1
|
Guo J, Liu C, Qi Z, Qiu T, Zhang J, Yang H. Engineering customized nanovaccines for enhanced cancer immunotherapy. Bioact Mater 2024; 36:330-357. [PMID: 38496036 PMCID: PMC10940734 DOI: 10.1016/j.bioactmat.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
Nanovaccines have gathered significant attention for their potential to elicit tumor-specific immunological responses. Despite notable progress in tumor immunotherapy, nanovaccines still encounter considerable challenges such as low delivery efficiency, limited targeting ability, and suboptimal efficacy. With an aim of addressing these issues, engineering customized nanovaccines through modification or functionalization has emerged as a promising approach. These tailored nanovaccines not only enhance antigen presentation, but also effectively modulate immunosuppression within the tumor microenvironment. Specifically, they are distinguished by their diverse sizes, shapes, charges, structures, and unique physicochemical properties, along with targeting ligands. These features of nanovaccines facilitate lymph node accumulation and activation/regulation of immune cells. This overview of bespoke nanovaccines underscores their potential in both prophylactic and therapeutic applications, offering insights into their future development and role in cancer immunotherapy.
Collapse
Affiliation(s)
- Jinyu Guo
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Changhua Liu
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Zhaoyang Qi
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
| | - Ting Qiu
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Jin Zhang
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| |
Collapse
|
2
|
Neshat SY, Chan CHR, Harris J, Zmily OM, Est-Witte S, Karlsson J, Shannon SR, Jain M, Doloff JC, Green JJ, Tzeng SY. Polymeric nanoparticle gel for intracellular mRNA delivery and immunological reprogramming of tumors. Biomaterials 2023; 300:122185. [PMID: 37290232 PMCID: PMC10330908 DOI: 10.1016/j.biomaterials.2023.122185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Immuno-oncology therapies have been of great interest with the goal of inducing sustained tumor regression, but clinical results have demonstrated the need for improved and widely applicable methods. An antigen-free method of cancer immunotherapy can stimulate the immune system to recruit lymphocytes and produce immunostimulatory factors without prior knowledge of neoantigens, while local delivery reduces the risk of systemic toxicity. To improve the interactions between tumor cells and cytotoxic lymphocytes, a gene delivery nanoparticle platform was engineered to reprogram the tumor microenvironment (TME) in situ to be more immunostimulatory by inducing tumor-associated antigen-presenting cells (tAPCs) to activate cytotoxic lymphocytes against the tumor. Biodegradable, lipophilic poly (beta-amino ester) (PBAE) nanoparticles were synthesized and used to co-deliver mRNA constructs encoding a signal 2 co-stimulatory molecule (4-1BBL) and a signal 3 immuno-stimulatory cytokine (IL-12), along with a nucleic acid-based immunomodulatory adjuvant. Nanoparticles are combined with a thermoresponsive block copolymer for gelation at the injection site for local NP retention at the tumor. The reprogramming nanoparticle gel synergizes with immune checkpoint blockade (ICB) to induce tumor regression and clearance in addition to resistance to tumor rechallenge at a distant site. In vitro and in vivo studies reveal increases in immunostimulatory cytokine production and recruitment of immune cells as a result of the nanoparticles. Intratumoral injection of nanoparticles encapsulating mRNA encoding immunostimulatory agents and adjuvants via an injectable thermoresponsive gel has great translational potential as an immuno-oncology therapy that can be accessible to a wide range of patients.
Collapse
Affiliation(s)
- Sarah Y Neshat
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Chun Hei Ryan Chan
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jawaun Harris
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Osamah M Zmily
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Savannah Est-Witte
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Johan Karlsson
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sydney R Shannon
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Manav Jain
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Joshua C Doloff
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Oncology, Sidney-Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Oncology, Sidney-Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA; Departments of Ophthalmology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Stephany Y Tzeng
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
3
|
Salek-Ardakani S, Zajonc DM, Croft M. Agonism of 4-1BB for immune therapy: a perspective on possibilities and complications. Front Immunol 2023; 14:1228486. [PMID: 37662949 PMCID: PMC10469789 DOI: 10.3389/fimmu.2023.1228486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Costimulatory receptors on immune cells represent attractive targets for immunotherapy given that these molecules can increase the frequency of individual protective immune cell populations and their longevity, as well as enhance various effector functions. 4-1BB, a member of the TNF receptor superfamily, also known as CD137 and TNFRSF9, is one such molecule that is inducible on several cell types, including T cells and NK cells. Preclinical studies in animal models have validated the notion that stimulating 4-1BB with agonist reagents or its natural ligand could be useful to augment conventional T cell and NK cell immunity to protect against tumor growth and against viral infection. Additionally, stimulating 4-1BB can enhance regulatory T cell function and might be useful in the right context for suppressing autoimmunity. Two human agonist antibodies to 4-1BB have been produced and tested in clinical trials for cancer, with variable results, leading to the production of a wealth of second-generation antibody constructs, including bi- and multi-specifics, with the hope of optimizing activity and selectivity. Here, we review the progress to date in agonism of 4-1BB, discuss the complications in targeting the immune system appropriately to elicit the desired activity, together with challenges in engineering agonists, and highlight the untapped potential of manipulating this molecule in infectious disease and autoimmunity.
Collapse
Affiliation(s)
| | - Dirk M. Zajonc
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Medicine, University of California (UC) San Diego, La Jolla, CA, United States
| |
Collapse
|
4
|
Melero I, Sanmamed MF, Glez-Vaz J, Luri-Rey C, Wang J, Chen L. CD137 (4-1BB)-Based Cancer Immunotherapy on Its 25th Anniversary. Cancer Discov 2023; 13:552-569. [PMID: 36576322 DOI: 10.1158/2159-8290.cd-22-1029] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 11/21/2022] [Indexed: 12/29/2022]
Abstract
Twenty-five years ago, we reported that agonist anti-CD137 monoclonal antibodies eradicated transplanted mouse tumors because of enhanced CD8+ T-cell antitumor immunity. Mouse models indicated that anti-CD137 agonist antibodies synergized with various other therapies. In the clinic, the agonist antibody urelumab showed evidence for single-agent activity against melanoma and non-Hodgkin lymphoma but caused severe liver inflammation in a fraction of the patients. CD137's signaling domain is included in approved chimeric antigen receptors conferring persistence and efficacy. A new wave of CD137 agonists targeting tumors, mainly based on bispecific constructs, are in early-phase trials and are showing promising safety and clinical activity. SIGNIFICANCE CD137 (4-1BB) is a costimulatory receptor of T and natural killer lymphocytes whose activity can be exploited in cancer immunotherapy strategies as discovered 25 years ago. Following initial attempts that met unacceptable toxicity, new waves of constructs acting agonistically on CD137 are being developed in patients, offering signs of clinical and pharmacodynamic activity with tolerable safety profiles.
Collapse
Affiliation(s)
- Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Miguel F Sanmamed
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Jun Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - Lieping Chen
- Department of Immunobiology, Yale University, New Haven, Connecticut
| |
Collapse
|
5
|
Oh J, Xia X, Wong WKR, Wong SHD, Yuan W, Wang H, Lai CHN, Tian Y, Ho YP, Zhang H, Zhang Y, Li G, Lin Y, Bian L. The Effect of the Nanoparticle Shape on T Cell Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107373. [PMID: 35297179 DOI: 10.1002/smll.202107373] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/08/2022] [Indexed: 06/14/2023]
Abstract
The mechanism of extracellular ligand nano-geometry in ex vivo T cell activation for immunotherapy remains elusive. Herein, the authors demonstrate large aspect ratio (AR) of gold nanorods (AuNRs) conjugated on cell culture substrate enhancing both murine and human T cell activation through the nanoscale anisotropic presentation of stimulatory ligands (anti-CD3(αCD3) and anti-CD28(αCD28) antibodies). AuNRs with large AR bearing αCD3 and αCD28 antibodies significantly promote T cell expansion and key cytokine secretion including interleukin-2 (IL-2), interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α). High membrane tension observed in large AR AuNRs regulates actin filament and focal adhesion assembly and develops maturation-related morphological features in T cells such as membrane ruffle formation, cell spreading, and large T cell receptor (TCR) cluster formation. Anisotropic stimulatory ligand presentation promotes differentiation of naïve CD8+ T cells toward the effector phenotype inducing CD137 expression upon co-culture with human cervical carcinoma. The findings suggest the importance of manipulating extracellular ligand nano-geometry in optimizing T cell behaviors to enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Jiwon Oh
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Xingyu Xia
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong, 999077, China
| | - Wai Ki Ricky Wong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Siu Hong Dexter Wong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Weihao Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
- Department of Orthopedic and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital Shatin, Hong Kong, 999077, China
| | - Haixing Wang
- Department of Orthopedic and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital Shatin, Hong Kong, 999077, China
| | - Chun Him Nathanael Lai
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Ye Tian
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong, 999077, China
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Honglu Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yuan Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Gang Li
- Department of Orthopedic and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital Shatin, Hong Kong, 999077, China
| | - Yuan Lin
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong, 999077, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New territories, Hong Kong, 999077, China
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guang Dong, 518000, China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
6
|
Fournier B, Hoshino A, Bruneau J, Bachelet C, Fusaro M, Klifa R, Lévy R, Lenoir C, Soudais C, Picard C, Blanche S, Castelle M, Moshous D, Molina T, Defachelles AS, Neven B, Latour S. Inherited TNFSF9 deficiency causes broad Epstein-Barr virus infection with EBV+ smooth muscle tumors. J Exp Med 2022; 219:213262. [PMID: 35657354 PMCID: PMC9170382 DOI: 10.1084/jem.20211682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/16/2022] [Accepted: 04/25/2022] [Indexed: 01/07/2023] Open
Abstract
Epstein-Barr virus (EBV) can infect smooth muscle cells causing smooth muscle tumors (SMTs) or leiomyoma. Here, we report a patient with a heterozygous 22q11.2 deletion/DiGeorge syndrome who developed a unique, broad, and lethal susceptibility to EBV characterized by EBV-infected T and B cells and disseminated EBV+SMT. The patient also harbored a homozygous missense mutation (p.V140G) in TNFSF9 coding for CD137L/4-1BBL, the ligand of the T cell co-stimulatory molecule CD137/4-1BB, whose deficiency predisposes to EBV infection. We show that wild-type CD137L was up-regulated on activated monocytes and dendritic cells, EBV-infected B cells, and SMT. The CD137LV140G mutant was weakly expressed on patient cells or when ectopically expressed in HEK and P815 cells. Importantly, patient EBV-infected B cells failed to trigger the expansion of EBV-specific T cells, resulting in decreased T cell effector responses. T cell expansion was recovered when CD137L expression was restored on B cells. Therefore, these results highlight the critical role of the CD137-CD137L pathway in anti-EBV immunity, in particular in the control of EBV+SMT.
Collapse
Affiliation(s)
- Benjamin Fournier
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France,Paris Cité University, Imagine Institute, Paris, France,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Akihiro Hoshino
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France
| | - Julie Bruneau
- Department of Pathology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Camille Bachelet
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France,Paris Cité University, Imagine Institute, Paris, France
| | - Mathieu Fusaro
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France,Paris Cité University, Imagine Institute, Paris, France,Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Roman Klifa
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Romain Lévy
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Christelle Lenoir
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France
| | - Claire Soudais
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France,Paris Cité University, Imagine Institute, Paris, France
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France,Paris Cité University, Imagine Institute, Paris, France,Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Stéphane Blanche
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Martin Castelle
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Despina Moshous
- Paris Cité University, Imagine Institute, Paris, France,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Thierry Molina
- Department of Pathology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | | | - Bénédicte Neven
- Paris Cité University, Imagine Institute, Paris, France,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France,Paris Cité University, Imagine Institute, Paris, France,Correspondence to Sylvain Latour:
| |
Collapse
|
7
|
Lee-Chang C, Miska J, Hou D, Rashidi A, Zhang P, Burga RA, Jusué-Torres I, Xiao T, Arrieta VA, Zhang DY, Lopez-Rosas A, Han Y, Sonabend AM, Horbinski CM, Stupp R, Balyasnikova IV, Lesniak MS. Activation of 4-1BBL+ B cells with CD40 agonism and IFNγ elicits potent immunity against glioblastoma. J Exp Med 2021; 218:152130. [PMID: 32991668 PMCID: PMC7527974 DOI: 10.1084/jem.20200913] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/24/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy has revolutionized the treatment of many tumors. However, most glioblastoma (GBM) patients have not, so far, benefited from such successes. With the goal of exploring ways to boost anti-GBM immunity, we developed a B cell-based vaccine (BVax) that consists of 4-1BBL+ B cells activated with CD40 agonism and IFNγ stimulation. BVax migrates to key secondary lymphoid organs and is proficient at antigen cross-presentation, which promotes both the survival and the functionality of CD8+ T cells. A combination of radiation, BVax, and PD-L1 blockade conferred tumor eradication in 80% of treated tumor-bearing animals. This treatment elicited immunological memory that prevented the growth of new tumors upon subsequent reinjection in cured mice. GBM patient-derived BVax was successful in activating autologous CD8+ T cells; these T cells showed a strong ability to kill autologous glioma cells. Our study provides an efficient alternative to current immunotherapeutic approaches that can be readily translated to the clinic.
Collapse
Affiliation(s)
- Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - David Hou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Aida Rashidi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Peng Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Rachel A Burga
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Ignacio Jusué-Torres
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL.,Department of Neurological Surgery, Loyola University Chicago Stritch School of Medicine, Chicago, IL
| | - Ting Xiao
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Victor A Arrieta
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL.,Plan de Estudios Combinados en Medicina, National Autonomous University of Mexico, Mexico City, Mexico
| | - Daniel Y Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Aurora Lopez-Rosas
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Yu Han
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Adam M Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Craig M Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL.,Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Roger Stupp
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL.,Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
8
|
Puigdelloses M, Garcia-Moure M, Labiano S, Laspidea V, Gonzalez-Huarriz M, Zalacain M, Marrodan L, Martinez-Velez N, De la Nava D, Ausejo I, Hervás-Stubbs S, Herrador G, Chen Z, Hambardzumyan D, Patino Garcia A, Jiang H, Gomez-Manzano C, Fueyo J, Gállego Pérez-Larraya J, Alonso M. CD137 and PD-L1 targeting with immunovirotherapy induces a potent and durable antitumor immune response in glioblastoma models. J Immunother Cancer 2021; 9:jitc-2021-002644. [PMID: 34281988 PMCID: PMC8291319 DOI: 10.1136/jitc-2021-002644] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 01/09/2023] Open
Abstract
Background Glioblastoma (GBM) is a devastating primary brain tumor with a highly immunosuppressive tumor microenvironment, and treatment with oncolytic viruses (OVs) has emerged as a promising strategy for these tumors. Our group constructed a new OV named Delta-24-ACT, which was based on the Delta-24-RGD platform armed with 4-1BB ligand (4-1BBL). In this study, we evaluated the antitumor effect of Delta-24-ACT alone or in combination with an immune checkpoint inhibitor (ICI) in preclinical models of glioma. Methods The in vitro effect of Delta-24-ACT was characterized through analyses of its infectivity, replication and cytotoxicity by flow cytometry, immunofluorescence (IF) and MTS assays, respectively. The antitumor effect and therapeutic mechanism were evaluated in vivo using several immunocompetent murine glioma models. The tumor microenvironment was studied by flow cytometry, immunohistochemistry and IF. Results Delta-24-ACT was able to infect and exert a cytotoxic effect on murine and human glioma cell lines. Moreover, Delta-24-ACT expressed functional 4-1BBL that was able to costimulate T lymphocytes in vitro and in vivo. Delta-24-ACT elicited a more potent antitumor effect in GBM murine models than Delta-24-RGD, as demonstrated by significant increases in median survival and the percentage of long-term survivors. Furthermore, Delta-24-ACT modulated the tumor microenvironment, which led to lymphocyte infiltration and alteration of their immune phenotype, as characterized by increases in the expression of Programmed Death 1 (PD-1) on T cells and Programmed Death-ligand 1 (PD-L1) on different myeloid cell populations. Because Delta-24-ACT did not induce an immune memory response in long-term survivors, as indicated by rechallenge experiments, we combined Delta-24-ACT with an anti-PD-L1 antibody. In GL261 tumor-bearing mice, this combination showed superior efficacy compared with either monotherapy. Specifically, this combination not only increased the median survival but also generated immune memory, which allowed long-term survival and thus tumor rejection on rechallenge. Conclusions In summary, our data demonstrated the efficacy of Delta-24-ACT combined with a PD-L1 inhibitor in murine glioma models. Moreover, the data underscore the potential to combine local immunovirotherapy with ICIs as an effective therapy for poorly infiltrated tumors.
Collapse
Affiliation(s)
- Montserrat Puigdelloses
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marc Garcia-Moure
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Sara Labiano
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Virginia Laspidea
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marisol Gonzalez-Huarriz
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marta Zalacain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Lucia Marrodan
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Naiara Martinez-Velez
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Daniel De la Nava
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Iker Ausejo
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Sandra Hervás-Stubbs
- Program in Immunology and Immunotherapy, Foundation for the Applied Medical Research, Pamplona, Spain
| | - Guillermo Herrador
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - ZhiHong Chen
- Department of Oncological Sciences, The Tisch Cancer Institut and Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, New York, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institut and Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, New York, USA
| | - Ana Patino Garcia
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Hong Jiang
- Department of NeuroOncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Candelaria Gomez-Manzano
- Department of NeuroOncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Juan Fueyo
- Department of NeuroOncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jaime Gállego Pérez-Larraya
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain .,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marta Alonso
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain .,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
9
|
CD137 + T-Cells: Protagonists of the Immunotherapy Revolution. Cancers (Basel) 2021; 13:cancers13030456. [PMID: 33530328 PMCID: PMC7866028 DOI: 10.3390/cancers13030456] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary The CD137 receptor is expressed by activated antigen-specific T-cells. CD137+ T-cells were identified inside TILs and PBMCs of different tumor types and have proven to be the naturally occurring antitumor effector cells, capable of expressing a wide variability in terms of TCR specificity against both shared and neoantigenic tumor-derived peptides. The aim of this review is thus summarizing and highlighting their role as drivers of patients’ immune responses in anticancer therapies as well as their potential role in future and current strategies of immunotherapy. Abstract The CD137 receptor (4-1BB, TNF RSF9) is an activation induced molecule expressed by antigen-specific T-cells. The engagement with its ligand, CD137L, is capable of increasing T-cell survival, proliferation, and cytokine production. This allowed to identify the CD137+ T-cells as the real tumor-specific activated T-cell population. In fact, these cells express various TCRs that are specific for a wide range of tumor-derived peptides, both shared and neoantigenic ones. Moreover, their prevalence in sites close to the tumor and their unicity in killing cancer cells both in vitro and in vivo, raised particular interest in studying their potential role in different strategies of immunotherapy. They indeed showed to be a reliable marker able to predict patient’s outcome to immune-based therapies as well as monitor their response. In addition, the possibility of isolating and expanding this population, turned promising in order to generate effector antitumor T-cells in the context of adoptive T-cell therapies. CD137-targeting monoclonal antibodies have already shown their antitumor efficacy in cancer patients and a number of clinical trials are thus ongoing to test their possible introduction in different combination approaches of immunotherapy. Finally, the intracellular domain of the CD137 receptor was introduced in the anti-CD19 CAR-T cells that were approved by FDA for the treatment of pediatric B-cell leukemia and refractory B-cell lymphoma.
Collapse
|
10
|
Reithofer M, Rosskopf S, Leitner J, Battin C, Bohle B, Steinberger P, Jahn-Schmid B. 4-1BB costimulation promotes bystander activation of human CD8 T cells. Eur J Immunol 2020; 51:721-733. [PMID: 33180337 PMCID: PMC7986150 DOI: 10.1002/eji.202048762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/18/2020] [Accepted: 11/11/2020] [Indexed: 01/06/2023]
Abstract
Costimulatory signals potently promote T‐cell proliferation and effector function. Agonistic antibodies targeting costimulatory receptors of the TNFR family, such as 4‐1BB and CD27, have entered clinical trials in cancer patients. Currently there is limited information how costimulatory signals regulate antigen‐specific but also bystander activation of human CD8 T cells. Engineered antigen presenting cells (eAPC) efficiently presenting several common viral epitopes on HLA‐A2 in combination with MHC class I tetramer staining were used to investigate the impact of costimulatory signals on human CD8 T‐cell responses. CD28 costimulation potently augmented the percentage and number of antigen‐reactive CD8 T cells, whereas eAPC expressing 4‐1BB‐ligand induced bystander proliferation of CD8 T cells and massive expansion of NK cells. Moreover, the 4‐1BB agonist urelumab similarly induced bystander proliferation of CD8 T cells and NK cells in a dose‐dependent manner. However, the promotion of bystander CD8 T‐cell responses is not a general attribute of costimulatory TNF receptor superfamily (TNFRSF) members, since CD27 signals enhanced antigen‐specific CD8 T cells responses without promoting significant bystander activation. Thus, the differential effects of costimulatory signals on the activation of human bystander CD8 T cells should be taken into account when costimulatory pathways are harnessed for cancer immunotherapy.
Collapse
Affiliation(s)
- Manuel Reithofer
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sandra Rosskopf
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Claire Battin
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Beatrice Jahn-Schmid
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Yang LR, Li L, Meng MY, Wang WJ, Yang SL, Zhao YY, Wang RQ, Gao H, Tang WW, Yang Y, Yang LL, Liao LW, Hou ZL. Evaluation of piggyBac-mediated anti-CD19 CAR-T cells after ex vivo expansion with aAPCs or magnetic beads. J Cell Mol Med 2020; 25:686-700. [PMID: 33225580 PMCID: PMC7812273 DOI: 10.1111/jcmm.16118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/02/2022] Open
Abstract
Adoptive immunotherapy is a new potential method of tumour therapy, among which anti‐CD19 chimeric antigen receptor T‐cell therapy (CAR‐T cell), is a typical treatment agent for haematological malignancies. Previous clinical trials showed that the quality and phenotype of CAR‐T cells expanded ex vivo would seriously affect the tumour treatment efficacy. Although magnetic beads are currently widely used to expand CAR‐T cells, the optimal expansion steps and methods have not been completely established. In this study, the differences between CAR‐T cells expanded with anti‐CD3/CD28 mAb‐coated beads and those expanded with cell‐based aAPCs expressing CD19/CD64/CD86/CD137L/mIL‐15 counter‐receptors were compared. The results showed that the number of CD19‐specific CAR‐T cells with a 4‐1BB and CD28 co‐stimulatory domain was much greater with stimulation by aAPCs than that with beads. In addition, the expression of memory marker CD45RO was higher, whereas expression of exhausted molecules was lower in CAR‐T cells expanded with aAPCs comparing with the beads. Both CAR‐T cells showed significant targeted tumoricidal effects. The CAR‐T cells stimulated with aAPCs secreted apoptosis‐related cytokines. Moreover, they also possessed marked anti‐tumour effect on NAMALWA xenograft mouse model. The present findings provided evidence on the safety and advantage of two expansion methods for CAR‐T cells genetically modified by piggyBac transposon system.
Collapse
Affiliation(s)
- Li-Rong Yang
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China.,Kunming Medical University, Kunming, China
| | - Lin Li
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China.,Yunnan Cell Biology and Clinical Translation Research Center, Kunming, China
| | - Ming-Yao Meng
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China.,Yunnan Cell Biology and Clinical Translation Research Center, Kunming, China
| | - Wen-Ju Wang
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China.,Yunnan Cell Biology and Clinical Translation Research Center, Kunming, China
| | - Song-Lin Yang
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China.,Kunming Medical University, Kunming, China
| | - Yi-Yi Zhao
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China.,Yunnan Cell Biology and Clinical Translation Research Center, Kunming, China
| | - Run-Qing Wang
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China.,Kunming Medical University, Kunming, China
| | - Hui Gao
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China.,Yunnan Cell Biology and Clinical Translation Research Center, Kunming, China
| | - Wei-Wei Tang
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China.,Yunnan Cell Biology and Clinical Translation Research Center, Kunming, China
| | - Yang Yang
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China.,Kunming Medical University, Kunming, China
| | - Li-Li Yang
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China.,Kunming Medical University, Kunming, China
| | - Li-Wei Liao
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China.,Yunnan Cell Biology and Clinical Translation Research Center, Kunming, China
| | - Zong-Liu Hou
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China.,Yunnan Cell Biology and Clinical Translation Research Center, Kunming, China
| |
Collapse
|
12
|
Barbari C, Fontaine T, Parajuli P, Lamichhane N, Jakubski S, Lamichhane P, Deshmukh RR. Immunotherapies and Combination Strategies for Immuno-Oncology. Int J Mol Sci 2020; 21:E5009. [PMID: 32679922 PMCID: PMC7404041 DOI: 10.3390/ijms21145009] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
The advent of novel immunotherapies in the treatment of cancers has dramatically changed the landscape of the oncology field. Recent developments in checkpoint inhibition therapies, tumor-infiltrating lymphocyte therapies, chimeric antigen receptor T cell therapies, and cancer vaccines have shown immense promise for significant advancements in cancer treatments. Immunotherapies act on distinct steps of immune response to augment the body's natural ability to recognize, target, and destroy cancerous cells. Combination treatments with immunotherapies and other modalities intend to activate immune response, decrease immunosuppression, and target signaling and resistance pathways to offer a more durable, long-lasting treatment compared to traditional therapies and immunotherapies as monotherapies for cancers. This review aims to briefly describe the rationale, mechanisms of action, and clinical efficacy of common immunotherapies and highlight promising combination strategies currently approved or under clinical development. Additionally, we will discuss the benefits and limitations of these immunotherapy approaches as monotherapies as well as in combination with other treatments.
Collapse
Affiliation(s)
- Cody Barbari
- OMS Students, School of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine (LECOM), 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA; (C.B.); (T.F.)
| | - Tyler Fontaine
- OMS Students, School of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine (LECOM), 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA; (C.B.); (T.F.)
| | - Priyanka Parajuli
- Department of Internal Medicine, Southern Illinois University, Springfield, IL 62702, USA;
| | - Narottam Lamichhane
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA;
| | - Silvia Jakubski
- Department of Biostatistics, University of Florida, Gainesville, FL 32611, USA;
| | - Purushottam Lamichhane
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine (LECOM), 4800 Lakewood Ranch Blvd, Bradenton, FL 34211, USA
| | - Rahul R. Deshmukh
- School of Pharmacy, Lake Erie College of Osteopathic Medicine (LECOM), 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA
| |
Collapse
|
13
|
Woods DM, Laino AS, Winters A, Alexandre J, Freeman D, Rao V, Adavani SS, Weber JS, Chattopadhyay PK. Nivolumab and ipilimumab are associated with distinct immune landscape changes and response-associated immunophenotypes. JCI Insight 2020; 5:137066. [PMID: 32369447 DOI: 10.1172/jci.insight.137066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUNDThe reshaping of the immune landscape by nivolumab (NIVO) and ipilimumab (IPI) and its relation to patient outcomes is not well described.METHODSWe used high-parameter flow cytometry and a computational platform, CytoBrute, to define immunophenotypes of up to 15 markers to assess peripheral blood samples from metastatic melanoma patients receiving sequential NIVO > IPI or IPI > NIVO (Checkmate-064).RESULTSThe 2 treatments were associated with distinct immunophenotypic changes and had differing profiles associated with response. Only 2 immunophenotypes were shared but had opposing relationships to response/survival. To understand the impact of sequential treatment on response/survival, phenotypes that changed after the initial treatment and differentiated response in the other cohort were identified. Immunophenotypic changes occurring after NIVO were predominately associated with response to IPI > NIVO, but changes occurring after IPI were predominately associated with progression after NIVO > IPI. Among these changes, CD4+CD38+CD39+CD127-GARP- T cell subsets were increased after IPI treatment and were negatively associated with response/survival for the NIVO > IPI cohort.CONCLUSIONCollectively, these data suggest that the impact of IPI and NIVO on the immunophenotypic landscape of patients is distinct and that the impact of IPI may be associated with resistance to subsequent NIVO therapy, consistent with poor outcomes in the IPI > NIVO cohort of Checkmate-064.
Collapse
Affiliation(s)
- David M Woods
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Andressa S Laino
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Aidan Winters
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Jason Alexandre
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Daniel Freeman
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | | | | | - Jeffery S Weber
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | | |
Collapse
|
14
|
Abstract
Adoptive cell therapy with ex vivo expanded tumor infiltrating lymphocytes or gene engineering T cells expressing chimeric antigen receptors (CAR) is a promising treatment for cancer patients. This production utilizes T-cell activation and transduction with activation beads and RetroNectin, respectively. However, the high cost of production is an obstacle for the broad clinical application of novel immunotherapeutic cell products. To facilitate production we refined our approach by using artificial antigen presenting cells (aAPCs) with receptors that ligate CD3, CD28, and the CD137 ligand (CD137L or 41BBL), as well as express the heparin binding domain (HBD), which binds virus for gene-transfer. We have used these aAPC for ex vivo gene engineering and expansion of tumor infiltrating lymphocytes and CAR T cells. We found that aAPCs can support efficacious T-cell expansion and transduction. Moreover, aAPCs expanded T cells exhibit higher production of IFN-γ and lower traits of T-cell exhaustion compared with bead expanded T cells. Our results suggest that aAPC provide a more physiological stimulus for T-cell activation than beads that persistently ligate T cells. The use of a renewable cell line to replace 2 critical reagents (beads and retronectin) for CAR T-cell production can significantly reduce the cost of production and make these therapies more accessible to patients.
Collapse
|
15
|
Rodriguez R, Fournier B, Cordeiro DJ, Winter S, Izawa K, Martin E, Boutboul D, Lenoir C, Fraitag S, Kracker S, Watts TH, Picard C, Bruneau J, Callebaut I, Fischer A, Neven B, Latour S. Concomitant PIK3CD and TNFRSF9 deficiencies cause chronic active Epstein-Barr virus infection of T cells. J Exp Med 2019; 216:2800-2818. [PMID: 31537641 PMCID: PMC6888974 DOI: 10.1084/jem.20190678] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/23/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022] Open
Abstract
Identification of biallelic loss-of-function mutations in TNFRSF9 and PIK3CD in a kindred with chronic active Epstein-Barr virus infection of T cells (CAEBV) suggests that CAEBV is the consequence of factors providing growth advantage to EBV-infected T cells combined with defective cell immunity toward EBV-infected cells. Infection of T cells by Epstein-Barr virus (EBV) causes chronic active EBV infection (CAEBV) characterized by T cell lymphoproliferative disorders (T-LPD) of unclear etiology. Here, we identified two homozygous biallelic loss-of-function mutations in PIK3CD and TNFRSF9 in a patient who developed a fatal CAEBV. The mutation in TNFRSF9 gene coding CD137/4-1BB, a costimulatory molecule expressed by antigen-specific activated T cells, resulted in a complete loss of CD137 expression and impaired T cell expansion toward CD137 ligand–expressing cells. Isolated as observed in one sibling, CD137 deficiency resulted in persistent EBV-infected T cells but without clinical manifestations. The mutation in PIK3CD gene that encodes the catalytic subunit p110δ of the PI3K significantly reduced its kinase activity. Deficient T cells for PIK3CD exhibited reduced AKT signaling, while calcium flux, RAS-MAPK activation, and proliferation were increased, suggestive of an imbalance between the PLCγ1 and PI3K pathways. These skewed signals in T cells may sustain accumulation of EBV-infected T cells, a process controlled by the CD137–CD137L pathway, highlighting its critical role in immunity to EBV.
Collapse
Affiliation(s)
- Rémy Rodriguez
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Benjamin Fournier
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Debora Jorge Cordeiro
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Sarah Winter
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Kazushi Izawa
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France
| | - Emmanuel Martin
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France
| | - David Boutboul
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Christelle Lenoir
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France
| | - Sylvie Fraitag
- Department of Pathology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sven Kracker
- University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France.,Laboratory of Human Lymphohematopoiesis, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France.,Centre d'Etude des Déficits Immunitaires, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Julie Bruneau
- University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France.,Department of Pathology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Paris, France
| | - Alain Fischer
- University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France.,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Collège de France, Paris, France.,Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France
| | - Bénédicte Neven
- University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France.,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France .,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| |
Collapse
|
16
|
Konstorum A, Vella AT, Adler AJ, Laubenbacher RC. A mathematical model of combined CD8 T cell costimulation by 4-1BB (CD137) and OX40 (CD134) receptors. Sci Rep 2019; 9:10862. [PMID: 31350431 PMCID: PMC6659676 DOI: 10.1038/s41598-019-47333-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
Combined agonist stimulation of the TNFR costimulatory receptors 4-1BB (CD137) and OX40(CD134) has been shown to generate supereffector CD8 T cells that clonally expand to greater levels, survive longer, and produce a greater quantity of cytokines compared to T cells stimulated with an agonist of either costimulatory receptor individually. In order to understand the mechanisms for this effect, we have created a mathematical model for the activation of the CD8 T cell intracellular signaling network by mono- or dual-costimulation. We show that supereffector status is generated via downstream interacting pathways that are activated upon engagement of both receptors, and in silico simulations of the model are supported by published experimental results. The model can thus be used to identify critical molecular targets of T cell dual-costimulation in the context of cancer immunotherapy.
Collapse
Affiliation(s)
- Anna Konstorum
- Center for Quantitative Medicine, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT, USA.
| | - Anthony T Vella
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT, USA
| | - Adam J Adler
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT, USA
| | - Reinhard C Laubenbacher
- Center for Quantitative Medicine, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT, USA.,Jackson Laboratory for Genomic Medicine, 263 Farmington Ave., Farmington, CT, USA
| |
Collapse
|
17
|
Kweon S, Phan MTT, Chun S, Yu H, Kim J, Kim S, Lee J, Ali AK, Lee SH, Kim SK, Doh J, Cho D. Expansion of Human NK Cells Using K562 Cells Expressing OX40 Ligand and Short Exposure to IL-21. Front Immunol 2019; 10:879. [PMID: 31105701 PMCID: PMC6491902 DOI: 10.3389/fimmu.2019.00879] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/05/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Natural Killer (NK) cell-based immunotherapy used to treat cancer requires the adoptive transfer of a large number of activated NK cells. Here, we report a new effective method to expand human NK cells ex vivo using K562 cells genetically engineered (GE) to express OX40 ligand (K562-OX40L) in combination with a short exposure to soluble IL-21. In addition, we describe a possible mechanism of the NK cell expansion through the OX40 receptor-OX40 ligand axis which is dependent on NK cell homotypic interaction. Methods: K562-OX40L cells were generated by lentiviral transduction and were used as feeder cells to expand and activate NK cells from PBMCs in the presence of IL-2/IL-15. Soluble IL-21 was also added in various concentrations only once at the beginning of the culture. NK cells were expanded for 4–5 weeks, and the purity, expansion rate, phenotype and function (cytotoxicity, antibody-dependent cell-mediated cytotoxicity (ADCC), cytokine production, CD107a degranulation) of these expanded NK cells were compared to those generated by using K562 feeder cells. Results: The culture of NK cells with K562-OX40L cells in combination with the transient exposure to IL-21 highly enhanced NK cell expansion to approximately 2,000-fold after 4 weeks of culture, compared to a 303-fold expansion using the conventional K562 cells. Mechanistically, the OX40-OX40L axis between the feeder cells and NK cells as well as the homotypic interaction between NK cells through the OX40-OX40L axis were both necessary for NK cell expansion. The short exposure of NK cells to IL-21 had a synergistic effect with OX40 signaling for NK cell expansion. Apart from their enhanced expansion, NK cells grown with K562-OX40L feeder cells were similar to those grown with conventional K562 cells in regard to the surface expression of various receptors, cytotoxicity, ADCC, cytokine secretion, and CD107 degranulation. Conclusion: Our data suggest that OX40 ligand is a potent co-stimulant for the robust expansion of human NK cells and the homotypic NK cell interactions through the OX40-OX40L axis is a mechanism of NK cell expansion.
Collapse
Affiliation(s)
- SoonHo Kweon
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), POSTECH, Pohang, South Korea
| | | | - Sejong Chun
- Department of Laboratory Medicine, Chonnam National University, GwangJu, South Korea
| | - HongBi Yu
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Jinho Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Seokho Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jaemin Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Alaa Kassim Ali
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Sang-Ki Kim
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan, South Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Seoul National University, Seoul, South Korea
| | - Duck Cho
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|
18
|
Shao J, Xu Q, Su S, Meng F, Zou Z, Chen F, Du J, Qian X, Liu B. Engineered cells for costimulatory enhancement combined with IL-21 enhance the generation of PD-1-disrupted CTLs for adoptive immunotherapy. Cell Immunol 2017; 320:38-45. [PMID: 28935250 DOI: 10.1016/j.cellimm.2017.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/30/2017] [Accepted: 09/02/2017] [Indexed: 12/17/2022]
Abstract
Blockade of the immune cell checkpoint inhibitors programmed death 1 (PD-1) and programmed death-ligand 1 (PD-L1) has become a powerful tool in cancer treatment, which is effective across various solid cancer types and hematologic malignancies. Our previous studies showed that by reducing immune tolerance, clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas9) modified cytotoxic T lymphocytes (CTLs) rank highly in terms of immune responses and cytotoxicity. In this study, a genetically modified K562 cell line with surface expression of 4-1BBL was developed to expand PD-1-disrupted CTLs in vitro for further adoptive immunotherapy against cancer. Our findings demonstrate that after a long-term, up to 28days, engineered cells for costimulatory enhancement (ECCE) combined with IL-21 promote the expansion of PD-1-disrupted CTLs with a less differentiated "young" phenotype, enhanced immune response and superior cytotoxic effector characteristics. These new in vitro conditions represent a nimble and cost-effective approach to developing PD-1-disrupted CTLs with improved therapeutic potential.
Collapse
Affiliation(s)
- Jie Shao
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Qiuping Xu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Shu Su
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Fanyan Meng
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Zhengyun Zou
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Fangjun Chen
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Juan Du
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Xiaoping Qian
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China.
| |
Collapse
|
19
|
Macdonald DC, Hotblack A, Akbar S, Britton G, Collins MK, Rosenberg WC. 4-1BB ligand activates bystander dendritic cells to enhance immunization in trans. THE JOURNAL OF IMMUNOLOGY 2014; 193:5056-64. [PMID: 25305314 DOI: 10.4049/jimmunol.1301723] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Expression of the costimulatory receptor 4-1BB is induced by TCR recognition of Ag, whereas 4-1BB ligand (4-1BBL) is highly expressed on activated APC. 4-1BB signaling is particularly important for survival of activated and memory CD8(+) T cells. We wished to test whether coexpression of Ag and 4-1BBL by dendritic cells (DC) would be an effective vaccine strategy. Therefore, we constructed lentiviral vectors (LV) coexpressing 4-1BBL and influenza nucleoprotein (NP). Following s.c. immunization of mice, which targets DC, we found superior CD8(+) T cell responses against NP and protection from influenza when 4-1BBL was expressed. However, functionally superior CD8(+) T cell responses were obtained when two LV were coinjected: one expressing 4-1BBL and the other expressing NP. This surprising result suggested that 4-1BBL is more effective when expressed in trans, acting on adjacent DC. Therefore, we investigated the effect of LV expression of 4-1BBL in mouse DC cultures and observed induced maturation of bystander, untransduced cells. Maturation was blocked by anti-4-1BBL Ab, required cell-cell contact, and did not require the cytoplasmic signaling domain of 4-1BBL. Greater maturation of untransduced cells could be explained by LV expression of 4-1BBL, causing downregulation of 4-1BB. These data suggest that coexpression of 4-1BBL and Ag by vaccine vectors that target DC may not be an optimal strategy. However, 4-1BBL LV immunization activates significant numbers of bystander DC in the draining lymph nodes. Therefore, transactivation by 4-1BBL/4-1BB interaction following DC-DC contact may play a role in the immune response to infection or vaccination.
Collapse
Affiliation(s)
- Douglas C Macdonald
- Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | - Alastair Hotblack
- Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | - Saniath Akbar
- Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | - Gary Britton
- Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | - Mary K Collins
- Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom; National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertsfordshire EN6 3QG, United Kingdom; and
| | - William C Rosenberg
- Division of Medicine, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
20
|
Srivastava AK, Dinc G, Sharma RK, Yolcu ES, Zhao H, Shirwan H. SA-4-1BBL and monophosphoryl lipid A constitute an efficacious combination adjuvant for cancer vaccines. Cancer Res 2014; 74:6441-51. [PMID: 25252915 DOI: 10.1158/0008-5472.can-14-1768-a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Vaccines based on tumor-associated antigens (TAA) have limited therapeutic efficacy due to their weak immunogenic nature and the various immune evasion mechanisms active in advanced tumors. In an effort to overcome these limitations, we evaluated a combination of the T-cell costimulatory molecule SA-4-1BBL with the TLR4 agonist monophosphoryl lipid A (MPL) as a novel vaccine adjuvant system. In the TC-1 mouse allograft model of human papilloma virus (HPV)-induced cancer, a single administration of this combination adjuvant with HPV E7 protein caused tumor rejection in all tumor-bearing mice. On its own, SA-4-1BBL outperformed MPL in this setting. Against established tumors, two vaccinations were sufficient to elicit rejection in the majority of mice. In the metastatic model of Lewis lung carcinoma, vaccination of the TAA survivin with SA-4-1BBL/MPL yielded superior efficacy against pulmonary metastases. Therapeutic efficacy of SA-4-1BBL/MPL was achieved in the absence of detectable toxicity, correlating with enhanced dendritic cell activation, CD8(+) T-cell function, and an increased intratumoral ratio of CD8(+) T effector cells to CD4(+)FoxP3(+) T regulatory cells. Unexpectedly, use of MPL on its own was associated with unfavorable intratumoral ratios of these T-cell populations, resulting in suboptimal efficacy. The efficacy of MPL monotherapy was restored by depletion of T regulatory cells, whereas eliminating CD8(+) T cells abolished the efficacy of its combination with SA-4-1BBL. Mechanistic investigations showed that IFNγ played a critical role in supporting the therapeutic effect of SA-4-1BBL/MPL. Taken together, our results offer a preclinical proof of concept for the use of a powerful new adjuvant system for TAA-based cancer vaccines.
Collapse
Affiliation(s)
- Abhishek K Srivastava
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Gunes Dinc
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Rajesh K Sharma
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Esma S Yolcu
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Hong Zhao
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Haval Shirwan
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky.
| |
Collapse
|
21
|
Costimulatory molecules as vaccine adjuvants: to 4-1BB or not to 4-1BB? Cell Mol Immunol 2014; 12:508-9. [PMID: 25195512 DOI: 10.1038/cmi.2014.90] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 08/19/2014] [Accepted: 08/19/2014] [Indexed: 12/29/2022] Open
|
22
|
Dinc G, Pennington JM, Yolcu ES, Lawrenz MB, Shirwan H. Improving the Th1 cellular efficacy of the lead Yersinia pestis rF1-V subunit vaccine using SA-4-1BBL as a novel adjuvant. Vaccine 2014; 32:5035-40. [PMID: 25045812 DOI: 10.1016/j.vaccine.2014.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/13/2014] [Accepted: 07/08/2014] [Indexed: 12/21/2022]
Abstract
The lead candidate plague subunit vaccine is the recombinant fusion protein rF1-V adjuvanted with alum. While alum generates Th2 regulated robust humoral responses, immune protection against Yersinia pestis has been shown to also involve Th1 driven cellular responses. Therefore, the rF1-V-based subunit vaccine may benefit from an adjuvant system that generates a mixed Th1 and humoral immune response. We herein assessed the efficacy of a novel SA-4-1BBL costimulatory molecule as a Th1 adjuvant to improve cellular responses generated by the rF1-V vaccine. SA-4-1BBL as a single adjuvant had better efficacy than alum in generating CD4(+) and CD8(+) T cells producing TNFα and IFNγ, signature cytokines for Th1 responses. The combination of SA-4-1BBL with alum further increased this Th1 response as compared with the individual adjuvants. Analysis of the humoral response revealed that SA-4-1BBL as a single adjuvant did not generate a significant Ab response against rF1-V, and SA-4-1BBL in combination with alum did not improve Ab titers. However, the combined adjuvants significantly increased the ratio of Th1 regulated IgG2c in C57BL/6 mice to the Th2 regulated IgG1. Finally, a single vaccination with rF1-V adjuvanted with SA-4-1BBL+alum had better protective efficacy than vaccines containing individual adjuvants. Taken together, these results demonstrate that SA-4-1BBL improves the protective efficacy of the alum adjuvanted lead rF1-V subunit vaccine by generating a more balanced Th1 cellular and humoral immune response. As such, this adjuvant platform may prove efficacious not only for the rF1-V vaccine but also against other infections that require both cellular and humoral immune responses for protection.
Collapse
Affiliation(s)
- Gunes Dinc
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY 40202, United States; Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, United States
| | - Jarrod M Pennington
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, United States; Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40202, United States
| | - Esma S Yolcu
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY 40202, United States; Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, United States
| | - Matthew B Lawrenz
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, United States; Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40202, United States.
| | - Haval Shirwan
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY 40202, United States; Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, United States.
| |
Collapse
|
23
|
Duvvuri B, Duvvuri VR, Wang C, Chen L, Wagar LE, Jamnik V, Wu J, Yeung RSM, Grigull J, Watts TH, Wu GE. The human immune system recognizes neopeptides derived from mitochondrial DNA deletions. THE JOURNAL OF IMMUNOLOGY 2014; 192:4581-91. [PMID: 24733843 DOI: 10.4049/jimmunol.1300774] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mutations in mitochondrial (mt) DNA accumulate with age and can result in the generation of neopeptides. Immune surveillance of such neopeptides may allow suboptimal mitochondria to be eliminated, thereby avoiding mt-related diseases, but may also contribute to autoimmunity in susceptible individuals. To date, the direct recognition of neo-mtpeptides by the adaptive immune system has not been demonstrated. In this study we used bioinformatics approaches to predict MHC binding of neopeptides identified from known deletions in mtDNA. Six such peptides were confirmed experimentally to bind to HLA-A*02. Pre-existing human CD4(+) and CD8(+) T cells from healthy donors were shown to recognize and respond to these neopeptides. One remarkably promiscuous immunodominant peptide (P9) could be presented by diverse MHC molecules to CD4(+) and/or CD8(+) T cells from 75% of the healthy donors tested. The common soil microbe, Bacillus pumilus, encodes a 9-mer that differs by one amino acid from P9. Similarly, the ATP synthase F0 subunit 6 from normal human mitochondria encodes a 9-mer with a single amino acid difference from P9 with 89% homology to P9. T cells expanded from human PBMCs using the B. pumilus or self-mt peptide bound to P9/HLA-A2 tetramers, arguing for cross-reactivity between T cells with specificity for self and foreign homologs of the altered mt peptide. These findings provide proof of principal that the immune system can recognize peptides arising from spontaneous somatic mutations and that such responses might be primed by foreign peptides and/or be cross-reactive with self.
Collapse
Affiliation(s)
- Bhargavi Duvvuri
- School of Kinesiology and Health Science, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kanagavelu S, Termini JM, Gupta S, Raffa FN, Fuller KA, Rivas Y, Philip S, Kornbluth RS, Stone GW. HIV-1 adenoviral vector vaccines expressing multi-trimeric BAFF and 4-1BBL enhance T cell mediated anti-viral immunity. PLoS One 2014; 9:e90100. [PMID: 24587225 PMCID: PMC3938597 DOI: 10.1371/journal.pone.0090100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 01/28/2014] [Indexed: 12/15/2022] Open
Abstract
Adenoviral vectored vaccines have shown considerable promise but could be improved by molecular adjuvants. Ligands in the TNF superfamily (TNFSF) are potential adjuvants for adenoviral vector (Ad5) vaccines based on their central role in adaptive immunity. Many TNFSF ligands require aggregation beyond the trimeric state (multi-trimerization) for optimal biological function. Here we describe Ad5 vaccines for HIV-1 Gag antigen (Ad5-Gag) adjuvanted with the TNFSF ligands 4-1BBL, BAFF, GITRL and CD27L constructed as soluble multi-trimeric proteins via fusion to Surfactant Protein D (SP-D) as a multimerization scaffold. Mice were vaccinated with Ad5-Gag combined with Ad5 expressing one of the SP-D-TNFSF constructs or single-chain IL-12p70 as adjuvant. To evaluate vaccine-induced protection, mice were challenged with vaccinia virus expressing Gag (vaccinia-Gag) which is known to target the female genital tract, a major route of sexually acquired HIV-1 infection. In this system, SP-D-4-1BBL or SP-D-BAFF led to significantly reduced vaccinia-Gag replication when compared to Ad5-Gag alone. In contrast, IL-12p70, SP-D-CD27L and SP-D-GITRL were not protective. Histological examination following vaccinia-Gag challenge showed a dramatic lymphocytic infiltration into the uterus and ovaries of SP-D-4-1BBL and SP-D-BAFF-treated animals. By day 5 post challenge, proinflammatory cytokines in the tissue were reduced, consistent with the enhanced control over viral replication. Splenocytes had no specific immune markers that correlated with protection induced by SP-D-4-1BBL and SP-D-BAFF versus other groups. IL-12p70, despite lack of anti-viral efficacy, increased the total numbers of splenic dextramer positive CD8+ T cells, effector memory T cells, and effector Gag-specific CD8+ T cells, suggesting that these markers are poor predictors of anti-viral immunity in this model. In conclusion, soluble multi-trimeric 4-1BBL and BAFF adjuvants led to strong protection from vaccinia-Gag challenge, but the protection was independent of standard immune markers. Soluble multi-trimeric SP-D-4-1BBL and SP-D-BAFF provide a novel technology to enhance adenoviral vector vaccines against HIV-1.
Collapse
Affiliation(s)
- Saravana Kanagavelu
- Department of Microbiology and Immunology, Miami Center for AIDS Research, and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - James M. Termini
- Department of Microbiology and Immunology, Miami Center for AIDS Research, and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Sachin Gupta
- Department of Microbiology and Immunology, Miami Center for AIDS Research, and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Francesca N. Raffa
- Department of Microbiology and Immunology, Miami Center for AIDS Research, and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Katherine A. Fuller
- Department of Microbiology and Immunology, Miami Center for AIDS Research, and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Yaelis Rivas
- Department of Microbiology and Immunology, Miami Center for AIDS Research, and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Sakhi Philip
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Richard S. Kornbluth
- Multimeric Biotherapeutics, Inc., La Jolla, California, United States of America
| | - Geoffrey W. Stone
- Department of Microbiology and Immunology, Miami Center for AIDS Research, and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
25
|
Tanimoto K, Muranski P, Miner S, Fujiwara H, Kajigaya S, Keyvanfar K, Hensel N, Barrett AJ, Melenhorst JJ. Genetically engineered fixed K562 cells: potent "off-the-shelf" antigen-presenting cells for generating virus-specific T cells. Cytotherapy 2013; 16:135-46. [PMID: 24176543 DOI: 10.1016/j.jcyt.2013.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 08/13/2013] [Accepted: 08/21/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND AIMS The human leukemia cell line K562 represents an attractive platform for creating artificial antigen-presenting cells (aAPC). It is readily expandable, does not express human leukocyte antigen (HLA) class I and II and can be stably transduced with various genes. METHODS In order to generate cytomegalovirus (CMV) antigen-specific T cells for adoptive immunotherapy, we transduced K562 with HLA-A∗0201 in combination with co-stimulatory molecules. RESULTS In preliminary experiments, irradiated K562 expressing HLA-A∗0201 and 4-1BBL pulsed with CMV pp65 and IE-1 peptide libraries failed to elicit antigen-specific CD8⁺ T cells in HLA-A∗0201⁺ peripheral blood mononuclear cells (PBMC) or isolated T cells. Both wild-type K562 and aAPC strongly inhibited T cell proliferation to the bacterial superantigen staphylococcal enterotoxin B (SEB) and OKT3 and in mixed lymphocyte reaction (MLR). Transwell experiments suggested that suppression was mediated by a soluble factor; however, MLR inhibition was not reversed using transforming growth factor-β blocking antibody or prostaglandin E2 inhibitors. Full abrogation of the suppressive activity of K562 on MLR, SEB and OKT3 stimulation was only achieved by brief fixation with 0.1% formaldehyde. Fixed, pp65 and IE-1 peptide-loaded aAPC induced robust expansion of CMV-specific T cells. CONCLUSIONS Fixed gene-modified K562 can serve as effective aAPC to expand CMV-specific cytotoxic T lymphocytes for therapeutic use in patients after stem cell transplantation. Our findings have implications for broader understanding of the immune evasion mechanisms used by leukemia and other tumors.
Collapse
Affiliation(s)
- Kazushi Tanimoto
- Stem Cell Allogeneic Transplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Pawel Muranski
- Stem Cell Allogeneic Transplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Samantha Miner
- Stem Cell Allogeneic Transplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hiroshi Fujiwara
- Department of Bioregulatory Medicine, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Sachiko Kajigaya
- Stem Cell Allogeneic Transplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Keyvan Keyvanfar
- Stem Cell Allogeneic Transplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Nancy Hensel
- Stem Cell Allogeneic Transplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - A John Barrett
- Stem Cell Allogeneic Transplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - J Joseph Melenhorst
- Stem Cell Allogeneic Transplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Abramson Cancer Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Wortzman ME, Clouthier DL, McPherson AJ, Lin GHY, Watts TH. The contextual role of TNFR family members in CD8+T-cell control of viral infections. Immunol Rev 2013; 255:125-48. [DOI: 10.1111/imr.12086] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 04/29/2013] [Indexed: 12/22/2022]
Affiliation(s)
| | - Derek L. Clouthier
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| | - Ann J. McPherson
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| | - Gloria H. Y. Lin
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| | - Tania H. Watts
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| |
Collapse
|
27
|
Moro-García MA, Alonso-Arias R, López-Larrea C. Molecular mechanisms involved in the aging of the T-cell immune response. Curr Genomics 2013; 13:589-602. [PMID: 23730199 PMCID: PMC3492799 DOI: 10.2174/138920212803759749] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/28/2012] [Accepted: 08/31/2012] [Indexed: 12/24/2022] Open
Abstract
T-lymphocytes play a central role in the effector and regulatory mechanisms of the adaptive immune response. Upon exiting the thymus they begin to undergo a series of phenotypic and functional changes that continue throughout the lifetime and being most pronounced in the elderly. The reason postulated for this is that the dynamic processes of repeated interaction with cognate antigens lead to multiple division cycles involving a high degree of cell differentiation, senescence, restriction of the T-cell receptor (TCR) repertoire, and cell cycle arrest. This cell cycle arrest is associated with the loss of telomere sequences from the ends of chromosomes. Telomere length is reduced at each cell cycle, and critically short telomeres recruit components of the DNA repair machinery and trigger replicative senescence or apoptosis. Repetitively stimulated T-cells become refractory to telomerase induction, suffer telomere erosion and enter replicative senescence. The latter is characterized by the accumulation of highly differentiated T-cells with new acquired functional capabilities, which can be caused by aberrant expression of genes normally suppressed by epigenetic mechanisms in CD4+ or CD8+ T-cells. Age-dependent demethylation and overexpression of genes normally suppressed by DNA methylation have been demonstrated in senescent subsets of T-lymphocytes. Thus, T-cells, principally CD4+CD28null T-cells, aberrantly express genes, including those of the KIR gene family and cytotoxic proteins such as perforin, and overexpress CD70, IFN-γ, LFA-1 and others. In summary, owing to a lifetime of exposure to and proliferation against a variety of pathogens, highly differentiated T-cells suffer molecular modifications that alter their cellular homeostasis mechanisms.
Collapse
|
28
|
Tang Q, Jiang D, Alonso S, Pant A, Martínez Gómez JM, Kemeny DM, Chen L, Schwarz H. CD137 ligand signaling enhances myelopoiesis during infections. Eur J Immunol 2013; 43:1555-67. [DOI: 10.1002/eji.201243071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/30/2013] [Accepted: 03/15/2013] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | | | | | | | - Lieping Chen
- Department of Immunobiology; Yale University School of Medicine; New Haven; CT; USA
| | | |
Collapse
|
29
|
Bakdash G, Sittig SP, van Dijk T, Figdor CG, de Vries IJM. The nature of activatory and tolerogenic dendritic cell-derived signal II. Front Immunol 2013; 4:53. [PMID: 23450201 PMCID: PMC3584294 DOI: 10.3389/fimmu.2013.00053] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/11/2013] [Indexed: 12/31/2022] Open
Abstract
Dendritic cells (DCs) are central in maintaining the intricate balance between immunity and tolerance by orchestrating adaptive immune responses. Being the most potent antigen presenting cells, DCs are capable of educating naïve T cells into a wide variety of effector cells ranging from immunogenic CD4+ T helper cells and cytotoxic CD8+ T cells to tolerogenic regulatory T cells. This education is based on three fundamental signals. Signal I, which is mediated by antigen/major histocompatibility complexes binding to antigen-specific T cell receptors, guarantees antigen specificity. The co-stimulatory signal II, mediated by B7 family molecules, is crucial for the expansion of the antigen-specific T cells. The final step is T cell polarization by signal III, which is conveyed by DC-derived cytokines and determines the effector functions of the emerging T cell. Although co-stimulation is widely recognized to result from the engagement of T cell-derived CD28 with DC-expressed B7 molecules (CD80/CD86), other co-stimulatory pathways have been identified. These pathways can be divided into two groups based on their impact on primed T cells. Whereas pathways delivering activatory signals to T cells are termed co-stimulatory pathways, pathways delivering tolerogenic signals to T cells are termed co-inhibitory pathways. In this review, we discuss how the nature of DC-derived signal II determines the quality of ensuing T cell responses and eventually promoting either immunity or tolerance. A thorough understanding of this process is instrumental in determining the underlying mechanism of disorders demonstrating distorted immunity/tolerance balance, and would help innovating new therapeutic approaches for such disorders.
Collapse
Affiliation(s)
- Ghaith Bakdash
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre Nijmegen, Netherlands
| | | | | | | | | |
Collapse
|
30
|
Snell LM, Lin GHY, McPherson AJ, Moraes TJ, Watts TH. T-cell intrinsic effects of GITR and 4-1BB during viral infection and cancer immunotherapy. Immunol Rev 2012; 244:197-217. [PMID: 22017440 DOI: 10.1111/j.1600-065x.2011.01063.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
GITR [glucocorticoid inducible tumor necrosis factor receptor (TNFR)-related protein] and 4-1BB are costimulatory TNFR family members that are expressed on regulatory and effector T cells as well as on other cells of the immune system. Here we discuss the role of GITR and 4-1BB on T cells during viral infections and in cancer immunotherapy. Systemic treatment with agonistic anti-4-1BB antibody leads to a number of immune system abnormalities, and clinical trials of anti-4-1BB have been terminated. However, other modes of 4-1BB ligation may be less toxic. To date, similar toxicities have not been reported for anti-GITR treatment of mice, although anti-GITR antibodies can exacerbate mouse autoimmune models. Intrinsic effects of GITR and 4-1BB on effector T cells appear to predominate over their effects on other cell types in some models. Despite their similarities in enhancing T-cell survival, 4-1BB and GITR are clearly not redundant, and both pathways are required for maximal CD8(+) T-cell responses and mouse survival following severe respiratory influenza infection. GITR uses TNFR-associated factor (TRAF) 2 and TRAF5, whereas 4-1BB recruits TRAF1 and TRAF2 to mediate survival signaling in T cells. The differential use of signaling adapters combined with their differential expression may explain the non-redundant roles of GITR and 4-1BB in the immune system.
Collapse
Affiliation(s)
- Laura M Snell
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
31
|
Augmented lymphocyte expansion from solid tumors with engineered cells for costimulatory enhancement. J Immunother 2012; 34:651-61. [PMID: 21989413 DOI: 10.1097/cji.0b013e31823284c3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Treatment of patients with adoptive T-cell therapy requires expansion of unique tumor-infiltrating lymphocyte (TIL) cultures from single-cell suspensions processed from melanoma biopsies. Strategies which increase the expansion and reliability of TIL generation from tumor digests are necessary to improve access to TIL therapy. Previous studies have evaluated artificial antigen presenting cells for their antigen-specific and costimulatory properties. We investigated engineered cells for costimulatory enhancement (ECCE) consisting of K562 cells that express 4-1BBL in the absence of artificial antigen stimulation. ECCE accelerated TIL expansion and significantly improved TIL numbers (P=0.001) from single-cell melanoma suspensions. TIL generated with ECCE contain significantly more CD8CD62L and CD8CD27 T cells then comparable interleukin-2-expanded TIL and maintained antitumor reactivity. Moreover, ECCE improved TIL expansion from nonmelanoma-cell suspensions similar to that seen with melanoma tumors. These data demonstrate that the addition of ECCE to TIL production will enable the treatment of patients that are ineligible using current methods.
Collapse
|
32
|
Smith C, Miles JJ, Khanna R. Advances in direct T-cell alloreactivity: function, avidity, biophysics and structure. Am J Transplant 2012; 12:15-26. [PMID: 22152064 DOI: 10.1111/j.1600-6143.2011.03863.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Although T-cell-based adaptive immunity plays a crucial role in protection against infectious pathogens and uncontrolled outgrowth of malignant cells, a large portion of these T cells are also capable of responding to allogeneic HLA molecules, violating the paradigm of self-major histocompatibility complex (MHC) restriction. Recent studies have provided insights into the mechanisms by which these T cells recognize allogeneic targets. The role of antiviral T cells in direct alloreactivity through peptide-dependent molecular mimicry and alternate peptide-MHC docking modes has emerged as major models for the human alloresponse. Here, we review in depth recent advances in this field and discuss how molecular interactions between T cells and HLA molecules drive the activation of these effector cells and its potential implications for alloreactivity in human transplantation.
Collapse
Affiliation(s)
- C Smith
- Australian Centre for Vaccine Development, Tumour Immunology Laboratory, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| | | | | |
Collapse
|
33
|
Wang C, McPherson AJ, Jones RB, Kawamura KS, Lin GHY, Lang PA, Ambagala T, Pellegrini M, Calzascia T, Aidarus N, Elford AR, Yue FY, Kremmer E, Kovacs CM, Benko E, Tremblay C, Routy JP, Bernard NF, Ostrowski MA, Ohashi PS, Watts TH. Loss of the signaling adaptor TRAF1 causes CD8+ T cell dysregulation during human and murine chronic infection. ACTA ACUST UNITED AC 2011; 209:77-91. [PMID: 22184633 PMCID: PMC3260874 DOI: 10.1084/jem.20110675] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The signaling adaptor TNFR-associated factor 1 (TRAF1) is specifically lost from virus-specific CD8 T cells during the chronic phase of infection with HIV in humans or lymphocytic choriomeningitis virus (LCMV) clone 13 in mice. In contrast, TRAF1 is maintained at higher levels in virus-specific T cells of HIV controllers or after acute LCMV infection. TRAF1 expression negatively correlates with programmed death 1 expression and HIV load and knockdown of TRAF1 in CD8 T cells from viral controllers results in decreased HIV suppression ex vivo. Consistent with the desensitization of the TRAF1-binding co-stimulatory receptor 4-1BB, 4-1BBL-deficient mice have defects in viral control early, but not late, in chronic infection. TGFβ induces the posttranslational loss of TRAF1, whereas IL-7 restores TRAF1 levels. A combination treatment with IL-7 and agonist anti-4-1BB antibody at 3 wk after LCMV clone 13 infection expands T cells and reduces viral load in a TRAF1-dependent manner. Moreover, transfer of TRAF1(+) but not TRAF1(-) memory T cells at the chronic stage of infection reduces viral load. These findings identify TRAF1 as a potential biomarker of HIV-specific CD8 T cell fitness during the chronic phase of disease and a target for therapy.
Collapse
Affiliation(s)
- Chao Wang
- Department of Immunology, 2 Clinical Sciences Division, University of Toronto, Toronto, M5S 1A8, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tohyama M, Watanabe H, Murakami S, Shirakata Y, Sayama K, Iijima M, Hashimoto K. Possible involvement of CD14+ CD16+ monocyte lineage cells in the epidermal damage of Stevens-Johnson syndrome and toxic epidermal necrolysis. Br J Dermatol 2011; 166:322-30. [PMID: 21936856 DOI: 10.1111/j.1365-2133.2011.10649.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are characterized by keratinocyte apoptosis and necrosis, resulting in epidermal detachment. Although monocytes abundantly infiltrate the epidermis in SJS/TEN skin lesions, the properties and functions of these cells have not been fully examined. OBJECTIVES To determine the properties of monocytes infiltrating into the epidermis in SJS/TEN. METHODS Immunostaining of skin sections was performed to examine the membrane markers of monocytes infiltrating into skin lesions. RESULTS Immunostaining of cryosections from 11 SJS/TEN skin lesions revealed numerous CD14+ monocytes located along the dermoepidermal junction and throughout the epidermis. The cells coexpressed CD16, CD11c and HLA-DR. CD14+ CD16+ cells were identified in very early lesions without epidermal damage, suggesting that their infiltration is a cause, rather than a result, of epidermal damage. Moreover, these cells expressed CD80, CD86 and CD137 ligand, indicative of their ability to facilitate the proliferation and cytotoxicity of CD8+ T cells. CD16+ cells infiltrating the epidermis and detected at the dermoepidermal junction were immunostained and counted in paraffin-embedded skin sections obtained from 47 patients with drug rash manifested as TEN, SJS, maculopapular-type rash or erythema multiform-type rash. The number of CD16+ monocytes infiltrating the epidermis increased significantly, depending on the grade of epidermal damage. CONCLUSIONS These findings suggest that the appearance of CD14+ CD16+ cells of monocyte lineage plays an important role in the epidermal damage associated with SJS/TEN, most probably by enhancing the cytotoxicity of CD8+ T cells.
Collapse
Affiliation(s)
- M Tohyama
- Department of Dermatology, Ehime University Graduate School of Medicine, Shitsukawa, Toon-city, Ehime 791-0295, Japan.
| | | | | | | | | | | | | |
Collapse
|
35
|
Pannetier D, Reynard S, Russier M, Journeaux A, Tordo N, Deubel V, Baize S. Human dendritic cells infected with the nonpathogenic Mopeia virus induce stronger T-cell responses than those infected with Lassa virus. J Virol 2011; 85:8293-306. [PMID: 21632749 PMCID: PMC3147965 DOI: 10.1128/jvi.02120-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 05/23/2011] [Indexed: 12/14/2022] Open
Abstract
The events leading to death in severe cases of Lassa fever (LF) are unknown. Fatality seems to be linked to high viremia and immunosuppression, and cellular immunity, rather than neutralizing antibodies, appears to be essential for survival. We previously compared Lassa virus (LV) with its genetically close but nonpathogenic homolog Mopeia virus (MV), which was used to model nonfatal LF. We showed that strong and early activation of antigen-presenting cells (APC) may play a crucial role in controlling infection. Here we developed an in vitro model of dendritic-cell (DC)-T-cell coculture in order to characterize human T-cell responses induced by MV- or LV-infected DCs. Our results show very different responses to infection with LV and MV. MV strongly and durably stimulated CD8(+) and CD4(+) T cells, showing early and high activation, a strong proliferative response, and acquisition of effector and memory phenotypes. Furthermore, robust and functional CD4(+) and CD8(+) cytotoxic T lymphocytes (CTL) were generated. LV, however, induced only weak memory responses. Thus, this study allows an improved understanding of the pathogenesis and immune mechanisms involved in the control of human LV.
Collapse
Affiliation(s)
- Delphine Pannetier
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon Cedex 07, France.
| | | | | | | | | | | | | |
Collapse
|
36
|
Moraes TJ, Lin GH, Wen T, Watts TH. Incorporation of 4-1BB ligand into an adenovirus vaccine vector increases the number of functional antigen-specific CD8 T cells and enhances the duration of protection against influenza-induced respiratory disease. Vaccine 2011; 29:6301-12. [DOI: 10.1016/j.vaccine.2011.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 04/07/2011] [Accepted: 06/04/2011] [Indexed: 11/30/2022]
|
37
|
Larbi A, Pawelec G, Wong SC, Goldeck D, Tai JJY, Fulop T. Impact of age on T cell signaling: a general defect or specific alterations? Ageing Res Rev 2011; 10:370-8. [PMID: 20933612 DOI: 10.1016/j.arr.2010.09.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 09/22/2010] [Accepted: 09/24/2010] [Indexed: 01/09/2023]
Abstract
Decreased immune responsiveness associated with aging is generally termed "immunosenescence". Several theories have been proposed to explain age-related declines in immune responses. Here, we will focus on and describe potential defects in T cell signal transduction from the membrane to the nucleus, leading to changes in the type, intensity and duration of the response as a major factor contributing to immunosenescence. We will first detail T cell signaling through the T cell receptor (TCR), CD28 and IL-2 receptor (IL-2R) and then discuss the observed age-related alterations to these signaling pathways. The role of membrane rafts in T cell signaling and T cell aging will be described. These factors will be considered in the context of the notion that age-related changes to T cell signaling may be attributed to changes in the functionality of the T cells due to shifts in T cell subpopulations with age. For this reason, we conclude by highlighting the application of multiparametric signaling analysis in leukocyte subsets using flow cytometry as a means to obtain a clearer picture with respect to age-related changes to immune signaling.
Collapse
|
38
|
Hernandez-Chacon JA, Li Y, Wu RC, Bernatchez C, Wang Y, Weber JS, Hwu P, Radvanyi LG. Costimulation through the CD137/4-1BB pathway protects human melanoma tumor-infiltrating lymphocytes from activation-induced cell death and enhances antitumor effector function. J Immunother 2011; 34:236-50. [PMID: 21389874 DOI: 10.1097/cji.0b013e318209e7ec] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adoptive T-cell therapy (ACT) using expanded tumor-infiltrating lymphocytes (TIL) with high-dose interleukin-2 is a promising form of immunotherapy for stage IV melanoma having clinical response rates of 50% or more. One of the major problems preventing further success of this therapy is that the current protocols used to highly expand TIL for infusion drive CD8(+) T cells to differentiate into effector cells losing key costimulatory molecules such as CD28 and CD27. This has been associated with a lack of persistence in vivo for reasons not entirely clear. In this study, we demonstrate that while human melanoma CD8(+) TIL lost CD27 and CD28 expression during the rapid expansion for ACT, they gained expression of the alternative costimulatory molecule CD137/4-1BB, and to a lesser extent CD134/OX40. Postrapid expansion protocol (REP) TIL were found to be highly sensitive to activation-induced cell death when reactivated through the T-cell receptor with low levels of OKT3 antibody. However, coligation of 4-1BB using 2 different agonistic anti-4-1BB antibodies potently prevented activation-induced cell death of post-REP CD8(+) TIL, including those specific for melanoma antigen recognized by T cells, and facilitated even further cell expansion. This was correlated with increased levels of bcl-2 and bcl-xL together with decreased bim expression. 4-1BB costimulated post-REP TIL also expressed increased levels of the cytolytic granule proteins and exhibited enhanced cytotoxic T-cell activity against melanoma cells. Lastly, post-REP CD8(+) TIL were protected from cell death by anti-4-1BB ligation when exposed to human leukocyte antigen-matched melanoma cells. Our results indicate that 4-1BB costimulation may significantly improve TIL survival during melanoma ACT and boost antitumor cytolytic activity.
Collapse
Affiliation(s)
- Jessica Ann Hernandez-Chacon
- Department of Melanoma Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
De Keersmaecker B, Heirman C, Corthals J, Empsen C, van Grunsven LA, Allard SD, Pen J, Lacor P, Thielemans K, Aerts JL. The combination of 4-1BBL and CD40L strongly enhances the capacity of dendritic cells to stimulate HIV-specific T cell responses. J Leukoc Biol 2011; 89:989-99. [DOI: 10.1189/jlb.0810466] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
40
|
Role of 4-1BBL and TRAF1 in the CD8 T cell response to influenza virus and HIV. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 691:177-86. [PMID: 21153322 DOI: 10.1007/978-1-4419-6612-4_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
41
|
Chinnasamy D, Yu Z, Theoret MR, Zhao Y, Shrimali RK, Morgan RA, Feldman SA, Restifo NP, Rosenberg SA. Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice. J Clin Invest 2010; 120:3953-68. [PMID: 20978347 DOI: 10.1172/jci43490] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 08/24/2010] [Indexed: 12/30/2022] Open
Abstract
Immunotherapies based on adoptive cell transfer are highly effective in the treatment of metastatic melanoma, but the use of this approach in other cancer histologies has been hampered by the identification of appropriate target molecules. Immunologic approaches targeting tumor vasculature provide a means for the therapy of multiple solid tumor types. We developed a method to target tumor vasculature, using genetically redirected syngeneic or autologous T cells. Mouse and human T cells were engineered to express a chimeric antigen receptor (CAR) targeted against VEGFR-2, which is overexpressed in tumor vasculature and is responsible for VEGF-mediated tumor progression and metastasis. Mouse and human T cells expressing the relevant VEGFR-2 CARs mediated specific immune responses against VEGFR-2 protein as well as VEGFR-2-expressing cells in vitro. A single dose of VEGFR-2 CAR-engineered mouse T cells plus exogenous IL-2 significantly inhibited the growth of 5 different types of established, vascularized syngeneic tumors in 2 different strains of mice and prolonged the survival of mice. T cells transduced with VEGFR-2 CAR showed durable and increased tumor infiltration, correlating with their antitumor effect. This approach provides a potential method for the gene therapy of a variety of human cancers.
Collapse
Affiliation(s)
- Dhanalakshmi Chinnasamy
- Surgery Branch, National Cancer Institute, Clinical Research Center, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Humphreys IR, Lee SW, Jones M, Loewendorf A, Gostick E, Price DA, Benedict CA, Ware CF, Croft M. Biphasic role of 4-1BB in the regulation of mouse cytomegalovirus-specific CD8(+) T cells. Eur J Immunol 2010; 40:2762-8. [PMID: 20722077 PMCID: PMC2967573 DOI: 10.1002/eji.200940256] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 06/10/2010] [Accepted: 07/19/2010] [Indexed: 12/14/2022]
Abstract
The initial requirement for the emergence of CMV-specific CD8(+) T cells is poorly understood. Mice deficient in the cosignaling TNF superfamily member, 4-1BB, surprisingly developed exaggerated early CD8(+) T-cell responses to mouse CMV (MCMV). CD8(+) T cells directed against acute MCMV epitopes were enhanced, demonstrating that 4-1BB naturally antagonizes these primary populations. Paradoxically, 4-1BB-deficient mice displayed reduced accumulation of memory CD8(+) T cells that expand during chronic/latent infection. Importantly, the canonical TNF-related ligand, 4-1BBL, promoted the accumulation of these memory CD8(+) T cells, whereas suppression of acute CD8(+) T cells was independent of 4-1BBL. These data highlight the dual nature of the 4-1BB/4-1BBL system in mediating both stimulatory and inhibitory cosignaling activities during the generation of anti-MCMV immunity.
Collapse
Affiliation(s)
- Ian R Humphreys
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Salek-Ardakani S, Croft M. Tumor necrosis factor receptor/tumor necrosis factor family members in antiviral CD8 T-cell immunity. J Interferon Cytokine Res 2010; 30:205-18. [PMID: 20377415 DOI: 10.1089/jir.2010.0026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CD8 memory T cells can play a critical role in protection against repeated exposure to infectious agents such as viruses, yet can also contribute to the immunopathology associated with these pathogens. Understanding the mechanisms that control effective memory responses has important ramifications for vaccine design and in the management of adverse immune reactions. Recent studies have implicated several members of the tumor necrosis factor receptor (TNFR) family as key stimulatory and inhibitory molecules involved in the regulation of CD8 T cells. In this review, we discuss their control of the generation, persistence, and reactivation of CD8 T cells during virus infection.
Collapse
Affiliation(s)
- Shahram Salek-Ardakani
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA.
| | | |
Collapse
|
44
|
Sluijter BJR, van den Hout MFCM, Stam AGM, Lougheed SM, Suhoski MM, van den Eertwegh AJM, van den Tol MP, van Leeuwen PAM, Meijer S, Scheper RJ, June CH, de Gruijl TD, Santegoets SJAM. 4-1BB-mediated expansion affords superior detection of in vivo primed effector memory CD8+ T cells from melanoma sentinel lymph nodes. Clin Immunol 2010; 137:221-33. [PMID: 20708974 DOI: 10.1016/j.clim.2010.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/23/2010] [Accepted: 07/24/2010] [Indexed: 12/20/2022]
Abstract
We have been studying the re-activation of tumor-associated antigen (TAA)-specific CD8(+) T cells in sentinel lymph nodes (SLN) of melanoma patients upon intradermal administration of the CpG-B oligodeoxynucleotide PF-3512676. To facilitate functional testing of T cells from small SLN samples, high-efficiency polyclonal T cell expansion is required. In this study, SLN cells were expanded via classic methodologies with plate- or bead-bound anti-CD3/CD28 antibodies and with the K562/CD32/4-1BBL artificial APC system (K32/4-1BBL aAPC) and analyzed for responsiveness to common recall or TAA-derived peptides. K32/4-1BBL-expanded T cell populations contained significantly more effector/memory CD8(+) T cells. Moreover, recall and melanoma antigen-specific CD8(+) T cells were more frequently detected in K32/4-1BBL-expanded samples as compared with anti-CD3/CD28-expanded samples. We conclude that K32/4-1BBL aAPC are superior to anti-CD3/CD28 antibodies for the expansion of in vivo-primed specific CD8(+) T cells and that their use facilitates the sensitive monitoring of functional anti-tumor T cell immunity in SLN.
Collapse
Affiliation(s)
- B J R Sluijter
- Department of Surgical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Watanabe T, Bertoletti A, Tanoto TA. PD-1/PD-L1 pathway and T-cell exhaustion in chronic hepatitis virus infection. J Viral Hepat 2010; 17:453-8. [PMID: 20487259 DOI: 10.1111/j.1365-2893.2010.01313.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Dysfunctional virus-specific T cells are a hallmark of many chronic viral infections. Recent studies have implicated the inhibitory PD-1/PD-L1 pathway with the functional impairment of T cells. In this respect, we will review the latest research on PD-1/PD-L1 pathway and T-cell exhaustion in the context of human chronic hepatitis B and C virus infections. We will also discuss the therapeutic potential of PD-1 blockade and how it may be enhanced through the modulation of other co-stimulatory/inhibitory pathways.
Collapse
Affiliation(s)
- T Watanabe
- Viral Hepatitis Laboratory, Singapore Institute for Clinical Sciences, Agency of Science Technology and Research (A*Star), Singapore, Singapore
| | | | | |
Collapse
|
46
|
Evaluating the cellular targets of anti-4-1BB agonist antibody during immunotherapy of a pre-established tumor in mice. PLoS One 2010; 5:e11003. [PMID: 20543982 PMCID: PMC2882368 DOI: 10.1371/journal.pone.0011003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 05/12/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Manipulation of the immune system represents a promising avenue for cancer therapy. Rational advances in immunotherapy of cancer will require an understanding of the precise correlates of protection. Agonistic antibodies against the tumor necrosis factor receptor family member 4-1BB are emerging as a promising tool in cancer therapy, with evidence that these antibodies expand both T cells as well as innate immune cells. Depletion studies have suggested that several cell types can play a role in these immunotherapeutic regimens, but do not reveal which cells must directly receive the 4-1BB signals for effective therapy. METHODOLOGY/PRINCIPAL FINDINGS We show that re-activated memory T cells are superior to resting memory T cells in control of an 8-day pre-established E.G7 tumor in mice. We find that ex vivo activation of the memory T cells allows the activated effectors to continue to divide and enter the tumor, regardless of antigen-specificity; however, only antigen-specific reactivated memory T cells show any efficacy in tumor control. When agonistic anti-4-1BB antibody is combined with this optimized adoptive T cell therapy, 80% of mice survive and are fully protected from tumor rechallenge. Using 4-1BB-deficient mice and mixed bone marrow chimeras, we find that it is sufficient to have 4-1BB only on the endogenous host alphabeta T cells or only on the transferred T cells for the effects of anti-4-1BB to be realized. Conversely, although multiple immune cell types express 4-1BB and both T cells and APC expand during anti-4-1BB therapy, 4-1BB on cells other than alphabeta T cells is neither necessary nor sufficient for the effect of anti-4-1BB in this adoptive immunotherapy model. CONCLUSIONS/SIGNIFICANCE This study establishes alphabeta T cells rather than innate immune cells as the critical target in anti-4-1BB therapy of a pre-established tumor. The study also demonstrates that ex vivo activation of memory T cells prior to infusion allows antigen-specific tumor control without the need for reactivation of the memory T cells in the tumor.
Collapse
|
47
|
Thymic stromal lymphopoietin plays an adjuvant role in BCG-mediated CD8(+) cytotoxic T cell responses through dendritic cell activation. Clin Immunol 2010; 136:205-16. [PMID: 20471323 DOI: 10.1016/j.clim.2010.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 03/26/2010] [Accepted: 04/08/2010] [Indexed: 11/21/2022]
Abstract
Although Bacillus Calmette-Guérin (BCG) has historically emerged as a potent adjuvant in cancer immunization through dendritic cell (DC) activation, the efficacy of its antitumor effect has been limited. Therefore, the strategy of adjuvant therapy using BCG needs to be improved by adding enhancers. Here we found that thymic stromal lymphopoietin (TSLP) acts as an enhancer for the BCG-mediated antitumor effect. While BCG-stimulated DCs induced CD8(+) T cell production of IFN-gamma without strong cell expansion, TSLP-stimulated DCs induced robust CD8(+) T cell expansion without high quantities of IFN-gamma production. Notably, DCs stimulated with both BCG and TSLP induced robust expansion of CD8(+) T cells that produced a large amount of IFN-gamma with a potent cytolytic activity related to granzyme B expression. Our data suggest that TSLP is a good adjuvant to enhance the BCG-mediated cytotoxic T cell effect through DC activation, and provide a functional basis for a novel strategy for antitumor immune-based therapy.
Collapse
|
48
|
Maini MK, Schurich A. The molecular basis of the failed immune response in chronic HBV: therapeutic implications. J Hepatol 2010; 52:616-9. [PMID: 20185199 DOI: 10.1016/j.jhep.2009.12.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 12/07/2009] [Accepted: 12/08/2009] [Indexed: 12/31/2022]
Abstract
There is a pressing need to develop new immunotherapeutic interventions in chronic hepatitis B virus (HBV) infection in order to limit the high costs and risks of toxicity or viral resistance associated with maintenance antiviral treatment. Here we review recent advances in our understanding of the molecular defects underlying the profound T cell depletion characteristic of these patients. We propose that T cells are driven to apoptosis by the combination of a persistent, high antigen load and excessive inhibitory signals encountered in the hepatic microenvironment. The feasibility of boosting sustained antiviral control by targeted reversal of key tolerising mechanisms is discussed.
Collapse
Affiliation(s)
- Mala K Maini
- Department of Immunology & Molecular Pathology, University College London, UK.
| | | |
Collapse
|
49
|
Adjuvantive effects of anti-4-1BB agonist Ab and 4-1BBL DNA for a HIV-1 Gag DNA vaccine: different effects on cellular and humoral immunity. Vaccine 2009; 28:1300-9. [PMID: 19944789 DOI: 10.1016/j.vaccine.2009.11.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 11/05/2009] [Accepted: 11/06/2009] [Indexed: 12/21/2022]
Abstract
Plasmid DNA immunizations induce low levels but a broad spectrum of cellular and humoral immune responses. Here, we investigate the potential of co-stimulation through 4-1BB as an adjuvant for a HIV-1 DNA vaccine in mice. We designed plasmid DNAs expressing either the membrane bound or soluble form of 4-1BBL, and compared with the agonistic anti-4-1BB Ab for their ability to adjuvant the Gag DNA vaccine. Both, anti-4-1BB agonistic Ab as well as 4-1BBL DNA enhanced the Gag-specific cellular immune responses. However, in complete contrast to the agonistic Ab that suppressed humoral immunity to Gag, 4-1BBL DNA adjuvanted vaccines enhanced Gag-specific IgG responses. Importantly, the expression of Gag and 4-1BBL from the same plasmid was critical for the adjuvant activity. Collectively, our data suggest that for a HIV-1 vaccine where both antigen-specific cellular and humoral immunity are desirable, 4-1BBL expressed by a DNA vaccine is a superior adjuvant than anti-4-1BB agonistic Ab.
Collapse
|
50
|
Zhao Y, Wang QJ, Yang S, Kochenderfer JN, Zheng Z, Zhong X, Sadelain M, Eshhar Z, Rosenberg SA, Morgan RA. A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:5563-74. [PMID: 19843940 PMCID: PMC6292203 DOI: 10.4049/jimmunol.0900447] [Citation(s) in RCA: 230] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To generate chimeric Ag receptors (CARs) for the adoptive immunotherapy of cancer patients with ErbB2-expressing tumors, a single-chain Ab derived from the humanized mAb 4D5 Herceptin (trastuzumab) was initially linked to T cell signaling domains derived from CD28 and the CD3zeta to generate a CAR against ErbB2. Human PBLs expressing the 4D5 CAR demonstrated Ag-specific activities against ErbB2(+) tumors. However, a gradual loss of transgene expression was noted for PBLs transduced with this 4D5 CAR. When the CD3zeta signaling domain of the CAR was truncated or mutated, loss of CAR expression was not observed, suggesting that the CD3zeta signaling caused the transgene decrease, which was supported by the finding that T cells expressing 4D5 CARs with CD3zeta ITAM mutations were less prone to apoptosis. By adding 4-1BB cytoplasmic domains to the CD28-CD3zeta signaling moieties, we found increased transgene persistence in 4D5 CAR-transduced PBLs. Furthermore, constructs with 4-1BB sequences demonstrated increased cytokine secretion and lytic activity in 4D5 CAR-transduced T cells. More importantly, PBLs expressing this new version of the 4D5 CAR could not only efficiently lyse the autologous fresh tumor digests, but they could strongly suppress tumor growth in a xenogenic mouse model.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/therapeutic use
- Cell Line
- Cell Line, Tumor
- Cell Survival/genetics
- Cell Survival/immunology
- Coculture Techniques
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immunotherapy, Adoptive/methods
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/therapy
- Mice
- Mice, SCID
- Protein Structure, Tertiary/genetics
- Receptor, ErbB-2/biosynthesis
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/immunology
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/therapeutic use
- Recombinant Fusion Proteins/chemical synthesis
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/therapeutic use
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/transplantation
- Transduction, Genetic
- Trastuzumab
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Yangbing Zhao
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Qiong J. Wang
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Shicheng Yang
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - James N. Kochenderfer
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Zhili Zheng
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Xiaosong Zhong
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Michel Sadelain
- Center for Cell Engineering, Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021
| | - Zelig Eshhar
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Steven A. Rosenberg
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Richard A. Morgan
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|