1
|
Tan C, Wang S, Barboza-Ramos I, Schanze KS. A Perspective Looking Backward and Forward on the 25th Anniversary of Conjugated Polyelectrolytes. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38584485 DOI: 10.1021/acsami.4c02617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Conjugated polyelectrolytes are π-conjugated polymers that contain ionic charged groups such as sulfonate (R-SO3-), carboxylate (R-COO-), or ammonium (R-NR3+) combined with a π-conjugated backbone. This perspective provides a summary review of the key developments in the field, starting from the first reports of their synthesis and properties to application-focused developments. The applications include optical sensors for molecular and biomolecular targets, organic electronic applications, and specific biological applications including cellular imaging and photodynamic therapy. This perspective concludes with a discussion of where the field of conjugated polyelectrolytes is expected to lead in the coming years.
Collapse
Affiliation(s)
- Chunyan Tan
- The State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Isaí Barboza-Ramos
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Kirk S Schanze
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
2
|
Chan CWT, Chan K, Yam VWW. Induced Self-Assembly and Disassembly of Alkynylplatinum(II) 2,6-Bis(benzimidazol-2'-yl)pyridine Complexes with Charge Reversal Properties: "Proof-of-Principle" Demonstration of Ratiometric Förster Resonance Energy Transfer Sensing of pH. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25122-25133. [PMID: 35766435 DOI: 10.1021/acsami.2c05677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A series of pH-responsive alkynylplatinum(II) 2,6-bis(benzimidazol-2'-yl)pyridine (bzimpy) complexes with charge-reversal properties was synthesized, and the supramolecular assemblies between conjugated polyelectrolyte, PFP-OSO3-, and [Pt{bzimpy(TEG)2}{C≡C-C6H3-(COOH)2-3,5}]Cl (1) have been studied using UV-vis absorption, emission, and resonance light scattering (RLS) spectroscopy. An efficient Förster resonance energy transfer (FRET) from PFP-OSO3- donor to the aggregated 1 as acceptor with the aid of Pt(II)···Pt(II) interactions has been presented, which leads to a growth of triplet metal-metal-to-ligand charge transfer (3MMLCT) emission in the low-energy red region. The two-component PFP-OSO3--1 ensemble was then exploited as a "proof-of-principle" concept strategy for pH sensing by tracking the ratiometric emission changes. With the aid of judicious molecular design on the pH-driven charge-reversal property, the polyelectrolyte-induced self-assembly and the FRET from PFP-OSO3- to the platinum(II) aggregates have been modulated. Together with its excellent reversibility and photostability, the extra stability provided by the Pt(II)···Pt(II) and π-π stacking interactions on top of the electrostatic and hydrophobic interactions existing in polyelectrolye-complex assemblies has led to a selective and sensitive pH sensing assay.
Collapse
Affiliation(s)
- Calford Wai-Ting Chan
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Kevin Chan
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| |
Collapse
|
3
|
Zhao M, Uzunoff A, Green M, Rakovich A. The Role of Stabilizing Copolymer in Determining the Physicochemical Properties of Conjugated Polymer Nanoparticles and Their Nanomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091543. [PMID: 37177088 PMCID: PMC10180373 DOI: 10.3390/nano13091543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Conjugated polymer nanoparticles (CPNs) are a promising class of nanomaterials for biomedical applications, such as bioimaging, gene and drug delivery/release, photodynamic therapy (PDT), photothermal therapy (PTT), and environmental sensing. Over the past decade, many reports have been published detailing their synthesis and their various potential applications, including some very comprehensive reviews of these topics. In contrast, there is a distinct lack of overview of the role the stabilizing copolymer shells have on the properties of CPNs. This review attempts to correct this oversight by scrutinizing reports detailing the synthesis and application of CPNs stabilized with some commonly-used copolymers, namely F127 (Pluronic poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) diacrylate), PSMA (poly(styrene-co-maleic anhydride)), PLGA (poly(D, L-lactide-co-glycolide)) and PEG (polyethylene glycol) derivatives. The analysis of the reported physicochemical properties and biological applications of these CPNs provides insights into the advantages of each group of copolymers for specific applications and offers a set of guidance criteria for the selection of an appropriate copolymer when designing CPNs-based probes. Finally, the challenges and outlooks in the field are highlighted.
Collapse
Affiliation(s)
- Miao Zhao
- Physics Department, King's College London, London WC2R 2LS, UK
| | - Anton Uzunoff
- Physics Department, King's College London, London WC2R 2LS, UK
| | - Mark Green
- Physics Department, King's College London, London WC2R 2LS, UK
| | | |
Collapse
|
4
|
Yang X, Yin H, Peng L, Zhang D, Li K, Cui F, Xia C, Huang H, Li Z. The Global Status and Trends of Enteropeptidase: A Bibliometric Study. Front Med (Lausanne) 2022; 9:779722. [PMID: 35223895 PMCID: PMC8866687 DOI: 10.3389/fmed.2022.779722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/19/2022] [Indexed: 01/13/2023] Open
Abstract
BackgroundEnteropeptidase (EP) is a type II transmembrane serine protease and a physiological activator of trypsinogen. Extensive studies related to EP have been conducted to date. However, no bibliometric analysis has systematically investigated this theme. Our study aimed to visualize the current landscape and frontier trends of scientific achievements on EP, provide an overview of the past 120 years and insights for researchers and clinicians to facilitate future collaborative research and clinical intervention.MethodsQuantitative analysis of publications relating to EP from 1900 to 2020 was interpreted and graphed through the Science Citation Index Expanded of Web of Science Core Collection (limited to SCIE). Microsoft office 2019, GraphPad Prism 8, VOSviewer, and R-bibliometrix were used to conduct the bibliometric analysis.ResultsFrom 1900 to 2020, a total of 1,034 publications were retrieved. The USA had the largest number of publications, making the greatest contribution to the topic (n = 260, 25.15%). Active collaborations between countries/regions were also enrolled. Grant and Hermontaylor were perhaps the most impactful researchers in the landscape of EP. Protein Expression and Purification and the Journal of Biological Chemistry were the most prevalent (79/1,034, 7.64%) and cited journals (n = 2,626), respectively. Using the top 15 citations and co-citations achievements clarified the theoretical basis of the EP research field. Important topics mainly include the structure of EP, the affective factors for activating substrates by EP, EP-related disorders, and inhibitors of EP.ConclusionBased on the bibliometric analysis, we have gained a comprehensive analysis of the global status and research frontiers of studies investigating EP, which provides some guidance and reference for researchers and clinicians engaged in EP research.
Collapse
Affiliation(s)
- Xiaoli Yang
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Shanghai Pudong New Area Gongli Hospital, Shanghai, China
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Hua Yin
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Shanghai Pudong New Area Gongli Hospital, Shanghai, China
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Lisi Peng
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Deyu Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Keliang Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Cui
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Chuanchao Xia
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Haojie Huang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
- *Correspondence: Haojie Huang
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
- Zhaoshen Li
| |
Collapse
|
5
|
Veni, Vidi, Vici: Immobilized Peptide-Based Conjugates as Tools for Capture, Analysis, and Transformation. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10010031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Analysis of peptide biomarkers of pathological states of the organism is often a serious challenge, due to a very complex composition of the cell and insufficient sensitivity of the current analytical methods (including mass spectrometry). One of the possible ways to overcome this problem is sample enrichment by capturing the selected components using a specific solid support. Another option is increasing the detectability of the desired compound by its selective tagging. Appropriately modified and immobilized peptides can be used for these purposes. In addition, they find application in studying the specificity and activity of proteolytic enzymes. Immobilized heterocyclic peptide conjugates may serve as metal ligands, to form complexes used as catalysts or analytical markers. In this review, we describe various applications of immobilized peptides, including selective capturing of cysteine-containing peptides, tagging of the carbonyl compounds to increase the sensitivity of their detection, enrichment of biological samples in deoxyfructosylated peptides, and fishing out of tyrosine–containing peptides by the formation of azo bond. Moreover, the use of the one-bead-one-compound peptide library for the analysis of substrate specificity and activity of caspases is described. Furthermore, the evolution of immobilization from the solid support used in peptide synthesis to nanocarriers is presented. Taken together, the examples presented here demonstrate immobilized peptides as a multifunctional tool, which can be successfully used to solve multiple analytical problems.
Collapse
|
6
|
Fluorescence Determination of Peptidase Activity Based on the Quenching of a Fluorophore-Labelled Peptide by Graphene Oxide. Protein J 2021; 40:682-688. [PMID: 33856620 DOI: 10.1007/s10930-021-09985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2021] [Indexed: 10/21/2022]
Abstract
In this study, a fluorescence detection strategy is reported for the peptidase activity assay, which is based on fluorescence resonance energy transfer (FRET) from a fluorophore-labelled peptide to graphene oxide (GO). By the hydrolysis of the peptide, the fluorophore-labelled peptide releases the fluorophore 5-carboxyfluorescein, which can avoid quenching from GO. Thus, the increased intensity of the obtained fluorescence signal in the assay is directly dependent on the peptidase activity. As a model case of the developed strategy, the activity determination of pancreatic elastase (PE) is performed. Under the optimal experimental conditions at an excitation wavelength of 494 nm, the activity of PE can be determined in the range from 0.003 to 0.10 U/mL, with a detection limit of 0.001 U/mL at the emission wavelength of 518 nm. This is ultra-sensitive for the determination of PE. The specificity of the method is demonstrated by the analysis of PE under complex conditions using fetal bovine serum as the substrate. Hence, the developed method might provide an intrinsically convenient, sensitive platform for the PE activity assay and related biochemical studies due to its homogeneous, and fluorescence-based detection strategy.
Collapse
|
7
|
Qiu L, Cui P, Zhu Z, Xu M, Jia W, Sheng J, Ni X, Zhou S, Wang J. Multienzyme detection and in‐situ monitoring of enzyme activity by bending CE using quantum dots‐based polypeptide substrate. Electrophoresis 2020; 41:1103-1108. [PMID: 32091140 DOI: 10.1002/elps.202000023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/16/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Lin Qiu
- School of Pharmaceutical Engineering and Life ScienceChangzhou University Changzhou Jiangsu P. R. China
| | - Pengfei Cui
- School of Pharmaceutical Engineering and Life ScienceChangzhou University Changzhou Jiangsu P. R. China
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University Changzhou Jiangsu P. R. China
| | - Zhilan Zhu
- School of Pharmaceutical Engineering and Life ScienceChangzhou University Changzhou Jiangsu P. R. China
| | - Mingyu Xu
- Changzhou Le Sun Pharmaceuticals Co., Ltd Changzhou Jiangsu P. R. China
| | - Wenjing Jia
- School of Pharmaceutical Engineering and Life ScienceChangzhou University Changzhou Jiangsu P. R. China
| | - Jingyu Sheng
- Wujin Hospital Affiliated with Jiangsu University Changzhou Jiangsu P. R. China
| | - Xinye Ni
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University Changzhou Jiangsu P. R. China
| | - Shuwen Zhou
- School of Pharmaceutical Engineering and Life ScienceChangzhou University Changzhou Jiangsu P. R. China
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University Changzhou Jiangsu P. R. China
| | - Jianhao Wang
- School of Pharmaceutical Engineering and Life ScienceChangzhou University Changzhou Jiangsu P. R. China
- Changzhou Le Sun Pharmaceuticals Co., Ltd Changzhou Jiangsu P. R. China
| |
Collapse
|
8
|
The centenary of the Stern-Volmer equation of fluorescence quenching: From the single line plot to the SV quenching map. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2019.100338] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
van de Laar T, Hooiveld E, Higler R, van der Scheer P, Sprakel J. Gel Trapping Enables Optical Spectroscopy of Single Solvated Conjugated Polymers in Equilibrium. ACS NANO 2019; 13:13185-13195. [PMID: 31647632 PMCID: PMC6887849 DOI: 10.1021/acsnano.9b06164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Single-molecule studies have provided a wealth of insight into the photophysics of conjugated polymers in the solid and desolvated state. Desolvating conjugated chains, e.g., by their embedding in inert solid matrices, invariably leads to chain collapse and the formation of intermolecular aggregates, which have a pronounced effect on their properties. By contrast, the luminescent properties of individual semiconducting polymers in their solvated and thermodynamic state remain largely unexplored. In this paper, we demonstrate a versatile gel trapping technique that enables the chemistry-free immobilization and interrogation of individual conjugated macromolecules, which retain a fully equilibrated conformation by contrast to conventional solid-state immobilization methods. We show how the technique can be used to record full luminescence spectra of single chains, to evaluate their time-resolved fluorescence, and to probe their photodynamics. Finally, we explore how the photophysics of different conjugated polymers is strongly affected by desolvation and chain collapse.
Collapse
|
10
|
Scheer PVD, Laar TVD, Sprakel J. Chain length-dependent luminescence in acceptor-doped conjugated polymers. Sci Rep 2019; 9:11217. [PMID: 31375694 PMCID: PMC6677785 DOI: 10.1038/s41598-019-47537-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/09/2019] [Indexed: 11/16/2022] Open
Abstract
Semiconducting polymers doped with a minority fraction of energy transfer acceptors feature a sensitive coupling between chain conformation and fluorescence emission, that can be harnessed for advanced solution-based molecular sensing and diagnostics. While it is known that chain length strongly affects chain conformation, and its response to external cues, the effects of chain length on the emission patterns in chromophore-doped conjugated polymers remains incompletely understood. In this paper, we explore chain-length dependent emission in two different acceptor-doped polyfluorenes. We show how the binomial distribution of acceptor incorporation, during the probabilistic polycondensation reaction, creates a strong chain-length dependency in the optical properties of this class of luminescent polymers. In addition, we also find that the intrachain exciton migration rate is chain-length dependent, giving rise to additional complexity. Both effects combined, make for the need to develop sensoric conjugated polymers of improved monodispersity and chemical homogeneity, to improve the accuracy of conjugated polymer based diagnostic approaches.
Collapse
Affiliation(s)
- Pieter van der Scheer
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Ties van de Laar
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Joris Sprakel
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, The Netherlands.
| |
Collapse
|
11
|
Zlobovskaya OA, Shirmanova MV, Kovaleva TF, Sarkisyan KS, Zagaynova EV, Lukyanov KA. Sensors for Caspase Activities. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162018060109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Whitten DG, Tang Y, Zhou Z, Yang J, Wang Y, Hill EH, Pappas HC, Donabedian PL, Chi EY. A Retrospective: 10 Years of Oligo(phenylene-ethynylene) Electrolytes: Demystifying Nanomaterials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:307-325. [PMID: 30056722 DOI: 10.1021/acs.langmuir.8b01810] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this retrospective, we first reviewed the synthesis of the oligo(phenylene-ethynylene) electrolytes (OPEs) we created in the past 10 years. Since the general antimicrobial activity of these OPEs had been reported in our previous account in Langmuir, we are focusing only on the unusual spectroscopic and photophysical properties of these OPEs and their complexes with anionic scaffolds and detergents in this Feature Article. We applied classical all-atom MD simulations to study the hydrogen bonding environment in the water surrounding the OPEs with and without detergents present. Our finding is that OPEs could form a unit cluster or unit aggregate with a few oppositely charged detergent molecules, indicating that the photostability and photoreactivity of these OPEs might be considerably altered with important consequences to their activity as antimicrobials and fluorescence-based sensors. Thus, in the following sections, we showed that OPE complexes with detergents exhibit enhanced light-activated biocidal activity compared to either OPE or detergent individually. We also found that similar complexes between certain OPEs and biolipids could be used to construct sensors for the enzyme activity. Finally, the OPEs could covalently bind to microsphere surfaces to make a bactericidal surface, which is simpler and more ordered than the surface grafted from microspheres with polyelectrolytes. In the Conclusions and Prospects section, we briefly summarize the properties of OPEs developed so far and future areas for investigation.
Collapse
Affiliation(s)
- David G Whitten
- Department of Chemical and Biological Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Yanli Tang
- Department of Chemical and Biological Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Zhijun Zhou
- Department of Chemical and Biological Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Jianzhong Yang
- Department of Chemical and Biological Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Ying Wang
- Department of Chemical and Biological Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Eric H Hill
- Department of Chemical and Biological Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Harry C Pappas
- Department of Chemical and Biological Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Patrick L Donabedian
- Department of Chemical and Biological Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Eva Y Chi
- Department of Chemical and Biological Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| |
Collapse
|
13
|
Khalilzadeh B, Shadjou N, Kanberoglu GS, Afsharan H, de la Guardia M, Charoudeh HN, Ostadrahimi A, Rashidi MR. Advances in nanomaterial based optical biosensing and bioimaging of apoptosis via caspase-3 activity: a review. Mikrochim Acta 2018; 185:434. [PMID: 30159750 DOI: 10.1007/s00604-018-2980-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022]
Abstract
Caspase-3 plays a vital role in intrinsic and extrinsic pathways of programed cell death and in cell proliferation. Its detection is an important tool for early detection of some cancers and apoptosis-related diseases, and for monitoring the efficacy of pharmaceuticals and of chemo- and radiotherapy of cancers. This review (with 72 references) summarizes nanomaterial based methods for signal amplification in optical methods for the determination of caspase-3 activity. Following an introduction into the field, a first large section covers optical assays, with subsections on luminescent and chemiluminescence, fluorometric (including FRET based), and colorimetric assays. Further section summarize methods for bioimaging of caspase-3. A concluding section covers current challenges and future perspectives. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Balal Khalilzadeh
- Stem Cell Research Center (SCRC), Tabriz University of Medical Sciences, Tabriz, 51664-14766, Iran.
| | - Nasrin Shadjou
- Department of Nanochemistry and Nanotechnology Center, Urmia University, Urmia, 57154, Iran.
| | | | - Hadi Afsharan
- Faculty of Physics, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | | | - Alireza Ostadrahimi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, 51666-14711, Iran
| | - Mohammad-Reza Rashidi
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Sciences, Tabriz, 51664-14766, Iran
| |
Collapse
|
14
|
Kim I, Moon JS, Oh JW. Recent advances in M13 bacteriophage-based optical sensing applications. NANO CONVERGENCE 2016; 3:27. [PMID: 28191437 PMCID: PMC5271159 DOI: 10.1186/s40580-016-0087-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/07/2016] [Indexed: 05/03/2023]
Abstract
Recently, M13 bacteriophage has started to be widely used as a functional nanomaterial for various electrical, chemical, or optical applications, such as battery components, photovoltaic cells, sensors, and optics. In addition, the use of M13 bacteriophage has expanded into novel research, such as exciton transporting. In these applications, the versatility of M13 phage is a result of its nontoxic, self-assembling, and specific binding properties. For these reasons, M13 phage is the most powerful candidate as a receptor for transducing chemical or optical phenomena of various analytes into electrical or optical signal. In this review, we will overview the recent progress in optical sensing applications of M13 phage. The structural and functional characters of M13 phage will be described and the recent results in optical sensing application using fluorescence, surface plasmon resonance, Förster resonance energy transfer, and surface enhanced Raman scattering will be outlined.
Collapse
Affiliation(s)
- Inhong Kim
- Research Center for Energy Convergence Technology, Pusan National University, Busan, 46241 Republic of Korea
| | - Jong-Sik Moon
- BK21 Plus Division of Nano Convergence Technology, Pusan National University, Busan, 46241 Republic of Korea
| | - Jin-Woo Oh
- Research Center for Energy Convergence Technology, Pusan National University, Busan, 46241 Republic of Korea
- BK21 Plus Division of Nano Convergence Technology, Pusan National University, Busan, 46241 Republic of Korea
- Department of Nanoenergy Engineering, Pusan National University, Busan, 46241 Republic of Korea
| |
Collapse
|
15
|
Synthesis and application of biocompatible gold corepoly-(l-Lysine) shell nanoparticles. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Motoyanagi J, Ishikawa T, Minoda M. Stimuli-responsive brush-shaped conjugated polymers with pendant well-defined poly(vinyl ether)s. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28220] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jin Motoyanagi
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology; Matsugasaki, Sakyo-Ku Kyoto 606-8585 Japan
| | - Taketo Ishikawa
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology; Matsugasaki, Sakyo-Ku Kyoto 606-8585 Japan
| | - Masahiko Minoda
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology; Matsugasaki, Sakyo-Ku Kyoto 606-8585 Japan
| |
Collapse
|
17
|
Yang JK, Kwak SY, Jeon SJ, Lee E, Ju JM, Kim HI, Lee YS, Kim JH. Proteolytic disassembly of peptide-mediated graphene oxide assemblies for turn-on fluorescence sensing of proteases. NANOSCALE 2016; 8:12272-12281. [PMID: 27271225 DOI: 10.1039/c6nr02815b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Molecule-induced assembly of nanomaterials can alter their unique chemical and physical properties, which can be a promising approach for sensing. Herein, we demonstrate an optical 'turn-on' biosensor for the detection of matrix metalloproteinase-2 (MMP-2), fabricated by means of a peptide-induced assembly of fluorescent graphene oxide (GO). Functionalization of GO with a peptide substrate for MMP-2 bearing a thiol group leads to its self-assembly via disulfide bonding, accompanied by self-quenching of GO's strong fluorescence. This peptide-induced GO assembly is then disassembled by proteolytic cleavage in the presence of MMP-2, thereby restoring the level of self-quenched GO fluorescence. With this approach, we are able to detect MMP-2 and to investigate the kinetic parameters of MMP-2 activity. The GO-peptide assembly is successfully applied to the selective and sensitive detection of MMP-2 secreted by living cells, human hepatocytes HepG2, at a concentration of 2 ng mL(-1).
Collapse
Affiliation(s)
- Jin-Kyoung Yang
- School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Republic of Korea.
| | - Seon-Yeong Kwak
- Department of Chemical Engineering, Hanyang University, Ansan 426-791, Republic of Korea.
| | - Su-Ji Jeon
- Department of Chemical Engineering, Hanyang University, Ansan 426-791, Republic of Korea.
| | - Eunjin Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Republic of Korea.
| | - Jong-Min Ju
- Department of Chemical Engineering, Hanyang University, Ansan 426-791, Republic of Korea.
| | - Hye-In Kim
- Department of Chemical Engineering, Hanyang University, Ansan 426-791, Republic of Korea.
| | - Yoon-Sik Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Republic of Korea.
| | - Jong-Ho Kim
- Department of Chemical Engineering, Hanyang University, Ansan 426-791, Republic of Korea.
| |
Collapse
|
18
|
Yuan H, Fan Y, Xing C, Niu R, Chai R, Zhan Y, Qi J, An H, Xu J. Conjugated Polymer-Based Hybrid Materials for Turn-On Detection of CO2 in Plant Photosynthesis. Anal Chem 2016; 88:6593-7. [DOI: 10.1021/acs.analchem.6b01489] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hongbo Yuan
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, P.R. China
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Yibing Fan
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Chengfen Xing
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Ruimin Niu
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Ran Chai
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Yong Zhan
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Junjie Qi
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Hailong An
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Jialiang Xu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
19
|
Zhan R, Liu B. Functionalized Conjugated Polyelectrolytes for Biological Sensing and Imaging. CHEM REC 2016; 16:1715-40. [DOI: 10.1002/tcr.201500308] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Ruoyu Zhan
- School of Materials Science and Engineering; Tongji University; 4800 Caoan Road Shanghai 201804 P. R. China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering; National University of Singapore 4 Engineering Drive 4117585 Singapore (Republic of Singapore) and Institution of Materials Research and Engineering A*STAR3 Research Link; 117602 Singapore Republic of Singapore
| |
Collapse
|
20
|
Chan K, Yik-Sham Chung C, Wing-Wah Yam V. Parallel folding topology-selective label-free detection and monitoring of conformational and topological changes of different G-quadruplex DNAs by emission spectral changes via FRET of mPPE-Ala-Pt(ii) complex ensemble. Chem Sci 2016; 7:2842-2855. [PMID: 30090278 PMCID: PMC6055111 DOI: 10.1039/c5sc04563k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/05/2016] [Indexed: 12/28/2022] Open
Abstract
The formation of supramolecular assemblies between [Pt(bzimpy-Et){C[triple bond, length as m-dash]CC6H4(CH2NMe3-4)}]Cl2 (1) and mPPE-Ala and the FRET properties of the ensemble have been revealed from the UV-vis absorption, steady-state emission and time-resolved emission decay studies. The two-component mPPE-Ala-1 ensemble has been employed in a "proof-of-principle" concept for label-free detection of G-quadruplex DNAs with the intramolecular propeller parallel folding topology, such as c-myc, in aqueous buffer solution. By the modulation of the aggregation/deaggregation of the polymer-metal complex aggregates and hence the FRET from the mPPE-Ala donor to the aggregated 1 as acceptor, the ensemble has been demonstrated for sensitive and selective label-free detection of c-myc via the monitoring of emission spectral changes of the ensemble. Ratiometric emission of the ensemble at 461 and 662 nm has been shown to distinguish the intramolecular propeller parallel G-quadruplex folding topology of c-myc from other G-quadruplex-forming sequences of different folding topologies, owing to the strong and specific interactions between c-myc and 1 as suggested by the UV-vis absorption and UV melting studies. In addition, the formation of high-order intermolecular multimeric G-quadruplexes from c-myc under molecular crowding conditions has been successfully probed by the ratiometric emission of the ensemble. The conformational and topological transition of human telomeric DNA from the mixed-hybrid form to the intramolecular propeller parallel form, as observed from the circular dichroism spectroscopy, has also been monitored by the ratiometric emission of the ensemble. The ability of the ensemble to detect these conformational and topological transitions of G-quadruplex DNAs has been rationalized by the excellent selectivity and sensitivity of the ensemble towards the intramolecular propeller parallel G-quadruplex DNAs and their high-order intermolecular multimers, which are due to the extra stabilization gained from Pt···Pt and π-π interactions in addition to the electrostatic and hydrophobic interactions found in the polymer-metal complex aggregates.
Collapse
Affiliation(s)
- Kevin Chan
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China .
| | - Clive Yik-Sham Chung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China .
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China .
| |
Collapse
|
21
|
Graña-Suárez L, Verboom W, Huskens J. Fluorescent supramolecular nanoparticles signal the loading of electrostatically charged cargo. Chem Commun (Camb) 2016; 52:2597-600. [DOI: 10.1039/c5cc09074a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular nanoparticles (SNPs) become responsive to the loading of cargo by attaching a fluorescent dye to one of the building blocks. The SNPs shrink upon loading them with a positively charged cargo polymer. When using a dye-labeled cargo, FRET occurs between the SNP components and the cargo.
Collapse
Affiliation(s)
- Laura Graña-Suárez
- Molecular Nanofabrication group
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| | - Willem Verboom
- Molecular Nanofabrication group
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| | - Jurriaan Huskens
- Molecular Nanofabrication group
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| |
Collapse
|
22
|
Chan K, Chung CY, Yam VW. Conjugated Polyelectrolyte‐Induced Self‐Assembly of Alkynylplatinum(II) 2,6‐Bis(benzimidazol‐2′‐yl)pyridine Complexes. Chemistry 2015; 21:16434-47. [DOI: 10.1002/chem.201501804] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Kevin Chan
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (P. R. China)
| | - Clive Yik‐Sham Chung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (P. R. China)
| | - Vivian Wing‐Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (P. R. China)
| |
Collapse
|
23
|
Komarova E, Bogomolova A, Aldissi M. Conjugated fluorescent polymer sensor for proteolytic activity detection with designed specificity. POLYM INT 2015. [DOI: 10.1002/pi.4940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Cingil HE, Storm IM, Yorulmaz Y, te Brake DW, de Vries R, Cohen Stuart MA, Sprakel J. Monitoring Protein Capsid Assembly with a Conjugated Polymer Strain Sensor. J Am Chem Soc 2015; 137:9800-3. [DOI: 10.1021/jacs.5b05914] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hande E. Cingil
- Physical
Chemistry and Soft
Matter, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands
| | - Ingeborg M. Storm
- Physical
Chemistry and Soft
Matter, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands
| | - Yelda Yorulmaz
- Physical
Chemistry and Soft
Matter, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands
| | - Diane W. te Brake
- Physical
Chemistry and Soft
Matter, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands
| | - Renko de Vries
- Physical
Chemistry and Soft
Matter, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands
| | - Martien A. Cohen Stuart
- Physical
Chemistry and Soft
Matter, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands
| | - Joris Sprakel
- Physical
Chemistry and Soft
Matter, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands
| |
Collapse
|
25
|
Huang H, Li Y, Liu J, Tong J, Su X. Detection of bisphenol A in food packaging based on fluorescent conjugated polymer PPESO3 and enzyme system. Food Chem 2015; 185:233-8. [PMID: 25952863 DOI: 10.1016/j.foodchem.2015.03.076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/29/2015] [Accepted: 03/21/2015] [Indexed: 12/26/2022]
Abstract
Bisphenol A (BPA) is a kind of carcinogen, which can interfere with the body's endocrine system. In this paper, a new kind of fluorescent sensor for BPA detection was established based on the fluorescent conjugated polymer PPESO3. The oxidative product of BPA is able to quench PPESO3 in the presence of HRP and H2O2, and the quenched PL intensity of PPESO3 was proportionally to the concentration of BPA in the range of 1-100 μmol/L with a detection limit of 4 × 10(-7) mol/L. The proposed method has been applied to detect BPA in eight food packaging samples with satisfactory results. The proposed method has the potential for the assay of BPA in food or food packaging samples.
Collapse
Affiliation(s)
- Hui Huang
- College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China; College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yongxin Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jintong Liu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jin Tong
- College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Xingguang Su
- College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
26
|
Zhai Y, Zhuang H, Pei M, Zhang G, Li H. The development of a conjugated polyelectrolytes derivative based fluorescence switch and its application in penicillamine detection. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2014.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Liu Q, Wang J, Boyd BJ. Peptide-based biosensors. Talanta 2015; 136:114-27. [PMID: 25702993 DOI: 10.1016/j.talanta.2014.12.020] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/26/2014] [Accepted: 12/18/2014] [Indexed: 12/24/2022]
Abstract
Peptides have been used as components in biological analysis and fabrication of novel biosensors for a number of reasons, including mature synthesis protocols, diverse structures and as highly selective substrates for enzymes. Bio-conjugation strategies can provide an efficient way to convert interaction information between peptides and analytes into a measurable signal, which can be used for fabrication of novel peptide-based biosensors. Many sensitive fluorophores can respond rapidly to environmental changes and stimuli manifest as a change in spectral characteristics, hence environmentally-sensitive fluorophores have been widely used as signal markers to conjugate to peptides to construct peptide-based molecular sensors. Additionally, nanoparticles, fluorescent polymers, graphene and near infrared dyes are also used as peptide-conjugated signal markers. On the other hand, peptides may play a generalist role in peptide-based biosensors. Peptides have been utilized as bio-recognition elements to bind various analytes including proteins, nucleic acid, bacteria, metal ions, enzymes and antibodies in biosensors. The selectivity of peptides as an enzymatic substrate has thus been utilized to construct enzyme sensors or enzyme-activity sensors. In addition, progress on immobilization and microarray techniques of peptides has facilitated the progress and commercial application of chip-based peptide biosensors in clinical diagnosis.
Collapse
Affiliation(s)
- Qingtao Liu
- Drug Delivery Disposition and Dynamics-Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville 3052, VIC, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville 3052, VIC, Australia
| | - Jinfeng Wang
- Australian Future Fibres Research and Innovation Centre, Institute for Frontier Materials, Deakin University, Geelong 3217, VIC, Australia
| | - Ben J Boyd
- Drug Delivery Disposition and Dynamics-Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville 3052, VIC, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville 3052, VIC, Australia.
| |
Collapse
|
28
|
Jang G, Kim J, Kim D, Lee TS. Synthesis of triphenylamine-containing conjugated polyelectrolyte and fabrication of fluorescence color-changeable, paper-based sensor strips for biothiol detection. Polym Chem 2015. [DOI: 10.1039/c4py01201a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new emission color-changeable (green-to-blue) conjugated polyelectrolyte was synthesized to use in biothiol sensing with its paper-based strip.
Collapse
Affiliation(s)
- Geunseok Jang
- Organic and Optoelectronic Materials Laboratory
- Department of Advanced Organic Materials and Textile System Engineering
- Chungnam National University
- Daejeon 305-764
- Korea
| | - Jongho Kim
- Organic and Optoelectronic Materials Laboratory
- Department of Advanced Organic Materials and Textile System Engineering
- Chungnam National University
- Daejeon 305-764
- Korea
| | - Daigeun Kim
- Organic and Optoelectronic Materials Laboratory
- Department of Advanced Organic Materials and Textile System Engineering
- Chungnam National University
- Daejeon 305-764
- Korea
| | - Taek Seung Lee
- Organic and Optoelectronic Materials Laboratory
- Department of Advanced Organic Materials and Textile System Engineering
- Chungnam National University
- Daejeon 305-764
- Korea
| |
Collapse
|
29
|
Zhan R, Liu B. Benzothiadiazole-Containing Conjugated Polyelectrolytes for Biological Sensing and Imaging. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400408] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ruoyu Zhan
- School of Materials Science and Engineering; Tongji University; 4800 Caoan Road Shanghai 201804 China
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 117585 Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 117585 Singapore
- Institute of Materials Research and Engineering, A*STAR; 3 Research Link 117602 Singapore
| |
Collapse
|
30
|
Chen J, Wang Y, Li W, Zhou H, Li Y, Yu C. Nucleic Acid-Induced Tetraphenylethene Probe Noncovalent Self-Assembly and the Superquenching of Aggregation-Induced Emission. Anal Chem 2014; 86:9866-72. [DOI: 10.1021/ac502496h] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jian Chen
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yan Wang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenying Li
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huipeng Zhou
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yongxin Li
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Cong Yu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
31
|
Song Y, Zhang X, Huang L, Behlke MA, Tsourkas A. Real-time imaging of single engineered RNA transcripts in living cells using ratiometric bimolecular beacons. J Vis Exp 2014:e51544. [PMID: 25146531 DOI: 10.3791/51544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The growing realization that both the temporal and spatial regulation of gene expression can have important consequences on cell function has led to the development of diverse techniques to visualize individual RNA transcripts in single living cells. One promising technique that has recently been described utilizes an oligonucleotide-based optical probe, ratiometric bimolecular beacon (RBMB), to detect RNA transcripts that were engineered to contain at least four tandem repeats of the RBMB target sequence in the 3'-untranslated region. RBMBs are specifically designed to emit a bright fluorescent signal upon hybridization to complementary RNA, but otherwise remain quenched. The use of a synthetic probe in this approach allows photostable, red-shifted, and highly emissive organic dyes to be used for imaging. Binding of multiple RBMBs to the engineered RNA transcripts results in discrete fluorescence spots when viewed under a wide-field fluorescent microscope. Consequently, the movement of individual RNA transcripts can be readily visualized in real-time by taking a time series of fluorescent images. Here we describe the preparation and purification of RBMBs, delivery into cells by microporation and live-cell imaging of single RNA transcripts.
Collapse
Affiliation(s)
- Yang Song
- Department of Bioengineering, University of Pennsylvania
| | - Xuemei Zhang
- Department of Bioengineering, University of Pennsylvania
| | | | | | | |
Collapse
|
32
|
Kuzmin MG, Soboleva IV, Durandin NA, Lisitsyna ES, Kuzmin VA. Microphase mechanism of "superquenching" of luminescent probes in aqueous solutions of DNA and some other polyelectrolytes. J Phys Chem B 2014; 118:4245-52. [PMID: 24641485 DOI: 10.1021/jp500713q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A new approach in terms of microphase model of aqueous solutions of polyelectrolytes is proposed for explanation of a very strong quenching of luminescent probes ("superquenching") in these solutions. This phenomenon is used in literature for creation of extremely sensitive chemical and biosensors and was attributed predominantly to efficient energy or electron transfer. Microphase approach considers this phenomenon in terms of local concentrations of both the luminescent compound and of the quencher in microphase, formed by DNA and other polyelectrolytes, which can be several (4-10) orders of magnitude greater than their apparent concentrations in solution. Large local concentrations of the light absorbing centers in the microphase also provide conditions for aggregation of these centers and efficient energy transfer, which provides a significant increase in quenching constants (∼10(2)-10(5)). Microphase approach provides good quantitative description of all the features of the superquenching, new possibilities for analysis and control of kinetics of DNA reactions, and for improvement of the sensitivity of luminescent sensors. It reveals nonspecific localization of the luminescent centers and of Aun nanoparticles in different positions of DNA molecules that hinders from the simultaneous use of optical methods and electron or tunneling microscopy for the combined study of the structure of DNA.
Collapse
Affiliation(s)
- Michael G Kuzmin
- Department of Chemistry, Moscow M. V. Lomonosov University , Leninskie Gory, Moscow 119991, Russia
| | | | | | | | | |
Collapse
|
33
|
Ye X, Zhang J, Chen H, Wang X, Huang F. Fluorescent nanomicelles for selective detection of Sudan dye in Pluronic F127 aqueous media. ACS APPLIED MATERIALS & INTERFACES 2014; 6:5113-5121. [PMID: 24625370 DOI: 10.1021/am500270a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Novel self-assembled water-soluble nanomicelles that contain fluorescent conjugated polymers (poly(9,9-dioctylfluorene) (PFO) or poly[2,7-(9,9-dihexylfluorene)-alt-4,4'-phenylether] (PF-PE)) have been obtained and used as the highly sensitive/selective platform for Sudan dye detection. The Fluorescent nanomicelles exhibited a highly selective fluorescence quenching by the prohibited food additive Sudan I, while not for the natural pigments: Capsanthin and Beta-carotene, due to the more suitable matching of the LUMOs (lowest unoccupied molecular orbital) of the conjugated polymers with that of Sudan I molecules. The Stern-Volmer constants (K(SV)) of PF-PE/F127 and PFO/F127 for Sudan I were 1,040,480 and 665,000 M(-1), respectively, which were more than 100 times higher than those of the same conjugated polymers in the orgainc solvents. The significantly enhanced sensitivity was due to the collective effect of the F127 micelles to both chromophore and analyte, through which the fluorophone-analyte binding interaction is significantly strengthened and efficient photoinduced charge transfer occurs. The as-proposed materials and approach may be potentially applied in the real-time food safety screening.
Collapse
Affiliation(s)
- Xinliang Ye
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, and ‡State Key Laboratory of Pulp & Paper Engineering, School of Light Industry and Food Science, South China University of Technology , Guangzhou 510640, P. R. China
| | | | | | | | | |
Collapse
|
34
|
Chen Y, Hong P, Xu B, He Z, Zhou B. Streptavidin sensor and its sensing mechanism based on water-soluble fluorescence conjugated polymer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 122:441-446. [PMID: 24322760 DOI: 10.1016/j.saa.2013.11.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/24/2013] [Accepted: 11/10/2013] [Indexed: 06/03/2023]
Abstract
Fluorescence quenching effect of water-soluble anionic conjugated polymer (CP) (poly[5-methoxy-2-(3-sulfopoxy)-1,4-phenylenevinylene] (MPS-PPV)) by [Re(N-N)(CO)3(py-CH2-NH-biotin)](PF6) [N-N=2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline; py-CH2-NH-biotin=N-[(4-pyridyl) methyl] biotinamide] (Re-Biotin) and fluorescence recovery in the presence of streptavidin (or avidin) were investigated using Re-Biotin as quencher tether ligand (QTL) probe. Meanwhile, the mechanisms of fluorescence quenching and recovery were discussed to provide new thoughts to design biosensor based on water-soluble CPs. The results indicate that the sensing mechanisms of streptavidin sensor or avidin sensor, using Re-Biotin as QTL probe, are the same and stable, whether in non-buffer system (aqueous solution) or different buffer systems [0.01 mol·L(-1) phosphate buffered solution (pH=7.4), 0.1 mol·L(-1) ammonium carbonate buffered solution (pH=8.9)]. There exists specific interactions between streptavidin (or avidin) and biotin of Re-Biotin. Fluorescence quenching and recovery processes of MPS-PPV are reversible. Mechanisms of Re-Biotin quenching MPS-PPV fluorescence can be interpreted as strong electrostatic interactions and charge transferences between Re-Biotin and MPS-PPV. Fluorescence recovery mechanisms of Re-Biotin-MPS-PPV system can be interpreted as specific interactions between streptavidin (or avidin) and biotin of Re-Biotin making Re-Biotin far away from MPS-PPV. Avidin or strptavidin as re-Biotin probe can not only be quantitatively determinated, but also be identified.
Collapse
Affiliation(s)
- Yanguo Chen
- College of Chemistry and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Pollutant Analysis and Reclamation Technology of Hubei, Hubei Normal University, Huangshi 435002, China; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Peng Hong
- College of Chemistry and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Baoming Xu
- College of Chemistry and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Zhike He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Baohan Zhou
- College of Chemistry and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
35
|
Jo S, Kim D, Son SH, Kim Y, Lee TS. Conjugated poly(fluorene-quinoxaline) for fluorescence imaging and chemical detection of nerve agents with its paper-based strip. ACS APPLIED MATERIALS & INTERFACES 2014; 6:1330-1336. [PMID: 24372409 DOI: 10.1021/am405430t] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Conjugated polymer of poly(fluorene-co-quinoxaline) was synthesized via Suzuki coupling polymerization. The emission color of the polymer can be tuned depending on the concentration of the polymer in solution. A low-energy bandgap is observed both in the concentrated solution and in the solid state, caused by aggregation of the polymer chains, resulting in long wavelength emission from the quinoxaline moiety, while short wavelength emission can be seen in diluted, well-dissolved solution. The presence of quinoxaline units enables us to demonstrate fluorescence switching and imaging. Paper-based strips containing the polymer are prepared via simple immersion of filter paper in the polymer solution for practical use in the detection of nerve agents. The emission of the paper-based strip is quenched upon exposure to diethyl chlorophosphate (DCP), a nerve agent simulant, and the initial emission intensity can be almost restored by treatment with aqueous sodium hydroxide solution, making a possible reversible paper-based sensor.
Collapse
Affiliation(s)
- Seonyoung Jo
- Organic and Optoelectronic Materials Laboratory, Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University , Daejeon 305-764, Korea
| | | | | | | | | |
Collapse
|
36
|
Shen H, Kou C, He M, Yang H, Liu K. Synthesis and surfactochromicity of 1,4-diketopyrrolo[3,4-c]pyrrole(DPP)-based anionic conjugated polyelectrolytes. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.27062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Haoyue Shen
- College of Life and Basic Science; Sichuan Agricultural University; Yaan 625014 People's Republic of China
| | - Chun Kou
- College of Life and Basic Science; Sichuan Agricultural University; Yaan 625014 People's Republic of China
| | - Min He
- College of Life and Basic Science; Sichuan Agricultural University; Yaan 625014 People's Republic of China
| | - Han Yang
- College of Life and Basic Science; Sichuan Agricultural University; Yaan 625014 People's Republic of China
| | - Kuan Liu
- College of Life and Basic Science; Sichuan Agricultural University; Yaan 625014 People's Republic of China
| |
Collapse
|
37
|
Wang X, Groff LC, McNeill JD. Photoactivation and saturated emission in blended conjugated polymer nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:13925-31. [PMID: 24099661 DOI: 10.1021/la402767j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Blended poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1',3}-thiadiazole)] (PFBT)/poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) conjugated polymer nanoparticles were prepared and characterized by conventional and single-particle fluorescence spectroscopy. The particles exhibit red emission and improved quantum efficiency resulting from highly efficient energy transfer from donor PFBT to acceptor MEH-PPV as well as suppression of MEH-PPV aggregation. Photobleaching results indicate better photostability in the blended sample compared to undoped MEH-PPV nanoparticles and photoactivation of donor emission, which could be useful for single-molecule localization-based super-resolution microscopy. Single blended nanoparticles exhibit bright fluorescence as well as saturation behavior at very low excitation intensities. These and other properties of the blended conjugated polymer nanoparticles could provide substantial improvements in resolution when employed in super-resolution microscopy.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Chemistry, Clemson University , Clemson, South Carolina 29634, United States
| | | | | |
Collapse
|
38
|
He X, Ma N. Biomimetic synthesis of fluorogenic quantum dots for ultrasensitive label-free detection of protease activities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:2527-2531. [PMID: 23420767 DOI: 10.1002/smll.201202570] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/06/2013] [Indexed: 06/01/2023]
Abstract
A biomimetic quantum dot synthesis-based strategy for ultrasensitive label-free detection of protease activities is reported. A dithiol peptide substrate can be activated by the protease through cleavage to form monothiol peptides, which then triggers QD growth and generates a photoluminescence signal readout. As low as 0.8 nM trypsin can be detected directly in buffer and serum and 4 pM trypsin can be detected via trypsinogen amplification with high signal to background ratios.
Collapse
Affiliation(s)
- Xuewen He
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | | |
Collapse
|
39
|
Dwivedi AK, Iyer PK. A fluorescence turn on trypsin assay based on aqueous polyfluorene. J Mater Chem B 2013; 1:4005-4010. [PMID: 32261227 DOI: 10.1039/c3tb20712a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new method based on the electrostatic interaction of a novel anionic water soluble polymer P1 with a positively charged polypeptide Arg6 was developed for a continuous and real time turn on assay for the enzymatic activity of trypsin under alkaline conditions with a limit of detection of 0.17 nM. This method was also able to screen the inhibitors of trypsin. P1 fluorescence intensity was significantly decreased by the positively charged Arg6 due to the electrostatic interaction, whereas the enzymatic action recovered P1 fluorescence due to the fragmentation of Arg6 into small positively charged fragments and these were unable to quench the P1 fluorescence. Therefore, by triggering the fluorescence intensity change, it was possible to assay the enzymatic activity. Use of water soluble conjugated polymer P1 and no labeling on the substrate enhances the utility of this method significantly.
Collapse
Affiliation(s)
- Atul Kumar Dwivedi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | | |
Collapse
|
40
|
Rochat S, Swager TM. Conjugated amplifying polymers for optical sensing applications. ACS APPLIED MATERIALS & INTERFACES 2013; 5:4488-502. [PMID: 23682919 DOI: 10.1021/am400939w] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Thanks to their unique optical and electrochemical properties, conjugated polymers have attracted considerable attention over the last two decades and resulted in numerous technological innovations. In particular, their implementation in sensing schemes and devices was widely investigated and produced a multitude of sensory systems and transduction mechanisms. Conjugated polymers possess numerous attractive features that make them particularly suitable for a broad variety of sensing tasks. They display sensory signal amplification (compared to their small-molecule counterparts) and their structures can easily be tailored to adjust solubility, absorption/emission wavelengths, energy offsets for excited state electron transfer, and/or for use in solution or in the solid state. This versatility has made conjugated polymers a fluorescence sensory platform of choice in the recent years. In this review, we highlight a variety of conjugated polymer-based sensory mechanisms together with selected examples from the recent literature.
Collapse
Affiliation(s)
- Sébastien Rochat
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | |
Collapse
|
41
|
Wang L, Zhang G, Pei M, Hu L, Li E, Li H. A novel water-soluble polythiophene derivatives based fluorescence “turn-on” method for protein determination. J Appl Polym Sci 2013. [DOI: 10.1002/app.39166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lin Wang
- School of Chemistry and Chemical Engineering; University of Jinan; Jinan 250022 China
| | - Guangyou Zhang
- School of Chemistry and Chemical Engineering; University of Jinan; Jinan 250022 China
| | - Meishan Pei
- School of Chemistry and Chemical Engineering; University of Jinan; Jinan 250022 China
| | - Linlin Hu
- School of Chemistry and Chemical Engineering; University of Jinan; Jinan 250022 China
| | - Enyong Li
- School of Chemistry and Chemical Engineering; University of Jinan; Jinan 250022 China
| | - Huizhi Li
- School of Chemistry and Chemical Engineering; University of Jinan; Jinan 250022 China
| |
Collapse
|
42
|
Fluorescence turn-on detection of cyanide anion based on viologen-quenched water-soluble hyperbranched polymer. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Liu R, Tan Y, Zhang C, Wu J, Mei L, Jiang Y, Tan C. A real-time fluorescence turn-on assay for trypsin based on a conjugated polyelectrolyte. J Mater Chem B 2013; 1:1402-1405. [PMID: 32260779 DOI: 10.1039/c3tb00020f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We report a continuous and sensitive fluorescence turn-on assay for trypsin by using an anionic conjugated polyelectrolyte (PPE-CO2H) and a cationic peptide substrate labelled with p-nitroaniline (RxG-pNA). Applications of the assay in trypsin activity study and high-throughput screening of protease inhibitors were demonstrated.
Collapse
Affiliation(s)
- Renxuan Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | | | | | | | | | | | | |
Collapse
|
44
|
Shi H, Wang G, Liang J, Liu B. Fluorescence turn-on detection of live cell apoptosis using a hyperbranched conjugated polyelectrolyte. MEDCHEMCOMM 2013. [DOI: 10.1039/c2md20240a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Yong X, Wan W, Su M, You W, Lu X, Yan Y, Qu J, Liu R, Masuda T. Thiourea-functionalized poly(phenyleneethynylene): fluorescent chemosensors for anions and cations. Polym Chem 2013. [DOI: 10.1039/c3py00359k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Chung CYS, Yam VWW. Selective label-free detection of G-quadruplex structure of human telomere by emission spectral changes in visible-and-NIR region under physiological condition through the FRET of a two-component PPE-SO3−–Pt(ii) complex ensemble with Pt⋯Pt, electrostatic and π–π interactions. Chem Sci 2013. [DOI: 10.1039/c2sc20897k] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
47
|
Guo C, Yang X, Wang X, Pei M, Zhang G. Highly sensitive detection of Hg2+ in aqueous solution using cationic polythiophene derivatives. NEW J CHEM 2013. [DOI: 10.1039/c3nj00892d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Tang Y, Liu Y, Cao A. Strategy for Sensor Based on Fluorescence Emission Red Shift of Conjugated Polymers: Applications in pH Response and Enzyme Activity Detection. Anal Chem 2012; 85:825-30. [DOI: 10.1021/ac302840t] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yanli Tang
- Key Laboratory of Applied Surface and Colloid Chemistry,
Ministry of Education, Key Laboratory of Analytical Chemistry for
Life Science of Shaanxi Province, School of Chemistry and Chemical
Engineering, Shaanxi Normal University,
Xi’an 710062, P. R. China
| | - Yue Liu
- Key Laboratory of Applied Surface and Colloid Chemistry,
Ministry of Education, Key Laboratory of Analytical Chemistry for
Life Science of Shaanxi Province, School of Chemistry and Chemical
Engineering, Shaanxi Normal University,
Xi’an 710062, P. R. China
| | - Ali Cao
- Key Laboratory of Applied Surface and Colloid Chemistry,
Ministry of Education, Key Laboratory of Analytical Chemistry for
Life Science of Shaanxi Province, School of Chemistry and Chemical
Engineering, Shaanxi Normal University,
Xi’an 710062, P. R. China
| |
Collapse
|
49
|
Dwivedi AK, Prasad KM, Trivedi V, Iyer PK. Interaction of heme proteins with anionic polyfluorene: insights into physiological effects, folding events, and inhibition activity. ACS APPLIED MATERIALS & INTERFACES 2012; 4:6371-6377. [PMID: 23113839 DOI: 10.1021/am302046n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Because of the toxicity caused by the heme redox-active iron proteins, their elevated levels, localization, and accumulation in the brain, many forms of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, occur as a result of which the brain becomes vulnerable to oxidative stress, ultimately resulting in neuronal death. An anionic water-soluble conjugated polyfluorene derivative poly(9,9-bis(6-sulfate hexyl) fluorene-alt-1,4-phenylene) sodium salt (P1) that binds Fe³⁺ proteins with very high selectivity and sensitivity is reported here. The photophysical properties of P1 were modified by the interaction with ferric heme-containing proteins cytochrome c (Cc), methemoglobin (MetHb), and hemin. P1 was found to be highly sensitive toward Fe³⁺ heme proteins as compared to nonmetalloproteins. We observed that the respective activities of ferric heme proteins were inhibited and proteins were unfolded, due to modification in their heme microenvironment in the presence of the polymer P1. The observations reported in this article provide the first example for the use of a water-soluble conjugated polymer in applications, such as (1) to detect small quantities of iron proteins in aqueous medium/physiological condition with the highest K(sv) values of 2.27 × 10⁸ M⁻¹ for Cc, 3.81 × 10⁷ M⁻¹ for MetHb, and 5.31 × 10⁷ M⁻¹ for hemin; (2) to study the physiological effects of heme metalloproteins; (3) to visualize the folding events in real time; and (4) the inhibition activity of metalloproteins can be selectively studied using a conjugated polymer based assay system rapidly without interference from nonmetalloproteins at biological pH. All this is achieved by generating optical events, taking advantage of the bright fluorescence of anionic polyfluorene P1 in this case, that can be observed and monitored by modification in the absorption and emission color in real time.
Collapse
Affiliation(s)
- Atul Kumar Dwivedi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India
| | | | | | | |
Collapse
|
50
|
Xie Y, Tan Y, Liu R, Zhao R, Tan C, Jiang Y. Continuous and sensitive acid phosphatase assay based on a conjugated polyelectrolyte. ACS APPLIED MATERIALS & INTERFACES 2012; 4:3784-3787. [PMID: 22812479 DOI: 10.1021/am3011498] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We report a novel continuous and sensitive fluorescence turn-on assay for ACPs, which consists of a cationic conjugated polyelectrolyte (PPE4+) and a commonly used phosphatase substrate p-nitrophenyl phosphate (pNPP). The kinetics of the ACP catalyzed hydrolysis of the substrate pNPP was monitored by the fluorescence change of PPE4+ and corresponding kinetic parameters were derived to be consistent with the literature reports. The applications of PPE4+/pNPP-based ACP assay in high-throughput screening of ACP inhibitors and detection of prostatic acid phosphotase (PAP) in vitro were demonstrated.
Collapse
|