1
|
Krause KD, Rees K, Darwish GH, Bernal-Escalante J, Algar WR. Bait and Cleave: Exosite-Binding Peptides on Quantum Dots Selectively Accelerate Protease Activity for Sensing with Enhanced Sensitivity. ACS NANO 2024; 18:17018-17030. [PMID: 38845136 DOI: 10.1021/acsnano.4c03265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The advantageous optical properties of quantum dots (QDs) motivate their use in a wide variety of applications related to imaging and bioanalysis, including the detection of proteases and their activity. Recent studies have shown that surface chemistry on QDs is able to modulate protease activity, but only nonspecifically. Here, we present a strategy to selectively accelerate the activity of a particular target protease by as much as two orders of magnitude. Exosite-binding "bait" peptides were derived from proteins that span a range of biological roles─substrate, receptor, and inhibitor─and were used to increase the affinity of the QD-peptide conjugates for either thrombin or factor Xa, resulting in increased rates of proteolysis for coconjugated substrates. Unlike effects from QD surface chemistry, the acceleration was specific to the target protease with negligible acceleration of other proteases. Benefits of this "bait and cleave" sensing approach included detection limits that improved by more than an order of magnitude, reenabled detection of target protease against an overwhelming background of nontarget proteolysis, and mitigation of the action of inhibitors. The cumulative results point to a generalizable strategy, where the mechanism of acceleration, considerations for the design of bait peptides and conjugates, and routes to expanding the scope of this approach are discussed. Overall, this research represents a major step forward in the rational design of nanoparticle-based enzyme sensors that enhance sensitivity and selectivity.
Collapse
Affiliation(s)
- Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver , BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver , BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver , BC V6T 1Z1, Canada
| | - Jasmine Bernal-Escalante
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver , BC V6T 1Z1, Canada
| | - W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver , BC V6T 1Z1, Canada
| |
Collapse
|
2
|
Rosenfeld MA, Yurina LV, Gavrilina ES, Vasilyeva AD. Post-Translational Oxidative Modifications of Hemostasis Proteins: Structure, Function, and Regulation. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S14-S33. [PMID: 38621742 DOI: 10.1134/s0006297924140025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 04/17/2024]
Abstract
Reactive oxygen species (ROS) are constantly generated in a living organism. An imbalance between the amount of generated reactive species in the body and their destruction leads to the development of oxidative stress. Proteins are extremely vulnerable targets for ROS molecules, which can cause oxidative modifications of amino acid residues, thus altering structure and function of intra- and extracellular proteins. The current review considers the effect of oxidation on the structural rearrangements and functional activity of hemostasis proteins: coagulation system proteins such as fibrinogen, prothrombin/thrombin, factor VII/VIIa; anticoagulant proteins - thrombomodulin and protein C; proteins of the fibrinolytic system such as plasminogen, tissue plasminogen activator and plasminogen activator inhibitor-1. Structure and function of the proteins, oxidative modifications, and their detrimental consequences resulting from the induced oxidation or oxidative stress in vivo are described. Possible effects of oxidative modifications of proteins in vitro and in vivo leading to disruption of the coagulation and fibrinolysis processes are summarized and systematized, and the possibility of a compensatory mechanism in maintaining hemostasis under oxidative stress is analyzed.
Collapse
Affiliation(s)
- Mark A Rosenfeld
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Lyubov V Yurina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Elizaveta S Gavrilina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alexandra D Vasilyeva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
3
|
Obaha A, Novinec M. Regulation of Peptidase Activity beyond the Active Site in Human Health and Disease. Int J Mol Sci 2023; 24:17120. [PMID: 38069440 PMCID: PMC10707025 DOI: 10.3390/ijms242317120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
This comprehensive review addresses the intricate and multifaceted regulation of peptidase activity in human health and disease, providing a comprehensive investigation that extends well beyond the boundaries of the active site. Our review focuses on multiple mechanisms and highlights the important role of exosites, allosteric sites, and processes involved in zymogen activation. These mechanisms play a central role in shaping the complex world of peptidase function and are promising potential targets for the development of innovative drugs and therapeutic interventions. The review also briefly discusses the influence of glycosaminoglycans and non-inhibitory binding proteins on enzyme activities. Understanding their role may be a crucial factor in the development of therapeutic strategies. By elucidating the intricate web of regulatory mechanisms that control peptidase activity, this review deepens our understanding in this field and provides a roadmap for various strategies to influence and modulate peptidase activity.
Collapse
Affiliation(s)
| | - Marko Novinec
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
4
|
Jia K, Zeng M, Zheng X, Xie H, Yang L, Xie Y, Wang M. A Novel Fibrinogen Mutation p.BβAla68Asp Causes an Inherited Dysfibrinogenemia. Hamostaseologie 2023; 43:426-431. [PMID: 37516116 DOI: 10.1055/a-2116-8957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023] Open
Abstract
OBJECTIVE Our study aimed to analyze the phenotype and genotype of a pedigree with inherited dysfibrinogenemia, and preliminarily elucidate the probable pathogenesis. METHODS The one-stage clotting method was used to test the fibrinogen activity (FIB:C), whereas immunoturbidimetry was performed to quantify the fibrinogen antigen (FIB:Ag). Furthermore, DNA sequence analysis was conducted to confirm the site of mutation. Conservation analysis and protein model analysis were performed using online bioinformatics software. RESULTS The FIB:C and FIB:Ag of the proband were 1.28 and 2.20 g/L, respectively. Gene analysis revealed a heterozygous c.293C > A (p.BβAla68Asp) mutation in FGB. Bioinformatics and modeling analysis suggested that the missense mutation could potentially have a deleterious effect on fibrinogen. CONCLUSION The BβAla68Asp mutation in exon 2 of FGB may account for the reduced FIB:C levels observed in the pedigree. To our knowledge, this point mutation is the first report in the world.
Collapse
Affiliation(s)
- Kaiqi Jia
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, People's Republic of China
| | - Manlin Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoyong Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Haixiao Xie
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Lihong Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yaosheng Xie
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Mingshan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
5
|
Li Y, Liang Q, Wu W, Hu X, Wang H, Wang X, Ding Q. Fibrinogen BOE II: dysfibrinogenemia with bleeding and defective thrombin binding. Res Pract Thromb Haemost 2023; 7:102145. [PMID: 37601017 PMCID: PMC10439445 DOI: 10.1016/j.rpth.2023.102145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 08/22/2023] Open
Abstract
Background Variants of fibrinogen sequences that bind to thrombin's catalytic sites are mostly associated with bleeding phenotypes, while variants with fibrinogen nonsubstrate-thrombin-binding sites are commonly believed to cause thrombosis. AαGlu39 and BβAla68 play important roles in fibrin(ogen)-thrombin-nonsubstrate binding. The BβAla68Thr variant has been described in several unrelated families with apparent thrombotic phenotypes. Objectives Homozygous AαGlu39Lys variant (fibrinogen BOE II) was identified in a boy with dysfibrinogenemia who had multiple cerebral hemorrhages. A series of analyses were performed to assess the variant's functions and elucidate underlying bleeding mechanisms. Methods Abnormal fibrinogen was purified from plasma and subjected to Western blot, fibrinogen and fibrin monomer polymerization, clottability, fibrinopeptides release, activated factor (F)XIII (FXIIIa) cross-linking, fibrinolysis, and scanning electron microscopy analyses. Results Fibrinogen BOE II weakened the binding capacity of thrombin to fibrinogen and delayed the formation of fibrin clots. The release of fibrinopeptides, polymerization of fibrinogen catalyzed by thrombin, and cross-linking of FXIIIa of fibrinogen BOE II were impaired. In contrast, batroxobin-catalyzed fibrinogen polymerization and desA/desAB fibrin monomer polymerization did not differ from those in normal controls. Fibrin clots formed by fibrinogen BOE II were composed of thicker fibrin fibers and showed a faster fibrinolysis rate. Conclusion Defective fibrin(ogen)-thrombin-nonsubstrate binding is not necessarily associated with thrombotic disorders. When the hypercoagulable state created by increased circulating free thrombin is insufficient to compensate for defective hemostasis caused by slowly formed but rapidly lysed clots, the primary concern of thrombin-binding deficiency dysfibrinogenemia appears to be hemorrhage rather than thrombosis.
Collapse
Affiliation(s)
- Yang Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qian Liang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenman Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaobo Hu
- Department of Molecular Biology, Shanghai Center for Clinical Laboratory, Shanghai, China
| | - Hualiang Wang
- Department of Molecular Biology, Shanghai Center for Clinical Laboratory, Shanghai, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Medved L, Weisel JW. The Story of the Fibrin(ogen) αC-Domains: Evolution of Our View on Their Structure and Interactions. Thromb Haemost 2022; 122:1265-1278. [PMID: 34902868 PMCID: PMC10658776 DOI: 10.1055/a-1719-5584] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Although much has been established concerning the overall structure and function of fibrinogen, much less has been known about its two αC regions, each consisting of an αC-connector and an αC-domain, but new information has been accumulating. This review summarizes the state of our current knowledge of the structure and interactions of fibrinogen's αC regions. A series of studies with isolated αC regions and their fragments demonstrated that the αC-domain forms compact ordered structures consisting of N- and C-terminal subdomains including β sheets and suggested that the αC-connector has a poly(L-proline) type II structure. Functionally, the αC-domains interact intramolecularly with each other and with the central region of the molecule, first demonstrated by electron microscopy and then quantified by optical trap force spectroscopy. Upon conversion of fibrinogen into fibrin, the αC-domains switch from intra- to intermolecular interactions to form ordered αC polymers. The formation of αC polymers occurs mainly through the homophilic interaction between the N-terminal subdomains; interaction between the C-terminal subdomains and the αC-connectors also contributes to this process. Considerable evidence supports the idea that the αC-regions accelerate fibrin polymerization and affect the final structure of fibrin clots. The interactions between αC-regions are important for the mechanical properties of clots, increasing their stiffness and extensibility. Conversion of fibrinogen into fibrin results in exposure of multiple binding sites in its αC regions, providing interaction of fibrin with different proteins and cell types during hemostasis and wound healing. This heretofore mysterious part of the fibrinogen molecule is finally giving up its secrets.
Collapse
Affiliation(s)
- Leonid Medved
- Center for Vascular and Inflammatory Diseases and the Department of Biochemistry, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - John W. Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
7
|
Abstract
Intraoperative bleeding and postoperative bleeding are major surgical complications. Tissue sealants, hemostats, and adhesives provide the armamentarium for establishing hemostatic balance, including the tissue sealant fibrin. Fibrin sealants combine advantages including instantaneous effect, biocompatibility, and biodegradability. However, several challenges remain. This review summarizes current fibrin product generations and highlights new trends and potential strategies for future improvement.
Collapse
Affiliation(s)
- Matthias Beudert
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marcus Gutmann
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| |
Collapse
|
8
|
Baruah P, Paul D, Doshi J, Mitra S. Elevated Fibrinogen Level Reduces Therapeutic Efficiency of AD Drugs: Biophysical Insights into the Interaction of FDA-Approved Cholinesterase Inhibitors with Human Fibrinogen. J Phys Chem B 2021; 126:30-43. [PMID: 34964643 DOI: 10.1021/acs.jpcb.1c07495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite being the second most abundant protein in blood plasma, reports on the interaction of drugs with fibrinogen (FIB) are relatively scarce. The effect of FIB on the therapeutic potency of four FDA-approved Alzheimer's disease drugs, namely, tacrine (TAC), donepezil (DON), eserine (ESE), and huperzine (HUP), was investigated through a combination of different in vitro and in silico experiments. The efficiency of the drugs in inhibiting the activity of acetylcholinesterase (AChE) was significantly reduced in the presence of FIB. This effect was even found to be more substantial than that for the most abundant plasma protein, human serum albumin (HSA). For example, the relative change in IC50 for TAC was found to be 65% in 10 μM FIB as opposed to 43% in the presence of 250 μM HSA. The relative trend of modulation in AChE activity showed consistency with the binding efficiency of the drugs and FIB. The sequestration of drugs in FIB, therefore reducing the availability of free drugs in solution, was identified to be the primary cause for the decrease in the AChE inhibition potency. This study aims to establish FIB as a vital component, while considering the therapeutic effectiveness of different newly developed AChE inhibitors.
Collapse
Affiliation(s)
- Prayasee Baruah
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - Debojit Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Jitesh Doshi
- BioInsight Solutions (OPC) Pvt. Ltd, Navi Mumbai 410210, India
| | - Sivaprasad Mitra
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
9
|
Cheng S, Wang Y, Chen H, Liu H, Wang L, Battino M, Yao X, Zhu B, Du M. Anticoagulant Dodecapeptide Suppresses Thrombosis In Vivo by Inhibiting the Thrombin Exosite-I Binding Site. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10920-10931. [PMID: 34491753 DOI: 10.1021/acs.jafc.1c03414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thrombin is a crucial regulatory serine protease in hemostasis and thrombosis and has been a therapeutic target of thrombotic events. A novel oyster-derived thrombin inhibitory dodecapeptide (IEELEELEAER, P-2-CG) was identified and characterized. P-2-CG prolonged thrombin time from 9.6 s to 23.3 s at 5 mg/mL in vitro. P-2-CG bound to thrombin Exosite-I domain spontaneously. The occupied Exosite-I blocked fibrinogen binding, which prolonged fibrinogen clotting time to 28 s from 18.5 s. Molecule dynamics demonstrated the interaction of P-2-CG and thrombin Exosite-I involved in eight hydrogen bonds and lots of electrostatic forces. The residue Tyr76 at thrombin Exosite-I is one critical amino acid for fibrinogen binding. The Glu11 in P-2-CG was bound with Tyr76 through strong hydrogen bonds and hydrophobic action. P-2-CG also significantly reduced the mortality of mice that suffered an acute pulmonary embolism induced by thrombin and inhibited mice tail thrombosis induced by κ-carrageenan. The thrombin inhibitory efficiency in vitro and antithrombosis in vivo of P-2-CG provided insight for further applications to serve as an antithrombotic agent.
Collapse
Affiliation(s)
- Shuzhen Cheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Hui Chen
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Hanxiong Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Lishu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee 53226, United States
| | - Maurizio Battino
- Department of Analytical and Food Chemistry, Nutrition and Food Science Group, University of Vigo-Vigo Campus, Vigo 36310, Spain
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Beiwei Zhu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
10
|
Fibrin(ogen) as a Therapeutic Target: Opportunities and Challenges. Int J Mol Sci 2021; 22:ijms22136916. [PMID: 34203139 PMCID: PMC8268464 DOI: 10.3390/ijms22136916] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/19/2022] Open
Abstract
Fibrinogen is one of the key molecular players in haemostasis. Thrombin-mediated release of fibrinopeptides from fibrinogen converts this soluble protein into a network of fibrin fibres that form a building block for blood clots. Thrombin-activated factor XIII further crosslinks the fibrin fibres and incorporates antifibrinolytic proteins into the network, thus stabilising the clot. The conversion of fibrinogen to fibrin also exposes binding sites for fibrinolytic proteins to limit clot formation and avoid unwanted extension of the fibrin fibres. Altered clot structure and/or incorporation of antifibrinolytic proteins into fibrin networks disturbs the delicate equilibrium between clot formation and lysis, resulting in either unstable clots (predisposing to bleeding events) or persistent clots that are resistant to lysis (increasing risk of thrombosis). In this review, we discuss the factors responsible for alterations in fibrin(ogen) that can modulate clot stability, in turn predisposing to abnormal haemostasis. We also explore the mechanistic pathways that may allow the use of fibrinogen as a potential therapeutic target to treat vascular thrombosis or bleeding disorders. Better understanding of fibrinogen function will help to devise future effective and safe therapies to modulate thrombosis and bleeding risk, while maintaining the fine balance between clot formation and lysis.
Collapse
|
11
|
Smirnov I, Kolganova N, Troisi R, Sica F, Timofeev E. Expanding the recognition interface of the thrombin-binding aptamer HD1 through modification of residues T3 and T12. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:863-871. [PMID: 33614235 PMCID: PMC7868722 DOI: 10.1016/j.omtn.2021.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/08/2021] [Indexed: 01/11/2023]
Abstract
Post-SELEX modification of DNA aptamers is an established strategy to improve their affinity or inhibitory characteristics. In this study, we examined the possibility of increasing the recognition interface between the thrombin-binding aptamer HD1 (TBA) and thrombin by adding a chemically modified side chain to selected nucleotide residues. A panel of 22 TBA variants with N3-modified residues T3 and T12 was prepared by a two-step modification procedure. Aptamers were characterized by a combination of biophysical and biochemical methods. We identified mutants with enhanced affinity and improved anticoagulant activity. The crystal structures of thrombin complexes with three selected modified variants revealed that the modified pyrimidine base invariably allocates in proximity to thrombin residues Tyr76 and Ile82 due to the directing role of the unmodified TT loop. The modifications induced an increase in the contact areas between thrombin and the modified TBAs. Comparative analysis of the structural, biochemical, and biophysical data suggests that the non-equivalent binding modes of the mutants with thrombin in the T3- and T12-modified series account for the observed systematic differences in their affinity characteristics. In this study, we show that extending the recognition surface between the protein and modified aptamers is a promising approach that may improve characteristics of aptamer ligands.
Collapse
Affiliation(s)
- Igor Smirnov
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
| | - Natalia Kolganova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Edward Timofeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
12
|
Yurina LV, Vasilyeva AD, Kononenko VL, Bugrova AE, Indeykina MI, Kononikhin AS, Nikolaev EN, Rosenfeld MA. The Structural–Functional Damage of Fibrinogen Oxidized by Hydrogen Peroxide. DOKL BIOCHEM BIOPHYS 2020; 492:130-134. [DOI: 10.1134/s1607672920020167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 01/21/2023]
|
13
|
Abstract
Two BβN-domains of fibrinogen are formed by the N-terminal portions of its two Bβ chains including amino acid residues Bβ1-65. Although their folding status is not well understood and the recombinant disulfide-linked (Bβ1-66)2 fragment corresponding to a pair of these domains was found to be unfolded, some data suggest that these domains may be folded in the parent molecule. In contrast, their major functional properties are well established. Removal of fibrinopeptides B (amino acid residues Bβ1-14) from these domains upon fibrinogen to fibrin conversion results in the exposure of multiple binding sites in fibrin βN-domains (residues β15-65). These sites provide interactions of the βN-domains with different proteins and cells and their participation in various physiological and pathological processes including fibrin assembly, fibrin-dependent angiogenesis, and fibrin-dependent leukocyte transmigration and thereby inflammation. The major goal of the present review is to summarize current view on the structure and function of these domains in fibrinogen and fibrin and their role in the above-mentioned processes.
Collapse
Affiliation(s)
- Leonid Medved
- Center for Vascular and Inflammatory Diseases and Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, U.S.A
| | - Sergiy Yakovlev
- Center for Vascular and Inflammatory Diseases and Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, U.S.A
| |
Collapse
|
14
|
Aviñó A, Jorge AF, Huertas CS, Cova TFGG, Pais A, Lechuga LM, Eritja R, Fabrega C. Aptamer-peptide conjugates as a new strategy to modulate human α-thrombin binding affinity. Biochim Biophys Acta Gen Subj 2019; 1863:1619-1630. [PMID: 31265898 DOI: 10.1016/j.bbagen.2019.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 12/23/2022]
Abstract
Aptamers are single-stranded RNA or DNA molecules that specifically recognize their targets and have proven valuable for functionalizing sensitive biosensors. α-thrombin is a trypsin-like serine proteinase which plays a crucial role in haemostasis and thrombosis. An abnormal activity or overexpression of this protein is associated with a variety of diseases. A great deal of attention was devoted to the construction of high-throughput biosensors for accurately detect thrombin for the early diagnosis and treatment of related diseases. Herein, we propose a new approach to modulate the interaction between α-thrombin and the aptamer TBA15. To this end, TBA15 was chemically conjugated to two peptide sequences (TBA-G3FIE-Ac and TBA-G3EIF-Ac) corresponding to a short fragment of the acidic region of the human factor V, which is known to interact directly with exosite I. Surface Plasmon Resonance (SPR) results showed enhanced analytical performances of thrombin with TBA-G3EIF-Ac than with TBA wild-type, reaching a limit of detection as low as 44.9 pM. Electrophoresis mobility shift assay (EMSA) corroborated the SPR results. Molecular dynamics (MD) simulations support experimental evidences and provided further insight into thrombin/TBA-peptide interaction. Our findings demonstrate that the combination of TBA15 with key interacting peptides offers good opportunities to produce sensitive devices for thrombin detection and potential candidates to block thrombin activity.
Collapse
Affiliation(s)
- Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain; Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Andreia F Jorge
- CQC, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - César S Huertas
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, ICN2 Building, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Tânia F G G Cova
- CQC, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Alberto Pais
- CQC, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Laura M Lechuga
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, ICN2 Building, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain; Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Carme Fabrega
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain; Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| |
Collapse
|
15
|
Yurina LV, Vasilyeva AD, Bugrova AE, Indeykina MI, Kononikhin AS, Nikolaev EN, Rosenfeld MA. Hypochlorite-Induced Oxidative Modification of Fibrinogen. DOKL BIOCHEM BIOPHYS 2019; 484:37-41. [DOI: 10.1134/s1607672919010101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 12/22/2022]
|
16
|
Yurina L, Vasilyeva A, Indeykina M, Bugrova A, Biryukova M, Kononikhin A, Nikolaev E, Rosenfeld M. Ozone-induced damage of fibrinogen molecules: identification of oxidation sites by high-resolution mass spectrometry. Free Radic Res 2019; 53:430-455. [DOI: 10.1080/10715762.2019.1600686] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lyubov Yurina
- N.M. Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexandra Vasilyeva
- N.M. Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow, Russian Federation
| | - Maria Indeykina
- N.M. Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow, Russian Federation
| | - Anna Bugrova
- N.M. Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow, Russian Federation
| | - Marina Biryukova
- N.M. Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexey Kononikhin
- Moskovskij Fiziko-Tehniceskij Institut, Dolgoprudnyi, Russian Federation
| | - Evgene Nikolaev
- V.L. Talrose Institute for Energy Problems of Chemical Physics, Moscow, Russian Federation
| | - Mark Rosenfeld
- N.M. Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
17
|
Billur R, Sabo TM, Maurer MC. Thrombin Exosite Maturation and Ligand Binding at ABE II Help Stabilize PAR-Binding Competent Conformation at ABE I. Biochemistry 2019; 58:1048-1060. [PMID: 30672691 DOI: 10.1021/acs.biochem.8b00943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thrombin, derived from zymogen prothrombin (ProT), is a serine protease involved in procoagulation, anticoagulation, and platelet activation. Thrombin's actions are regulated through anion-binding exosites I and II (ABE I and ABE II) that undergo maturation during activation. Mature ABEs can utilize exosite-based communication to fulfill thrombin functions. However, the conformational basis behind such long-range communication and the resultant ligand binding affinities are not well understood. Protease activated receptors (PARs), involved in platelet activation and aggregation, are known to target thrombin ABE I. Unexpectedly, PAR3 (44-56) can already bind to pro-ABE I of ProT. Nuclear magnetic resonance (NMR) ligand-enzyme titrations were used to characterize how individual PAR1 (49-62) residues interact with pro-ABE I and mature ABE I. 1D proton line broadening studies demonstrated that binding affinities for native PAR1P (49-62, P54) and for the weak binding variant PAR1G (49-62, P54G) increased as ProT was converted to mature thrombin. 1H,15N-HSQC titrations revealed that PAR1G residues K51, E53, F55, D58, and E60 exhibited less affinity to pro-ABE I than comparable residues in PAR3G (44-56, P51G). Individual PAR1G residues then displayed tighter binding upon exosite maturation. Long-range communication between thrombin exosites was examined by saturating ABE II with phosphorylated GpIbα (269-282, 3Yp) and monitoring the binding of PAR1 and PAR3 peptides to ABE I. Individual PAR residues exhibited increased affinities in this dual-ligand environment supporting the presence of interexosite allostery. Exosite maturation and beneficial long-range allostery are proposed to help stabilize an ABE I conformation that can effectively bind PAR ligands.
Collapse
Affiliation(s)
- Ramya Billur
- Department of Chemistry , University of Louisville , Louisville , Kentucky 40292 , United States
| | - T Michael Sabo
- Department of Medicine, James Graham Brown Cancer Center , University of Louisville , Louisville , Kentucky 40202 , United States
| | - Muriel C Maurer
- Department of Chemistry , University of Louisville , Louisville , Kentucky 40292 , United States
| |
Collapse
|
18
|
Yesudasan S, Wang X, Averett RD. Fibrin polymerization simulation using a reactive dissipative particle dynamics method. Biomech Model Mechanobiol 2018; 17:1389-1403. [PMID: 29796957 DOI: 10.1007/s10237-018-1033-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 05/14/2018] [Indexed: 12/31/2022]
Abstract
The study on the polymerization of fibrinogen molecules into fibrin monomers and eventually a stable, mechanically robust fibrin clot is a persistent and enduring topic in the field of thrombosis and hemostasis. Despite many research advances in fibrin polymerization, the change in the structure of fibrin clots and its influence on the formation of a fibrous protein network are still poorly understood. In this paper, we develop a new computational method to simulate fibrin clot polymerization using dissipative particle dynamics simulations. With an effective combination of reactive molecular dynamics formularies and many body dissipative particle dynamics principles, we constructed the reactive dissipative particle dynamics (RDPD) model to predict the complex network formation of fibrin clots and branching of the fibrin network. The 340 kDa fibrinogen molecule is converted into a spring-bead coarse-grain system with 11 beads using a topology representing network algorithm, and using RDPD, we simulated polymerization and formation of the fibrin clot. The final polymerized structure of the fibrin clot qualitatively agrees with experimental results from the literature, and to the best of our knowledge this is the first molecular-based study that simulates polymerization and structure of fibrin clots.
Collapse
Affiliation(s)
- Sumith Yesudasan
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, 597 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Xianqiao Wang
- School of Environmental, Civil, Agricultural and Mechanical Engineering, University of Georgia, 597 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Rodney D Averett
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, 597 D.W. Brooks Drive, Athens, GA, 30602, USA.
| |
Collapse
|
19
|
Coarse-grained molecular dynamics simulations of fibrin polymerization: effects of thrombin concentration on fibrin clot structure. J Mol Model 2018; 24:109. [DOI: 10.1007/s00894-018-3642-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/19/2018] [Indexed: 10/17/2022]
|
20
|
Takagi Y, Murata M, Kozuka T, Nakata Y, Hasebe R, Tamura S, Takagi A, Matsushita T, Saito H, Kojima T. Missense mutations in the gene encoding prothrombin corresponding to Arg596 cause antithrombin resistance and thrombomodulin resistance. Thromb Haemost 2018; 116:1022-1031. [DOI: 10.1160/th16-03-0223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 08/15/2016] [Indexed: 11/05/2022]
Abstract
SummaryAntithrombin (AT) and thrombomodulin (TM) play important roles in the process of natural anticoagulation in vivo. Recently, we reported that the prothrombin Yukuhashi mutation (p.Arg596Leu) was associated with AT and TM resistance-related thrombophilia. To assess the AT and TM resistances associated with other missense mutations by single base substitution in the Arg596 codon, we generated recombinant variants (596Gln, 596Trp, 596Gly, and 596Pro) and investigated the effects on AT and TM anticoagulant functions. All variants except 596Pro were secreted in amounts comparable to that of the wild-type but exhibited variable procoagulant activities. After a 30-minute inactivation by AT, the relative residual activity of wild-type thrombin decreased to 15 ± 4.0%, in contrast to values of all variants were maintained at above 80%. The thrombin–AT complex formation, as determined by enzyme-linked immunosorbent assay, was reduced with all tested variants in the presence and absence of heparin. In the presence of soluble TM (sTM), the relative fibrinogen clotting activity of wild-type thrombin decreased to 16 ± 0.12%, whereas that of tested variants was 37%–56%. In a surface plasmon resonance assay, missense Arg596 mutations reduced thrombin–TM affinity to an extent similar to the reduction of fibrinogen clotting inhibition. In the presence of sTM or cultured endothelial-like cells, APC generation was enhanced differently by variant thrombins in a thrombin–TM affinity- dependent manner. These data indicate that prothrombin Arg596 missense mutations lead to AT and TM resistance in the variant thrombins and suggest that prothrombin Arg596 is important for AT- and TM- mediated anticoagulation.
Collapse
|
21
|
Rosenfeld MA, Vasilyeva AD, Yurina LV, Bychkova AV. Oxidation of proteins: is it a programmed process? Free Radic Res 2017; 52:14-38. [DOI: 10.1080/10715762.2017.1402305] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mark A. Rosenfeld
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Alexandra D. Vasilyeva
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Lyubov V. Yurina
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Anna V. Bychkova
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
22
|
Billur R, Ban D, Sabo TM, Maurer MC. Deciphering Conformational Changes Associated with the Maturation of Thrombin Anion Binding Exosite I. Biochemistry 2017; 56:6343-6354. [PMID: 29111672 DOI: 10.1021/acs.biochem.7b00970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Thrombin participates in procoagulation, anticoagulation, and platelet activation. This enzyme contains anion binding exosites, ABE I and ABE II, which attract regulatory biomolecules. As prothrombin is activated to thrombin, pro-ABE I is converted into mature ABE I. Unexpectedly, certain ligands can bind to pro-ABE I specifically. Moreover, knowledge of changes in conformation and affinity that occur at the individual residue level as pro-ABE I is converted to ABE I is lacking. Such changes are transient and were not captured by crystallography. Therefore, we employed nuclear magnetic resonance (NMR) titrations to monitor development of ABE I using peptides based on protease-activated receptor 3 (PAR3). Proton line broadening NMR revealed that PAR3 (44-56) and more weakly binding PAR3G (44-56) could already interact with pro-ABE I on prothrombin. 1H-15N heteronuclear single-quantum coherence NMR titrations were then used to probe binding of individual 15N-labeled PAR3G residues (F47, E48, L52, and D54). PAR3G E48 and D54 could interact electrostatically with prothrombin and tightened upon thrombin maturation. The higher affinity for PAR3G D54 suggests the region surrounding thrombin R77a is better oriented to bind D54 than the interaction between PAR3G E48 and thrombin R75. Aromatic PAR3G F47 and aliphatic L52 both reported on significant changes in the chemical environment upon conversion of prothrombin to thrombin. The ABE I region surrounding the 30s loop was more affected than the hydrophobic pocket (F34, L65, and I82). Our NMR titrations demonstrate that PAR3 residues document structural rearrangements occurring during exosite maturation that are missed by reported X-ray crystal structures.
Collapse
Affiliation(s)
- Ramya Billur
- Department of Chemistry, University of Louisville , Louisville, Kentucky 40292, United States
| | - David Ban
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville , Louisville, Kentucky 40202, United States
| | - T Michael Sabo
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville , Louisville, Kentucky 40202, United States
| | - Muriel C Maurer
- Department of Chemistry, University of Louisville , Louisville, Kentucky 40292, United States
| |
Collapse
|
23
|
Protopopova AD, Litvinov RI, Galanakis DK, Nagaswami C, Barinov NA, Mukhitov AR, Klinov DV, Weisel JW. Morphometric characterization of fibrinogen's αC regions and their role in fibrin self-assembly and molecular organization. NANOSCALE 2017; 9:13707-13716. [PMID: 28884176 PMCID: PMC6501582 DOI: 10.1039/c7nr04413e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The flexible C-terminal parts of fibrinogen's Aα chains named the αC regions have been shown to play a role in fibrin self-assembly, although many aspects of their structure and functions remain unknown. To examine the involvement of the αC regions in the early stages of fibrin formation, we used high-resolution atomic force microscopy to image fibrinogen and oligomeric fibrin. Plasma-purified full-length human fibrinogen or des-αC fibrinogen lacking most of the αC regions, untreated or treated with thrombin, was imaged. Up to 80% of the potentially existing αC regions were visualized and quantified; they were highly heterogeneous in their length and configurations. Conversion of fibrinogen to fibrin was accompanied by an increase in the incidence and length of the αC regions as well as transitions from more compact conformations, such as a globule on a string, to extended and more flexible offshoots. Concurrent dynamic turbidimetry, confocal microscopy, and scanning electron microscopy revealed that trimming of the αC regions slowed down fibrin formation, which correlated with longer protofibrils, thinner fibers, and a denser network. No structural distinctions, except for the incidence of the αC regions, were revealed in the laterally aggregated protofibrils made of the full-length or des-αC fibrinogens, suggesting a pure kinetic effect of the αC regions on the fibrin architecture. This work provides a structural molecular basis for the promoting role of the αC regions in the early stages of fibrin self-assembly and reveals this stage of fibrin formation as a potential therapeutic target to modulate the structure and mechanical properties of blood clots.
Collapse
Affiliation(s)
- Anna D Protopopova
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Haynes LM, Orfeo T, Mann KG, Everse SJ, Brummel-Ziedins KE. Probing the Dynamics of Clot-Bound Thrombin at Venous Shear Rates. Biophys J 2017; 112:1634-1644. [PMID: 28445754 DOI: 10.1016/j.bpj.2017.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023] Open
Abstract
In closed system models of fibrin formation, exosite-mediated thrombin binding to fibrin contributes to clot stability and is resistant to inhibition by antithrombin/heparin while still susceptible to small, active-site inhibitors. Each molecule of fibrin can bind ∼1.6 thrombin molecules at low-affinity binding sites (Kd = 2.8 μM) and ∼0.3 molecules of thrombin at high-affinity binding sites (Kd = 0.15 μM). The goal of this study is to assess the stability of fibrin-bound thrombin under venous flow conditions and to determine both its accessibility and susceptibility to inhibition. A parallel-plate flow chamber (7 × 50 × 0.25 mm) for studying the stability of thrombin (0-1400 nM) adhered to a fibrin matrix (0.1-0.4 mg/mL fibrinogen, 10 nM thrombin) under a variety of venous flow conditions was developed using the thrombin-specific, fluorogenic substrate SN-59 (100 μM). The flow within this system is laminar (Re < 1) and reaction rates are driven by enzyme kinetics (Pe = 100, Da = 7000). A subpopulation of active thrombin remains stably adhered to a fibrin matrix over a range of venous shear rates (46-184 s-1) for upwards of 30 min, and this population is saturable at loads >500 nM and sensitive to the initial fibrinogen concentration. These observations were also supported by a mathematical model of thrombin adhesion to fibrin, which demonstrates that thrombin initially binds to the low-affinity thrombin binding sites before preferentially equilibrating to higher affinity sites. Antithrombin (2.6 μM) plus heparin (4 U/mL) inhibits 72% of the active clot-bound thrombin after ∼10 min at 92 s-1, while no inhibition is observed in the absence of heparin. Dabigatran (20 and 200 nM) inhibits (50 and 93%) clot-bound thrombin reversibly (87 and 66% recovery). This model illustrates that clot-bound thrombin stability is the result of a constant rearrangement of thrombin molecules within a dense matrix of binding sites.
Collapse
Affiliation(s)
- Laura M Haynes
- Department of Biochemistry, Robert Larner M.D. College of Medicine, University of Vermont, Colchester, Vermont
| | - Thomas Orfeo
- Department of Biochemistry, Robert Larner M.D. College of Medicine, University of Vermont, Colchester, Vermont
| | | | - Stephen J Everse
- Department of Biochemistry, Robert Larner M.D. College of Medicine, University of Vermont, Colchester, Vermont
| | - Kathleen E Brummel-Ziedins
- Department of Biochemistry, Robert Larner M.D. College of Medicine, University of Vermont, Colchester, Vermont.
| |
Collapse
|
25
|
Xie T, Vora A, Mulcahey PJ, Nanescu SE, Singh M, Choi DS, Huang JK, Liu CC, Sanders DP, Hahm JI. Surface Assembly Configurations and Packing Preferences of Fibrinogen Mediated by the Periodicity and Alignment Control of Block Copolymer Nanodomains. ACS NANO 2016; 10:7705-7720. [PMID: 27462904 DOI: 10.1021/acsnano.6b03071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ability to control the specific adsorption and packing behaviors of biomedically important proteins by effectively guiding their preferred surface adsorption configuration and packing orientation on polymeric surfaces may have utility in many applications such as biomaterials, medical implants, and tissue engineering. Herein, we investigate the distinct adhesion configurations of fibrinogen (Fg) proteins and the different organization behaviors between single Fg molecules that are mediated by the changes in the periodicity and alignment of chemically alternating nanodomains in thin films of polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) block copolymer (BCP). Specifically, the adsorption characteristics of individual Fg molecules were unambiguously resolved on four different PS-b-PMMA templates of dsa PS-b-PMMA, sm PS-b-PMMA, com PS-b-PMMA, and PS-r-PMMA. By direct visualization through high resolution imaging, the distinct adsorption and packing configurations of both isolated and interacting Fg molecules were determined as a function of the BCP template-specific nanodomain periodicity, domain alignment (random versus fully aligned), and protein concentration. The three dominant Fg adsorption configurations, SP∥, SP⊥, and TP, were observed and their occurrence ratios were ascertained on each PS-b-PMMA template. During surface packing, the orientation of the protein backbone was largely governed by the periodicity and alignment of the underlying PS-b-PMMA nanodomains whose specific direction was explicitly resolved relative to the polymeric nanodomain axis. The use of PS-b-PMMA with a periodicity much smaller than (and comparable to) the length of Fg led to a Fg scaffold with the protein backbone aligned parallel (and perpendicular) to the nanodomain major axis. In addition, we have successfully created fully Fg-decorated BCP constructs analogous to two-dimensional Fg crystals in which aligned protein molecules are arranged either side-on or end-on, depending on the BCP template. Our results demonstrate that the geometry and orientation of the protein can be effectively guided during Fg self-assembly by controlling the physical dimensions and orientations of the underlying BCP templates. Finally, the biofunctionality of the BCP surface-bound Fg was assessed and the Fg/BCP construct was successfully used in the Ca-P nanoparticle nucleation/growth and microglia cell activation.
Collapse
Affiliation(s)
- Tian Xie
- Department of Chemistry, Georgetown University , 37th & O Streets NW, Washington, D.C. 20057, United States
| | - Ankit Vora
- IBM Research-Almaden , 650 Harry Rd, San Jose, California 95120, United States
| | - Patrick J Mulcahey
- Department of Chemistry, Georgetown University , 37th & O Streets NW, Washington, D.C. 20057, United States
| | - Sonia E Nanescu
- Department of Biology, Georgetown University , 37th & O Streets NW, Washington, D.C. 20057
| | - Manpreet Singh
- Department of Chemistry, Georgetown University , 37th & O Streets NW, Washington, D.C. 20057, United States
| | - Daniel S Choi
- Department of Chemistry, Georgetown University , 37th & O Streets NW, Washington, D.C. 20057, United States
| | - Jeffrey K Huang
- Department of Biology, Georgetown University , 37th & O Streets NW, Washington, D.C. 20057
| | - Chi-Chun Liu
- IBM Research-Albany Nanotech , 257 Fuller Rd, Albany, New York 12203, United States
| | - Daniel P Sanders
- IBM Research-Almaden , 650 Harry Rd, San Jose, California 95120, United States
| | - Jong-In Hahm
- Department of Chemistry, Georgetown University , 37th & O Streets NW, Washington, D.C. 20057, United States
| |
Collapse
|
26
|
Huerta V, Ramos Y, Yero A, Pupo D, Martín D, Toledo P, Fleitas N, Gallien S, Martín AM, Márquez GJ, Pérez-Riverol Y, Sarría M, Guirola O, González LJ, Domon B, Chinea G. Novel interactions of domain III from the envelope glycoprotein of dengue 2 virus with human plasma proteins. J Proteomics 2015; 131:205-213. [PMID: 26546555 DOI: 10.1016/j.jprot.2015.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/16/2015] [Accepted: 11/02/2015] [Indexed: 11/24/2022]
Abstract
UNLABELLED Blood cells and plasma are important media for the four serotypes of dengue virus (DENV1-4) spreading into an infected person. Thus, interactions with human plasma proteins are expected to be decisive in the course of the viral infection. Affinity purification followed by MS analysis (AP/MS) was used to isolate and identify plasma-derived proteins capable to interact with a recombinant protein comprising the domain III of the envelope protein of DENV2 (DIIIE2). The elution of the AP potently inhibits DENV2 infection. Twenty-nine proteins were identified using a label-free approach as specifically captured by DIIIE2. Of these, a direct interaction with C reactive protein, thrombin and Inter-alpha-inhibitor complexes was confirmed by ELISA. Results provide further evidence of a significant representation of proteins from complement and coagulation cascades on DENV2 interactome in human plasma and stand out the domain III of the viral envelope protein as participant on these interactions. A functional clustering analysis highlights the presence of three structural motifs among putative DIIIE2-binding proteins: hydroxylation and EGF-like calcium-binding- and Gla domains. BIOLOGICAL SIGNIFICANCE Early cycles of dengue virus replication take place in human blood cells. Thus, the characterization of the interactome of dengue virus proteins in human plasma can lead to the identification of pivotal interactions for the infection that can eventually constitute the target for the development of methods to control dengue virus-caused disease. In this work we identified 29 proteins from human plasma that potentially interact with the envelope protein of dengue 2 virus either directly or through co-complex formation. C reactive protein, thrombin and Inter-alpha-inhibitor complexes were validated as interactors of the domain III of the envelope protein of dengue 2. Results highlight the presence of three structural motifs among putative DIIIE2-binding proteins: hydroxylation and EGF-like calcium-binding- and Gla domains. This finding together with the participation of domain III of the envelope protein on the interactions with human plasma proteins should contribute to a better understanding of dengue virus interactome in human plasma. Such knowledge can contribute to the development of more effective treatments to infected persons.
Collapse
Affiliation(s)
- Vivian Huerta
- Center for Genetic Engineering and Biotechnology, Cuba.
| | - Yassel Ramos
- Center for Genetic Engineering and Biotechnology, Cuba
| | - Alexis Yero
- Center for Genetic Engineering and Biotechnology, Cuba
| | - Dianne Pupo
- Center for Genetic Engineering and Biotechnology, Cuba
| | - Dayron Martín
- Center for Genetic Engineering and Biotechnology, Cuba
| | | | | | | | | | | | | | - Mónica Sarría
- Center for Genetic Engineering and Biotechnology, Cuba
| | | | | | - Bruno Domon
- Luxembourg Clinical Proteomics Center, Luxembourg
| | - Glay Chinea
- Center for Genetic Engineering and Biotechnology, Cuba
| |
Collapse
|
27
|
The structure–function relationship of thrombin-like enzymes from the green pit viper (Trimeresurus albolabris). Toxicon 2015; 100:53-9. [DOI: 10.1016/j.toxicon.2015.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 04/06/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
|
28
|
Protopopova AD, Barinov NA, Zavyalova EG, Kopylov AM, Sergienko VI, Klinov DV. Visualization of fibrinogen αC regions and their arrangement during fibrin network formation by high-resolution AFM. J Thromb Haemost 2015; 13:570-9. [PMID: 25393591 DOI: 10.1111/jth.12785] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/09/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Fibrinogen has been intensively studied with transmission electron microscopy and x-ray diffraction. But until now, a complete 3D structure of the molecule has not yet been available because the two highly flexible αC regions could not be resolved in fibrinogen crystals. This study was aimed at determining whether the αC regions can be visualized by high-resolution atomic force microscopy. METHODS Atomic force microscopy with super high resolution was used to image single molecules of fibrinogen and fibrin associates. The key approach was to use a graphite surface modified with the monolayer of amphiphilic carbohydrate-glycine molecules and unique supersharp cantilevers with 1 nm tip diameter. RESULTS Fibrinogen αC regions were visualized along with the complete domain structure of the protein. In almost all molecules at pH 7.4 the D domain regions had one or two protrusions of average height 0.4 ± 0.1 nm and length 21 ± 6 nm. The complex, formed between thrombin and fibrinogen, was also visualized. Images of growing fibrin fibers with clearly visible αC regions have been obtained. CONCLUSIONS Fibrin αC regions were visible in protofibrils and large fibers; αC regions intertwined near a branchpoint and looked like a zipper. These results support the idea that αC regions are involved in the thickening of fibrin fibers. In addition, new details were revealed about the behavior of individual fibrin molecules during formation of the fibrin network. Under the diluted condition, the positioning of the αC regions could suggest their involvement in long-range interactions between fibrin but not fibrinogen molecules.
Collapse
Affiliation(s)
- A D Protopopova
- Scientific Research Institute of Physical-Chemical Medicine, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
29
|
Souri M, Osaki T, Ichinose A. The Non-catalytic B Subunit of Coagulation Factor XIII Accelerates Fibrin Cross-linking. J Biol Chem 2015; 290:12027-39. [PMID: 25809477 DOI: 10.1074/jbc.m114.608570] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Indexed: 11/06/2022] Open
Abstract
Covalent cross-linking of fibrin chains is required for stable blood clot formation, which is catalyzed by coagulation factor XIII (FXIII), a proenzyme of plasma transglutaminase consisting of catalytic A (FXIII-A) and non-catalytic B subunits (FXIII-B). Herein, we demonstrate that FXIII-B accelerates fibrin cross-linking. Depletion of FXIII-B from normal plasma supplemented with a physiological level of recombinant FXIII-A resulted in delayed fibrin cross-linking, reduced incorporation of FXIII-A into fibrin clots, and impaired activation peptide cleavage by thrombin; the addition of recombinant FXIII-B restored normal fibrin cross-linking, FXIII-A incorporation into fibrin clots, and activation peptide cleavage by thrombin. Immunoprecipitation with an anti-fibrinogen antibody revealed an interaction between the FXIII heterotetramer and fibrinogen mediated by FXIII-B and not FXIII-A. FXIII-B probably binds the γ-chain of fibrinogen with its D-domain, which is near the fibrin polymerization pockets, and dissociates from fibrin during or after cross-linking between γ-chains. Thus, FXIII-B plays important roles in the formation of a ternary complex between proenzyme FXIII, prosubstrate fibrinogen, and activator thrombin. Accordingly, congenital or acquired FXIII-B deficiency may result in increased bleeding tendency through impaired fibrin stabilization due to decreased FXIII-A activation by thrombin and secondary FXIII-A deficiency arising from enhanced circulatory clearance.
Collapse
Affiliation(s)
- Masayoshi Souri
- From the Department of Molecular Patho-Biochemistry and Patho-Biology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585 Japan
| | - Tsukasa Osaki
- From the Department of Molecular Patho-Biochemistry and Patho-Biology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585 Japan
| | - Akitada Ichinose
- From the Department of Molecular Patho-Biochemistry and Patho-Biology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585 Japan
| |
Collapse
|
30
|
Multiple inhibitory kinetics reveal an allosteric interplay among thrombin functional sites. Thromb Res 2015; 135:212-6. [DOI: 10.1016/j.thromres.2014.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/20/2014] [Accepted: 11/10/2014] [Indexed: 11/19/2022]
|
31
|
Rosenfeld MA, Shchegolikhin AN, Bychkova AV, Leonova VB, Biryukova MI, Kostanova EA. Ozone-induced oxidative modification of fibrinogen: role of the D regions. Free Radic Biol Med 2014; 77:106-20. [PMID: 25224034 DOI: 10.1016/j.freeradbiomed.2014.08.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 08/02/2014] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
Abstract
Native fibrinogen is a key blood plasma protein whose main function is to maintain hemostasis by virtue of producing cross-linked fibrin clots under the influence of thrombin and fibrin-stabilizing factor (FXIIIa). The aim of this study was to investigate mechanisms of impairment of both the molecular structure and the spatial organization of fibrinogen under ozone-induced oxidation. FTIR analysis showed that ozone treatment of the whole fibrinogen molecule results in the growth of hydroxyl, carbonyl, and carboxyl group content. A similar analysis of fibrinogen D and E fragments isolated from the oxidized protein also revealed transformation of distinct important functional groups. In particular, a remarkable decay of N-H groups within the peptide backbone was observed along with a lowering of the content of C-H groups belonging to either the aromatic moieties or the aliphatic chain CH2 and CH3 units. The model experiments performed showed that the rather unexpected decay of the aliphatic CH units might be caused by the action of hydroxyl radicals, these being produced in the water solution from ozone. The observed dissimilarities in the shapes of amide I bands of the fibrinogen D and E fragments before and after ozone treatment are interpreted in terms of feasible local conformational changes affecting the secondary structure of the protein. Taken as a whole, the FTIR data suggests that the terminal D fragments of fibrinogen are markedly more susceptible to the ozone-induced oxidation than the central E fragment. The data on elastic and dynamic light scattering provide evidence that, in the presence of FXIIIa, both the unoxidized and the oxidized fibrinogen molecules bind to one another in an "end-to-end" fashion to form the flexible covalently cross-linked fibrinogen homopolymers. The γ and α polypeptide chains of the oxidized fibrinogen proved to be involved in the enzymatic cross-linking more readily than those of unaffected fibrinogen. The experimental data on fibrinogen oxidation acquired in the present study, combined with our earlier findings, make it reasonable to suppose that the spatial structure of fibrinogen could be evolutionarily adapted to some reactive oxygen species actions detrimental to the protein function.
Collapse
Affiliation(s)
- Mark A Rosenfeld
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia.
| | | | - Anna V Bychkova
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vera B Leonova
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Marina I Biryukova
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elizaveta A Kostanova
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
32
|
Zavyalova E, Kopylov A. How does association process affect fibrinogen hydrolysis by thrombin? Biochimie 2014; 107 Pt B:216-22. [PMID: 25239831 DOI: 10.1016/j.biochi.2014.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 09/04/2014] [Indexed: 11/29/2022]
Abstract
Thrombin, a key enzyme in the blood coagulation cascade, hydrolyzes fibrinogen into fibrin, which specifically associates into the fibers that build up a thrombus scaffold. The assembly of fibrin involves a set of stepwise reactions, for which a complete and detailed kinetic portrait is needed. Existing kinetic models focus on particular parts of the process, for example the mechanism of enzyme action itself or the kinetics of formation of fibrin assemblies. The current study considers a thorough model of the process from fibrinogen hydrolysis to the assembly of fibrin. Composing the model requires taking into account several reaction intermediates, stepwise removal of fibrinopeptides, and association of partially hydrolyzed fibrin, in particular desAA fibrin. The model is versatile enough to adopt new data both on fibrinogen hydrolysis and fibrin association. In addition, the model could be considered as an example of a kinetic description of other complex enzyme systems having several intermediates and feedbacks, such as the blood coagulation cascade and signal transduction.
Collapse
Affiliation(s)
- Elena Zavyalova
- Chemistry Department, M.V. Lomonosov Moscow State University and LTD 'APTO-PHARM', Leninskie gory 1-3, Moscow 119991, Russian Federation.
| | - Alexey Kopylov
- Chemistry Department, M.V. Lomonosov Moscow State University and LTD 'APTO-PHARM', Leninskie gory 1-3, Moscow 119991, Russian Federation
| |
Collapse
|
33
|
Mehta AY, Thakkar JN, Mohammed BM, Martin EJ, Brophy DF, Kishimoto T, Desai UR. Targeting the GPIbα binding site of thrombin to simultaneously induce dual anticoagulant and antiplatelet effects. J Med Chem 2014; 57:3030-9. [PMID: 24635452 PMCID: PMC4203406 DOI: 10.1021/jm4020026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Exosite 2 of human thrombin contributes
to two opposing pathways, the anticoagulant pathway and the platelet
aggregation pathway. We reasoned that an exosite 2 directed allosteric
thrombin inhibitor should simultaneously induce anticoagulant and
antiplatelet effects. To assess this, we synthesized SbO4L based on
the sulfated tyrosine-containing sequence of GPIbα. SbO4L was
synthesized in three simple steps in high yield and found to be a
highly selective, direct inhibitor of thrombin. Michelis–Menten
kinetic studies indicated a noncompetitive mechanism of inhibition.
Competitive inhibition studies suggested ideal competition with heparin
and glycoprotein Ibα, as predicted. Studies with site-directed
mutants of thrombin indicated that SbO4L binds to Arg233, Lys235,
and Lys236 of exosite 2. SbO4L prevented thrombin-mediated platelet
activation and aggregation as expected on the basis of competition
with GPIbα. SbO4L presents a novel paradigm of simultaneous
dual anticoagulant and antiplatelet effects achieved through the GPIbα
binding site of thrombin.
Collapse
Affiliation(s)
- Akul Y Mehta
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University , Richmond, Virginia 23219, United States
| | | | | | | | | | | | | |
Collapse
|
34
|
Huntington JA. Natural inhibitors of thrombin. Thromb Haemost 2014; 111:583-9. [PMID: 24477356 DOI: 10.1160/th13-10-0811] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/31/2013] [Indexed: 11/05/2022]
Abstract
The serine protease thrombin is the effector enzyme of blood coagulation. It has many activities critical for the formation of stable clots, including cleavage of fibrinogen to fibrin, activation of platelets and conversion of procofactors to active cofactors. Thrombin carries-out its multiple functions by utilising three special features: a deep active site cleft and two anion binding exosites (exosite I and II). Similarly, thrombin inhibitors have evolved to exploit the unique features of thrombin to achieve rapid and specific inactivation of thrombin. Exogenous thrombin inhibitors come from several different protein families and are generally found in the saliva of haematophagous animals (blood suckers) as part of an anticoagulant cocktail that allows them to feed. Crystal structures of several of these inhibitors reveal how peptides and proteins can be targeted to thrombin in different and interesting ways. Thrombin activity must also be regulated by endogenous inhibitors so that thrombi do not occlude blood flow and cause thrombosis. A single protein family, the serpins, provides all four of the endogenous thrombin inhibitors found in man. The crystal structures of these serpins bound to thrombin have been solved, revealing a similar exosite-dependence on complex formation. In addition to forming the recognition complex, serpins destroy the structure of thrombin, allowing them to be released from cofactors and substrates for clearance. This review examines how the special features of thrombin have been exploited by evolution to achieve inhibition of the ultimate coagulation protease.
Collapse
Affiliation(s)
- James A Huntington
- James A. Huntington, Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK, Tel.: +44 1223 763230, Fax: +44 1223 336827, E-mail:
| |
Collapse
|
35
|
Lechtenberg BC, Freund SMV, Huntington JA. GpIbα interacts exclusively with exosite II of thrombin. J Mol Biol 2013; 426:881-93. [PMID: 24316004 PMCID: PMC3919161 DOI: 10.1016/j.jmb.2013.11.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/21/2013] [Accepted: 11/23/2013] [Indexed: 11/09/2022]
Abstract
Activation of platelets by the serine protease thrombin is a critical event in haemostasis. This process involves the binding of thrombin to glycoprotein Ibα (GpIbα) and cleavage of protease-activated receptors (PARs). The N-terminal extracellular domain of GpIbα contains an acidic peptide stretch that has been identified as the main thrombin binding site, and both anion binding exosites of thrombin have been implicated in GpIbα binding, but it remains unclear how they are involved. This issue is of critical importance for the mechanism of platelet activation by thrombin. If both exosites bind to GpIbα, thrombin could potentially act as a platelet adhesion molecule or receptor dimerisation trigger. Alternatively, if only a single site is involved, GpIbα may serve as a cofactor for PAR-1 activation by thrombin. To determine the involvement of thrombin's two exosites in GpIbα binding, we employed the complementary methods of mutational analysis, binding studies, X-ray crystallography and NMR spectroscopy. Our results indicate that the peptide corresponding to the C-terminal portion of GpIbα and the entire extracellular domain bind exclusively to thrombin's exosite II. The interaction of thrombin with GpIbα thus serves to recruit thrombin activity to the platelet surface while leaving exosite I free for PAR-1 recognition. We analysed interactions of the platelet receptor GpIbα with thrombin using three complementary methods. GpIbα exclusively binds to exosite II of thrombin. Exosite I remains available for binding to other ligands. GpIbα recruits thrombin to the platelet membrane as a cofactor for PAR-1 cleavage.
Collapse
Affiliation(s)
- Bernhard C Lechtenberg
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Stefan M V Freund
- MRC Laboratory for Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - James A Huntington
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, United Kingdom.
| |
Collapse
|
36
|
Abstract
Thrombin is the central protease in the blood coagulation network. It has multiple substrates and cofactors, and it appears that four serpins are responsible for inhibiting the thrombin produced in haemostasis and thrombosis. Structural studies conducted over the last 10 years have resolved how thrombin recognises these serpins with the aid of cofactors. Although antithrombin (AT), protein C inhibitor (PCI), heparin cofactor II (HCII) and protease nexin-1 (PN1) all share a common fold and mechanism of protease inhibition, they have evolved radically different mechanisms for cofactor-assisted thrombin recognition. This is likely to be due to the varied environments in which thrombin is found. In this review, I discuss the unusual structural features of thrombin that are involved in substrate and cofactor recognition, the serpin mechanism of protease inhibition and the fate of thrombin in the complex, and how the four thrombin-specific serpins exploit the special features of thrombin to accelerate complex formation.
Collapse
Affiliation(s)
- J A Huntington
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK.
| |
Collapse
|
37
|
Abstract
The proteolytic conversion of prothrombin to thrombin catalyzed by prothrombinase is one of the more extensively studied reactions of blood coagulation. Sophisticated biophysical and biochemical insights into the players of this reaction were developed in the early days of the field. Yet, many basic enzymological questions remained unanswered. I summarize new developments that uncover mechanisms by which high substrate specificity is achieved, and the impact of these strategies on enzymic function. Two principles emerge that deviate from conventional wisdom that has otherwise dominated thinking in the field. (i) Enzymic specificity is dominated by the contribution of exosite binding interactions between substrate and enzyme rather than by specific recognition of sequences flanking the scissile bond. Coupled with the regulation of substrate conformation as a result of the zymogen to proteinase transition, novel mechanistic insights result for numerous aspects of enzyme function. (ii) The transition of zymogen to proteinase following cleavage is not absolute and instead, thrombin can reversibly interconvert between zymogen-like and proteinase-like forms depending on the complement of ligands bound to it. This establishes new paradigms for considering proteinase allostery and how enzyme function may be modulated by ligand binding. These insights into the action of prothrombinase on prothrombin have wide-ranging implications for the understanding of function in blood coagulation.
Collapse
Affiliation(s)
- S Krishnaswamy
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
38
|
Vu TT, Stafford AR, Leslie BA, Kim PY, Fredenburgh JC, Weitz JI. Batroxobin binds fibrin with higher affinity and promotes clot expansion to a greater extent than thrombin. J Biol Chem 2013; 288:16862-16871. [PMID: 23612970 DOI: 10.1074/jbc.m113.464750] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Batroxobin is a thrombin-like serine protease from the venom of Bothrops atrox moojeni that clots fibrinogen. In contrast to thrombin, which releases fibrinopeptide A and B from the NH2-terminal domains of the Aα- and Bβ-chains of fibrinogen, respectively, batroxobin only releases fibrinopeptide A. Because the mechanism responsible for these differences is unknown, we compared the interactions of batroxobin and thrombin with the predominant γA/γA isoform of fibrin(ogen) and the γA/γ' variant with an extended γ-chain. Thrombin binds to the γ'-chain and forms a higher affinity interaction with γA/γ'-fibrin(ogen) than γA/γA-fibrin(ogen). In contrast, batroxobin binds both fibrin(ogen) isoforms with similar high affinity (Kd values of about 0.5 μM) even though it does not interact with the γ'-chain. The batroxobin-binding sites on fibrin(ogen) only partially overlap with those of thrombin because thrombin attenuates, but does not abrogate, the interaction of γA/γA-fibrinogen with batroxobin. Furthermore, although both thrombin and batroxobin bind to the central E-region of fibrinogen with a Kd value of 2-5 μM, the α(17-51) and Bβ(1-42) regions bind thrombin but not batroxobin. Once bound to fibrin, the capacity of batroxobin to promote fibrin accretion is 18-fold greater than that of thrombin, a finding that may explain the microvascular thrombosis that complicates envenomation by B. atrox moojeni. Therefore, batroxobin binds fibrin(ogen) in a manner distinct from thrombin, which may contribute to its higher affinity interaction, selective fibrinopeptide A release, and prothrombotic properties.
Collapse
Affiliation(s)
- Trang T Vu
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario L8L 2X2, Canada; Departments of Medical Sciences, Hamilton, Ontario L8L 2X2, Canada
| | - Alan R Stafford
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario L8L 2X2, Canada; Medicine, Hamilton, Ontario L8L 2X2, Canada
| | - Beverly A Leslie
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario L8L 2X2, Canada; Medicine, Hamilton, Ontario L8L 2X2, Canada
| | - Paul Y Kim
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario L8L 2X2, Canada; Medicine, Hamilton, Ontario L8L 2X2, Canada
| | - James C Fredenburgh
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario L8L 2X2, Canada; Medicine, Hamilton, Ontario L8L 2X2, Canada
| | - Jeffrey I Weitz
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario L8L 2X2, Canada; Departments of Medical Sciences, Hamilton, Ontario L8L 2X2, Canada; Medicine, Hamilton, Ontario L8L 2X2, Canada; Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8L 2X2, Canada.
| |
Collapse
|
39
|
Allosteric activation of human α-thrombin through exosite 2 by suramin analogs. Arch Biochem Biophys 2012; 520:36-41. [DOI: 10.1016/j.abb.2012.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 02/01/2012] [Accepted: 02/01/2012] [Indexed: 11/22/2022]
|
40
|
Neundlinger I, Poturnayova A, Karpisova I, Rankl C, Hinterdorfer P, Snejdarkova M, Hianik T, Ebner A. Characterization of enhanced monovalent and bivalent thrombin DNA aptamer binding using single molecule force spectroscopy. Biophys J 2012; 101:1781-7. [PMID: 21961605 DOI: 10.1016/j.bpj.2011.07.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 11/15/2022] Open
Abstract
Thrombin aptamer binding strength and stability is dependent on sterical parameters when used for atomic force microscopy sensing applications. Sterical improvements on the linker chemistry were developed for high-affinity binding. For this we applied single molecule force spectroscopy using two enhanced biotinylated thrombin aptamers, BFF and BFA immobilized on the atomic force microscopy tip via streptavidin. BFF is a dimer composed of two single-stranded aptamers (aptabody) connected to each other by a complementary sequence close to the biotinylated end. In contrast, BFA consists of a single DNA strand and a complementary strand in the supporting biotinylated part. By varying the pulling velocity in force-distance cycles the formed thrombin-aptamer complexes were ruptured at different force loadings allowing determination of the energy landscape. As a result, BFA aptamer showed a higher binding force at the investigated loading rates and a significantly lower dissociation rate constant, k(off), compared to BFF. Moreover, the potential of the aptabody BFF to form a bivalent complex could clearly be demonstrated.
Collapse
|
41
|
Thrombin in Ischemic Stroke Targeting. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
42
|
Zavyalova EG, Protopopova AD, Yaminsky IV, Kopylov AM. Kinetic characterization of inhibition of human thrombin with DNA aptamers by turbidimetric assay. Anal Biochem 2011; 421:234-9. [PMID: 22056408 DOI: 10.1016/j.ab.2011.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/06/2011] [Accepted: 10/07/2011] [Indexed: 10/16/2022]
Abstract
A sensitive turbidimetric method for detecting fibrin association was used to study the kinetics of fibrinogen hydrolysis with thrombin. The data were complemented by high-performance liquid chromatography (HPLC) measurements of the peptide products, fibrinopeptides released during hydrolysis. Atomic force microscopy (AFM) data showed that the fibril diameter is the main geometric parameter influencing the turbidity. The turbidimetric assay was validated using thrombin with the standard activity. To study thrombin inhibitors, a kinetic model that allows estimating the inhibition constants and the type of inhibition was proposed. The kinetic model was used to study the inhibitory activity of the two DNA aptamers 15-TBA (thrombin-binding aptamer) and 31-TBA, which bind to thrombin exosites. For the first time, 31-TBA was shown to possess the competitive inhibition type, whereas the shortened aptamer 15-TBA has the noncompetitive inhibition type.
Collapse
Affiliation(s)
- Elena G Zavyalova
- Department of Chemistry, M V Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | | | | | | |
Collapse
|
43
|
Tsurupa G, Mahid A, Veklich Y, Weisel JW, Medved L. Structure, stability, and interaction of fibrin αC-domain polymers. Biochemistry 2011; 50:8028-37. [PMID: 21806028 DOI: 10.1021/bi2008189] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Our previous studies revealed that in fibrinogen the αC-domains are not reactive with their ligands, suggesting that their binding sites are cryptic and become exposed upon its conversion to fibrin, in which these domains form αC polymers. On the basis of this finding, we hypothesized that polymerization of the αC-domains in fibrin results in the exposure of their binding sites and that these domains adopt the physiologically active conformation only in αC-domain polymers. To test this hypothesis, we prepared a recombinant αC region (residues Aα221-610) including the αC-domain (Aα392-610), demonstrated that it forms soluble oligomers in a concentration-dependent and reversible manner, and stabilized such oligomers by covalently cross-linking them with factor XIIIa. Cross-linked Aα221-610 oligomers were stable in solution and appeared as ordered linear, branching filaments when analyzed by electron microscopy. Spectral studies revealed that the αC-domains in such oligomers were folded into compact structures of high thermal stability with a significant amount of β-sheets. These findings indicate that cross-linked Aα221-610 oligomers are highly ordered and mimic the structure of fibrin αC polymers. The oligomers also exhibited functional properties of polymeric fibrin because, in contrast to the monomeric αC-domain, they bound tPA and plasminogen and stimulated activation of the latter by the former. Altogether, the results obtained with cross-linked Aα221-610 oligomers clarify the structure of the αC-domains in fibrin αC polymers and confirm our hypothesis that their binding sites are exposed upon polymerization. Such oligomers represent a stable, soluble model of fibrin αC polymers that can be used for further structure-function studies of fibrin αC-domains.
Collapse
Affiliation(s)
- Galina Tsurupa
- Center for Vascular and Inflammatory Diseases and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201-1138, USA
| | | | | | | | | |
Collapse
|
44
|
Aslan M, Dogan S. Proteomic detection of nitroproteins as potential biomarkers for cardiovascular disease. J Proteomics 2011; 74:2274-88. [PMID: 21640858 DOI: 10.1016/j.jprot.2011.05.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/18/2011] [Accepted: 05/03/2011] [Indexed: 12/21/2022]
Abstract
Increased levels of reactive oxygen and nitrogen species are linked to many human diseases and can be formed as an indirect result of the disease process. The accumulation of specific nitroproteins which correlate with pathological processes suggests that nitration of protein tyrosine represents a dynamic and selective process, rather than a random event. Indeed, in numerous clinical disorders associated with an upregulation in oxidative stress, tyrosine nitration has been limited to certain cell types and to selective sites of injury. Additionally, proteomic studies show that only certain proteins are nitrated in selective tissue extracts. A growing list of nitrated proteins link the negative effects of protein nitration with their accumulation in a wide variety of diseases related to oxidation. Nitration of tyrosine has been demonstrated in diverse proteins such as cytochrome c, actin, histone, superoxide dismutase, α-synuclein, albumin, and angiotensin II. In vitro and in vivo aspects of redox-proteomics of specific nitroproteins that could be relevant to biomarker analysis and understanding of cardiovascular disease mechanism will be discussed within this review.
Collapse
Affiliation(s)
- Mutay Aslan
- Akdeniz University Faculty of Medicine, Department of Medical Biochemistry, Campus, 07070 Antalya, Turkey.
| | | |
Collapse
|
45
|
Structural basis of thrombin-mediated factor V activation: the Glu666-Glu672 sequence is critical for processing at the heavy chain-B domain junction. Blood 2011; 117:7164-73. [PMID: 21555742 DOI: 10.1182/blood-2010-10-315309] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thrombin-catalyzed activation of coagulation factor V (FV) is an essential positive feedback reaction within the blood clotting system. Efficient processing at the N- (Arg(709)-Ser(710)) and C-terminal activation cleavage sites (Arg(1545)-Ser(1546)) requires initial substrate interactions with 2 clusters of positively charged residues on the proteinase surface, exosites I and II. We addressed the mechanism of activation of human factor V (FV) using peptides that cover the entire acidic regions preceding these cleavage sites, FV (657-709)/ (FVa2) and FV(1481-1545)/(FVa3). FVa2 appears to interact mostly with exosite I, while both exosites are involved in interactions with the C-terminal linker. The 1.7-Å crystal structure of irreversibly inhibited thrombin bound to FVa2 unambiguously reveals docking of FV residues Glu(666)-Glu(672) to exosite I. These findings were confirmed in a second, medium-resolution structure of FVa2 bound to the benzamidine-inhibited proteinase. Our results suggest that the acidic A2-B domain linker is involved in major interactions with thrombin during cofactor activation, with its more N-terminal hirudin-like sequence playing a critical role. Modeling experiments indicate that FVa2, and likely also FVa3, wrap around thrombin in productive thrombin·FV complexes that cover a large surface of the activator to engage the active site.
Collapse
|
46
|
Zavyalova EG, Protopopova AD, Kopylov AM, Yaminsky IV. Investigation of early stages of fibrin association. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:4922-4927. [PMID: 21428306 DOI: 10.1021/la200148n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Interactions between fibrinogen molecules proteolytically cleaved with thrombin were investigated using atomic force microscopy (AFM) and dynamic light scattering (DLS). Gradually decreased fibrinogen concentrations were used to study the fibrin network, large separated fibrils, small fibrils in the initial association stages, and protofibrils. In addition, a new type of structure was found in AFM experiments at a low fibrinogen concentration (20 nM): the molecules in these single-stranded associates are arranged in a row, one after the other. The height, diameter, and distance between domains in these single-stranded associates were the same as those in the original fibrinogen molecules. DLS data assumed formation of extended associates in bulk solution at fibrinogen concentration as low as 20 nM.
Collapse
Affiliation(s)
- Elena G Zavyalova
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow, 119991 Russian Federation.
| | | | | | | |
Collapse
|
47
|
Abstract
Fibrin structure and stability have been linked to many thrombotic diseases, including venous thromboembolism. Analysis of the molecular mechanisms that affect fibrin structure and stability became possible when the crystal structure of fibrinogen was solved. Biochemical studies of natural and recombinant variant fibrinogens have examined the interactions that mediate the conversion of soluble fibrinogen to the insoluble fibrin network. These studies identified intermolecular interactions that control fibrin structure, although some critical events remain ambiguous. Studies show that fibrin structure modulates the enzymatic lysis of the fibrin network, so the molecular mechanisms that control structure also control stability. Studies show that the mechanical stability of the fibrin clot depends on the properties of the fibrin monomer, leading investigators to explore the molecular basis of the monomer's mechanical properties. The work summarized here provides insights that might allow the development of pharmaceuticals and treatments to modulate fibrin structure and stability in vivo and thereby prevent or limit thrombotic disease.
Collapse
Affiliation(s)
- Susan T Lord
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7525, USA.
| |
Collapse
|
48
|
Hanss M, Pouymayou C, Blouch MT, Lellouche F, Ffrench P, Rousson R, Abgrall JF, Morange PE, Quélin F, de Mazancourt P. The natural occurrence of human fibrinogen variants disrupting inter-chain disulfide bonds (A{alpha}Cys36Gly, A{alpha}Cys36Arg and A{alpha}Cys45Tyr) confirms the role of N-terminal A{alpha} disulfide bonds in protein assembly and secretion. Haematologica 2011; 96:1226-30. [PMID: 21459789 DOI: 10.3324/haematol.2010.029801] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Analyses of site-directed fibrinogen mutants expressed in several recombinant models have previously shown that both inter- and intra-chain disulfide bonds are critical for fibrinogen assembly and secretion. Four naturally occurring mutations on AαCys36 and AαCys45 residues are reported here to be associated with decreased fibrinogen levels. This confirms the main role of the AαCys36-BβCys65 and AαCys45-γCys23 disulfide bonds in reaching a normal fibrinogen plasma level. Decreased coagulant/antigen ratios indicate abnormal species secretion in heterozygous subjects which varies between individuals. However, in contrast to overexpression in experimental models, disruption of the AαCys36-BβCys65 disulfide bond did not result in the appearance of Aα-Bβ-γ moieties in vivo. A 188 kDa molecule reacting only with anti Aα and anti Bβ chains was found in the plasma of the AαCys45Tyr variant. Heterozygous carriers of Aα chain mutations usually have normal fibrinogen levels, in contrast to the AαCys36Gly, AαCys36Arg and AαCys45Tyr variants that are shown here to cause hypofibrinogenemia.
Collapse
Affiliation(s)
- Michel Hanss
- Laboratoire d’Hématologie, CBPE, Hospices Civils de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Di Cera E. Thrombin as an Anticoagulant. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 99:145-84. [DOI: 10.1016/b978-0-12-385504-6.00004-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Cilia La Corte AL, Philippou H, Ariëns RAS. Role of fibrin structure in thrombosis and vascular disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2011; 83:75-127. [PMID: 21570666 DOI: 10.1016/b978-0-12-381262-9.00003-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fibrin clot formation is a key event in the development of thrombotic disease and is the final step in a multifactor coagulation cascade. Fibrinogen is a large glycoprotein that forms the basis of a fibrin clot. Each fibrinogen molecule is comprised of two sets of Aα, Bβ, and γ polypeptide chains that form a protein containing two distal D regions connected to a central E region by a coiled-coil segment. Fibrin is produced upon cleavage of the fibrinopeptides by thrombin, which can then form double-stranded half staggered oligomers that lengthen into protofibrils. The protofibrils then aggregate and branch, yielding a three-dimensional clot network. Factor XIII, a transglutaminase, cross-links the fibrin stabilizing the clot protecting it from mechanical stress and proteolytic attack. The mechanical properties of the fibrin clot are essential for its function as it must prevent bleeding but still allow the penetration of cells. This viscoelastic property is generated at the level of each individual fiber up to the complete clot. Fibrinolysis is the mechanism of clot removal, and involves a cascade of interacting zymogens and enzymes that act in concert with clot formation to maintain blood flow. Clots vary significantly in structure between individuals due to both genetic and environmental factors and this has an effect on clot stability and susceptibility to lysis. There is increasing evidence that clot structure is a determinant for the development of disease and this review will discuss the determinants for clot structure and the association with thrombosis and vascular disease.
Collapse
Affiliation(s)
- Amy L Cilia La Corte
- Division of Cardiovascular and Diabetes Research, Section on Mechanisms of Thrombosis, Leeds Institute for Genetics Health and Therapeutics, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | | | | |
Collapse
|