1
|
Man B, Kim E, Vadlakonda A, Stern DL, Crown KN. Analysis of meiotic recombination in Drosophila simulans shows no evidence of an interchromosomal effect. Genetics 2024; 227:iyae084. [PMID: 38762892 PMCID: PMC11304986 DOI: 10.1093/genetics/iyae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/09/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024] Open
Abstract
Chromosome inversions are of unique importance in the evolution of genomes and species because when heterozygous with a standard arrangement chromosome, they suppress meiotic crossovers within the inversion. In Drosophila species, heterozygous inversions also cause the interchromosomal effect, whereby the presence of a heterozygous inversion induces a dramatic increase in crossover frequencies in the remainder of the genome within a single meiosis. To date, the interchromosomal effect has been studied exclusively in species that also have high frequencies of inversions in wild populations. We took advantage of a recently developed approach for generating inversions in Drosophila simulans, a species that does not have inversions in wild populations, to ask if there is an interchromosomal effect. We used the existing chromosome 3R balancer and generated a new chromosome 2L balancer to assay for the interchromosomal effect genetically and cytologically. We found no evidence of an interchromosomal effect in D. simulans. To gain insights into the underlying mechanistic reasons, we qualitatively analyzed the relationship between meiotic double-stranded break (DSB) formation and synaptonemal complex (SC) assembly. We found that the SC is assembled prior to DSB formation as in D. melanogaster; however, we show that the SC is assembled prior to localization of the oocyte determination factor Orb, whereas in D. melanogaster, SC formation does not begin until the Orb is localized. Together, our data show no evidence that heterozygous inversions in D. simulans induce an interchromosomal effect and that there are differences in the developmental programming of the early stages of meiosis.
Collapse
Affiliation(s)
- Bowen Man
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Elizabeth Kim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Alekhya Vadlakonda
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - K Nicole Crown
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Nozaki T, Weiner B, Kleckner N. Rapid Homolog Juxtaposition During Meiotic Chromosome Pairing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.23.586418. [PMID: 38586034 PMCID: PMC10996542 DOI: 10.1101/2024.03.23.586418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A central basic feature of meiosis is pairing of homologous maternal and paternal chromosomes ("homologs") intimately along their lengths. Recognition between homologs and their juxtaposition in space are mediated by axis-associated DNA recombination complexes. Additional effects ensure that pairing occurs without ultimately giving entanglements among unrelated chromosomes. Here we examine the process of homolog juxtaposition in real time by 4D fluorescence imaging of tagged chromosomal loci at high spatio-temporal resolution in budding yeast. We discover that corresponding loci start coming together from a quite large distance (∼1.8 µm) and progress to completion of pairing in a very short time, usually less than six minutes (thus, "rapid homolog juxtaposition" or "RHJ"). Juxtaposition initiates by motion-mediated extension of a nascent interhomolog DNA linkage, raising the possibility of a tension-mediated trigger. In a first transition, homolog loci move rapidly together (in ∼30 sec, at speeds of up to ∼60 nm/sec) into a discrete intermediate state corresponding to canonical ∼400 nm axis distance coalignment. Then, after a short pause, crossover/noncrossover differentiation (crossover interference) mediates a second short, rapid transition that brings homologs even closer together. If synaptonemal complex (SC) component Zip1 is present, this transition concomitantly gives final close pairing by axis juxtaposition at ∼100 nm, the "SC distance". We also find that: (i) RHJ occurs after chromosomes acquire their prophase chromosome organization; (ii) is nearly synchronously over thirds (or more) of chromosome lengths; but (iii) is asynchronous throughout the genome. Furthermore, cytoskeleton-mediated movement is important for the timing and distance of RHJ onset and also for ensuring normal progression. Potential implications for local and global aspects of pairing are discussed.
Collapse
|
3
|
Börner GV, Hochwagen A, MacQueen AJ. Meiosis in budding yeast. Genetics 2023; 225:iyad125. [PMID: 37616582 PMCID: PMC10550323 DOI: 10.1093/genetics/iyad125] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/13/2023] [Indexed: 08/26/2023] Open
Abstract
Meiosis is a specialized cell division program that is essential for sexual reproduction. The two meiotic divisions reduce chromosome number by half, typically generating haploid genomes that are packaged into gametes. To achieve this ploidy reduction, meiosis relies on highly unusual chromosomal processes including the pairing of homologous chromosomes, assembly of the synaptonemal complex, programmed formation of DNA breaks followed by their processing into crossovers, and the segregation of homologous chromosomes during the first meiotic division. These processes are embedded in a carefully orchestrated cell differentiation program with multiple interdependencies between DNA metabolism, chromosome morphogenesis, and waves of gene expression that together ensure the correct number of chromosomes is delivered to the next generation. Studies in the budding yeast Saccharomyces cerevisiae have established essentially all fundamental paradigms of meiosis-specific chromosome metabolism and have uncovered components and molecular mechanisms that underlie these conserved processes. Here, we provide an overview of all stages of meiosis in this key model system and highlight how basic mechanisms of genome stability, chromosome architecture, and cell cycle control have been adapted to achieve the unique outcome of meiosis.
Collapse
Affiliation(s)
- G Valentin Börner
- Center for Gene Regulation in Health and Disease (GRHD), Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | | | - Amy J MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
4
|
Shinohara M, Shinohara A. The Msh5 complex shows homeostatic localization in response to DNA double-strand breaks in yeast meiosis. Front Cell Dev Biol 2023; 11:1170689. [PMID: 37274743 PMCID: PMC10232913 DOI: 10.3389/fcell.2023.1170689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Meiotic crossing over is essential for the segregation of homologous chromosomes. The formation and distribution of meiotic crossovers (COs), which are initiated by the formation of double-strand break (DSB), are tightly regulated to ensure at least one CO per bivalent. One type of CO control, CO homeostasis, maintains a consistent level of COs despite fluctuations in DSB numbers. Here, we analyzed the localization of proteins involved in meiotic recombination in budding yeast xrs2 hypomorphic mutants which show different levels of DSBs. The number of cytological foci with recombinases, Rad51 and Dmc1, which mark single-stranded DNAs at DSB sites is proportional to the DSB numbers. Among the pro-CO factor, ZMM/SIC proteins, the focus number of Zip3, Mer3, or Spo22/Zip4, was linearly proportional to reduced DSBs in the xrs2 mutant. In contrast, foci of Msh5, a component of the MutSγ complex, showed a non-linear response to reduced DSBs. We also confirmed the homeostatic response of COs by genetic analysis of meiotic recombination in the xrs2 mutants and found a chromosome-specific homeostatic response of COs. Our study suggests that the homeostatic response of the Msh5 assembly to reduced DSBs was genetically distinct from that of the Zip3 assembly for CO control.
Collapse
Affiliation(s)
- Miki Shinohara
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Meiosis: Deciphering the dialog between recombination and the synaptonemal complex. Curr Biol 2022; 32:R1235-R1237. [DOI: 10.1016/j.cub.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Time to match; when do homologous chromosomes become closer? Chromosoma 2022; 131:193-205. [PMID: 35960388 DOI: 10.1007/s00412-022-00777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/12/2022] [Accepted: 07/14/2022] [Indexed: 11/03/2022]
Abstract
In most eukaryotes, pairing of homologous chromosomes is an essential feature of meiosis that ensures homologous recombination and segregation. However, when the pairing process begins, it is still under investigation. Contrasting data exists in Mus musculus, since both leptotene DSB-dependent and preleptotene DSB-independent mechanisms have been described. To unravel this contention, we examined homologous pairing in pre-meiotic and meiotic Mus musculus cells using a three-dimensional fluorescence in situ hybridization-based protocol, which enables the analysis of the entire karyotype using DNA painting probes. Our data establishes in an unambiguously manner that 73.83% of homologous chromosomes are already paired at premeiotic stages (spermatogonia-early preleptotene spermatocytes). The percentage of paired homologous chromosomes increases to 84.60% at mid-preleptotene-zygotene stage, reaching 100% at pachytene stage. Importantly, our results demonstrate a high percentage of homologous pairing observed before the onset of meiosis; this pairing does not occur randomly, as the percentage was higher than that observed in somatic cells (19.47%) and between nonhomologous chromosomes (41.1%). Finally, we have also observed that premeiotic homologous pairing is asynchronous and independent of the chromosome size, GC content, or presence of NOR regions.
Collapse
|
7
|
Abstract
Inheriting the wrong number of chromosomes is one of the leading causes of infertility and birth defects in humans. However, in many organisms, individual chromosomes vary dramatically in both organization, sequence, and size. Chromosome segregation systems must be capable of accounting for these differences to reliably segregate chromosomes. During gametogenesis, meiosis ensures that all chromosomes segregate properly into gametes (i.e., egg or sperm). Interestingly, not all chromosomes exhibit the same dynamics during meiosis, which can lead to chromosome-specific behaviors and defects. This review will summarize some of the chromosome-specific meiotic events that are currently known and discuss their impact on meiotic outcomes.
Collapse
|
8
|
Pyatnitskaya A, Andreani J, Guérois R, De Muyt A, Borde V. The Zip4 protein directly couples meiotic crossover formation to synaptonemal complex assembly. Genes Dev 2022; 36:53-69. [PMID: 34969823 PMCID: PMC8763056 DOI: 10.1101/gad.348973.121] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/08/2021] [Indexed: 11/24/2022]
Abstract
Meiotic recombination is triggered by programmed double-strand breaks (DSBs), a subset of these being repaired as crossovers, promoted by eight evolutionarily conserved proteins, named ZMM. Crossover formation is functionally linked to synaptonemal complex (SC) assembly between homologous chromosomes, but the underlying mechanism is unknown. Here we show that Ecm11, a SC central element protein, localizes on both DSB sites and sites that attach chromatin loops to the chromosome axis, which are the starting points of SC formation, in a way that strictly requires the ZMM protein Zip4. Furthermore, Zip4 directly interacts with Ecm11, and point mutants that specifically abolish this interaction lose Ecm11 binding to chromosomes and exhibit defective SC assembly. This can be partially rescued by artificially tethering interaction-defective Ecm11 to Zip4. Mechanistically, this direct connection ensuring SC assembly from CO sites could be a way for the meiotic cell to shut down further DSB formation once enough recombination sites have been selected for crossovers, thereby preventing excess crossovers. Finally, the mammalian ortholog of Zip4, TEX11, also interacts with the SC central element TEX12, suggesting a general mechanism.
Collapse
Affiliation(s)
- Alexandra Pyatnitskaya
- Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, Dynamics of Genetic Information, UMR3244, Centre National de la Recherche Scientifique (CNRS), Paris 75248, France
| | - Jessica Andreani
- Université Paris-Saclay, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Raphaël Guérois
- Université Paris-Saclay, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Arnaud De Muyt
- Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, Dynamics of Genetic Information, UMR3244, Centre National de la Recherche Scientifique (CNRS), Paris 75248, France
| | - Valérie Borde
- Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, Dynamics of Genetic Information, UMR3244, Centre National de la Recherche Scientifique (CNRS), Paris 75248, France
| |
Collapse
|
9
|
Kuo P, Da Ines O, Lambing C. Rewiring Meiosis for Crop Improvement. FRONTIERS IN PLANT SCIENCE 2021; 12:708948. [PMID: 34349775 PMCID: PMC8328115 DOI: 10.3389/fpls.2021.708948] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/17/2021] [Indexed: 05/10/2023]
Abstract
Meiosis is a specialized cell division that contributes to halve the genome content and reshuffle allelic combinations between generations in sexually reproducing eukaryotes. During meiosis, a large number of programmed DNA double-strand breaks (DSBs) are formed throughout the genome. Repair of meiotic DSBs facilitates the pairing of homologs and forms crossovers which are the reciprocal exchange of genetic information between chromosomes. Meiotic recombination also influences centromere organization and is essential for proper chromosome segregation. Accordingly, meiotic recombination drives genome evolution and is a powerful tool for breeders to create new varieties important to food security. Modifying meiotic recombination has the potential to accelerate plant breeding but it can also have detrimental effects on plant performance by breaking beneficial genetic linkages. Therefore, it is essential to gain a better understanding of these processes in order to develop novel strategies to facilitate plant breeding. Recent progress in targeted recombination technologies, chromosome engineering, and an increasing knowledge in the control of meiotic chromosome segregation has significantly increased our ability to manipulate meiosis. In this review, we summarize the latest findings and technologies on meiosis in plants. We also highlight recent attempts and future directions to manipulate crossover events and control the meiotic division process in a breeding perspective.
Collapse
Affiliation(s)
- Pallas Kuo
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Olivier Da Ines
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293 CNRS, U1103 INSERM, Clermont-Ferrand, France
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
He W, Verhees GF, Bhagwat N, Yang Y, Kulkarni DS, Lombardo Z, Lahiri S, Roy P, Zhuo J, Dang B, Snyder A, Shastry S, Moezpoor M, Alocozy L, Lee KG, Painter D, Mukerji I, Hunter N. SUMO fosters assembly and functionality of the MutSγ complex to facilitate meiotic crossing over. Dev Cell 2021; 56:2073-2088.e3. [PMID: 34214491 DOI: 10.1016/j.devcel.2021.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/31/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Crossing over is essential for chromosome segregation during meiosis. Protein modification by SUMO is implicated in crossover control, but pertinent targets have remained elusive. Here we identify Msh4 as a target of SUMO-mediated crossover regulation. Msh4 and Msh5 constitute the MutSγ complex, which stabilizes joint-molecule (JM) recombination intermediates and facilitates their resolution into crossovers. Msh4 SUMOylation enhances these processes to ensure that each chromosome pair acquires at least one crossover. Msh4 is directly targeted by E2 conjugase Ubc9, initially becoming mono-SUMOylated in response to DNA double-strand breaks, then multi/poly-SUMOylated forms arise as homologs fully engage. Mechanistically, SUMOylation fosters interaction between Msh4 and Msh5. We infer that initial SUMOylation of Msh4 enhances assembly of MutSγ in anticipation of JM formation, while secondary SUMOylation may promote downstream functions. Regulation of Msh4 by SUMO is distinct and independent of its previously described stabilization by phosphorylation, defining MutSγ as a hub for crossover control.
Collapse
Affiliation(s)
- Wei He
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Gerrik F Verhees
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Nikhil Bhagwat
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Ye Yang
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Dhananjaya S Kulkarni
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Zane Lombardo
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, CT, USA
| | - Sudipta Lahiri
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, CT, USA
| | - Pritha Roy
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Jiaming Zhuo
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Brian Dang
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Andriana Snyder
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Shashank Shastry
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Michael Moezpoor
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Lilly Alocozy
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Kathy Gyehyun Lee
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Daniel Painter
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Ishita Mukerji
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, CT, USA
| | - Neil Hunter
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
11
|
Raina VB, Vader G. Homeostatic Control of Meiotic Prophase Checkpoint Function by Pch2 and Hop1. Curr Biol 2020; 30:4413-4424.e5. [PMID: 32916108 DOI: 10.1016/j.cub.2020.08.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/31/2020] [Accepted: 08/18/2020] [Indexed: 01/15/2023]
Abstract
Checkpoint cascades link cell cycle progression with essential chromosomal processes. During meiotic prophase, recombination and chromosome synapsis are monitored by what are considered distinct checkpoints. In budding yeast, cells that lack the AAA+ ATPase Pch2 show an impaired cell cycle arrest in response to synapsis defects. However, unperturbed pch2Δ cells are delayed in meiotic prophase, suggesting paradoxical roles for Pch2 in cell cycle progression. Here, we provide insight into the checkpoint roles of Pch2 and its connection to Hop1, a HORMA domain-containing client protein. Contrary to current understanding, we find that Pch2 (together with Hop1) is crucial for checkpoint function in response to both recombination and synapsis defects, thus revealing a shared meiotic checkpoint cascade. Meiotic checkpoint responses are transduced by DNA break-dependent phosphorylation of Hop1. Based on our data and on the described effect of Pch2 on HORMA topology, we propose that Pch2 promotes checkpoint proficiency by catalyzing the availability of signaling-competent Hop1. Conversely, we demonstrate that Pch2 can act as a checkpoint silencer, also in the face of persistent DNA repair defects. We establish a framework in which Pch2 and Hop1 form a homeostatic module that governs general meiotic checkpoint function. We show that this module can-depending on the cellular context-fuel or extinguish meiotic checkpoint function, which explains the contradictory roles of Pch2 in cell cycle control. Within the meiotic prophase checkpoint, the Pch2-Hop1 module thus operates analogous to the Pch2/TRIP13-Mad2 module in the spindle assembly checkpoint that monitors chromosome segregation.
Collapse
Affiliation(s)
- Vivek B Raina
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany; International Max Planck Research School (IMPRS) in Chemical and Molecular Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Gerben Vader
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany; International Max Planck Research School (IMPRS) in Chemical and Molecular Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany.
| |
Collapse
|
12
|
Shang Y, Huang T, Liu H, Liu Y, Liang H, Yu X, Li M, Zhai B, Yang X, Wei Y, Wang G, Chen Z, Wang S, Zhang L. MEIOK21: a new component of meiotic recombination bridges required for spermatogenesis. Nucleic Acids Res 2020; 48:6624-6639. [PMID: 32463460 PMCID: PMC7337969 DOI: 10.1093/nar/gkaa406] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Repair of DNA double-strand breaks (DSBs) with homologous chromosomes is a hallmark of meiosis that is mediated by recombination ‘bridges’ between homolog axes. This process requires cooperation of DMC1 and RAD51 to promote homology search and strand exchange. The mechanism(s) regulating DMC1/RAD51-ssDNA nucleoprotein filament and the components of ‘bridges’ remain to be investigated. Here we show that MEIOK21 is a newly identified component of meiotic recombination bridges and is required for efficient formation of DMC1/RAD51 foci. MEIOK21 dynamically localizes on chromosomes from on-axis foci to ‘hanging foci’, then to ‘bridges’, and finally to ‘fused foci’ between homolog axes. Its chromosome localization depends on DSBs. Knockout of Meiok21 decreases the numbers of HSF2BP and DMC1/RAD51 foci, disrupting DSB repair, synapsis and crossover recombination and finally causing male infertility. Therefore, MEIOK21 is a novel recombination factor and probably mediates DMC1/RAD51 recruitment to ssDNA or their stability on chromosomes through physical interaction with HSF2BP.
Collapse
Affiliation(s)
- Yongliang Shang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Tao Huang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Hongbin Liu
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Yanlei Liu
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Heng Liang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Xiaoxia Yu
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Mengjing Li
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Binyuan Zhai
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China.,Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250014, China
| | - Xiao Yang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Yudong Wei
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Guoqiang Wang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Zijiang Chen
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Shunxin Wang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Liangran Zhang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China.,Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250014, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
13
|
Cardoso da Silva R, Villar-Fernández MA, Vader G. Active transcription and Orc1 drive chromatin association of the AAA+ ATPase Pch2 during meiotic G2/prophase. PLoS Genet 2020; 16:e1008905. [PMID: 32569318 PMCID: PMC7332104 DOI: 10.1371/journal.pgen.1008905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 07/02/2020] [Accepted: 06/03/2020] [Indexed: 01/26/2023] Open
Abstract
Pch2 is an AAA+ protein that controls DNA break formation, recombination and checkpoint signaling during meiotic G2/prophase. Chromosomal association of Pch2 is linked to these processes, and several factors influence the association of Pch2 to euchromatin and the specialized chromatin of the ribosomal (r)DNA array of budding yeast. Here, we describe a comprehensive mapping of Pch2 localization across the budding yeast genome during meiotic G2/prophase. Within non-rDNA chromatin, Pch2 associates with a subset of actively RNA Polymerase II (RNAPII)-dependent transcribed genes. Chromatin immunoprecipitation (ChIP)- and microscopy-based analysis reveals that active transcription is required for chromosomal recruitment of Pch2. Similar to what was previously established for association of Pch2 with rDNA chromatin, we find that Orc1, a component of the Origin Recognition Complex (ORC), is required for the association of Pch2 to these euchromatic, transcribed regions, revealing a broad connection between chromosomal association of Pch2 and Orc1/ORC function. Ectopic mitotic expression is insufficient to drive recruitment of Pch2, despite the presence of active transcription and Orc1/ORC in mitotic cells. This suggests meiosis-specific ‘licensing’ of Pch2 recruitment to sites of transcription, and accordingly, we find that the synaptonemal complex (SC) component Zip1 is required for the recruitment of Pch2 to transcription-associated binding regions. Interestingly, Pch2 binding patterns are distinct from meiotic axis enrichment sites (as defined by Red1, Hop1, and Rec8). Inactivating RNAPII-dependent transcription/Orc1 does not lead to effects on the chromosomal abundance of Hop1, a known chromosomal client of Pch2, suggesting a complex relationship between SC formation, Pch2 recruitment and Hop1 chromosomal association. We thus report characteristics and dependencies for Pch2 recruitment to meiotic chromosomes, and reveal an unexpected link between Pch2, SC formation, chromatin and active transcription. Meiosis is a specialized cellular division program that is required to produce haploid reproductive cells, also known as gametes. To allow meiosis to occur faithfully, several processes centred around DNA breakage and recombination are needed. Pch2, an AAA+ ATPase enzyme is important to coordinate several of these processes. Here, we analyze the genome-wide association of Pch2 to budding yeast meiotic chromosomes. Our results show that Pch2 is recruited to a subset of actively transcribed genes, and we find that active RNAPII transcription contributes to Pch2 chromosomal association. In addition, we reveal a general contribution of Orc1, a subunit of the ORC assembly, to Pch2 chromosomal recruitment. These findings thus reveal a connection between Pch2, Orc1 and RNAPII activity during meiosis.
Collapse
Affiliation(s)
- Richard Cardoso da Silva
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - María Ascensión Villar-Fernández
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- International Max Planck Research School (IMPRS) in Chemical and Molecular Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Gerben Vader
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- * E-mail:
| |
Collapse
|
14
|
Varietal variation and chromosome behaviour during meiosis in Solanum tuberosum. Heredity (Edinb) 2020; 125:212-226. [PMID: 32523055 PMCID: PMC7490355 DOI: 10.1038/s41437-020-0328-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 02/05/2023] Open
Abstract
Naturally occurring autopolyploid species, such as the autotetraploid potato Solanum tuberosum, face a variety of challenges during meiosis. These include proper pairing, recombination and correct segregation of multiple homologous chromosomes, which can form complex multivalent configurations at metaphase I, and in turn alter allelic segregation ratios through double reduction. Here, we present a reference map of meiotic stages in diploid and tetraploid S. tuberosum using fluorescence in situ hybridisation (FISH) to differentiate individual meiotic chromosomes 1 and 2. A diploid-like behaviour at metaphase I involving bivalent configurations was predominant in all three tetraploid varieties. The crossover frequency per bivalent was significantly reduced in the tetraploids compared with a diploid variety, which likely indicates meiotic adaptation to the autotetraploid state. Nevertheless, bivalents were accompanied by a substantial frequency of multivalents, which varied by variety and by chromosome (7-48%). We identified possible sites of synaptic partner switching, leading to multivalent formation, and found potential defects in the polymerisation and/or maintenance of the synaptonemal complex in tetraploids. These findings demonstrate the rise of S. tuberosum as a model for autotetraploid meiotic recombination research and highlight constraints on meiotic chromosome configurations and chiasma frequencies as an important feature of an evolved autotetraploid meiosis.
Collapse
|
15
|
Sandhu R, Monge Neria F, Monge Neria J, Chen X, Hollingsworth NM, Börner GV. DNA Helicase Mph1 FANCM Ensures Meiotic Recombination between Parental Chromosomes by Dissociating Precocious Displacement Loops. Dev Cell 2020; 53:458-472.e5. [PMID: 32386601 PMCID: PMC7386354 DOI: 10.1016/j.devcel.2020.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 02/09/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
Abstract
Meiotic pairing between parental chromosomes (homologs) is required for formation of haploid gametes. Homolog pairing depends on recombination initiation via programmed double-strand breaks (DSBs). Although DSBs appear prior to pairing, the homolog, rather than the sister chromatid, is used as repair partner for crossing over. Here, we show that Mph1, the budding yeast ortholog of Fanconi anemia helicase FANCM, prevents precocious DSB strand exchange between sister chromatids before homologs have completed pairing. By dissociating precocious DNA displacement loops (D-loops) between sister chromatids, Mph1FANCM ensures high levels of crossovers and non-crossovers between homologs. Later-occurring recombination events are protected from Mph1-mediated dissociation by synapsis protein Zip1. Increased intersister repair in absence of Mph1 triggers a shift among remaining interhomolog events from non-crossovers to crossover-specific strand exchange, explaining Mph1's apparent anti-crossover function. Our findings identify temporal coordination between DSB strand exchange and homolog pairing as a critical determinant for recombination outcome.
Collapse
Affiliation(s)
- Rima Sandhu
- Center for Gene Regulation in Health and Disease and Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Francisco Monge Neria
- Center for Gene Regulation in Health and Disease and Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Jesús Monge Neria
- Center for Gene Regulation in Health and Disease and Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Xiangyu Chen
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Nancy M Hollingsworth
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - G Valentin Börner
- Center for Gene Regulation in Health and Disease and Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
16
|
Liu C, Zhao H, Xiao S, Han T, Chen Y, Wang T, Ma Y, Gao H, Xie Z, Du L, Li J, Li G, Li W. Slx5p-Slx8p Promotes Accurate Chromosome Segregation by Mediating the Degradation of Synaptonemal Complex Components during Meiosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1900739. [PMID: 32099749 PMCID: PMC7029635 DOI: 10.1002/advs.201900739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Meiosis increases genetic diversity, yet the genome complement needs to be stable to ensure offspring viability. Both small ubiquitin-like modifier (SUMO) and ubiquitin have been reported to participate in meiotic regulation, yet functions of the SUMO-ubiquitination crosstalk in meiosis remain unclear. Here, it is reported that a SUMO-targeted ubiquitin ligase, Slx8p, promotes accurate chromosome segregation during meiosis, since the deletion of SLX8 leads to increased aneuploidy due to a defect in synaptonemal complex (SC) component degradation. Both the RING domain and SUMO interacting motifs of Slx8p are essential for meiotic progression and maintaining spore viability, and the expression of tetraubiquitin fused with SUMO partially rescues meiotic defects in the SLX8-deletion strain. Furthermore, Slx5p-Slx8p can directly add ubiquitin to SUMOylated Zip1p and Ecm11p, and forced degradation of Ecm11p partially rescues the sporulation defects of the SLX8 deletion strain. These findings provide a mechanism for SC disassembly and reveal that the crosstalk between SUMOylation and ubiquitination facilitates accurate chromosome segregation by promoting SC component degradation during meiosis.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101P. R. China
| | - Haichao Zhao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101P. R. China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Sai Xiao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101P. R. China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Tingting Han
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsBeijing HospitalNational Center of GerontologyNational Health CommissionInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing100730P. R. China
| | - Yinghong Chen
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101P. R. China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Tong Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101P. R. China
| | - Yanjie Ma
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101P. R. China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Hui Gao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101P. R. China
| | - Zhiping Xie
- Joint International Research Laboratory of Metabolic & Developmental SciencesSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Li‐Lin Du
- National Institute of Biological SciencesBeijing102206P. R. China
| | - Jian Li
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsBeijing HospitalNational Center of GerontologyNational Health CommissionInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing100730P. R. China
| | - Guoping Li
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101P. R. China
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsBeijing HospitalNational Center of GerontologyNational Health CommissionInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing100730P. R. China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101P. R. China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
17
|
Bogdanov YF, Grishaeva TM. Meiotic Recombination. The Metabolic Pathways from DNA Double-Strand Breaks to Crossing Over and Chiasmata. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420020039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Pyatnitskaya A, Borde V, De Muyt A. Crossing and zipping: molecular duties of the ZMM proteins in meiosis. Chromosoma 2019; 128:181-198. [PMID: 31236671 DOI: 10.1007/s00412-019-00714-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 11/25/2022]
Abstract
Accurate segregation of homologous chromosomes during meiosis depends on the ability of meiotic cells to promote reciprocal exchanges between parental DNA strands, known as crossovers (COs). For most organisms, including budding yeast and other fungi, mammals, nematodes, and plants, the major CO pathway depends on ZMM proteins, a set of molecular actors specifically devoted to recognize and stabilize CO-specific DNA intermediates that are formed during homologous recombination. The progressive implementation of ZMM-dependent COs takes place within the context of the synaptonemal complex (SC), a proteinaceous structure that polymerizes between homologs and participates in close homolog juxtaposition during prophase I of meiosis. While SC polymerization starts from ZMM-bound sites and ZMM proteins are required for SC polymerization in budding yeast and the fungus Sordaria, other organisms differ in their requirement for ZMM in SC elongation. This review provides an overview of ZMM functions and discusses their collaborative tasks for CO formation and SC assembly, based on recent findings and on a comparison of different model organisms.
Collapse
Affiliation(s)
- Alexandra Pyatnitskaya
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France
- Paris Sorbonne Université, Paris, France
| | - Valérie Borde
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France.
- Paris Sorbonne Université, Paris, France.
| | - Arnaud De Muyt
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France.
- Paris Sorbonne Université, Paris, France.
| |
Collapse
|
19
|
Crossover recombination and synapsis are linked by adjacent regions within the N terminus of the Zip1 synaptonemal complex protein. PLoS Genet 2019; 15:e1008201. [PMID: 31220082 PMCID: PMC6605668 DOI: 10.1371/journal.pgen.1008201] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 07/02/2019] [Accepted: 05/17/2019] [Indexed: 11/19/2022] Open
Abstract
Accurate chromosome segregation during meiosis relies on the prior establishment of at least one crossover recombination event between homologous chromosomes. Most meiotic recombination intermediates that give rise to interhomolog crossovers are embedded within a hallmark chromosomal structure called the synaptonemal complex (SC), but the mechanisms that coordinate the processes of SC assembly (synapsis) and crossover recombination remain poorly understood. Among known structural components of the budding yeast SC, the Zip1 protein is unique for its independent role in promoting crossover recombination; Zip1 is specifically required for the large subset of crossovers that also rely on the meiosis-specific MutSγ complex. Here we report that adjacent regions within Zip1’s N terminus encompass its crossover and synapsis functions. We previously showed that deletion of Zip1 residues 21–163 abolishes tripartite SC assembly and prevents robust SUMOylation of the SC central element component, Ecm11, but allows excess MutSγ crossover recombination. We find the reciprocal phenotype when Zip1 residues 2–9 or 10–14 are deleted; in these mutants SC assembles and Ecm11 is hyperSUMOylated, but MutSγ crossovers are strongly diminished. Interestingly, Zip1 residues 2–9 or 2–14 are required for the normal localization of Zip3, a putative E3 SUMO ligase and pro-MutSγ crossover factor, to Zip1 polycomplex structures and to recombination initiation sites. By contrast, deletion of Zip1 residues 15–20 does not detectably prevent Zip3’s localization at Zip1 polycomplex and supports some MutSγ crossing over but prevents normal SC assembly and Ecm11 SUMOylation. Our results highlight distinct N terminal regions that are differentially critical for Zip1’s roles in crossing over and SC assembly; we speculate that the adjacency of these regions enables Zip1 to serve as a liaison, facilitating crosstalk between the two processes by bringing crossover recombination and synapsis factors within close proximity of one another. Reproductive cell formation relies on a nuclear division cycle called meiosis, wherein two homologous sets of chromosomes are reduced to one. At the crux of (and critically required for) meiotic chromosome segregation is a transient association between homologous chromosomes established by a crossover recombination event. Recombination intermediates embed within a ~100 nm wide proteinaceous structure that connects aligned homologous axes, the synaptonemal complex (SC). While genetic data implicate certain SC structural proteins in crossover formation, it is unclear how such coiled-coil, rod-like proteins carry out their recombination function. Our structure-function analysis of the yeast SC transverse filament protein, Zip1, reveals pro-crossover and pro-synapsis functions that are encompassed by adjacent N terminal regions. We also discovered that the pro-crossover region of Zip1 promotes proper localization of pro-crossover factor and putative SUMO ligase, Zip3, to meiotic recombination sites. Zip3 is known to not only promote crossovers but also to influence the post-translational modification of another SC structural component, Ecm11, which is dispensable for crossovers. Our findings raise the possibility that Zip1’s N terminus acts as a liaison to connect pro-crossover factors (like Zip3) to SC assembly proteins (such as Ecm11) in order to coordinate the two landmark meiotic chromosomal processes.
Collapse
|
20
|
Evidence of Zip1 Promoting Sister Kinetochore Mono-orientation During Meiosis in Budding Yeast. G3-GENES GENOMES GENETICS 2018; 8:3691-3701. [PMID: 30254179 PMCID: PMC6222564 DOI: 10.1534/g3.118.200469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Halving of the genome during meiosis I is achieved as the homologous chromosomes move to the opposite spindle poles whereas the sister chromatids stay together and move to the same pole. This requires that the sister kinetochores should take a side-by-side orientation in order to connect to the microtubules emanating from the same pole. Factors that constrain sister kinetochores to adopt such orientation are therefore crucial to achieve reductional chromosome segregation in meiosis I. In budding yeast, a protein complex, known as monopolin, is involved in conjoining of the sister kinetochores and thus facilitates their binding to the microtubules from the same pole. In this study, we report Zip1, a synaptonemal complex component, as another factor that might help the sister kinetochores to take the side-by-side orientation and promote their mono-orientation on the meiosis I spindle. From our results, we propose that the localization of Zip1 at the centromere may provide an additional constraining factor that promotes monopolin to cross-link the sister kinetochores enabling them to mono-orient.
Collapse
|
21
|
HO Endonuclease-Initiated Recombination in Yeast Meiosis Fails To Promote Homologous Centromere Pairing and Is Not Constrained To Utilize the Dmc1 Recombinase. G3-GENES GENOMES GENETICS 2018; 8:3637-3659. [PMID: 30254180 PMCID: PMC6222578 DOI: 10.1534/g3.118.200641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Crossover recombination during meiosis is accompanied by a dramatic chromosome reorganization. In Saccharomyces cerevisiae, the onset of meiotic recombination by the Spo11 transesterase leads to stable pairwise associations between previously unassociated homologous centromeres followed by the intimate alignment of homologous axes via synaptonemal complex (SC) assembly. However, the molecular relationship between recombination and global meiotic chromosome reorganization remains poorly understood. In budding yeast, one question is why SC assembly initiates earliest at centromere regions while the DNA double strand breaks (DSBs) that initiate recombination occur genome-wide. We targeted the site-specific HO endonuclease to various positions on S. cerevisiae’s longest chromosome in order to ask whether a meiotic DSB’s proximity to the centromere influences its capacity to promote homologous centromere pairing and SC assembly. We show that repair of an HO-mediated DSB does not promote homologous centromere pairing nor any extent of SC assembly in spo11 meiotic nuclei, regardless of its proximity to the centromere. DSBs induced en masse by phleomycin exposure likewise do not promote homologous centromere pairing nor robust SC assembly. Interestingly, in contrast to Spo11, HO-initiated interhomolog recombination is not affected by loss of the meiotic kinase, Mek1, and is not constrained to use the meiosis-specific Dmc1 recombinase. These results strengthen the previously proposed idea that (at least some) Spo11 DSBs may be specialized in activating mechanisms that both 1) reinforce homologous chromosome alignment via homologous centromere pairing and SC assembly, and 2) establish Dmc1 as the primary strand exchange enzyme.
Collapse
|
22
|
Muller H, Scolari VF, Agier N, Piazza A, Thierry A, Mercy G, Descorps-Declere S, Lazar-Stefanita L, Espeli O, Llorente B, Fischer G, Mozziconacci J, Koszul R. Characterizing meiotic chromosomes' structure and pairing using a designer sequence optimized for Hi-C. Mol Syst Biol 2018; 14:e8293. [PMID: 30012718 PMCID: PMC6047084 DOI: 10.15252/msb.20188293] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/29/2022] Open
Abstract
In chromosome conformation capture experiments (Hi-C), the accuracy with which contacts are detected varies due to the uneven distribution of restriction sites along genomes. In addition, repeated sequences or homologous regions remain indistinguishable because of the ambiguities they introduce during the alignment of the sequencing reads. We addressed both limitations by designing and engineering 144 kb of a yeast chromosome with regularly spaced restriction sites (Syn-HiC design). In the Syn-HiC region, Hi-C signal-to-noise ratio is enhanced and can be used to measure the shape of an unbiased distribution of contact frequencies, allowing to propose a robust definition of a Hi-C experiment resolution. The redesigned region is also distinguishable from its native homologous counterpart in an otherwise isogenic diploid strain. As a proof of principle, we tracked homologous chromosomes during meiotic prophase in synchronized and pachytene-arrested cells and captured important features of their spatial reorganization, such as chromatin restructuration into arrays of Rec8-delimited loops, centromere declustering, individualization, and pairing. Overall, we illustrate the promises held by redesigning genomic regions to explore complex biological questions.
Collapse
Affiliation(s)
- Héloïse Muller
- Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, Institut Pasteur, Paris, France
- CNRS, UMR 3525, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Institut Pasteur, Paris, France
| | - Vittore F Scolari
- Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, Institut Pasteur, Paris, France
- CNRS, UMR 3525, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Institut Pasteur, Paris, France
| | - Nicolas Agier
- Laboratory of Computational and Quantitative Biology, CNRS, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Aurèle Piazza
- Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, Institut Pasteur, Paris, France
- CNRS, UMR 3525, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Institut Pasteur, Paris, France
| | - Agnès Thierry
- Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, Institut Pasteur, Paris, France
- CNRS, UMR 3525, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Institut Pasteur, Paris, France
| | - Guillaume Mercy
- Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, Institut Pasteur, Paris, France
- CNRS, UMR 3525, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Institut Pasteur, Paris, France
| | - Stéphane Descorps-Declere
- Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Institut Pasteur, Paris, France
| | - Luciana Lazar-Stefanita
- Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, Institut Pasteur, Paris, France
- CNRS, UMR 3525, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Institut Pasteur, Paris, France
| | - Olivier Espeli
- Centre Interdisciplinaire de Recherche en Biologie, Collège de France, UMR-CNRS 7241, INSERM U1050, Paris, France
| | - Bertrand Llorente
- Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Gilles Fischer
- Laboratory of Computational and Quantitative Biology, CNRS, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Julien Mozziconacci
- Theoretical Physics for Condensed Matter Lab, CNRS UMR 7600, Sorbonne Universités, UPMC University Paris 06, Paris, France
| | - Romain Koszul
- Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, Institut Pasteur, Paris, France
- CNRS, UMR 3525, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Institut Pasteur, Paris, France
| |
Collapse
|
23
|
Gestational exposure to chlordecone promotes transgenerational changes in the murine reproductive system of males. Sci Rep 2018; 8:10274. [PMID: 29980752 PMCID: PMC6035262 DOI: 10.1038/s41598-018-28670-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/27/2018] [Indexed: 12/14/2022] Open
Abstract
Environmental factors can affect epigenetic events during germline reprogramming and impose distinctive transgenerational consequences onto the offspring. In this study, we examined the transgenerational effects of chlordecone (CD), an organochlorine insecticide with well-known estrogenic properties. We exposed pregnant mice to CD from embryonic day 6.5 to 15.5 and observed a reduction in spermatogonia (SG) numbers in F3, meiotic defects in spermatocytes and decrease in spermatozoa number in the first and third generation of male progeny. The RNA qRT-PCR expression analysis in F1 and transcriptomics analysis in F3 males using the whole testes revealed changes in the expression of genes associated with chromosome segregation, cell division and DNA repair. The expression of the master regulator of pluripotency, Pou5f1, decreased in foetal and increased in adult F1, but not in F3 adult testes. Analysis of histone H3K4me3 distribution revealed widespread changes in its occupancy in the genome of F1 and F3 generations. We established that 7.1% of altered epigenetic marks were conserved between F1 and F3 generations. The overlapping changes common to F1 and F3 include genes implicated in cell adhesion and transcription factor activities functions. Differential peaks observed in F1 males are significantly enriched in predicted ESR1 binding sites, some of which we confirmed to be functional. Our data demonstrate that CD-mediated impairment of reproductive functions could be transmitted to subsequent generations.
Collapse
|
24
|
Abstract
Meiosis, the mechanism of creating haploid gametes, is a complex cellular process observed across sexually reproducing organisms. Fundamental to meiosis is the process of homologous recombination, whereby DNA double-strand breaks are introduced into the genome and are subsequently repaired to generate either noncrossovers or crossovers. Although homologous recombination is essential for chromosome pairing during prophase I, the resulting crossovers are critical for maintaining homolog interactions and enabling accurate segregation at the first meiotic division. Thus, the placement, timing, and frequency of crossover formation must be exquisitely controlled. In this review, we discuss the proteins involved in crossover formation, the process of their formation and designation, and the rules governing crossovers, all within the context of the important landmarks of prophase I. We draw together crossover designation data across organisms, analyze their evolutionary divergence, and propose a universal model for crossover regulation.
Collapse
Affiliation(s)
- Stephen Gray
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, New York 14853; ,
| | - Paula E Cohen
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, New York 14853; ,
| |
Collapse
|
25
|
Medhi D, Goldman AS, Lichten M. Local chromosome context is a major determinant of crossover pathway biochemistry during budding yeast meiosis. eLife 2016; 5. [PMID: 27855779 PMCID: PMC5222560 DOI: 10.7554/elife.19669] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/17/2016] [Indexed: 12/20/2022] Open
Abstract
The budding yeast genome contains regions where meiotic recombination initiates more frequently than in others. This pattern parallels enrichment for the meiotic chromosome axis proteins Hop1 and Red1. These proteins are important for Spo11-catalyzed double strand break formation; their contribution to crossover recombination remains undefined. Using the sequence-specific VMA1-derived endonuclease (VDE) to initiate recombination in meiosis, we show that chromosome structure influences the choice of proteins that resolve recombination intermediates to form crossovers. At a Hop1-enriched locus, most VDE-initiated crossovers, like most Spo11-initiated crossovers, required the meiosis-specific MutLγ resolvase. In contrast, at a locus with lower Hop1 occupancy, most VDE-initiated crossovers were MutLγ-independent. In pch2 mutants, the two loci displayed similar Hop1 occupancy levels, and VDE-induced crossovers were similarly MutLγ-dependent. We suggest that meiotic and mitotic recombination pathways coexist within meiotic cells, and that features of meiotic chromosome structure determine whether one or the other predominates in different regions. DOI:http://dx.doi.org/10.7554/eLife.19669.001 Inside the cells of many species, double-stranded DNA is packaged together with specialized proteins to form structures called chromosomes. Breaks that span across both strands of the DNA can cause cell death because if the break is incorrectly repaired, a segment of the DNA may be lost. Cells use a process known as homologous recombination to repair such breaks correctly. This uses an undamaged DNA molecule as a template that can be copied to replace missing segments of the DNA sequence. During the repair of double-strand breaks, connections called crossovers may form. This results in the damaged and undamaged DNA molecules swapping a portion of their sequences. In meiosis, a type of cell division that produces sperm and eggs, cells deliberately break their chromosomes and then repair them using homologous recombination. The crossovers that form during this process are important for sharing chromosomes between the newly forming cells. It is crucial that the crossovers form at the right time and place along the chromosomes. Chromosomes have different structures depending on whether a cell is undergoing meiosis or normal (mitotic) cell division. This structure may influence how and where crossovers form. Enzymes called resolvases catalyze the reactions that occur during the last step in homologous recombination to generate crossovers. One particular resolvase acts only during meiosis, whereas others are active in both mitotic and meiotic cells. However, it is not known whether local features of the chromosome structure – such as the proteins packaged in the chromosome alongside the DNA – influence when and where meiotic crossover occurs. Medhi et al. have now studied how recombination occurs along different regions of the chromosomes in budding yeast cells, which undergo meiosis in a similar way to human cells. The results of the experiments reveal that the mechanism by which crossovers form depends on proteins called axis proteins, one type of which is specifically found in meiotic chromosomes. In regions that had high levels of meiotic axis proteins, crossovers mainly formed using the meiosis-specific resolvase enzyme. In regions that had low levels of meiotic axis proteins, crossovers formed using resolvases that are active in mitotic cells. Further experiments demonstrated that altering the levels of one of the meiotic axis proteins changed which resolvase was used. Overall, the results presented by Medhi et al. show that differences in chromosome structure, in particular the relative concentration of meiotic axis proteins, influence how crossovers form in yeast. Future studies will investigate whether this is observed in other organisms such as humans, and whether local chromosome structure influences other steps of homologous recombination in meiosis. DOI:http://dx.doi.org/10.7554/eLife.19669.002
Collapse
Affiliation(s)
- Darpan Medhi
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States.,Sheffield Institute for Nucleic Acids, The University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Alastair Sh Goldman
- Sheffield Institute for Nucleic Acids, The University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| |
Collapse
|
26
|
Hao C, Gely-Pernot A, Kervarrec C, Boudjema M, Becker E, Khil P, Tevosian S, Jégou B, Smagulova F. Exposure to the widely used herbicide atrazine results in deregulation of global tissue-specific RNA transcription in the third generation and is associated with a global decrease of histone trimethylation in mice. Nucleic Acids Res 2016; 44:9784-9802. [PMID: 27655631 PMCID: PMC5175363 DOI: 10.1093/nar/gkw840] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/11/2016] [Accepted: 09/12/2016] [Indexed: 02/07/2023] Open
Abstract
The epigenetic events imposed during germline reprogramming and affected by harmful exposure can be inherited and transferred to subsequent generations via gametes inheritance. In this study, we examine the transgenerational effects promoted by widely used herbicide atrazine (ATZ). We exposed pregnant outbred CD1 female mice and the male progeny was crossed for three generations with untreated females. We demonstrate here that exposure to ATZ affects meiosis, spermiogenesis and reduces the spermatozoa number in the third generation (F3) male mice. We suggest that changes in testis cell types originate from modified transcriptional network in undifferentiated spermatogonia. Importantly, exposure to ATZ dramatically increases the number of transcripts with novel transcription initiation sites, spliced variants and alternative polyadenylation sites. We found the global decrease in H3K4me3 occupancy in the third generation males. The regions with altered H3K4me3 occupancy in F3 ATZ-derived males correspond to altered H3K4me3 occupancy of F1 generation and 74% of changed peaks in F3 generation are associated with enhancers. The regions with altered H3K4me3 occupancy are enriched in SP family and WT1 transcription factor binding sites. Our data suggest that the embryonic exposure to ATZ affects the development and the changes induced by ATZ are transferred up to three generations.
Collapse
Affiliation(s)
- Chunxiang Hao
- Inserm U1085 IRSET, 9 Avenue du Professeur Léon-Bernard, 35000 Rennes, France
| | - Aurore Gely-Pernot
- Inserm U1085 IRSET, 9 Avenue du Professeur Léon-Bernard, 35000 Rennes, France.,EHESP, 2 Avenue du Professeur Léon-Bernard, 35000 Rennes, France
| | - Christine Kervarrec
- Inserm U1085 IRSET, 9 Avenue du Professeur Léon-Bernard, 35000 Rennes, France
| | - Melissa Boudjema
- Inserm U1085 IRSET, 9 Avenue du Professeur Léon-Bernard, 35000 Rennes, France
| | - Emmanuelle Becker
- Inserm U1085 IRSET, 9 Avenue du Professeur Léon-Bernard, 35000 Rennes, France
| | - Pavel Khil
- Clinical Center, National Institute of Health, Bethesda, MD 20892, USA
| | - Sergei Tevosian
- University of Florida, Department of Physiological Sciences, Box 100144, 1333 Center Drive, 32610 Gainesville, FL, USA
| | - Bernard Jégou
- Inserm U1085 IRSET, 9 Avenue du Professeur Léon-Bernard, 35000 Rennes, France.,EHESP, 2 Avenue du Professeur Léon-Bernard, 35000 Rennes, France
| | - Fatima Smagulova
- Inserm U1085 IRSET, 9 Avenue du Professeur Léon-Bernard, 35000 Rennes, France
| |
Collapse
|
27
|
Yoon SW, Lee MS, Xaver M, Zhang L, Hong SG, Kong YJ, Cho HR, Kleckner N, Kim KP. Meiotic prophase roles of Rec8 in crossover recombination and chromosome structure. Nucleic Acids Res 2016; 44:9296-9314. [PMID: 27484478 PMCID: PMC5100558 DOI: 10.1093/nar/gkw682] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 07/22/2016] [Indexed: 12/02/2022] Open
Abstract
Rec8 is a prominent component of the meiotic prophase chromosome axis that mediates sister chromatid cohesion, homologous recombination and chromosome synapsis. Here, we explore the prophase roles of Rec8. (i) During the meiotic divisions, Rec8 phosphorylation mediates its separase-mediated cleavage. We show here that such cleavage plays no detectable role for chromosomal events of prophase. (ii) We have analyzed in detail three rec8 phospho-mutants, with 6, 24 or 29 alanine substitutions. A distinct ‘separation of function’ phenotype is revealed. In the mutants, axis formation and recombination initiation are normal, as is non-crossover recombination; in contrast, crossover (CO)-related events are defective. Moreover, the severities of these defects increase coordinately with the number of substitution mutations, consistent with the possibility that global phosphorylation of Rec8 is important for these effects. (iii) We have analyzed the roles of three kinases that phosphorylate Rec8 during prophase. Timed inhibition of Dbf4-dependent Cdc7 kinase confers defects concordant with rec8 phospho-mutant phenotypes. Inhibition of Hrr25 or Cdc5/polo-like kinase does not. Our results suggest that Rec8's prophase function, independently of cohesin cleavage, contributes to CO-specific events in conjunction with the maintenance of homolog bias at the leptotene/zygotene transition of meiotic prophase.
Collapse
Affiliation(s)
- Sang-Wook Yoon
- Department of Life Science, Chung-Ang University, Seoul 156-756, Korea
| | - Min-Su Lee
- Department of Life Science, Chung-Ang University, Seoul 156-756, Korea
| | - Martin Xaver
- Max Perutz Laboratories, Chromosome Biology, University of Vienna, Vienna Biocenter, Vienna 1030, Austria
| | - Liangran Zhang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Soo-Gil Hong
- Department of Life Science, Chung-Ang University, Seoul 156-756, Korea
| | - Yoon-Ju Kong
- Department of Life Science, Chung-Ang University, Seoul 156-756, Korea
| | - Hong-Rae Cho
- Department of Life Science, Chung-Ang University, Seoul 156-756, Korea
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Keun P Kim
- Department of Life Science, Chung-Ang University, Seoul 156-756, Korea
| |
Collapse
|
28
|
A few of our favorite things: Pairing, the bouquet, crossover interference and evolution of meiosis. Semin Cell Dev Biol 2016; 54:135-48. [PMID: 26927691 DOI: 10.1016/j.semcdb.2016.02.024] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/22/2016] [Indexed: 12/20/2022]
Abstract
Meiosis presents many important mysteries that await elucidation. Here we discuss two such aspects. First, we consider how the current meiotic program might have evolved. We emphasize the central feature of this program: how homologous chromosomes find one another ("pair") so as to create the connections required for their regular segregation at Meiosis I. Points of emphasis include the facts that: (i) the classical "bouquet stage" is not required for initial homolog contacts in the current evolved meiotic program; and (ii) diverse observations point to commonality between molecules that mediate meiotic inter-homolog interactions and molecules that are integral to centromeres and/or to microtubule organizing centers (a.k.a. spindle pole bodies or centrosomes). Second, we provide an overview of the classical phenomenon of crossover (CO) interference in an effort to bridge the gap between description on the one hand versus logic and mechanism on the other.
Collapse
|
29
|
Subramanian VV, MacQueen AJ, Vader G, Shinohara M, Sanchez A, Borde V, Shinohara A, Hochwagen A. Chromosome Synapsis Alleviates Mek1-Dependent Suppression of Meiotic DNA Repair. PLoS Biol 2016; 14:e1002369. [PMID: 26870961 PMCID: PMC4752329 DOI: 10.1371/journal.pbio.1002369] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/23/2015] [Indexed: 11/18/2022] Open
Abstract
Faithful meiotic chromosome segregation and fertility require meiotic recombination between homologous chromosomes rather than the equally available sister chromatid, a bias that in Saccharomyces cerevisiae depends on the meiotic kinase, Mek1. Mek1 is thought to mediate repair template bias by specifically suppressing sister-directed repair. Instead, we found that when Mek1 persists on closely paired (synapsed) homologues, DNA repair is severely delayed, suggesting that Mek1 suppresses any proximal repair template. Accordingly, Mek1 is excluded from synapsed homologues in wild-type cells. Exclusion requires the AAA+-ATPase Pch2 and is directly coupled to synaptonemal complex assembly. Stage-specific depletion experiments further demonstrate that DNA repair in the context of synapsed homologues requires Rad54, a repair factor inhibited by Mek1. These data indicate that the sister template is distinguished from the homologue primarily by its closer proximity to inhibitory Mek1 activity. We propose that once pairing or synapsis juxtaposes homologues, exclusion of Mek1 is necessary to avoid suppression of all templates and accelerate repair progression. Experiments in yeast indicate that one function of the synaptonemal complex is to disable chromosome-bound Mek1 kinase, thereby promoting DNA repair on fully paired meiotic chromosomes and helping to favor recombination between homologues over sister chromatids. Chromosome segregation errors during meiosis may cause infertility, fetal loss, or birth defects. To avoid meiotic chromosome segregation errors, recombination-mediated linkages are established between previously unattached homologous chromosomes. Such recombination events initiate with breaks in the DNA, but how these breaks are preferentially repaired using the distal homologous chromosome, rather than the physically more proximal sister chromatid of similar sequence, is not well understood. Meiotic repair-template bias in the budding yeast depends on the function of Mek1, a meiosis-specific protein kinase. Previous models suggested that Mek1 activity creates repair-template bias by suppressing repair with the sister chromatid. We found that Mek1 localizes on meiotic chromosomes until the homologues pair and closely align. Removal of Mek1 requires the assembly of a conserved zipper-like structure between meiotic chromosomes, known as the synaptonemal complex. DNA break repair is delayed in mutants in which Mek1 persists on closely aligned homologues. These findings suggest that persistent Mek1 activity can suppress repair from all templates, and that one function of the synaptonemal complex is to remove this activity from chromosomes. Our findings build on previous models to propose that Mek1 activity creates a local zone of repair suppression that is normally avoided by the spatially distant homologous chromosome to promote repair-template bias.
Collapse
Affiliation(s)
| | - Amy J. MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Gerben Vader
- Department of Biology, New York University, New York, New York, United States of America
| | - Miki Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Aurore Sanchez
- Institut Curie/Centre de Recherche, CNRS, UMR3664, Paris, France
| | - Valérie Borde
- Institut Curie/Centre de Recherche, CNRS, UMR3664, Paris, France
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
30
|
Zickler D, Espagne E. Sordaria, a model system to uncover links between meiotic pairing and recombination. Semin Cell Dev Biol 2016; 54:149-57. [PMID: 26877138 DOI: 10.1016/j.semcdb.2016.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/08/2016] [Indexed: 11/20/2022]
Abstract
The mycelial fungus Sordaria macrospora was first used as experimental system for meiotic recombination. This review shows that it provides also a powerful cytological system for dissecting chromosome dynamics in wild-type and mutant meioses. Fundamental cytogenetic findings include: (1) the identification of presynaptic alignment as a key step in pairing of homologous chromosomes. (2) The discovery that biochemical complexes that mediate recombination at the DNA level concomitantly mediate pairing of homologs. (3) This pairing process involves not only resolution but also avoidance of chromosomal entanglements and the resolution system includes dissolution of constraining DNA recombination interactions, achieved by a unique role of Mlh1. (4) Discovery that the central components of the synaptonemal complex directly mediate the re-localization of the recombination proteins from on-axis to in-between homologue axis positions. (5) Identification of putative STUbL protein Hei10 as a structure-based signal transduction molecule that coordinates progression and differentiation of recombinational interactions at multiple stages. (6) Discovery that a single interference process mediates both nucleation of the SC and designation of crossover sites, thereby ensuring even spacing of both features. (7) Discovery of local modulation of sister-chromatid cohesion at sites of crossover recombination.
Collapse
Affiliation(s)
- Denise Zickler
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France.
| | - Eric Espagne
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
31
|
Gruhn J, Al-Asmar N, Fasnacht R, Maylor-Hagen H, Peinado V, Rubio C, Broman K, Hunt P, Hassold T. Correlations between Synaptic Initiation and Meiotic Recombination: A Study of Humans and Mice. Am J Hum Genet 2016; 98:102-15. [PMID: 26749305 DOI: 10.1016/j.ajhg.2015.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/16/2015] [Indexed: 10/22/2022] Open
Abstract
Meiotic recombination is initiated by programmed double strand breaks (DSBs), only a small subset of which are resolved into crossovers (COs). The mechanism determining the location of these COs is not well understood. Studies in plants, fungi, and insects indicate that the same genomic regions are involved in synaptic initiation and COs, suggesting that early homolog alignment is correlated with the eventual resolution of DSBs as COs. It is generally assumed that this relationship extends to mammals, but little effort has been made to test this idea. Accordingly, we conducted an analysis of synaptic initiation sites (SISs) and COs in human and mouse spermatocytes and oocytes. In contrast to our expectation, we observed remarkable sex- and species-specific differences, including pronounced differences between human males and females in both the number and chromosomal location of SISs. Further, the combined data from our studies in mice and humans suggest that the relationship between SISs and COs in mammals is a complex one that is not dictated by the sites of synaptic initiation as reported in other organisms, although it is clearly influenced by them.
Collapse
|
32
|
Brown MS, Grubb J, Zhang A, Rust MJ, Bishop DK. Small Rad51 and Dmc1 Complexes Often Co-occupy Both Ends of a Meiotic DNA Double Strand Break. PLoS Genet 2015; 11:e1005653. [PMID: 26719980 PMCID: PMC4697796 DOI: 10.1371/journal.pgen.1005653] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/15/2015] [Indexed: 11/19/2022] Open
Abstract
The Eukaryotic RecA-like proteins Rad51 and Dmc1 cooperate during meiosis to promote recombination between homologous chromosomes by repairing programmed DNA double strand breaks (DSBs). Previous studies showed that Rad51 and Dmc1 form partially overlapping co-foci. Here we show these Rad51-Dmc1 co-foci are often arranged in pairs separated by distances of up to 400 nm. Paired co-foci remain prevalent when DSBs are dramatically reduced or when strand exchange or synapsis is blocked. Super-resolution dSTORM microscopy reveals that individual foci observed by conventional light microscopy are often composed of two or more substructures. The data support a model in which the two tracts of ssDNA formed by a single DSB separate from one another by distances of up to 400 nm, with both tracts often bound by one or more short (about 100 nt) Rad51 filaments and also by one or more short Dmc1 filaments.
Collapse
Affiliation(s)
- M. Scott Brown
- Department of Molecular Genetics and Cell Biology, University of Chicago, Cummings Life Science Center, Chicago, Illinois, United States of America
| | - Jennifer Grubb
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Chicago, Illinois, United States of America
| | - Annie Zhang
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Chicago, Illinois, United States of America
| | - Michael J. Rust
- Department of Molecular Genetics and Cell Biology, University of Chicago, Cummings Life Science Center, Chicago, Illinois, United States of America
| | - Douglas K. Bishop
- Department of Molecular Genetics and Cell Biology, University of Chicago, Cummings Life Science Center, Chicago, Illinois, United States of America
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
33
|
The epigenetic processes of meiosis in male mice are broadly affected by the widely used herbicide atrazine. BMC Genomics 2015; 16:885. [PMID: 26518232 PMCID: PMC4628360 DOI: 10.1186/s12864-015-2095-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 10/15/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Environmental factors such as pesticides can cause phenotypic changes in various organisms, including mammals. We studied the effects of the widely used herbicide atrazine (ATZ) on meiosis, a key step of gametogenesis, in male mice. METHODS Gene expression pattern was analysed by Gene-Chip array. Genome-wide mapping of H3K4me3 marks distribution was done by ChIP-sequencing of testis tissue using Illumina technologies. RT-qPCR was used to validate differentially expressed genes or differential peaks. RESULTS We demonstrate that exposure to ATZ reduces testosterone levels and the number of spermatozoa in the epididymis and delays meiosis. Using Gene-Chip and ChIP-Seq analysis of H3K4me3 marks, we found that a broad range of cellular functions, including GTPase activity, mitochondrial function and steroid-hormone metabolism, are affected by ATZ. Furthermore, treated mice display enriched histone H3K4me3 marks in regions of strong recombination (double-strand break sites), within very large genes and reduced marks in the pseudoautosomal region of X chromosome. CONCLUSIONS Our data demonstrate that atrazine exposure interferes with normal meiosis, which affects spermatozoa production.
Collapse
|
34
|
Abstract
The study of homologous recombination has its historical roots in meiosis. In this context, recombination occurs as a programmed event that culminates in the formation of crossovers, which are essential for accurate chromosome segregation and create new combinations of parental alleles. Thus, meiotic recombination underlies both the independent assortment of parental chromosomes and genetic linkage. This review highlights the features of meiotic recombination that distinguish it from recombinational repair in somatic cells, and how the molecular processes of meiotic recombination are embedded and interdependent with the chromosome structures that characterize meiotic prophase. A more in-depth review presents our understanding of how crossover and noncrossover pathways of meiotic recombination are differentiated and regulated. The final section of this review summarizes the studies that have defined defective recombination as a leading cause of pregnancy loss and congenital disease in humans.
Collapse
Affiliation(s)
- Neil Hunter
- Howard Hughes Medical Institute, Department of Microbiology & Molecular Genetics, Department of Molecular & Cellular Biology, Department of Cell Biology & Human Anatomy, University of California Davis, Davis, California 95616
| |
Collapse
|
35
|
Faieta M, Di Cecca S, de Rooij DG, Luchetti A, Murdocca M, Di Giacomo M, Di Siena S, Pellegrini M, Rossi P, Barchi M. A surge of late-occurring meiotic double-strand breaks rescues synapsis abnormalities in spermatocytes of mice with hypomorphic expression of SPO11. Chromosoma 2015; 125:189-203. [PMID: 26440409 PMCID: PMC4830894 DOI: 10.1007/s00412-015-0544-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 11/25/2022]
Abstract
Meiosis is the biological process that, after a cycle of DNA replication, halves the cellular chromosome complement, leading to the formation of haploid gametes. Haploidization is achieved via two successive rounds of chromosome segregation, meiosis I and II. In mammals, during prophase of meiosis I, homologous chromosomes align and synapse through a recombination-mediated mechanism initiated by the introduction of DNA double-strand breaks (DSBs) by the SPO11 protein. In male mice, if SPO11 expression and DSB number are reduced below heterozygosity levels, chromosome synapsis is delayed, chromosome tangles form at pachynema, and defective cells are eliminated by apoptosis at epithelial stage IV at a spermatogenesis-specific endpoint. Whether DSB levels produced in Spo11+/− spermatocytes represent, or approximate, the threshold level required to guarantee successful homologous chromosome pairing is unknown. Using a mouse model that expresses Spo11 from a bacterial artificial chromosome, within a Spo11−/− background, we demonstrate that when SPO11 expression is reduced and DSBs at zygonema are decreased (approximately 40 % below wild-type level), meiotic chromosome pairing is normal. Conversely, DMC1 foci number is increased at pachynema, suggesting that under these experimental conditions, DSBs are likely made with delayed kinetics at zygonema. In addition, we provide evidences that when zygotene-like cells receive enough DSBs before chromosome tangles develop, chromosome synapsis can be completed in most cells, preventing their apoptotic elimination.
Collapse
Affiliation(s)
- Monica Faieta
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Stefano Di Cecca
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Andrea Luchetti
- Department of Biomedicine and Prevention, Section of Genetics, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Michela Murdocca
- Department of Biomedicine and Prevention, Section of Genetics, University of Rome Tor Vergata, 00133, Rome, Italy
| | | | | | - Manuela Pellegrini
- Department of Medicine and Health Science "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Pellegrino Rossi
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Marco Barchi
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
36
|
Anderson CM, Oke A, Yam P, Zhuge T, Fung JC. Reduced Crossover Interference and Increased ZMM-Independent Recombination in the Absence of Tel1/ATM. PLoS Genet 2015; 11:e1005478. [PMID: 26305689 PMCID: PMC4549261 DOI: 10.1371/journal.pgen.1005478] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 07/31/2015] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination involves the repair of double-strand break (DSB) precursors as crossovers (COs) or noncrossovers (NCOs). The proper number and distribution of COs is critical for successful chromosome segregation and formation of viable gametes. In budding yeast the majority of COs occurs through a pathway dependent on the ZMM proteins (Zip2-Zip3-Zip4-Spo16, Msh4-Msh5, Mer3), which form foci at CO-committed sites. Here we show that the DNA-damage-response kinase Tel1/ATM limits ZMM-independent recombination. By whole-genome mapping of recombination products, we find that lack of Tel1 results in higher recombination and reduced CO interference. Yet the number of Zip3 foci in tel1Δ cells is similar to wild type, and these foci show normal interference. Analysis of recombination in a tel1Δ zip3Δ double mutant indicates that COs are less dependent on Zip3 in the absence of Tel1. Together these results reveal that in the absence of Tel1, a significant proportion of COs occurs through a non-ZMM-dependent pathway, contributing to a CO landscape with poor interference. We also see a significant change in the distribution of all detectable recombination products in the absence of Tel1, Sgs1, Zip3, or Msh4, providing evidence for altered DSB distribution. These results support the previous finding that DSB interference depends on Tel1, and further suggest an additional level of DSB interference created through local repression of DSBs around CO-designated sites.
Collapse
Affiliation(s)
- Carol M. Anderson
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California, United States of America
| | - Ashwini Oke
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California, United States of America
| | - Phoebe Yam
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California, United States of America
| | - Tangna Zhuge
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California, United States of America
| | - Jennifer C. Fung
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
37
|
Lambing C, Osman K, Nuntasoontorn K, West A, Higgins JD, Copenhaver GP, Yang J, Armstrong SJ, Mechtler K, Roitinger E, Franklin FCH. Arabidopsis PCH2 Mediates Meiotic Chromosome Remodeling and Maturation of Crossovers. PLoS Genet 2015; 11:e1005372. [PMID: 26182244 PMCID: PMC4504720 DOI: 10.1371/journal.pgen.1005372] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 06/19/2015] [Indexed: 11/30/2022] Open
Abstract
Meiotic chromosomes are organized into linear looped chromatin arrays by a protein axis localized along the loop-bases. Programmed remodelling of the axis occurs during prophase I of meiosis. Structured illumination microscopy (SIM) has revealed dynamic changes in the chromosome axis in Arabidopsis thaliana and Brassica oleracea. We show that the axis associated protein ASY1 is depleted during zygotene concomitant with synaptonemal complex (SC) formation. Study of an Atpch2 mutant demonstrates this requires the conserved AAA+ ATPase, PCH2, which localizes to the sites of axis remodelling. Loss of PCH2 leads to a failure to deplete ASY1 from the axes and compromizes SC polymerisation. Immunolocalization of recombination proteins in Atpch2 indicates that recombination initiation and CO designation during early prophase I occur normally. Evidence suggests that CO interference is initially functional in the mutant but there is a defect in CO maturation following designation. This leads to a reduction in COs and a failure to form COs between some homologous chromosome pairs leading to univalent chromosomes at metaphase I. Genetic analysis reveals that CO distribution is also affected in some chromosome regions. Together these data indicate that the axis remodelling defect in Atpch2 disrupts normal patterned formation of COs. In the reproductive cells of many eukaryotes, a process called meiosis generates haploid gametes. During meiosis, homologous parental chromosomes (homologs) recombine forming crossovers (CO) that provide genetic variation. CO formation generates physical links called chiasmata, which are essential for accurate homolog segregation. CO control designates a sub-set of recombination precursors that will mature to form at least one chiasma between each homolog pair. Recombination is accompanied by extensive chromosome reorganization. Formation of a proteinaceous axis organizes the pairs of sister chromatids of each homolog into conjoined linear looped chromatin arrays. Pairs of homologs then align and synapse becoming closely associated along their length by a protein structure, the synaptonemal complex (SC). The SC is disassembled at the end of prophase I and recombination is completed. We have investigated the link between recombination and chromosome remodelling by analysing the role of a protein, PCH2, which we show is required for remodelling of the chromosome axis during SC formation. In wild type, immunolocalization reveals depletion of the axis-associated signal of the axis component, ASY1, along synapsed regions of the chromosomes. In the absence of PCH2, the ASY1 signal is not depleted from the chromosome axis and the SC does not form normally. Although this defect in chromosome remodelling has no obvious effect on CO designation, CO maturation is perturbed such that the formation of at least one CO per homolog pair no longer occurs.
Collapse
Affiliation(s)
- Christophe Lambing
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Kim Osman
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Komsun Nuntasoontorn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Allan West
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - James D. Higgins
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Gregory P. Copenhaver
- Department of Biology and Carolina Center for Genome Scientists, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jianhua Yang
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Susan J. Armstrong
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | | | - F. Chris H. Franklin
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Keeney S, Lange J, Mohibullah N. Self-organization of meiotic recombination initiation: general principles and molecular pathways. Annu Rev Genet 2015; 48:187-214. [PMID: 25421598 DOI: 10.1146/annurev-genet-120213-092304] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recombination in meiosis is a fascinating case study for the coordination of chromosomal duplication, repair, and segregation with each other and with progression through a cell-division cycle. Meiotic recombination initiates with formation of developmentally programmed DNA double-strand breaks (DSBs) at many places across the genome. DSBs are important for successful meiosis but are also dangerous lesions that can mutate or kill, so cells ensure that DSBs are made only at the right times, places, and amounts. This review examines the complex web of pathways that accomplish this control. We explore how chromosome breakage is integrated with meiotic progression and how feedback mechanisms spatially pattern DSB formation and make it homeostatic, robust, and error correcting. Common regulatory themes recur in different organisms or in different contexts in the same organism. We review this evolutionary and mechanistic conservation but also highlight where control modules have diverged. The framework that emerges helps explain how meiotic chromosomes behave as a self-organizing system.
Collapse
Affiliation(s)
- Scott Keeney
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
| | | | | |
Collapse
|
39
|
Zickler D, Kleckner N. Recombination, Pairing, and Synapsis of Homologs during Meiosis. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a016626. [PMID: 25986558 DOI: 10.1101/cshperspect.a016626] [Citation(s) in RCA: 512] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recombination is a prominent feature of meiosis in which it plays an important role in increasing genetic diversity during inheritance. Additionally, in most organisms, recombination also plays mechanical roles in chromosomal processes, most notably to mediate pairing of homologous chromosomes during prophase and, ultimately, to ensure regular segregation of homologous chromosomes when they separate at the first meiotic division. Recombinational interactions are also subject to important spatial patterning at both early and late stages. Recombination-mediated processes occur in physical and functional linkage with meiotic axial chromosome structure, with interplay in both directions, before, during, and after formation and dissolution of the synaptonemal complex (SC), a highly conserved meiosis-specific structure that links homolog axes along their lengths. These diverse processes also are integrated with recombination-independent interactions between homologous chromosomes, nonhomology-based chromosome couplings/clusterings, and diverse types of chromosome movement. This review provides an overview of these diverse processes and their interrelationships.
Collapse
Affiliation(s)
- Denise Zickler
- Institut de Génétique et Microbiologie, UMR 8621, Université Paris-Sud, 91405 Orsay, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
40
|
Joshi N, Brown MS, Bishop DK, Börner GV. Gradual implementation of the meiotic recombination program via checkpoint pathways controlled by global DSB levels. Mol Cell 2015; 57:797-811. [PMID: 25661491 DOI: 10.1016/j.molcel.2014.12.027] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 09/03/2014] [Accepted: 12/16/2014] [Indexed: 11/16/2022]
Abstract
During meiosis, Spo11-induced double-strand breaks (DSBs) are processed into crossovers, ensuring segregation of homologous chromosomes (homologs). Meiotic DSB processing entails 5' end resection and preferred strand exchange with the homolog rather than the sister chromatid (homolog bias). In many organisms, DSBs appear gradually along the genome. Here we report unexpected effects of global DSB levels on local recombination events. Early-occurring, low-abundance "scout" DSBs lack homolog bias. Their resection and interhomolog processing are controlled by the conserved checkpoint proteins Tel1(ATM) kinase and Pch2(TRIP13) ATPase. Processing pathways controlled by Mec1(ATR) kinase take over these functions only above a distinct DSB threshold, resulting in progressive strengthening of the homolog bias. We conclude that Tel1(ATM)/Pch2 and Mec1(ATR) DNA damage response pathways are sequentially activated during wild-type meiosis because of their distinct sensitivities to global DSB levels. Moreover, relative DSB order controls the DSB repair pathway choice and, ultimately, recombination outcome.
Collapse
Affiliation(s)
- Neeraj Joshi
- Center for Gene Regulation in Health and Disease and Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - M Scott Brown
- Department of Molecular Genetics and Cell Biology, University of Chicago, Cummings Life Science Center, Chicago, IL 60637, USA; Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Douglas K Bishop
- Department of Molecular Genetics and Cell Biology, University of Chicago, Cummings Life Science Center, Chicago, IL 60637, USA; Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA; Committee on Genetics, University of Chicago, Chicago, IL 60637, USA
| | - G Valentin Börner
- Center for Gene Regulation in Health and Disease and Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA; Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
41
|
Herbert AD, Carr AM, Hoffmann E. FindFoci: a focus detection algorithm with automated parameter training that closely matches human assignments, reduces human inconsistencies and increases speed of analysis. PLoS One 2014; 9:e114749. [PMID: 25478967 PMCID: PMC4257716 DOI: 10.1371/journal.pone.0114749] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/13/2014] [Indexed: 11/19/2022] Open
Abstract
Accurate and reproducible quantification of the accumulation of proteins into foci in cells is essential for data interpretation and for biological inferences. To improve reproducibility, much emphasis has been placed on the preparation of samples, but less attention has been given to reporting and standardizing the quantification of foci. The current standard to quantitate foci in open-source software is to manually determine a range of parameters based on the outcome of one or a few representative images and then apply the parameter combination to the analysis of a larger dataset. Here, we demonstrate the power and utility of using machine learning to train a new algorithm (FindFoci) to determine optimal parameters. FindFoci closely matches human assignments and allows rapid automated exploration of parameter space. Thus, individuals can train the algorithm to mirror their own assignments and then automate focus counting using the same parameters across a large number of images. Using the training algorithm to match human assignments of foci, we demonstrate that applying an optimal parameter combination from a single image is not broadly applicable to analysis of other images scored by the same experimenter or by other experimenters. Our analysis thus reveals wide variation in human assignment of foci and their quantification. To overcome this, we developed training on multiple images, which reduces the inconsistency of using a single or a few images to set parameters for focus detection. FindFoci is provided as an open-source plugin for ImageJ.
Collapse
Affiliation(s)
- Alex D. Herbert
- MRC Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RQ, United Kingdom
- * E-mail:
| | - Antony M. Carr
- MRC Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RQ, United Kingdom
| | - Eva Hoffmann
- MRC Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RQ, United Kingdom
| |
Collapse
|
42
|
Subramanian VV, Hochwagen A. The meiotic checkpoint network: step-by-step through meiotic prophase. Cold Spring Harb Perspect Biol 2014; 6:a016675. [PMID: 25274702 DOI: 10.1101/cshperspect.a016675] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The generation of haploid gametes by meiosis is a highly conserved process for sexually reproducing organisms that, in almost all cases, involves the extensive breakage of chromosomes. These chromosome breaks occur during meiotic prophase and are essential for meiotic recombination as well as the subsequent segregation of homologous chromosomes. However, their formation and repair must be carefully monitored and choreographed with nuclear dynamics and the cell division program to avoid the creation of aberrant chromosomes and defective gametes. It is becoming increasingly clear that an intricate checkpoint-signaling network related to the canonical DNA damage response is deeply interwoven with the meiotic program and preserves order during meiotic prophase. This meiotic checkpoint network (MCN) creates a wide range of dependent relationships controlling chromosome movement, chromosome pairing, chromatin structure, and double-strand break (DSB) repair. In this review, we summarize our current understanding of the MCN. We discuss commonalities and differences in different experimental systems, with a particular emphasis on the emerging design principles that control and limit cross talk between signals to ultimately ensure the faithful inheritance of chromosomes by the next generation.
Collapse
Affiliation(s)
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, New York 10003
| |
Collapse
|
43
|
Zhang L, Wang S, Yin S, Hong S, Kim KP, Kleckner N. Topoisomerase II mediates meiotic crossover interference. Nature 2014; 511:551-6. [PMID: 25043020 DOI: 10.1038/nature13442] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 05/02/2014] [Indexed: 12/30/2022]
Abstract
Spatial patterning is a ubiquitous feature of biological systems. Meiotic crossovers provide an interesting example, defined by the classic phenomenon of crossover interference. Here we identify a molecular pathway for interference by analysing crossover patterns in budding yeast. Topoisomerase II plays a central role, thus identifying a new function for this critical molecule. SUMOylation (of topoisomerase II and axis component Red1) and ubiquitin-mediated removal of SUMOylated proteins are also required. The findings support the hypothesis that crossover interference involves accumulation, relief and redistribution of mechanical stress along the protein/DNA meshwork of meiotic chromosome axes, with topoisomerase II required to adjust spatial relationships among DNA segments.
Collapse
Affiliation(s)
- Liangran Zhang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Shunxin Wang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Shen Yin
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Soogil Hong
- Department of Life Science, Chung-Ang University, Seoul 156-756, South Korea
| | - Keun P Kim
- Department of Life Science, Chung-Ang University, Seoul 156-756, South Korea
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
44
|
Newnham L, Jordan PW, Carballo JA, Newcombe S, Hoffmann E. Ipl1/Aurora kinase suppresses S-CDK-driven spindle formation during prophase I to ensure chromosome integrity during meiosis. PLoS One 2013; 8:e83982. [PMID: 24386320 PMCID: PMC3873974 DOI: 10.1371/journal.pone.0083982] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 10/29/2013] [Indexed: 11/18/2022] Open
Abstract
Cells coordinate spindle formation with DNA repair and morphological modifications to chromosomes prior to their segregation to prevent cell division with damaged chromosomes. Here we uncover a novel and unexpected role for Aurora kinase in preventing the formation of spindles by Clb5-CDK (S-CDK) during meiotic prophase I and when the DDR is active in budding yeast. This is critical since S-CDK is essential for replication during premeiotic S-phase as well as double-strand break induction that facilitates meiotic recombination and, ultimately, chromosome segregation. Furthermore, we find that depletion of Cdc5 polo kinase activity delays spindle formation in DDR-arrested cells and that ectopic expression of Cdc5 in prophase I enhances spindle formation, when Ipl1 is depleted. Our findings establish a new paradigm for Aurora kinase function in both negative and positive regulation of spindle dynamics.
Collapse
Affiliation(s)
- Louise Newnham
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Philip W. Jordan
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Jesus A. Carballo
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Sonya Newcombe
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Eva Hoffmann
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Copsey A, Tang S, Jordan PW, Blitzblau HG, Newcombe S, Chan ACH, Newnham L, Li Z, Gray S, Herbert AD, Arumugam P, Hochwagen A, Hunter N, Hoffmann E. Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions. PLoS Genet 2013; 9:e1004071. [PMID: 24385939 PMCID: PMC3873251 DOI: 10.1371/journal.pgen.1004071] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 11/08/2013] [Indexed: 11/22/2022] Open
Abstract
During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4(Eme1). Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastrophe.
Collapse
Affiliation(s)
- Alice Copsey
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Shangming Tang
- Howard Hughes Medical Institute, University of California, Davis, Davis, California, United States of America
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, United States of America
| | - Philip W. Jordan
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Hannah G. Blitzblau
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Sonya Newcombe
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Andrew Chi-ho Chan
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Louise Newnham
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Zhaobo Li
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Stephen Gray
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Alex D. Herbert
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Prakash Arumugam
- Department of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Andreas Hochwagen
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Neil Hunter
- Howard Hughes Medical Institute, University of California, Davis, Davis, California, United States of America
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, United States of America
- Department of Biology, New York University, New York, New York, United States of America
- Department of Molecular & Cellular Biology, University of California, Davis, Davis, California, United States of America
- Department of Cell Biology & Human Anatomy, University of California, Davis, Davis, California, United States of America
| | - Eva Hoffmann
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
46
|
Abstract
In this review, we discuss the repair of DNA double-strand breaks (DSBs) using a homologous DNA sequence (i.e., homologous recombination [HR]), focusing mainly on yeast and mammals. We provide a historical context for the current view of HR and describe how DSBs are processed during HR as well as interactions with other DSB repair pathways. We discuss the enzymology of the process, followed by studies on DSB repair in living cells. Whenever possible, we cite both original articles and reviews to aid the reader for further studies.
Collapse
Affiliation(s)
- Maria Jasin
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center New York, New York 10065
| | | |
Collapse
|
47
|
Rockmill B, Lefrançois P, Voelkel-Meiman K, Oke A, Roeder GS, Fung JC. High throughput sequencing reveals alterations in the recombination signatures with diminishing Spo11 activity. PLoS Genet 2013; 9:e1003932. [PMID: 24204324 PMCID: PMC3814317 DOI: 10.1371/journal.pgen.1003932] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 09/16/2013] [Indexed: 12/03/2022] Open
Abstract
Spo11 is the topoisomerase-like enzyme responsible for the induction of the meiosis-specific double strand breaks (DSBs), which initiates the recombination events responsible for proper chromosome segregation. Nineteen PCR-induced alleles of SPO11 were identified and characterized genetically and cytologically. Recombination, spore viability and synaptonemal complex (SC) formation were decreased to varying extents in these mutants. Arrest by ndt80 restored these events in two severe hypomorphic mutants, suggesting that ndt80-arrested nuclei are capable of extended DSB activity. While crossing-over, spore viability and synaptonemal complex (SC) formation defects correlated, the extent of such defects was not predictive of the level of heteroallelic gene conversions (prototrophs) exhibited by each mutant. High throughput sequencing of tetrads from spo11 hypomorphs revealed that gene conversion tracts associated with COs are significantly longer and gene conversion tracts unassociated with COs are significantly shorter than in wild type. By modeling the extent of these tract changes, we could account for the discrepancy in genetic measurements of prototrophy and crossover association. These findings provide an explanation for the unexpectedly low prototroph levels exhibited by spo11 hypomorphs and have important implications for genetic studies that assume an unbiased recovery of prototrophs, such as measurements of CO homeostasis. Our genetic and physical data support previous observations of DSB-limited meioses, in which COs are disproportionally maintained over NCOs (CO homeostasis). Most eukaryotes depend on the meiotic division to segregate each pair of chromosomes properly into their gametes. Chromosome segregation mistakes happening during meiosis are responsible for most miscarriages as well as many diseases such as Down's and Kleinfelter's syndromes in humans. Proper chromosome segregation during meiosis depends on efficient and regulated recombination events that link homologous chromosomes prior to the first meiotic division. These linkages are initiated at double-stranded breaks (DSBs) in chromosomal DNA by Spo11 and associated proteins. We isolated a valuable new set of SPO11 alleles in yeast with a wide range of Spo11 activity. Genetic analysis and high throughput sequencing of tetrads from these mutants has revealed unexpected features of meiotic recombination. First, Spo11 DSBs likely continue to form throughout a pachytene arrest in cells compromised for Spo11 activity. Second, the number of recombination initiation events in a given meiosis influences the repair outcome of those events. In addition, our results provide support for crossover homeostasis – a phenomenon in which crossovers are disproportionately maintained over other types of repair in the face of a decrease in DSBs.
Collapse
Affiliation(s)
- Beth Rockmill
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Philippe Lefrançois
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Karen Voelkel-Meiman
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Ashwini Oke
- Department of Obstetrics, Gynecology and Reproductive Sciences and Center for Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - G. Shirleen Roeder
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Jennifer C. Fung
- Department of Obstetrics, Gynecology and Reproductive Sciences and Center for Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Three distinct modes of Mec1/ATR and Tel1/ATM activation illustrate differential checkpoint targeting during budding yeast early meiosis. Mol Cell Biol 2013; 33:3365-76. [PMID: 23775120 DOI: 10.1128/mcb.00438-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombination and synapsis of homologous chromosomes are hallmarks of meiosis in many organisms. Meiotic recombination is initiated by Spo11-induced DNA double-strand breaks (DSBs), whereas chromosome synapsis is mediated by a tripartite structure named the synaptonemal complex (SC). Previously, we proposed that budding yeast SC is assembled via noncovalent interactions between the axial SC protein Red1, SUMO chains or conjugates, and the central SC protein Zip1. Incomplete synapsis and unrepaired DNA are monitored by Mec1/Tel1-dependent checkpoint responses that prevent exit from the pachytene stage. Here, our results distinguished three distinct modes of Mec1/Tec1 activation during early meiosis that led to phosphorylation of three targets, histone H2A at S129 (γH2A), Hop1, and Zip1, which are involved, respectively, in DNA replication, the interhomolog recombination and chromosome synapsis checkpoint, and destabilization of homology-independent centromere pairing. γH2A phosphorylation is Red1 independent and occurs prior to Spo11-induced DSBs. DSB- and Red1-dependent Hop1 phosphorylation is activated via interaction of the Red1-SUMO chain/conjugate ensemble with the Ddc1-Rad17-Mec3 (9-1-1) checkpoint complex and the Mre11-Rad50-Xrs2 complex. During SC assembly, Zip1 outcompetes 9-1-1 from the Red1-SUMO chain ensemble to attenuate Hop1 phosphorylation. In contrast, chromosome synapsis cannot attenuate DSB-dependent and Red1-independent Zip1 phosphorylation. These results reveal how DNA replication, DSB repair, and chromosome synapsis are differentially monitored by the meiotic checkpoint network.
Collapse
|
49
|
Kauppi L, Barchi M, Lange J, Baudat F, Jasin M, Keeney S. Numerical constraints and feedback control of double-strand breaks in mouse meiosis. Genes Dev 2013; 27:873-86. [PMID: 23599345 DOI: 10.1101/gad.213652.113] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Different organisms display widely different numbers of the programmed double-strand breaks (DSBs) that initiate meiotic recombination (e.g., hundreds per meiocyte in mice and humans vs. dozens in nematodes), but little is known about what drives these species-specific DSB set points or the regulatory pathways that control them. Here we examine male mice with a lowered dosage of SPO11, the meiotic DSB catalyst, to gain insight into the effect of reduced DSB numbers on mammalian chromosome dynamics. An approximately twofold DSB reduction was associated with the reduced ability of homologs to synapse along their lengths, provoking prophase arrest and, ultimately, sterility. In many spermatocytes, chromosome subsets displayed a mix of synaptic failure and synapsis with both homologous and nonhomologous partners ("chromosome tangles"). The X chromosome was nearly always involved in tangles, and small autosomes were involved more often than large ones. We conclude that homolog pairing requirements dictate DSB set points during meiosis. Importantly, our results reveal that karyotype is a key factor: Smaller autosomes and heteromorphic sex chromosomes become weak links when DSBs are reduced below a critical threshold. Unexpectedly, unsynapsed chromosome segments trapped in tangles displayed an elevated density of DSB markers later in meiotic prophase. The unsynapsed portion of the X chromosome in wild-type males also showed evidence that DSB numbers increased as prophase progressed. These findings point to the existence of a feedback mechanism that links DSB number and distribution with interhomolog interactions.
Collapse
Affiliation(s)
- Liisa Kauppi
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | |
Collapse
|
50
|
Serrentino ME, Chaplais E, Sommermeyer V, Borde V. Differential association of the conserved SUMO ligase Zip3 with meiotic double-strand break sites reveals regional variations in the outcome of meiotic recombination. PLoS Genet 2013; 9:e1003416. [PMID: 23593021 PMCID: PMC3616913 DOI: 10.1371/journal.pgen.1003416] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 02/12/2013] [Indexed: 11/18/2022] Open
Abstract
During the first meiotic prophase, programmed DNA double-strand breaks (DSBs) are distributed non randomly at hotspots along chromosomes, to initiate recombination. In all organisms, more DSBs are formed than crossovers (CO), the repair product that creates a physical link between homologs and allows their correct segregation. It is not known whether all DSB hotspots are also CO hotspots or if the CO/DSB ratio varies with the chromosomal location. Here, we investigated the variations in the CO/DSB ratio by mapping genome-wide the binding sites of the Zip3 protein during budding yeast meiosis. We show that Zip3 associates with DSB sites that are engaged in repair by CO, and Zip3 enrichment at DSBs reflects the DSB tendency to be repaired by CO. Moreover, the relative amount of Zip3 per DSB varies with the chromosomal location, and specific chromosomal features are associated with high or low Zip3 per DSB. This work shows that DSB hotspots are not necessarily CO hotspots and suggests that different categories of DSB sites may fulfill different functions.
Collapse
Affiliation(s)
| | - Emmanuel Chaplais
- Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR 218, Paris, France
| | - Vérane Sommermeyer
- Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR 218, Paris, France
| | - Valérie Borde
- Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR 218, Paris, France
- * E-mail:
| |
Collapse
|