1
|
Nagami S, Kaguchi R, Akahane T, Harabuchi Y, Taniguchi T, Monde K, Maeda S, Ichikawa S, Katsuyama A. Photoinduced dual bond rotation of a nitrogen-containing system realized by chalcogen substitution. Nat Chem 2024; 16:959-969. [PMID: 38418536 DOI: 10.1038/s41557-024-01461-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/26/2024] [Indexed: 03/01/2024]
Abstract
Photoinduced concerted multiple-bond rotation has been proposed in some biological systems. However, the observation of such phenomena in synthetic systems, in other words, the synthesis of molecules that undergo photoinduced multiple-bond rotation upon photoirradiation, has been a challenge in the photochemistry field. Here we describe a chalcogen-substituted benzamide system that exhibits photoinduced dual bond rotation in heteroatom-containing bonds. Introduction of the chalcogen substituent into a sterically hindered benzamide system provides sufficient kinetic stability and photosensitivity to enable the photoinduced concerted rotation. The presence of two different substituents on the phenyl ring in the thioamide derivative enables the generation of a pair of enantiomers and E/Z isomers. Using these four stereoisomers as indicators of which bonds are rotated, we monitor the photoinduced C-N/C-C concerted bond rotation in the thioamide derivative depending on external stimuli such as temperature and photoirradiation. Theoretical calculations provide insight on the mechanism of this selective photoinduced C-N/C-C concerted rotation.
Collapse
Affiliation(s)
- Shotaro Nagami
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Rintaro Kaguchi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Taichi Akahane
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yu Harabuchi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
- JST, ERATO, Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Sapporo, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Tohru Taniguchi
- Frontier Research Center of Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Kenji Monde
- Frontier Research Center of Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
- JST, ERATO, Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Sapporo, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
- Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | - Akira Katsuyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
- Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
2
|
Abstract
Rhodopsin is the photoreceptor in human rod cells responsible for dim-light vision. The visual receptors are part of the large superfamily of G protein-coupled receptors (GPCRs) that mediate signal transduction in response to diverse diffusible ligands. The high level of sequence conservation within the transmembrane helices of the visual receptors and the family A GPCRs has long been considered evidence for a common pathway for signal transduction. I review recent studies that reveal a comprehensive mechanism for how light absorption by the retinylidene chromophore drives rhodopsin activation and highlight those features of the mechanism that are conserved across the ligand-activated GPCRs.
Collapse
Affiliation(s)
- Steven O Smith
- Department of Biochemistry and Cell Biology, Center for Structural Biology, Stony Brook University, Stony Brook, New York, USA;
| |
Collapse
|
3
|
Hofmann KP, Lamb TD. Rhodopsin, light-sensor of vision. Prog Retin Eye Res 2023; 93:101116. [PMID: 36273969 DOI: 10.1016/j.preteyeres.2022.101116] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
The light sensor of vertebrate scotopic (low-light) vision, rhodopsin, is a G-protein-coupled receptor comprising a polypeptide chain with bound chromophore, 11-cis-retinal, that exhibits remarkable physicochemical properties. This photopigment is extremely stable in the dark, yet its chromophore isomerises upon photon absorption with 70% efficiency, enabling the activation of its G-protein, transducin, with high efficiency. Rhodopsin's photochemical and biochemical activities occur over very different time-scales: the energy of retinaldehyde's excited state is stored in <1 ps in retinal-protein interactions, but it takes milliseconds for the catalytically active state to form, and many tens of minutes for the resting state to be restored. In this review, we describe the properties of rhodopsin and its role in rod phototransduction. We first introduce rhodopsin's gross structural features, its evolution, and the basic mechanisms of its activation. We then discuss light absorption and spectral sensitivity, photoreceptor electrical responses that result from the activity of individual rhodopsin molecules, and recovery of rhodopsin and the visual system from intense bleaching exposures. We then provide a detailed examination of rhodopsin's molecular structure and function, first in its dark state, and then in the active Meta states that govern its interactions with transducin, rhodopsin kinase and arrestin. While it is clear that rhodopsin's molecular properties are exquisitely honed for phototransduction, from starlight to dawn/dusk intensity levels, our understanding of how its molecular interactions determine the properties of scotopic vision remains incomplete. We describe potential future directions of research, and outline several major problems that remain to be solved.
Collapse
Affiliation(s)
- Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik (CC2), Charité, and, Zentrum für Biophysik und Bioinformatik, Humboldt-Unversität zu Berlin, Berlin, 10117, Germany.
| | - Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
4
|
Chandler B, Todd L, Smith SO. Magic angle spinning NMR of G protein-coupled receptors. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 128:25-43. [PMID: 35282868 PMCID: PMC10718405 DOI: 10.1016/j.pnmrs.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
G protein-coupled receptors (GPCRs) have a simple seven transmembrane helix architecture which has evolved to recognize a diverse number of chemical signals. The more than 800 GPCRs encoded in the human genome function as receptors for vision, smell and taste, and mediate key physiological processes. Consequently, these receptors are a major target for pharmaceuticals. Protein crystallography and electron cryo-microscopy have provided high resolution structures of many GPCRs in both active and inactive conformations. However, these structures have not sparked a surge in rational drug design, in part because GPCRs are inherently dynamic and the structural changes induced by ligand or drug binding to stabilize inactive or active conformations are often subtle rearrangements in packing or hydrogen-bonding interactions. NMR spectroscopy provides a sensitive probe of local structure and dynamics at specific sites within these receptors as well as global changes in receptor structure and dynamics. These methods can also capture intermediate states and conformations with low populations that provide insights into the activation pathways. We review the use of solid-state magic angle spinning NMR to address the structure and activation mechanisms of GPCRs. The focus is on the large and diverse class A family of receptors. We highlight three specific class A GPCRs in order to illustrate how solid-state, as well as solution-state, NMR spectroscopy can answer questions in the field involving how different GPCR classes and subfamilies are activated by their associated ligands, and how small molecule drugs can modulate GPCR activation.
Collapse
Affiliation(s)
- Bianca Chandler
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States.
| | - Lauren Todd
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States.
| | - Steven O Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States.
| |
Collapse
|
5
|
Lu S, He X, Yang Z, Chai Z, Zhou S, Wang J, Rehman AU, Ni D, Pu J, Sun J, Zhang J. Activation pathway of a G protein-coupled receptor uncovers conformational intermediates as targets for allosteric drug design. Nat Commun 2021; 12:4721. [PMID: 34354057 PMCID: PMC8342441 DOI: 10.1038/s41467-021-25020-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 07/17/2021] [Indexed: 02/07/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the most common proteins targeted by approved drugs. A complete mechanistic elucidation of large-scale conformational transitions underlying the activation mechanisms of GPCRs is of critical importance for therapeutic drug development. Here, we apply a combined computational and experimental framework integrating extensive molecular dynamics simulations, Markov state models, site-directed mutagenesis, and conformational biosensors to investigate the conformational landscape of the angiotensin II (AngII) type 1 receptor (AT1 receptor) - a prototypical class A GPCR-activation. Our findings suggest a synergistic transition mechanism for AT1 receptor activation. A key intermediate state is identified in the activation pathway, which possesses a cryptic binding site within the intracellular region of the receptor. Mutation of this cryptic site prevents activation of the downstream G protein signaling and β-arrestin-mediated pathways by the endogenous AngII octapeptide agonist, suggesting an allosteric regulatory mechanism. Together, these findings provide a deeper understanding of AT1 receptor activation at an atomic level and suggest avenues for the design of allosteric AT1 receptor modulators with a broad range of applications in GPCR biology, biophysics, and medicinal chemistry.
Collapse
Affiliation(s)
- Shaoyong Lu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Xinheng He
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Material Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhao Yang
- Department of Biochemistry and Molecular Biology, Key Laboratory Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Zongtao Chai
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Shuhua Zhou
- Department of Biochemistry and Molecular Biology, Key Laboratory Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Junyan Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Ashfaq Ur Rehman
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Duan Ni
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jinpeng Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong, China.
| | - Jian Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
6
|
Takahashi N, Saito D, Hasegawa S, Yamasaki M, Imai M. Vitamin A in health care: Suppression of growth and induction of differentiation in cancer cells by vitamin A and its derivatives and their mechanisms of action. Pharmacol Ther 2021; 230:107942. [PMID: 34175370 DOI: 10.1016/j.pharmthera.2021.107942] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/13/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
Vitamin A is an important micro-essential nutrient, whose primary dietary source is retinyl esters. In addition, β-carotene (pro-vitamin A) is a precursor of vitamin A contained in green and yellow vegetables that is converted to retinol in the body after ingestion. Retinol is oxidized to produce visual retinal, which is further oxidized to retinoic acid (RA), which is used as a therapeutic agent for patients with promyelocytic leukemia. Thus, the effects of retinal and RA are well known. In this paper, we will introduce (1) vitamin A circulation in the body, (2) the actions and mechanisms of retinal and RA, (3) retinoylation: another RA mechanism not depending on RA receptors, (4) the relationship between cancer and actions of retinol or β-carotene, whose roles in vivo are still unknown, and (5) anti-cancer actions of vitamin A derivatives derived from fenretinide (4-HPR). We propose that vitamin A nutritional management is effective in the prevention of cancer.
Collapse
Affiliation(s)
- Noriko Takahashi
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501, Japan.
| | - Daisuke Saito
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| | - Shinya Hasegawa
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| | - Masahiro Yamasaki
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| | - Masahiko Imai
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| |
Collapse
|
7
|
Ashokan A, Harisankar HS, Kameswaran M, Aradhyam GK. Critical APJ receptor residues in extracellular domains that influence effector selectivity. FEBS J 2021; 288:6543-6562. [PMID: 34076959 DOI: 10.1111/febs.16048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/14/2021] [Accepted: 05/01/2021] [Indexed: 11/29/2022]
Abstract
Human APJ receptor/apelin receptor (APJR), activated by apelin peptide isoforms, regulates a wide range of physiological processes. The role of extracellular loop (ECL) domain residues of APJR in ligand binding and receptor activation has not been established yet. Based on multiple sequence alignment of APJ receptor from various organisms, we identified conserved residues in the extracellular domains. Alanine substitutions of specific residues were characterized to evaluate their ligand binding efficiency and Gq -, Gi -, and β-arrestin-mediated signaling. Mutation-dependent variation in ligand binding and signaling was observed. W197 A in ECL2 and L276 L277 W279 -AAA in ECL3 were deficient in Gi and β-arrestin signaling pathways with relatively preserved Gq -mediated signaling. T169 T170 -AA, Y182 A, and T190 A mutants in ECL2 showed impaired β-arrestin-dependent cell signaling while maintaining G protein- mediated signaling. Structural comparison with angiotensin II type I receptor revealed the importance of ECL2 and ECL3 residues in APJR ligand binding and signaling. Our results unequivocally confirm the specific role of these ECL residues in ligand binding and in orchestrating receptor conformations that are involved in preferential/biased signaling functions.
Collapse
Affiliation(s)
- Anisha Ashokan
- Signal Transduction Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Harikumar Sheela Harisankar
- Signal Transduction Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Mythili Kameswaran
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Gopala Krishna Aradhyam
- Signal Transduction Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
8
|
Kubatova N, Mao J, Eckert CE, Saxena K, Gande SL, Wachtveitl J, Glaubitz C, Schwalbe H. Light Dynamics of the Retinal-Disease-Relevant G90D Bovine Rhodopsin Mutant. Angew Chem Int Ed Engl 2020; 59:15656-15664. [PMID: 32602600 PMCID: PMC7496284 DOI: 10.1002/anie.202003671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/25/2020] [Indexed: 12/11/2022]
Abstract
The RHO gene encodes the G-protein-coupled receptor (GPCR) rhodopsin. Numerous mutations associated with impaired visual cycle have been reported; the G90D mutation leads to a constitutively active mutant form of rhodopsin that causes CSNB disease. We report on the structural investigation of the retinal configuration and conformation in the binding pocket in the dark and light-activated state by solution and MAS-NMR spectroscopy. We found two long-lived dark states for the G90D mutant with the 11-cis retinal bound as Schiff base in both populations. The second minor population in the dark state is attributed to a slight shift in conformation of the covalently bound 11-cis retinal caused by the mutation-induced distortion on the salt bridge formation in the binding pocket. Time-resolved UV/Vis spectroscopy was used to monitor the functional dynamics of the G90D mutant rhodopsin for all relevant time scales of the photocycle. The G90D mutant retains its conformational heterogeneity during the photocycle.
Collapse
Affiliation(s)
- Nina Kubatova
- Center for Biomolecular Magnetic ResonanceGoethe University FrankfurtMax-von-Laue-Strasse 760438FrankfurtGermany
- Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Laue-Strasse 760438FrankfurtGermany
| | - Jiafei Mao
- Center for Biomolecular Magnetic ResonanceGoethe University FrankfurtMax-von-Laue-Strasse 760438FrankfurtGermany
- Institute of Biophysical ChemistryGoethe University FrankfurtMax-von-Laue-Strasse 960438FrankfurtGermany
| | - Carl Elias Eckert
- Institute of Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue-Strasse 760438FrankfurtGermany
| | - Krishna Saxena
- Center for Biomolecular Magnetic ResonanceGoethe University FrankfurtMax-von-Laue-Strasse 760438FrankfurtGermany
- Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Laue-Strasse 760438FrankfurtGermany
| | - Santosh L. Gande
- Center for Biomolecular Magnetic ResonanceGoethe University FrankfurtMax-von-Laue-Strasse 760438FrankfurtGermany
- Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Laue-Strasse 760438FrankfurtGermany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue-Strasse 760438FrankfurtGermany
| | - Clemens Glaubitz
- Center for Biomolecular Magnetic ResonanceGoethe University FrankfurtMax-von-Laue-Strasse 760438FrankfurtGermany
- Institute of Biophysical ChemistryGoethe University FrankfurtMax-von-Laue-Strasse 960438FrankfurtGermany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic ResonanceGoethe University FrankfurtMax-von-Laue-Strasse 760438FrankfurtGermany
- Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Laue-Strasse 760438FrankfurtGermany
| |
Collapse
|
9
|
Kubatova N, Mao J, Eckert CE, Saxena K, Gande SL, Wachtveitl J, Glaubitz C, Schwalbe H. Light Dynamics of the Retinal‐Disease‐Relevant G90D Bovine Rhodopsin Mutant. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Nina Kubatova
- Center for Biomolecular Magnetic Resonance Goethe University Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt Germany
- Institute for Organic Chemistry and Chemical Biology Goethe University Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt Germany
| | - Jiafei Mao
- Center for Biomolecular Magnetic Resonance Goethe University Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt Germany
- Institute of Biophysical Chemistry Goethe University Frankfurt Max-von-Laue-Strasse 9 60438 Frankfurt Germany
| | - Carl Elias Eckert
- Institute of Physical and Theoretical Chemistry Goethe University Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt Germany
| | - Krishna Saxena
- Center for Biomolecular Magnetic Resonance Goethe University Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt Germany
- Institute for Organic Chemistry and Chemical Biology Goethe University Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt Germany
| | - Santosh L. Gande
- Center for Biomolecular Magnetic Resonance Goethe University Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt Germany
- Institute for Organic Chemistry and Chemical Biology Goethe University Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry Goethe University Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt Germany
| | - Clemens Glaubitz
- Center for Biomolecular Magnetic Resonance Goethe University Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt Germany
- Institute of Biophysical Chemistry Goethe University Frankfurt Max-von-Laue-Strasse 9 60438 Frankfurt Germany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance Goethe University Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt Germany
- Institute for Organic Chemistry and Chemical Biology Goethe University Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt Germany
| |
Collapse
|
10
|
Structural biology of human GPCR drugs and endogenous ligands - insights from NMR spectroscopy. Methods 2020; 180:79-88. [PMID: 32911074 DOI: 10.1016/j.ymeth.2020.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent the largest class of "druggable" proteins in the human genome. For more than a decade, crystal structures and, more recently, cryoEM structures of GPCR complexes have provided unprecedented insight into GPCR drug binding and cell signaling. Nevertheless, structure determination of receptors in complexes with weakly binding molecules or complex polypeptides remains especially challenging, including for hormones, many of which have so far eluded researchers. Nuclear magnetic resonance (NMR) spectroscopy has emerged as a promising approach to determine structures of ligands bound to their receptors and to provide insights into the dynamics of GPCR-bound drugs. The capability to investigate compounds with weak binding affinities has also been leveraged in NMR applications to identify novel lead compounds in drug screening campaigns. We review recent structural biology studies of GPCR ligands by NMR, highlighting new methodologies enabling studies of GPCRs with native sequences and in native-like membrane environments that provide insights into important drugs and endogenous ligands.
Collapse
|
11
|
Ryazantsev MN, Nikolaev DM, Struts AV, Brown MF. Quantum Mechanical and Molecular Mechanics Modeling of Membrane-Embedded Rhodopsins. J Membr Biol 2019; 252:425-449. [PMID: 31570961 DOI: 10.1007/s00232-019-00095-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/10/2019] [Indexed: 12/20/2022]
Abstract
Computational chemistry provides versatile methods for studying the properties and functioning of biological systems at different levels of precision and at different time scales. The aim of this article is to review the computational methodologies that are applicable to rhodopsins as archetypes for photoactive membrane proteins that are of great importance both in nature and in modern technologies. For each class of computational techniques, from methods that use quantum mechanics for simulating rhodopsin photophysics to less-accurate coarse-grained methodologies used for long-scale protein dynamics, we consider possible applications and the main directions for improvement.
Collapse
Affiliation(s)
- Mikhail N Ryazantsev
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, Saint Petersburg, Russia, 198504
| | - Dmitrii M Nikolaev
- Saint-Petersburg Academic University - Nanotechnology Research and Education Centre RAS, Saint Petersburg, Russia, 194021
| | - Andrey V Struts
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA.,Laboratory of Biomolecular NMR, Saint Petersburg State University, Saint Petersburg, Russia, 199034
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA. .,Department of Physics, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
12
|
Grabarek D, Andruniów T. Initial excited-state relaxation of locked retinal protonated schiff base chromophore. An insight from coupled cluster and multireference perturbation theory calculations. J Comput Chem 2018; 39:1720-1727. [PMID: 29727036 DOI: 10.1002/jcc.25346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 11/07/2022]
Abstract
The initial S1 excited-state relaxation of retinal protonated Schiff base (RPSB) analog with central C11C12 double bond locked by eight-membered ring (locked-11.8) was investigated by means of multireference perturbation theory methods (XMCQDPT2, XMS-CASPT2, MS-CASPT2) as well as single-reference coupled-cluster CC2 method. The analysis of XMCQDPT2-based geometries reveals rather weak coupling between in-plane and out-of-plane structural evolution and minor energetical relaxation of three locked-11.8 conformers. Therefore, a strong coupling between bonds length inversion and backbone out-of-plane deformation resulting in a very steep S1 energy profile predicted by CASSCF/CASPT2 calculations is in clear contradiction with the reference XMCQDPT2 results. Even though CC2 method predicts good quality ground-state structures, the excited-state structures display more advanced torsional deformation leading to ca. 0.2 eV exaggerated energy relaxation and significantly red shifted (0.4-0.7 eV) emission maxima. According to our findings, the initial photoisomerization process in locked-11.8, and possibly in other RPSB analogs, studied fully (both geometries and energies) by multireference perturbation theory may be somewhat slower than predicted by CASSCF/CASPT2 or CC2 methods. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dawid Grabarek
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| | - Tadeusz Andruniów
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| |
Collapse
|
13
|
Retinal orientation and interactions in rhodopsin reveal a two-stage trigger mechanism for activation. Nat Commun 2016; 7:12683. [PMID: 27585742 PMCID: PMC5025775 DOI: 10.1038/ncomms12683] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/22/2016] [Indexed: 01/28/2023] Open
Abstract
The 11-cis retinal chromophore is tightly packed within the interior of the visual receptor rhodopsin and isomerizes to the all-trans configuration following absorption of light. The mechanism by which this isomerization event drives the outward rotation of transmembrane helix H6, a hallmark of activated G protein-coupled receptors, is not well established. To address this question, we use solid-state NMR and FTIR spectroscopy to define the orientation and interactions of the retinal chromophore in the active metarhodopsin II intermediate. Here we show that isomerization of the 11-cis retinal chromophore generates strong steric interactions between its β-ionone ring and transmembrane helices H5 and H6, while deprotonation of its protonated Schiff's base triggers the rearrangement of the hydrogen-bonding network involving residues on H6 and within the second extracellular loop. We integrate these observations with previous structural and functional studies to propose a two-stage mechanism for rhodopsin activation.
Collapse
|
14
|
Grabarek D, Walczak E, Andruniów T. Assessing the Accuracy of Various Ab Initio Methods for Geometries and Excitation Energies of Retinal Chromophore Minimal Model by Comparison with CASPT3 Results. J Chem Theory Comput 2016; 12:2346-56. [DOI: 10.1021/acs.jctc.6b00108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dawid Grabarek
- Advanced Materials Engineering
and Modelling Group, Wroclaw University of Technology, Wyb. Wyspianskiego
27, 50-370 Wroclaw, Poland
| | - Elżbieta Walczak
- Advanced Materials Engineering
and Modelling Group, Wroclaw University of Technology, Wyb. Wyspianskiego
27, 50-370 Wroclaw, Poland
| | - Tadeusz Andruniów
- Advanced Materials Engineering
and Modelling Group, Wroclaw University of Technology, Wyb. Wyspianskiego
27, 50-370 Wroclaw, Poland
| |
Collapse
|
15
|
Li P, Kong XY, Xie G, Xiao K, Zhang Z, Wen L, Jiang L. Adenosine-Activated Nanochannels Inspired by G-Protein-Coupled Receptors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1854-1858. [PMID: 26915491 DOI: 10.1002/smll.201503863] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 01/26/2016] [Indexed: 06/05/2023]
Abstract
A bioinspired adenosine activated nanodevice is demonstrated in which the conformations of the designed aptamer change and cause signal transmission according to the emergence of adenosine. This bioinspired system exhibits very high response ratios (activated/nonactivated ratio up to 614) and excellent stability and reversibility, and shows promising applications in the fields of biosensors, pharmaceutica, and healthcare systems.
Collapse
Affiliation(s)
- Pei Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Xiang-Yu Kong
- Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ganhua Xie
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Kai Xiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhen Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Liping Wen
- Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing, 100191, P. R. China
- Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
16
|
Struts AV, Barmasov AV, Brown MF. CONDENSED-MATTER SPECTROSCOPY SPECTRAL METHODS FOR STUDY OF THE G-PROTEIN-COUPLED RECEPTOR RHODOPSIN. II. MAGNETIC RESONANCE METHODS. OPTICS AND SPECTROSCOPY 2016; 120:286-293. [PMID: 28260816 PMCID: PMC5334789 DOI: 10.1134/s0030400x16010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This article continues our review of spectroscopic studies of G-protein-coupled receptors. Magnetic resonance methods including electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) provide specific structural and dynamical data for the protein in conjunction with optical methods (vibrational, electronic spectroscopy) as discussed in the accompanying article. An additional advantage is the opportunity to explore the receptor proteins in the natural membrane lipid environment. Solid-state 2H and 13C NMR methods yield information about the both local structure and dynamics of the cofactor bound to the protein and its light induced changes. Complementary site-directed spin labeling studies monitor the structural alterations over larger distances and correspondingly longer time scales. A multi-scale reaction mechanism describes how local changes of the retinal cofactor unlock the receptor to initiate large-scale conformational changes of rhodopsin. Activation of the G-protein-coupled receptor involves an ensemble of conformational substates within the rhodopsin manifold that characterize the dynamically active receptor.
Collapse
Affiliation(s)
- A V Struts
- St. Petersburg State Medical University, 194100 St. Petersburg, Russia; St. Petersburg State University, 199034 St. Petersburg, Russia; University of Arizona, Tucson, AZ 85721 USA
| | - A V Barmasov
- St. Petersburg State Medical University, 194100 St. Petersburg, Russia; St. Petersburg State University, 199034 St. Petersburg, Russia
| | - M F Brown
- St. Petersburg State Medical University, 194100 St. Petersburg, Russia
| |
Collapse
|
17
|
Struts AV, Barmasov AV, Brown MF. SPECTRAL METHODS FOR STUDY OF THE G-PROTEIN-COUPLED RECEPTOR RHODOPSIN. I. VIBRATIONAL AND ELECTRONIC SPECTROSCOPY. OPTICS AND SPECTROSCOPY 2015; 118:711-717. [PMID: 28260815 PMCID: PMC5334778 DOI: 10.1134/s0030400x15050240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Here we review the application of modern spectral methods for the study of G-protein-coupled receptors (GPCRs) using rhodopsin as a prototype. Because X-ray analysis gives us immobile snapshots of protein conformations, it is imperative to apply spectroscopic methods for elucidating their function: vibrational (Raman, FTIR), electronic (UV-visible absorption, fluorescence) spectroscopies, and magnetic resonance (electron paramagnetic resonance, EPR), and nuclear magnetic resonance, NMR). In the first of the two companion articles, we discuss the application of optical spectroscopy for studying rhodopsin in a membrane environment. Information is obtained regarding the time-ordered sequence of events in rhodopsin activation. Isomerization of the chromophore and deprotonation of the retinal Schiff base leads to a structural change of the protein involving the motion of helices H5 and H6 in a pH-dependent process. Information is obtained that is unavailable from X-ray crystallography, which can be combined with spectroscopic studies to achieve a more complete understanding of GPCR function.
Collapse
Affiliation(s)
- A V Struts
- St. Petersburg State Medical University, 194100 St. Petersburg, Russia; St. Petersburg State University, 199034 St. Petersburg, Russia; University of Arizona, Tucson, AZ 85721 USA
| | - A V Barmasov
- St. Petersburg State Medical University, 194100 St. Petersburg, Russia; St. Petersburg State University, 199034 St. Petersburg, Russia
| | - M F Brown
- University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
18
|
Malmerberg E, M Bovee-Geurts PH, Katona G, Deupi X, Arnlund D, Wickstrand C, Johansson LC, Westenhoff S, Nazarenko E, Schertler GFX, Menzel A, de Grip WJ, Neutze R. Conformational activation of visual rhodopsin in native disc membranes. Sci Signal 2015; 8:ra26. [PMID: 25759477 DOI: 10.1126/scisignal.2005646] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rhodopsin is the G protein-coupled receptor (GPCR) that serves as a dim-light receptor for vision in vertebrates. We probed light-induced conformational changes in rhodopsin in its native membrane environment at room temperature using time-resolved wide-angle x-ray scattering. We observed a rapid conformational transition that is consistent with an outward tilt of the cytoplasmic portion of transmembrane helix 6 concomitant with an inward movement of the cytoplasmic portion of transmembrane helix 5. These movements were considerably larger than those reported from the basis of crystal structures of activated rhodopsin, implying that light activation of rhodopsin involves a more extended conformational change than was previously suggested.
Collapse
Affiliation(s)
- Erik Malmerberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Petra H M Bovee-Geurts
- Department of Biochemistry, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, Netherlands
| | - Gergely Katona
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Xavier Deupi
- Condensed Matter Theory Group, Paul Scherrer Institute, CH-5232 Villigen, Switzerland. Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - David Arnlund
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Cecilia Wickstrand
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Linda C Johansson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Elena Nazarenko
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Gebhard F X Schertler
- Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen, Switzerland. Department of Biology, ETH Zürich, Wolfgang-Pauli-Str. 27, 8093 Zürich, Switzerland
| | - Andreas Menzel
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Willem J de Grip
- Department of Biochemistry, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, Netherlands
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| |
Collapse
|
19
|
Wang S, Ladizhansky V. Recent advances in magic angle spinning solid state NMR of membrane proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 82:1-26. [PMID: 25444696 DOI: 10.1016/j.pnmrs.2014.07.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/16/2014] [Accepted: 07/20/2014] [Indexed: 05/14/2023]
Abstract
Membrane proteins mediate many critical functions in cells. Determining their three-dimensional structures in the native lipid environment has been one of the main objectives in structural biology. There are two major NMR methodologies that allow this objective to be accomplished. Oriented sample NMR, which can be applied to membrane proteins that are uniformly aligned in the magnetic field, has been successful in determining the backbone structures of a handful of membrane proteins. Owing to methodological and technological developments, Magic Angle Spinning (MAS) solid-state NMR (ssNMR) spectroscopy has emerged as another major technique for the complete characterization of the structure and dynamics of membrane proteins. First developed on peptides and small microcrystalline proteins, MAS ssNMR has recently been successfully applied to large membrane proteins. In this review we describe recent progress in MAS ssNMR methodologies, which are now available for studies of membrane protein structure determination, and outline a few examples, which highlight the broad capability of ssNMR spectroscopy.
Collapse
Affiliation(s)
- Shenlin Wang
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Vladimir Ladizhansky
- Department of Physics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada; Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
20
|
Leioatts N, Mertz B, Martínez-Mayorga K, Romo TD, Pitman MC, Feller SE, Grossfield A, Brown MF. Retinal ligand mobility explains internal hydration and reconciles active rhodopsin structures. Biochemistry 2014; 53:376-85. [PMID: 24328554 DOI: 10.1021/bi4013947] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rhodopsin, the mammalian dim-light receptor, is one of the best-characterized G-protein-coupled receptors, a pharmaceutically important class of membrane proteins that has garnered a great deal of attention because of the recent availability of structural information. Yet the mechanism of rhodopsin activation is not fully understood. Here, we use microsecond-scale all-atom molecular dynamics simulations, validated by solid-state (2)H nuclear magnetic resonance spectroscopy, to understand the transition between the dark and metarhodopsin I (Meta I) states. Our analysis of these simulations reveals striking differences in ligand flexibility between the two states. Retinal is much more dynamic in Meta I, adopting an elongated conformation similar to that seen in the recent activelike crystal structures. Surprisingly, this elongation corresponds to both a dramatic influx of bulk water into the hydrophobic core of the protein and a concerted transition in the highly conserved Trp265(6.48) residue. In addition, enhanced ligand flexibility upon light activation provides an explanation for the different retinal orientations observed in X-ray crystal structures of active rhodopsin.
Collapse
Affiliation(s)
- Nicholas Leioatts
- Department of Biochemistry and Biophysics, University of Rochester Medical Center , Rochester, New York 14642, United States
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown L, Kandori H. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 2014; 114:126-63. [PMID: 24364740 PMCID: PMC3979449 DOI: 10.1021/cr4003769] [Citation(s) in RCA: 791] [Impact Index Per Article: 79.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Oliver P. Ernst
- Departments
of Biochemistry and Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada
| | - David T. Lodowski
- Center
for Proteomics and Bioinformatics, Case
Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Marcus Elstner
- Institute
for Physical Chemistry, Karlsruhe Institute
of Technology, Kaiserstrasse
12, 76131 Karlsruhe, Germany
| | - Peter Hegemann
- Institute
of Biology, Experimental Biophysics, Humboldt-Universität
zu Berlin, Invalidenstrasse
42, 10115 Berlin, Germany
| | - Leonid
S. Brown
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Hideki Kandori
- Department
of Frontier Materials, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
22
|
Kuemmel CM, Sandberg MN, Birge RR, Knox BE. A Conserved Aromatic Residue Regulating Photosensitivity in Short-Wavelength Sensitive Cone Visual Pigments. Biochemistry 2013; 52:5084-91. [DOI: 10.1021/bi400490g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Colleen M. Kuemmel
- Departments of Neuroscience
and Physiology, Biochemistry and Molecular Biology, and Ophthalmology, SUNY Upstate Medical University, Syracuse, New York
13210, United States
| | - Megan N. Sandberg
- Departments
of Chemistry and
Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
06269, United States
| | - Robert R. Birge
- Departments
of Chemistry and
Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
06269, United States
| | - Barry E. Knox
- Departments of Neuroscience
and Physiology, Biochemistry and Molecular Biology, and Ophthalmology, SUNY Upstate Medical University, Syracuse, New York
13210, United States
| |
Collapse
|
23
|
G-protein-coupled receptor structure, ligand binding and activation as studied by solid-state NMR spectroscopy. Biochem J 2013; 450:443-57. [DOI: 10.1042/bj20121644] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
GPCRs (G-protein-coupled receptors) are versatile signalling molecules at the cell surface and make up the largest and most diverse family of membrane receptors in the human genome. They convert a large variety of extracellular stimuli into intracellular responses through the activation of heterotrimeric G-proteins, which make them key regulatory elements in a broad range of normal and pathological processes, and are therefore one of the most important targets for pharmaceutical drug discovery. Knowledge of a GPCR structure enables us to gain a mechanistic insight into its function and dynamics, and further aid rational drug design. Despite intensive research carried out over the last three decades, resolving the structural basis of GPCR function is still a major activity. The crystal structures obtained in the last 5 years provide the first opportunity to understand how protein structure dictates the unique functional properties of these complex signalling molecules. However, owing to the intrinsic hydrophobicity, flexibility and instability of membrane proteins, it is still a challenge to crystallize GPCRs, and, when this is possible, it is no longer in its native membrane environment and no longer without modification. Furthermore, the conformational change of the transmembrane α-helices associated with the structure activation increases the difficulty of capturing the activation state of a GPCR to a higher resolution by X-ray crystallography. On the other hand, solid-state NMR may offer a unique opportunity to study membrane protein structure, ligand binding and activation at atomic resolution in the native membrane environment, as well as described functionally significant dynamics. In the present review, we discuss some recent achievements of solid-state NMR for understanding GPCRs, the largest mammalian proteome at ~1% of the total expressed proteins. Structural information, details of determination, details of ligand conformations and the consequences of ligand binding to initiate activation can all be explored with solid-state NMR.
Collapse
|
24
|
Carlomagno T. NMR in natural products: understanding conformation, configuration and receptor interactions. Nat Prod Rep 2012; 29:536-54. [PMID: 22456471 DOI: 10.1039/c2np00098a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to 2011. Natural products are of tremendous importance in both traditional and modern medicine. For medicinal chemistry natural products represent a challenge, as their chemical synthesis and modification are complex processes, which require many, often stereo-selective, synthetic steps. A prerequisite for the design of analogs of natural products, with more accessible synthetic routes, is the availability of their bioactive conformation. Nuclear Magnetic Resonance (NMR) spectroscopy and X-ray crystallography are the two techniques of choice to investigate the structure of natural products. In this review, I describe the most recent advances in NMR to study the conformation of natural products either free in solution or bound to their cellular receptors. In chapter 2, I focus on the use of residual dipolar couplings (RDC). On the basis of a few examples, I discuss the benefit of complementing classical NMR parameters, such as NOEs and scalar couplings, with dipolar couplings to simultaneously determine both the conformation and the relative configuration of natural products in solution. Chapter 3 is dedicated to the study of the structure of natural products in complex with their cellular receptors and is further divided in two sections. In the first section, I describe two solution-state NMR methodologies to investigate the binding mode of low-affinity ligands to macromolecular receptors. The first approach, INPHARMA (Interligand Noes for PHArmacophore Mapping), is based on the observation of interligand NOEs between two small molecules binding competitively to a common receptor. INPHARMA reveals the relative binding mode of the two ligands, thus allowing ligand superimposition. The second approach is based on paramagnetic relaxation enhancement (PRE) of ligand resonances in the presence of a receptor containing a paramagnetic center. In the second section, I focus on solid-state NMR spectroscopy as a tool to access the bioactive conformation of natural products in complex with macromolecular receptors.
Collapse
Affiliation(s)
- Teresa Carlomagno
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, D-69117 Heidelberg
| |
Collapse
|
25
|
Mertz B, Struts AV, Feller SE, Brown MF. Molecular simulations and solid-state NMR investigate dynamical structure in rhodopsin activation. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1818:241-51. [PMID: 21851809 PMCID: PMC5270601 DOI: 10.1016/j.bbamem.2011.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 08/01/2011] [Accepted: 08/01/2011] [Indexed: 10/17/2022]
Abstract
Rhodopsin has served as the primary model for studying G protein-coupled receptors (GPCRs)-the largest group in the human genome, and consequently a primary target for pharmaceutical development. Understanding the functions and activation mechanisms of GPCRs has proven to be extraordinarily difficult, as they are part of a complex signaling cascade and reside within the cell membrane. Although X-ray crystallography has recently solved several GPCR structures that may resemble the activated conformation, the dynamics and mechanism of rhodopsin activation continue to remain elusive. Notably solid-state ((2))H NMR spectroscopy provides key information pertinent to how local dynamics of the retinal ligand change during rhodopsin activation. When combined with molecular mechanics simulations of proteolipid membranes, a new paradigm for the rhodopsin activation process emerges. Experiment and simulation both suggest that retinal isomerization initiates the rhodopsin photocascade to yield not a single activated structure, but rather an ensemble of activated conformational states. This article is part of a Special Issue entitled: Membrane protein structure and function.
Collapse
Affiliation(s)
- Blake Mertz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Andrey V. Struts
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Department of Medical Physics, St. Petersburg State Medical University, St. Petersburg 194100, Russia
| | - Scott E. Feller
- Department of Chemistry, Wabash College, Crawfordsville, IN 47933, USA
| | - Michael F. Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Department of Physics, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
26
|
Isin B, Tirupula KC, Oltvai ZN, Klein-Seetharaman J, Bahar I. Identification of motions in membrane proteins by elastic network models and their experimental validation. Methods Mol Biol 2012; 914:285-317. [PMID: 22976035 DOI: 10.1007/978-1-62703-023-6_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Identifying the functional motions of membrane proteins is difficult because they range from large-scale collective dynamics to local small atomic fluctuations at different timescales that are difficult to measure experimentally due to the hydrophobic nature of these proteins. Elastic Network Models, and in particular their most widely used implementation, the Anisotropic Network Model (ANM), have proven to be useful computational methods in many recent applications to predict membrane protein dynamics. These models are based on the premise that biomolecules possess intrinsic mechanical characteristics uniquely defined by their particular architectures. In the ANM, interactions between residues in close proximity are represented by harmonic potentials with a uniform spring constant. The slow mode shapes generated by the ANM provide valuable information on the global dynamics of biomolecules that are relevant to their function. In its recent extension in the form of ANM-guided molecular dynamics (MD), this coarse-grained approach is augmented with atomic detail. The results from ANM and its extensions can be used to guide experiments and thus speedup the process of quantifying motions in membrane proteins. Testing the predictions can be accomplished through (a) direct observation of motions through studies of structure and biophysical probes, (b) perturbation of the motions by, e.g., cross-linking or site-directed mutagenesis, and (c) by studying the effects of such perturbations on protein function, typically through ligand binding and activity assays. To illustrate the applicability of the combined computational ANM-experimental testing framework to membrane proteins, we describe-alongside the general protocols-here the application of ANM to rhodopsin, a prototypical member of the pharmacologically relevant G-protein coupled receptor family.
Collapse
Affiliation(s)
- Basak Isin
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
27
|
Fanelli F, De Benedetti PG. Update 1 of: computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem Rev 2011; 111:PR438-535. [PMID: 22165845 DOI: 10.1021/cr100437t] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena, Italy.
| | | |
Collapse
|
28
|
Abstract
We review the current state of membrane protein structure determination using solid-state nuclear magnetic resonance (NMR) spectroscopy. Multidimensional magic-angle-spinning correlation NMR combined with oriented-sample experiments has made it possible to measure a full panel of structural constraints of membrane proteins directly in lipid bilayers. These constraints include torsion angles, interatomic distances, oligomeric structure, protein dynamics, ligand structure and dynamics, and protein orientation and depth of insertion in the lipid bilayer. Using solid-state NMR, researchers have studied potassium channels, proton channels, Ca(2+) pumps, G protein-coupled receptors, bacterial outer membrane proteins, and viral fusion proteins to elucidate their mechanisms of action. Many of these membrane proteins have also been investigated in detergent micelles using solution NMR. Comparison of the solid-state and solution NMR structures provides important insights into the effects of the solubilizing environment on membrane protein structure and dynamics.
Collapse
Affiliation(s)
- Mei Hong
- Department of Chemistry, Iowa State University, Ames, 50011, USA.
| | | | | |
Collapse
|
29
|
Conte AM, Guidoni L, Del Sole R, Pulci O. Many-body study of the photoisomerization of the minimal model of the retinal protonated Schiff base. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.09.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Livadariu E, Auriemma RS, Rydlewski C, Vandeva S, Hamoir E, Burlacu MC, Maweja S, Thonnard AS, Betea D, Vassart G, Daly AF, Beckers A. Mutations of calcium-sensing receptor gene: two novel mutations and overview of impact on calcium homeostasis. Eur J Endocrinol 2011; 165:353-8. [PMID: 21566074 DOI: 10.1530/eje-11-0121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Genetic disorders of calcium metabolism arise in a familial or sporadic setting. The calcium-sensing receptor (CASR) plays a key role in maintaining calcium homeostasis and study of the CASR gene can be clinically useful in determining etiology and appropriate therapeutic approaches. We report two cases of novel CASR gene mutations that illustrate the varying clinical presentations and discuss these in terms of the current understanding of CASR function. PATIENTS AND METHODS A 16-year-old patient had mild hypercalcemia associated with low-normal urinary calcium excretion and normal-to-high parathyroid hormone (PTH) levels. Because of negative family history, familial hypocalciuric hypercalcemia was originally excluded. The second patient was a 54-year-old man with symptomatic hypocalcemia, hyperphosphatemia, low PTH, and mild hypercalciuria. Familial investigation revealed the same phenotype in the patient's sister. The coding region of the CASR gene was sequenced in both probands and their available first-degree relatives. RESULTS The first patient had a novel heterozygous inactivating CASR mutation in exon 4, which predicted a p.A423K change; genetic analysis was negative in the parents. The second patient had a novel heterozygous activating CASR mutation in exon 6, which predicted a p.E556K change; the affected sister of the proband was also positive. CONCLUSIONS We reported two novel heterozygous mutations of the CASR gene, an inactivating mutation in exon 4 and the first activating mutation reported to date in exon 6. These cases illustrate the importance of genetic testing of CASR gene to aid correct diagnosis and to assist in clinical management.
Collapse
Affiliation(s)
- Elena Livadariu
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Structural insights into agonist-induced activation of G-protein-coupled receptors. Curr Opin Struct Biol 2011; 21:541-51. [PMID: 21723721 DOI: 10.1016/j.sbi.2011.06.002] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 05/31/2011] [Accepted: 06/10/2011] [Indexed: 11/23/2022]
Abstract
Recent years have seen tremendous breakthroughs in structure determination of G-protein-coupled receptors (GPCRs). In 2011, two agonist-bound active-state structures of rhodopsin have been published. Together with structures of several rhodopsin activation intermediates and a wealth of biochemical and spectroscopic information, they provide a unique structural framework on which to understand GPCR activation. Here we use this framework to compare the recent crystal structures of the agonist-bound active states of the β(2) adrenergic receptor (β(2)AR) and the A(2A) adenosine receptor (A(2A)AR). While activation of these three GPCRs results in rearrangements of TM5 and TM6, the extent of this conformational change varies considerably. Displacements of the cytoplasmic side of TM6 ranges between 3 and 8Å depending on whether selective stabilizers of the active conformation are used (i.e. a G-protein peptide in the case of rhodopsin or a conformationally selective nanobody in the case of the β(2)AR) or not (A(2A)AR). The agonist-induced conformational changes in the ligand-binding pocket are largely receptor specific due to the different chemical nature of the agonists. However, several similarities can be observed, including a relocation of conserved residues W6.48 and F6.44 towards L5.51 and P5.50, and of I/L3.40 away from P5.50. This transmission switch links agonist binding to the movement of TM5 and TM6 through the rearrangement of the TM3-TM5-TM6 interface, and possibly constitutes a common theme of GPCR activation.
Collapse
|
32
|
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin. Proc Natl Acad Sci U S A 2011; 108:8263-8. [PMID: 21527723 DOI: 10.1073/pnas.1014692108] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rhodopsin is a canonical member of the family of G protein-coupled receptors, which transmit signals across cellular membranes and are linked to many drug interventions in humans. Here we show that solid-state (2)H NMR relaxation allows investigation of light-induced changes in local ps-ns time scale motions of retinal bound to rhodopsin. Site-specific (2)H labels were introduced into methyl groups of the retinal ligand that are essential to the activation process. We conducted solid-state (2)H NMR relaxation (spin-lattice, T(1Z), and quadrupolar-order, T(1Q)) experiments in the dark, Meta I, and Meta II states of the photoreceptor. Surprisingly, we find the retinylidene methyl groups exhibit site-specific differences in dynamics that change upon light excitation--even more striking, the C9-methyl group is a dynamical hotspot that corresponds to a crucial functional hotspot of rhodopsin. Following 11-cis to trans isomerization, the (2)H NMR data suggest the β-ionone ring remains in its hydrophobic binding pocket in all three states of the protein. We propose a multiscale activation mechanism with a complex energy landscape, whereby the photonic energy is directed against the E2 loop by the C13-methyl group, and toward helices H3 and H5 by the C5-methyl of the β-ionone ring. Changes in retinal structure and dynamics initiate activating fluctuations of transmembrane helices H5 and H6 in the Meta I-Meta II equilibrium of rhodopsin. Our proposals challenge the Standard Model whereby a single light-activated receptor conformation yields the visual response--rather an ensemble of substates is present, due to the entropy gain produced by photolysis of the inhibitory retinal lock.
Collapse
|
33
|
Kubli-Garfias C, Salazar-Salinas K, Perez-Angel EC, Seminario JM. Light activation of the isomerization and deprotonation of the protonated Schiff base retinal. J Mol Model 2011; 17:2539-47. [PMID: 21207087 DOI: 10.1007/s00894-010-0927-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 11/29/2010] [Indexed: 11/29/2022]
Abstract
We perform an ab initio analysis of the photoisomerization of the protonated Schiff base of retinal (PSB-retinal) from 11-cis to 11-trans rotating the C10-C11=C12-C13 dihedral angle from 0° (cis) to -180° (trans). We find that the retinal molecule shows the lowest rotational barrier (0.22 eV) when its charge state is zero as compared to the barrier for the protonated molecule which is ∼0.89 eV. We conclude that rotation most likely takes place in the excited state of the deprotonated retinal. The addition of a proton creates a much larger barrier implying a switching behavior of retinal that might be useful for several applications in molecular electronics. All conformations of the retinal compound absorb in the green region with small shifts following the dihedral angle rotation; however, the Schiff base of retinal (SB-retinal) at trans-conformation absorbs in the violet region. The rotation of the dihedral angle around the C11=C12 π-bond affects the absorption energy of the retinal and the binding energy of the SB-retinal with the proton at the N-Schiff; the binding energy is slightly lower at the trans-SB-retinal than at other conformations of the retinal.
Collapse
Affiliation(s)
- Carlos Kubli-Garfias
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | | | | | | |
Collapse
|
34
|
|
35
|
Tsukamoto H, Terakita A. Diversity and functional properties of bistable pigments. Photochem Photobiol Sci 2010; 9:1435-43. [PMID: 20852774 DOI: 10.1039/c0pp00168f] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rhodopsin and related opsin-based pigments, which are photosensitive membrane proteins, have been extensively studied using a wide variety of techniques, with rhodopsin being the most understood G protein-coupled receptor (GPCR). Animals use various opsin-based pigments for vision and a wide variety of non-visual functions. Many functionally varied pigments are roughly divided into two kinds, based on their photoreaction: bistable and monostable pigments. Bistable pigments are thermally stable before and after photo-activation, but monostable pigments are stable only before activation. Here, we review the diversity of bistable pigments and their molecular characteristics. We also discuss the mechanisms underlying different molecular characteristics of bistable and monostable pigments. In addition, the potential of bistable pigments as a GPCR model is proposed.
Collapse
Affiliation(s)
- Hisao Tsukamoto
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Osaka, Osaka 558-8585, Japan
| | | |
Collapse
|
36
|
Szundi I, Epps J, Lewis JW, Kliger DS. Temperature dependence of the lumirhodopsin I-lumirhodopsin II equilibrium. Biochemistry 2010; 49:5852-8. [PMID: 20545328 DOI: 10.1021/bi100566r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Time-resolved absorbance measurements, over a spectral range from 300 to 700 nm, were made at delays from 1 micros to 2 ms after photoexcitation of bovine rhodopsin in hypotonically washed membrane suspensions over a range of temperature from 10 to 35 degrees C. The purpose was to better understand the reversibility of the Lumi I-Lumi II process that immediately precedes Schiff base deprotonation in the activation of rhodopsin under physiological conditions. To prevent artifacts due to rotation of rhodopsin and its photoproducts in the membrane, probe light in the time-resolved absorbance studies was polarized at the magic angle (54.7 degrees) relative to the excitation laser polarization axis. The difference spectrum associated with the Lumi I to Lumi II reaction was found to have larger amplitude at 10 degrees C compared to higher temperatures, suggesting that a significant back-reaction exists for this process and that an equilibrated mixture forms. The equilibrium favors Lumi I entropically, and van't Hoff plot curvature shows the reaction enthalpy depends on temperature. The results suggest that Lumi II changes its interaction with the membrane in a temperature-dependent way, possibly binding a membrane lipid more strongly at lower temperatures (compared to its precursor). To elucidate the origin of the time-resolved absorbance changes, linear dichroism measurements were also made at 20 degrees C. The time constant for protein rotation in the membrane was found to be identical to the time constant for the Lumi I-Lumi II process, which is consistent with a common microscopic origin. We conclude that Lumi II (the last protonated Schiff base photointermediate under physiological conditions) is the first photointermediate whose properties depend on the protein-lipid environment.
Collapse
Affiliation(s)
- Istvan Szundi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | | | | | | |
Collapse
|
37
|
Neri M, Vanni S, Tavernelli I, Rothlisberger U. Role of aggregation in rhodopsin signal transduction. Biochemistry 2010; 49:4827-32. [PMID: 20459069 DOI: 10.1021/bi100478j] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many G protein-coupled receptors (GPCRs) are known to form dimers or even oligomers, and these aggregated states have been proposed as functional units responsible for signal transduction and G protein activation. However, the nature of their involvement has remained elusive. Here, we have investigated the role of aggregation in the signal transduction for dimeric forms of the prototypical GPCR rhodopsin using molecular dynamics simulations. The early steps after photoexcitation are characterized by a tandem mechanism in which one monomer is responsible for light detection while the other serves as the G protein activation site. Dimerization ensures efficient cross-talk between the two units within a few tens of nanoseconds following photoexcitation. This interface-mediated pathway suggests oligomerization-aided signal transduction as a crucial biological strategy to enhance activation efficiency across the entire family of GPCRs.
Collapse
Affiliation(s)
- Marilisa Neri
- Laboratory of Computational Chemistry, Ecole Polytechnique Federale de Lausanne, Lausanne CH-1015, Switzerland
| | | | | | | |
Collapse
|
38
|
Zaitseva E, Brown MF, Vogel R. Sequential rearrangement of interhelical networks upon rhodopsin activation in membranes: the Meta II(a) conformational substate. J Am Chem Soc 2010; 132:4815-21. [PMID: 20230054 DOI: 10.1021/ja910317a] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photon absorption by rhodopsin is proposed to lead to an activation pathway that is described by the extended reaction scheme Meta I <==>Meta II(a) <==> Meta II(b) <==> Meta II(b)H(+), where Meta II(b)H(+) is thought to be the conformational substate that activates the G protein transducin. Here we test this extended scheme for rhodopsin in a membrane bilayer environment by investigating lipid perturbation of the activation mechanism. We found that symmetric membrane lipids having two unsaturated acyl chains, such as 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), selectively stabilize the Meta II(a) substate in the above mechanism. By combining FTIR and UV-visible difference spectroscopy, we characterized the structural and functional changes involved in the transition to the Meta II(a) intermediate, which links the inactive Meta I intermediate with the Meta II(b) states formed by helix rearrangement. Besides the opening of the Schiff base ionic lock, the Meta II(a) substate is characterized by an activation switch in a conserved water-mediated hydrogen-bonded network involving transmembrane helices H1/H2/H7, which is sensed by its key residue Asp83. On the other hand, movement of retinal toward H5 and its interaction with another interhelical H3/H5 network mediated by His211 and Glu122 is absent in Meta II(a). The latter rearrangement takes place only in the subsequent transition to Meta II(b), which has been previously associated with movement of H6. Our results imply that activating structural changes in the H1/H2/H7 network are triggered by disruption of the Schiff base salt bridge and occur prior to other chromophore-induced changes in the H3/H5 network and the outward tilt of H6 in the activation process.
Collapse
Affiliation(s)
- Ekaterina Zaitseva
- Biophysics Section, Institute of Molecular Medicine and Cell Research, University of Freiburg, Hermann-Herder-Str. 9, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
39
|
Tikhonova IG, Costanzi S. Unraveling the structure and function of G protein-coupled receptors through NMR spectroscopy. Curr Pharm Des 2010; 15:4003-16. [PMID: 20028318 DOI: 10.2174/138161209789824803] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are a large superfamily of signaling proteins expressed on the plasma membrane. They are involved in a wide range of physiological processes and, therefore, are exploited as drug targets in a multitude of therapeutic areas. In this extent, knowledge of structural and functional properties of GPCRs may greatly facilitate rational design of modulator compounds. Solution and solid-state nuclear magnetic resonance (NMR) spectroscopy represents a powerful method to gather atomistic insights into protein structure and dynamics. In spite of the difficulties inherent the solution of the structure of membrane proteins through NMR, these methods have been successfully applied, sometimes in combination with molecular modeling, to the determination of the structure of GPCR fragments, the mapping of receptor-ligand interactions, and the study of the conformational changes associated with the activation of the receptors. In this review, we provide a summary of the NMR contributions to the study of the structure and function of GPCRs, also in light of the published crystal structures.
Collapse
Affiliation(s)
- Irina G Tikhonova
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | | |
Collapse
|
40
|
Janik R, Ritz E, Gravelle A, Shi L, Peng X, Ladizhansky V. Interresidue carbonyl-carbonyl polarization transfer experiments in uniformly 13C,15N-labeled peptides and proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 203:177-84. [PMID: 20060344 DOI: 10.1016/j.jmr.2009.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 12/16/2009] [Indexed: 05/04/2023]
Abstract
In this work, we demonstrate that Homonuclear Rotary Resonance Recoupling (HORROR) can be used to reintroduce carbonyl-carbonyl interresidue dipolar interactions and to achieve efficient polarization transfer between carbonyl atoms in uniformly (13)C,(15)N-labeled peptides and proteins. We show that the HORROR condition is anisotropically broadened and overall shifted to higher radio frequency intensities because of the CSA effects. These effects are analyzed theoretically using Average Hamiltonian Theory. At spinning frequencies used in this study, 22kHz, this broadening is experimentally found to be on the order of a kilohertz at a proton field of 600MHz. To match HORROR condition over all powder orientations, variable amplitude radio frequency (RF) fields are required, and efficient direct transfers on the order of 20-30% can be straightforwardly established. Two- and three-dimensional chemical shift correlation experiments establishing long-range interresidue connectivities (e.g., (N[i]-CO[i-2])) are demonstrated on the model peptide N-acetyl-valine-leucine, and on the third immunoglobulin binding domain of protein G. Possible future developments are discussed.
Collapse
Affiliation(s)
- Rafal Janik
- Department of Physics, University of Guelph, 50 Stone Road East, Guelph, Ont, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Thomas YG, Szundi I, Lewis JW, Kliger DS. Microsecond time-resolved circular dichroism of rhodopsin photointermediates. Biochemistry 2010; 48:12283-9. [PMID: 19905009 DOI: 10.1021/bi901657b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Time-resolved circular dichroism measurements, over a spectral range from 300 to 700 nm, were made at delays of 5, 100, and 500 micros after room-temperature photoexcitation of bovine rhodopsin in a lauryl maltoside suspension. The purpose was to provide more structural information about intermediate states in the activation of rhodopsin and other G protein-coupled receptors. In particular, information was sought about photointermediates that are isochromic or nearly isochromic in their unpolarized absorbance. The circular dichroism spectrum of lumirhodopsin, obtained after correcting the 5 micros difference CD data for the bleached rhodopsin, was in reasonable agreement with the lumirhodopsin CD spectrum obtained previously by thermal trapping at -76 degrees C. Similarly, the metarhodopsin II spectrum obtained with a 500 micros delay was also in agreement with the results of previous work on the temperature-trapped form of metarhodopsin II. However, the CD of the mixture formed with a 100 micros delay after photoexcitation, whose only visible absorbing component is lumirhodopsin, could not be accounted for near 480 nm in terms of the initially formed, 5 micros lumirhodopsin CD spectrum. Thus, the CD spectrum of lumirhodopsin changes on the time scale from 5 to 100 micros, showing reduced rotational strength in its visible band, possibly associated with either a process responsible for a small spectral shift that occurs in the lumirhodopsin absorbance spectrum at earlier times or the Schiff base deprotonation-reprotonation which occurs during equilibration of lumirhodopsin with the Meta I(380) photointermediate. Either explanation suggests a chromophore conformation change closely associated with deprotonation which could be the earliest direct trigger of activation.
Collapse
Affiliation(s)
- Yiren Gu Thomas
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | | | | | | |
Collapse
|
42
|
Tsukamoto H, Terakita A, Shichida Y. A pivot between helices V and VI near the retinal-binding site is necessary for activation in rhodopsins. J Biol Chem 2010; 285:7351-7. [PMID: 20053991 DOI: 10.1074/jbc.m109.078709] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rhodopsins are photoreceptor proteins that have diverged from ligand-binding G protein-coupled receptors (GPCRs). Unlike other GPCRs, rhodopsins contain an intrinsic antagonist, 11-cis-retinal, which is converted to the agonist all-trans-retinal upon absorption of a photon. Through evolution, vertebrate rhodopsins have lost the ability of direct binding to the agonist, but some invertebrate and vertebrate non-visual rhodopsins have retained this ability. Here, we investigated the difference in the agonist-binding state between these rhodopsins to further our understanding of the structural and functional diversity of rhodopsins. Mutational analyses of agonist-binding rhodopsin showed that replacement of Ala-269, one of the residues constituting the antagonist-binding site, with bulky amino acids resulted in a large spectral shift in its active state and a great reduction in G protein activity, whereas these were rescued by subsequent replacement of Phe-208 with smaller amino acids. Although similar replacements in vertebrate rhodopsin did not cause a spectral shift in the active state, a similar reduction in and recovery of G protein activity was observed. Therefore, the agonist is located close to Ala-269 in the agonist-binding rhodopsin, but not in vertebrate rhodopsins, and Ala-269 with Phe-208 acts as a pivot for the formation of the G protein-activating state in both rhodopsins. The positions corresponding to Ala-269 and Phe-208 in other GPCRs have been reported to form part of an agonist-binding site. Therefore, an agonist-binding rhodopsin has the molecular architecture of the agonist-binding site similar to that of a general GPCR, whereas vertebrate rhodopsins changed the architecture, resulting in loss of agonist binding during molecular evolution.
Collapse
Affiliation(s)
- Hisao Tsukamoto
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
43
|
Light activation of rhodopsin: insights from molecular dynamics simulations guided by solid-state NMR distance restraints. J Mol Biol 2009; 396:510-27. [PMID: 20004206 DOI: 10.1016/j.jmb.2009.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 10/09/2009] [Accepted: 12/02/2009] [Indexed: 11/20/2022]
Abstract
Structural restraints provided by solid-state NMR measurements of the metarhodopsin II intermediate are combined with molecular dynamics simulations to help visualize structural changes in the light activation of rhodopsin. Since the timescale for the formation of the metarhodopsin II intermediate (>1 ms) is beyond that readily accessible by molecular dynamics, we use NMR distance restraints derived from 13C dipolar recoupling measurements to guide the simulations. The simulations yield a working model for how photoisomerization of the 11-cis retinylidene chromophore bound within the interior of rhodopsin is coupled to transmembrane helix motion and receptor activation. The mechanism of activation that emerges is that multiple switches on the extracellular (or intradiscal) side of rhodopsin trigger structural changes that converge to disrupt the ionic lock between helices H3 and H6 on the intracellular side of the receptor.
Collapse
|
44
|
Holst B, Nygaard R, Valentin-Hansen L, Bach A, Engelstoft MS, Petersen PS, Frimurer TM, Schwartz TW. A conserved aromatic lock for the tryptophan rotameric switch in TM-VI of seven-transmembrane receptors. J Biol Chem 2009; 285:3973-3985. [PMID: 19920139 DOI: 10.1074/jbc.m109.064725] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The conserved tryptophan in position 13 of TM-VI (Trp-VI:13 or Trp-6.48) of the CWXP motif located at the bottom of the main ligand-binding pocket in TM-VI is believed to function as a rotameric microswitch in the activation process of seven-transmembrane (7TM) receptors. Molecular dynamics simulations in rhodopsin demonstrated that rotation around the chi1 torsion angle of Trp-VI:13 brings its side chain close to the equally highly conserved Phe-V:13 (Phe-5.47) in TM-V. In the ghrelin receptor, engineering of high affinity metal-ion sites between these positions confirmed their close spatial proximity. Mutational analysis was performed in the ghrelin receptor with multiple substitutions and with Ala substitutions in GPR119, GPR39, and the beta(2)-adrenergic receptor as well as the NK1 receptor. In all of these cases, it was found that mutation of the Trp-VI:13 rotameric switch itself eliminated the constitutive signaling and strongly impaired agonist-induced signaling without affecting agonist affinity and potency. Ala substitution of Phe-V:13, the presumed interaction partner for Trp-VI:13, also in all cases impaired both the constitutive and the agonist-induced receptor signaling, but not to the same degree as observed in the constructs where Trp-VI:13 itself was mutated, but again without affecting agonist potency. In a proposed active receptor conformation generated by molecular simulations, where the extracellular segment of TM-VI is tilted inwards in the main ligand-binding pocket, Trp-VI:13 could rotate into a position where it obtained an ideal aromatic-aromatic interaction with Phe-V:13. It is concluded that Phe-V:13 can serve as an aromatic lock for the proposed active conformation of the Trp-VI:13 rotameric switch, being involved in the global movement of TM-V and TM-VI in 7TM receptor activation.
Collapse
Affiliation(s)
- Birgitte Holst
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK2200 Copenhagen, Denmark and.
| | - Rie Nygaard
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK2200 Copenhagen, Denmark and; 7TM Pharma A/S, Fremtidsvej 3, DK5700 Hørsholm, Denmark
| | - Louise Valentin-Hansen
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK2200 Copenhagen, Denmark and
| | - Anders Bach
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK2200 Copenhagen, Denmark and
| | - Maja S Engelstoft
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK2200 Copenhagen, Denmark and
| | - Pia S Petersen
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK2200 Copenhagen, Denmark and
| | | | - Thue W Schwartz
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK2200 Copenhagen, Denmark and; 7TM Pharma A/S, Fremtidsvej 3, DK5700 Hørsholm, Denmark.
| |
Collapse
|
45
|
Floquet N, M'Kadmi C, Perahia D, Gagne D, Bergé G, Marie J, Banères JL, Galleyrand JC, Fehrentz JA, Martinez J. Activation of the ghrelin receptor is described by a privileged collective motion: a model for constitutive and agonist-induced activation of a sub-class A G-protein coupled receptor (GPCR). J Mol Biol 2009; 395:769-84. [PMID: 19782690 DOI: 10.1016/j.jmb.2009.09.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/18/2009] [Accepted: 09/20/2009] [Indexed: 10/20/2022]
Abstract
Three homology models of the human ghrelin receptor (GHS-R1a) have been generated from the available X-ray structures of rhodopsin (RHO model), opsin (OPS model) and beta-2 adrenergic receptor (B2 model). The latter was used as a starting point for combined molecular dynamics simulation (MDS) and full atom normal modes analysis (NMA). A low-frequency normal mode (mode 16) perfectly reproduced the intracellular motions observed between B2 and RHO models; in the opposite direction along the same mode, the generated structures are closer to the OPS model, suggesting a direct link with GHS-R1a activation. This was in agreement with motions of the seven transmembranous segments, increase of the solvent accessibility of the 140-ERY-142 sequence, and flip of the Trp276 (C WLP) residue, some features related to GPCRs activation. According to our model, His280 was proposed to stabilize Trp276 in the active state; this was verified by site-directed mutagenesis and biochemical characterization of the resulting H280A and H280S mutants, which were fully functional but sharing an important decrease of their basal activities. Docking performed with short ghrelin derivatives Gly-Ser-Ser ([octa])-Phe-NH (2) and Gly-Ser-Ser ([octa])-Phe-Leu-NH (2) allowed the identification of a robust position of these peptides in the active site of the receptor. This model was refined by MDS and validated by docking experiments performed on a set of 55 ghrelin receptor ligands based on the 1,2,4- triazole scaffold. Finally, NMA performed on the obtained peptide-receptor complex suggested stabilization of the Trp276 residue and of the whole receptor in the active state, preventing the motion observed along mode 16 computed for the unbound receptor. Our results show that NMA offers a powerful approach to study the conformational diversity and the activation mechanism of GPCRs.
Collapse
Affiliation(s)
- Nicolas Floquet
- Institut des Biomolécules Max Mousseron (I.B.M.M.), CNRS UMR5247 - Université Montpellier 1 - Université Montpellier 2, Faculté de Pharmacie, 15 avenue Charles Flahault, B.P. 14 491, 34093 Montpellier Cedex 5, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Domazet I, Martin SS, Holleran BJ, Morin ME, Lacasse P, Lavigne P, Escher E, Leduc R, Guillemette G. The fifth transmembrane domain of angiotensin II Type 1 receptor participates in the formation of the ligand-binding pocket and undergoes a counterclockwise rotation upon receptor activation. J Biol Chem 2009; 284:31953-61. [PMID: 19773549 DOI: 10.1074/jbc.m109.051839] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The octapeptide hormone angiotensin II exerts a wide variety of cardiovascular effects through the activation of the angiotensin II Type 1 (AT(1)) receptor, which belongs to the G protein-coupled receptor superfamily. Like other G protein- coupled receptors, the AT(1) receptor possesses seven transmembrane domains that provide structural support for the formation of the ligand-binding pocket. The role of the fifth transmembrane domain (TMD5) was investigated using the substituted cysteine accessibility method. All of the residues within Thr-190 to Leu-217 region were mutated one at a time to cysteine, and after expression in COS-7 cells, the mutant receptors were treated with the sulfhydryl-specific alkylating agent methanethiosulfonate-ethylammonium (MTSEA). MTSEA reacts selectively with water-accessible, free sulfhydryl groups of endogenous or introduced point mutation cysteines. If a cysteine is found in the binding pocket, the covalent modification will affect the binding kinetics of the ligand. MTSEA substantially decreased the binding affinity of L197C-AT(1), N200C-AT(1), I201C-AT(1), G203C-AT(1), and F204C-AT(1) mutant receptors, which suggests that these residues orient themselves within the water-accessible binding pocket of the AT(1) receptor. Interestingly, this pattern of acquired MTSEA sensitivity was altered for TMD5 reporter cysteines engineered in a constitutively active N111G-AT(1) receptor background. Indeed, mutant I201C-N111G-AT(1) became more sensitive to MTSEA, whereas mutant G203C-N111G-AT(1) lost some sensitivity. Our results suggest that constitutive activation of AT(1) receptor causes an apparent counterclockwise rotation of TMD5 as viewed from the extracellular side.
Collapse
Affiliation(s)
- Ivana Domazet
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Brown MF, Salgado GFJ, Struts AV. Retinal dynamics during light activation of rhodopsin revealed by solid-state NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:177-93. [PMID: 19716801 DOI: 10.1016/j.bbamem.2009.08.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/25/2009] [Accepted: 08/12/2009] [Indexed: 11/28/2022]
Abstract
Rhodopsin is a canonical member of class A of the G protein-coupled receptors (GPCRs) that are implicated in many of the drug interventions in humans and are of great pharmaceutical interest. The molecular mechanism of rhodopsin activation remains unknown as atomistic structural information for the active metarhodopsin II state is currently lacking. Solid-state (2)H NMR constitutes a powerful approach to study atomic-level dynamics of membrane proteins. In the present application, we describe how information is obtained about interactions of the retinal cofactor with rhodopsin that change with light activation of the photoreceptor. The retinal methyl groups play an important role in rhodopsin function by directing conformational changes upon transition into the active state. Site-specific (2)H labels have been introduced into the methyl groups of retinal and solid-state (2)H NMR methods applied to obtain order parameters and correlation times that quantify the mobility of the cofactor in the inactive dark state, as well as the cryotrapped metarhodopsin I and metarhodopsin II states. Analysis of the angular-dependent (2)H NMR line shapes for selectively deuterated methyl groups of rhodopsin in aligned membranes enables determination of the average ligand conformation within the binding pocket. The relaxation data suggest that the beta-ionone ring is not expelled from its hydrophobic pocket in the transition from the pre-activated metarhodopsin I to the active metarhodopsin II state. Rather, the major structural changes of the retinal cofactor occur already at the metarhodopsin I state in the activation process. The metarhodopsin I to metarhodopsin II transition involves mainly conformational changes of the protein within the membrane lipid bilayer rather than the ligand. The dynamics of the retinylidene methyl groups upon isomerization are explained by an activation mechanism involving cooperative rearrangements of extracellular loop E2 together with transmembrane helices H5 and H6. These activating movements are triggered by steric clashes of the isomerized all-trans retinal with the beta4 strand of the E2 loop and the side chains of Glu(122) and Trp(265) within the binding pocket. The solid-state (2)H NMR data are discussed with regard to the pathway of the energy flow in the receptor activation mechanism.
Collapse
Affiliation(s)
- Michael F Brown
- Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA; Department of Physics, University of Arizona, Tucson, AZ 85721, USA.
| | | | | |
Collapse
|
48
|
McDermott A. Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. Annu Rev Biophys 2009; 38:385-403. [PMID: 19245337 DOI: 10.1146/annurev.biophys.050708.133719] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Membrane proteins remain difficult to study by traditional methods. Magic angle spinning solid-state NMR (MAS SSNMR) methods present an important approach for studying membrane proteins of moderate size. Emerging MAS SSNMR methods are based on extensive assignments of the nuclei as a basis for structure determination and characterization of function. These methods have already been used to characterize fibrils and globular proteins and are being increasingly used to study membrane proteins embedded in lipids. This review highlights recent applications to intrinsic membrane proteins and summarizes recent technical advances that will enable these methods to be utilized for more complex membrane protein systems in the near future.
Collapse
Affiliation(s)
- Ann McDermott
- Department of Chemistry, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
49
|
Brown MF, Martínez-Mayorga K, Nakanishi K, Salgado GFJ, Struts AV. Retinal conformation and dynamics in activation of rhodopsin illuminated by solid-state H NMR spectroscopy. Photochem Photobiol 2009; 85:442-53. [PMID: 19267870 DOI: 10.1111/j.1751-1097.2008.00510.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Solid-state NMR spectroscopy gives a powerful avenue for investigating G protein-coupled receptors and other integral membrane proteins in a native-like environment. This article reviews the use of solid-state (2)H NMR to study the retinal cofactor of rhodopsin in the dark state as well as the meta I and meta II photointermediates. Site-specific (2)H NMR labels have been introduced into three regions (methyl groups) of retinal that are crucially important for the photochemical function of rhodopsin. Despite its phenomenal stability (2)H NMR spectroscopy indicates retinal undergoes rapid fluctuations within the protein binding cavity. The spectral lineshapes reveal the methyl groups spin rapidly about their three-fold (C(3)) axes with an order parameter for the off-axial motion of SC(3) approximately 0.9. For the dark state, the (2)H NMR structure of 11-cis-retinal manifests torsional twisting of both the polyene chain and the beta-ionone ring due to steric interactions of the ligand and the protein. Retinal is accommodated within the rhodopsin binding pocket with a negative pretwist about the C11=C12 double bond. Conformational distortion explains its rapid photochemistry and reveals the trajectory of the 11-cis to trans isomerization. In addition, (2)H NMR has been applied to study the retinylidene dynamics in the dark and light-activated states. Upon isomerization there are drastic changes in the mobility of all three methyl groups. The relaxation data support an activation mechanism whereby the beta-ionone ring of retinal stays in nearly the same environment, without a large displacement of the ligand. Interactions of the beta-ionone ring and the retinylidene Schiff base with the protein transmit the force of the retinal isomerization. Solid-state (2)H NMR thus provides information about the flow of energy that triggers changes in hydrogen-bonding networks and helix movements in the activation mechanism of the photoreceptor.
Collapse
Affiliation(s)
- Michael F Brown
- Department of Chemistry, University of Arizona, Tucson, AZ, USA.
| | | | | | | | | |
Collapse
|
50
|
Aguilà M, Toledo D, Morillo M, Dominguez M, Vaz B, Alvarez R, de Lera AR, Garriga P. Structural coupling of 11-cis-7-methyl-retinal and amino acids at the ligand binding pocket of rhodopsin. Photochem Photobiol 2009; 85:485-93. [PMID: 19267873 DOI: 10.1111/j.1751-1097.2009.00535.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It was previously shown that opsin can be regenerated with the newly synthesized 11-cis-7-methyl-retinal forming an artificial visual pigment. We now extend this study to include mutants at positions close to the retinal to further dissect the interactions of native and artificial chromophores with opsin. Several mutants at M207, W265 and Y268 have been obtained and regenerated with 11-cis-retinal and the 7-methyl analog. M207 is the site of the point mutation M207R associated with the retinal degenerative disease retinitis pigmentosa. All the studied mutants regenerated with 11-cis-retinal except for M207C which proved to be completely misfolded. The naturally occurring M207R mutant formed a pigment with an unprotonated Schiff base linkage, altered photobleaching and low MetarhodopsinII stability. Mutants regenerated with the 7-methyl analog showed altered photobleaching reflecting a structural perturbation in the vicinity of M207. The newly obtained mutants at M207 also showed reduced levels of transducin activation with M207R showing essentially no transducin activation. Our results highlight the tight coupling of the vicinity of C7 of retinal and M207 and support the involvement of this amino acid residue in the conformational changes associated with rhodopsin photoactivation.
Collapse
Affiliation(s)
- Mònica Aguilà
- Departament d'Enginyeria Química, Centre de Biotecnologia Molecular, Universitat Politècnica de Catalunya, Colom 1, Terrassa, Spain
| | | | | | | | | | | | | | | |
Collapse
|