugu is typically used as the outgroup in current tetrapod comparative sequence analyses. Such studies are complicated by the fact that teleost genomes have undergone a whole-genome duplication event, as well as individual gene-duplication events. Here, we demonstrate the value of coelacanth genome sequence by complete sequencing and analysis of the protocadherin gene cluster of the Indonesian coelacanth, Latimeria menadoensis. We found that coelacanth has 49 protocadherin cluster genes organized in the same three ordered subclusters, alpha, beta, and gamma, as the 54 protocadherin cluster genes in human. In contrast, whole-genome and tandem duplications have generated two zebrafish protocadherin clusters comprised of at least 97 genes. Additionally, zebrafish protocadherins are far more prone to homogenizing gene conversion events than coelacanth protocadherins, suggesting that recombination- and duplication-driven plasticity may be a feature of teleost genomes. Our results indicate that coelacanth provides the ideal outgroup sequence against which tetrapod genomes can be measured. We therefore present L. menadoensis as a candidate for whole-genome sequencing.
Collapse
Affiliation(s)
- James P Noonan
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Higher teleost fishes, including zebrafish and fugu, have duplicated their Hox genes relative to the gene inventory of other gnathostome lineages. The most widely accepted theory contends that the duplicate Hox clusters orginated synchronously during a single genome duplication event in the early history of ray-finned fishes. In this contribution we collect and re-evaluate all publicly available sequence information. In particular, we show that the short Hox gene fragments from published PCR surveys of the killifish Fundulus heteroclitus, the medaka Oryzias latipes and the goldfish Carassius auratus can be used to determine with little ambiguity not only their paralog group but also their membership in a particular cluster.Together with a survey of the genomic sequence data from the pufferfish Tetraodon nigroviridis we show that at least percomorpha, and possibly all eutelosts, share a system of 7 or 8 orthologous Hox gene clusters. There is little doubt about the orthology of the two teleost duplicates of the HoxA and HoxB clusters. A careful analysis of both the coding sequence of Hox genes and of conserved non-coding sequences provides additional support for the "duplication early" hypothesis that the Hox clusters in teleosts are derived from eight ancestral clusters by means of subsequent gene loss; the data remain ambiguous, however, in particular for the HoxC clusters.Assuming the "duplication early" hypothesis we use the new evidence on the Hox gene complements to determine the phylogenetic positions of gene-loss events in the wake of the cluster duplication. Surprisingly, we find that the resolution of redundancy seems to be a slow process that is still ongoing. A few suggestions on which additional sequence data would be most informative for resolving the history of the teleostean Hox genes are discussed.
Collapse
Affiliation(s)
- Sonja J Prohaska
- Lehrstuhl für Bioinformatik am Institut für Informatik, Universität Leipzig, Kreuzstraße 7b, D-04103, Leipzig, Germany
| | | |
Collapse
|
38
|
Danke J, Miyake T, Powers T, Schein J, Shin H, Bosdet I, Erdmann M, Caldwell R, Amemiya CT. Genome resource for the Indonesian coelacanth, Latimeria menadoensis. ACTA ACUST UNITED AC 2004; 301:228-34. [PMID: 14981781 DOI: 10.1002/jez.a.20024] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have generated a BAC library from the Indonesian coelacanth, Latimeria menadoensis. This library was generated using genomic DNA of nuclei isolated from heart tissue, and has an average insert size of 171 kb. There are a total of 288 384-well microtiter dishes in the library (110,592 clones) and its genomic representation is estimated to encompass > or = 7X coverage based on the amount of DNA presumably cloned in the library as well as via hybridization with probes to a small set of single copy genes. This genomic resource has been made available to the public and should prove useful to the scientific community for many applications, including comparative genomics, molecular evolution and conservation genetics.
Collapse
Affiliation(s)
- Joshua Danke
- Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Amores A, Suzuki T, Yan YL, Pomeroy J, Singer A, Amemiya C, Postlethwait JH. Developmental roles of pufferfish Hox clusters and genome evolution in ray-fin fish. Genome Res 2004; 14:1-10. [PMID: 14707165 PMCID: PMC314266 DOI: 10.1101/gr.1717804] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The pufferfish skeleton lacks ribs and pelvic fins, and has fused bones in the cranium and jaw. It has been hypothesized that this secondarily simplified pufferfish morphology is due to reduced complexity of the pufferfish Hox complexes. To test this hypothesis, we determined the genomic structure of Hox clusters in the Southern pufferfish Spheroides nephelus and interrogated genomic databases for the Japanese pufferfish Takifugu rubripes (fugu). Both species have at least seven Hox clusters, including two copies of Hoxb and Hoxd clusters, a single Hoxc cluster, and at least two Hoxa clusters, with a portion of a third Hoxa cluster in fugu. Results support genome duplication before divergence of zebrafish and pufferfish lineages, followed by loss of a Hoxc cluster in the pufferfish lineage and loss of a Hoxd cluster in the zebrafish lineage. Comparative analysis shows that duplicate genes continued to be lost for hundreds of millions of years, contrary to predictions for the permanent preservation of gene duplicates. Gene expression analysis in fugu embryos by in situ hybridization revealed evolutionary change in gene expression as predicted by the duplication-degeneration-complementation model. These experiments rule out the hypothesis that the simplified pufferfish body plan is due to reduction in Hox cluster complexity, and support the notion that genome duplication contributed to the radiation of teleosts into half of all vertebrate species by increasing developmental diversification of duplicate genes in daughter lineages.
Collapse
Affiliation(s)
- Angel Amores
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97402, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Chiu CH, Dewar K, Wagner GP, Takahashi K, Ruddle F, Ledje C, Bartsch P, Scemama JL, Stellwag E, Fried C, Prohaska SJ, Stadler PF, Amemiya CT. Bichir HoxA cluster sequence reveals surprising trends in ray-finned fish genomic evolution. Genome Res 2004; 14:11-7. [PMID: 14707166 PMCID: PMC314268 DOI: 10.1101/gr.1712904] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The study of Hox clusters and genes provides insights into the evolution of genomic regulation of development. Derived ray-finned fishes (Actinopterygii, Teleostei) such as zebrafish and pufferfish possess duplicated Hox clusters that have undergone considerable sequence evolution. Whether these changes are associated with the duplication(s) that produced extra Hox clusters is unresolved because comparison with basal lineages is unavailable. We sequenced and analyzed the HoxA cluster of the bichir (Polypterus senegalus), a phylogenetically basal actinopterygian. Independent lines of evidence indicate that bichir has one HoxA cluster that is mosaic in its patterns of noncoding sequence conservation and gene retention relative to the HoxA clusters of human and shark, and the HoxAalpha and HoxAbeta clusters of zebrafish, pufferfish, and striped bass. HoxA cluster noncoding sequences conserved between bichir and euteleosts indicate that novel cis-sequences were acquired in the stem actinopterygians and maintained after cluster duplication. Hence, in the earliest actinopterygians, evolution of the single HoxA cluster was already more dynamic than in human and shark. This tendency peaked among teleosts after HoxA cluster duplication.
Collapse
Affiliation(s)
- Chi-Hua Chiu
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Fried C, Prohaska SJ, Stadler PF. Exclusion of repetitive DNA elements from gnathostomeHox clusters. ACTA ACUST UNITED AC 2004; 302:165-73. [PMID: 15054859 DOI: 10.1002/jez.b.20007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Despite their homology and analogous function, the Hox gene clusters of vertebrates and invertebrates are subject to different constraints on their structural organization. This is demonstrated by a drastically different distribution of repetitive DNA elements in the Hox cluster regions. While gnathostomes have a strong tendency to exclude repetitive DNA elements from the inside of their Hox clusters, no such trend can be detected in the Hox gene clusters of protostomes. Repeats "invade" the gnathostome Hox clusters from the 5' and 3' ends while the core of the clusters remains virtually free of repetitive DNA. This invasion appears to be correlated with relaxed constraints associated with gene loss after cluster duplications.
Collapse
Affiliation(s)
- Claudia Fried
- Bioinformatics Group, Department of Computer Science, University of Leipzig Kreuzstrabetae 7b, D-04103 Leipzig, Germany.
| | | | | |
Collapse
|
42
|
Abstract
Complete genome sequence data led rapidly to the conclusion that ancient genome duplications had shaped the genomes of the model organisms Saccharomyces cerevisiae and Arabidopsis thaliana. Recent contributions have gone on to refine date estimates for these duplications and, in the case of Arabidopsis, to infer additional, more ancient, rounds of duplication by reconstructing gene order before the most recent duplication event. It is becoming widely accepted that an ancient duplication occurred before the radiation of the ray-finned fish. However, despite methodological advances and the availability of complete genome sequence data the debate over whether very ancient genome duplications have occurred early in the vertebrate lineage has not yet been fully resolved.
Collapse
Affiliation(s)
- Cathal Seoighe
- South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa.
| |
Collapse
|
43
|
Fried C, Prohaska SJ, Stadler PF. Independent Hox-cluster duplications in lampreys. ACTA ACUST UNITED AC 2003; 299:18-25. [PMID: 14508813 DOI: 10.1002/jez.b.37] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The analysis of the publicly available Hox gene sequences from the sea lamprey Petromyzon marinus provides evidence that the Hox clusters in lampreys and other vertebrate species arose from independent duplications. In particular, our analysis supports the hypothesis that the last common ancestor of agnathans and gnathostomes had only a single Hox cluster which was subsequently duplicated independently in the two lineages.
Collapse
Affiliation(s)
- Claudia Fried
- Bioinformatik, Institut für Informatik, Universität Leipzig, Kreuzstrasse 7b, D-04103 Leipzig, Germany
| | | | | |
Collapse
|
44
|
Affiliation(s)
- Bernd Fritzsch
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA.
| |
Collapse
|