1
|
Ma R, Liang S, Zeng W, Li J, Lai Y, Yang X, Diao F. Single-cell RNA Sequencing reveals the important role of Dcaf17 in spermatogenesis of golden hamsters. Biol Reprod 2024:ioae132. [PMID: 39239833 DOI: 10.1093/biolre/ioae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/10/2024] [Indexed: 09/07/2024] Open
Abstract
Dcaf17, also known as DDB1- and CUL4-associated factor 17, is a member of the DCAF family and acts as the receptor for the CRL4 ubiquitin E3 ligase complex. Several previous studies have reported that mutations in Dcaf17 cause Woodhouse-Sakati Syndrome (WSS), which results in oligoasthenoteratozoospermia (OAT) and male infertility. As a model to explore the role of Dcaf17 in the male reproductive system, we created Dcaf17-deficient male golden hamsters using CRISPR-Cas9 technology, the results of which demonstrate that deletion of Dcaf17 led to abnormal spermatogenesis and infertility. To uncover the underlying molecular mechanisms involved, we conducted single-cell RNA sequencing (scRNA-seq) analysis to evaluate the effect of Dcaf17 deficiency on transcriptional levels in spermatogenic cells during various stages of spermatogenesis. These data emphasize the significant regulatory role played by Dcaf17 in early spermatogenic cells, with many biological processes being affected, including spermatogenesis, and protein degradation. Dysregulation of genes associated with these functions ultimately leads to abnormalities. In summary, our findings highlight the critical function of Dcaf17 in spermatogenesis and male fertility and clarify the specific stage at which Dcaf17 exerts its effects, while simultaneously providing a novel animal model for the study of Dcaf17.
Collapse
Affiliation(s)
- Rongzhu Ma
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Shuang Liang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Department of Cell Biology, Animal Core facility, Key Laboratory of Model Animal, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China
| | - Wentao Zeng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Department of Cell Biology, Animal Core facility, Key Laboratory of Model Animal, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China
| | - Jianmin Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Department of Cell Biology, Animal Core facility, Key Laboratory of Model Animal, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China
| | - Yana Lai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Department of Cell Biology, Animal Core facility, Key Laboratory of Model Animal, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoyu Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Feiyang Diao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| |
Collapse
|
2
|
Sun T, Pei S, Liu Y, Hanif Q, Xu H, Chen N, Lei C, Yue X. Whole genome sequencing of simmental cattle for SNP and CNV discovery. BMC Genomics 2023; 24:179. [PMID: 37020271 PMCID: PMC10077681 DOI: 10.1186/s12864-023-09248-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUD The single nucleotide polymorphisms (SNPs) and copy number variations (CNVs) are two major genomic variants, which play crucial roles in evolutionary and phenotypic diversity. RESULTS In this study, we performed a comprehensive analysis to explore the genetic variations (SNPs and CNVs) of high sperm motility (HSM) and poor sperm motility (PSM) Simmental bulls using the high-coverage (25×) short-read next generation sequencing and single-molecule long reads sequencing data. A total of ~ 15 million SNPs and 2,944 CNV regions (CNVRs) were detected in Simmental bulls, and a set of positive selected genes (PSGs) and CNVRs were found to be overlapped with quantitative trait loci (QTLs) involving immunity, muscle development, reproduction, etc. In addition, we detected two new variants in LEPR, which may be related to the artificial breeding to improve important economic traits. Moreover, a set of genes and pathways functionally related to male fertility were identified. Remarkably, a CNV on SPAG16 (chr2:101,427,468 - 101,429,883) was completely deleted in all poor sperm motility (PSM) bulls and half of the bulls in high sperm motility (HSM), which may play a crucial role in the bull-fertility. CONCLUSIONS In conclusion, this study provides a valuable genetic variation resource for the cattle breeding and selection programs.
Collapse
Affiliation(s)
- Ting Sun
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, College of Pastoral Agriculture Science and Technology, Ministry of Education, Lanzhou University, Lanzhou, 730020, P. R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Shengwei Pei
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, College of Pastoral Agriculture Science and Technology, Ministry of Education, Lanzhou University, Lanzhou, 730020, P. R. China
| | - Yangkai Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, College of Pastoral Agriculture Science and Technology, Ministry of Education, Lanzhou University, Lanzhou, 730020, P. R. China
| | - Quratulain Hanif
- Computational Biology Laboratory, Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Department of Biotechnology, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Haiyue Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, College of Pastoral Agriculture Science and Technology, Ministry of Education, Lanzhou University, Lanzhou, 730020, P. R. China
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiangpeng Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, College of Pastoral Agriculture Science and Technology, Ministry of Education, Lanzhou University, Lanzhou, 730020, P. R. China.
| |
Collapse
|
3
|
Bonefas KM, Iwase S. Soma-to-germline transformation in chromatin-linked neurodevelopmental disorders? FEBS J 2022; 289:2301-2317. [PMID: 34514717 PMCID: PMC8918023 DOI: 10.1111/febs.16196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/16/2021] [Accepted: 09/10/2021] [Indexed: 01/22/2023]
Abstract
Mutations in numerous chromatin regulators cause neurodevelopmental disorders (NDDs) with unknown mechanisms. Understandably, most research has focused on how chromatin regulators control gene expression that is directly relevant to brain development and function, such as synaptic genes. However, some NDD models surprisingly show ectopic expression of germline genes in the brain. These germline genes are usually expressed only in the primordial germ cells, testis, and ovaries for germ cell development and sexual reproduction. Such ectopic germline gene expression has been reported in several NDDs, including immunodeficiency, centromeric instability, facial anomalies syndrome 1; Kleefstra syndrome 1; MeCP2 duplication syndrome; and mental retardation, X-linked syndromic, Claes-Jensen type. The responsible genes, DNMT3B, G9A/GLP, MECP2, and KDM5C, all encode chromatin regulators for gene silencing. These mutations may therefore lead to germline gene derepression and, in turn, a severe identity crisis of brain cells-potentially interfering with normal brain development. Thus, the ectopic expression of germline genes is a unique hallmark defining this NDD subset and further implicates the importance of germline gene silencing during brain development. The functional impact of germline gene expression on brain development, however, remains undetermined. This perspective article explores how this apparent soma-to-germline transformation arises and how it may interfere with neurodevelopment through genomic instability and impaired sensory cilium formation. Furthermore, we also discuss how to test these hypotheses experimentally to ultimately determine the contribution of ectopic germline transcripts to chromatin-linked NDDs.
Collapse
Affiliation(s)
- Katherine M. Bonefas
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109,The University of Michigan Neuroscience Graduate Program,Corresponding authors: Please address correspondence to: , and
| | - Shigeki Iwase
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109,The University of Michigan Neuroscience Graduate Program,Corresponding authors: Please address correspondence to: , and
| |
Collapse
|
4
|
Teves ME, Roldan ERS. Sperm bauplan and function and underlying processes of sperm formation and selection. Physiol Rev 2022; 102:7-60. [PMID: 33880962 PMCID: PMC8812575 DOI: 10.1152/physrev.00009.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
The spermatozoon is a highly differentiated and polarized cell, with two main structures: the head, containing a haploid nucleus and the acrosomal exocytotic granule, and the flagellum, which generates energy and propels the cell; both structures are connected by the neck. The sperm's main aim is to participate in fertilization, thus activating development. Despite this common bauplan and function, there is an enormous diversity in structure and performance of sperm cells. For example, mammalian spermatozoa may exhibit several head patterns and overall sperm lengths ranging from ∼30 to 350 µm. Mechanisms of transport in the female tract, preparation for fertilization, and recognition of and interaction with the oocyte also show considerable variation. There has been much interest in understanding the origin of this diversity, both in evolutionary terms and in relation to mechanisms underlying sperm differentiation in the testis. Here, relationships between sperm bauplan and function are examined at two levels: first, by analyzing the selective forces that drive changes in sperm structure and physiology to understand the adaptive values of this variation and impact on male reproductive success and second, by examining cellular and molecular mechanisms of sperm formation in the testis that may explain how differentiation can give rise to such a wide array of sperm forms and functions.
Collapse
Affiliation(s)
- Maria Eugenia Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| |
Collapse
|
5
|
Central Apparatus, the Molecular Kickstarter of Ciliary and Flagellar Nanomachines. Int J Mol Sci 2021; 22:ijms22063013. [PMID: 33809498 PMCID: PMC7999657 DOI: 10.3390/ijms22063013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Motile cilia and homologous organelles, the flagella, are an early evolutionarily invention, enabling primitive eukaryotic cells to survive and reproduce. In animals, cilia have undergone functional and structural speciation giving raise to typical motile cilia, motile nodal cilia, and sensory immotile cilia. In contrast to other cilia types, typical motile cilia are able to beat in complex, two-phase movements. Moreover, they contain many additional structures, including central apparatus, composed of two single microtubules connected by a bridge-like structure and assembling numerous complexes called projections. A growing body of evidence supports the important role of the central apparatus in the generation and regulation of the motile cilia movement. Here we review data concerning the central apparatus structure, protein composition, and the significance of its components in ciliary beating regulation.
Collapse
|
6
|
Miyata H, Morohoshi A, Ikawa M. Analysis of the sperm flagellar axoneme using gene-modified mice. Exp Anim 2020; 69:374-381. [PMID: 32554934 PMCID: PMC7677079 DOI: 10.1538/expanim.20-0064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Infertility is a global health issue that affects 1 in 6 couples, with male factors contributing to 50% of cases. The flagellar axoneme is a motility apparatus of spermatozoa, and disruption of its structure or function could lead to male infertility. The axoneme consists of a "9+2" structure that contains a central pair of two singlet microtubules surrounded by nine doublet microtubules, in addition to several macromolecular complexes such as dynein arms, radial spokes, and nexin-dynein regulatory complexes. Molecular components of the flagellar axoneme are evolutionally conserved from unicellular flagellates to mammals, including mice. Although knockout (KO) mice have been generated to understand their function in the formation and motility regulation of sperm flagella, the majority of KO mice die before sexual maturation due to impaired ciliary motility, which makes it challenging to analyze mature spermatozoa. In this review, we introduce methods that have been used to overcome premature lethality, focusing on KO mouse lines of central pair components.
Collapse
Affiliation(s)
- Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akane Morohoshi
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
7
|
Tan JHL, Wollmann H, van Pelt AMM, Kaldis P, Messerschmidt DM. Infertility-Causing Haploinsufficiency Reveals TRIM28/KAP1 Requirement in Spermatogonia. Stem Cell Reports 2020; 14:818-827. [PMID: 32302554 PMCID: PMC7220855 DOI: 10.1016/j.stemcr.2020.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 01/21/2023] Open
Abstract
Spermatogenesis relies on exquisite stem cell homeostasis, the carefully balanced self-renewal and differentiation of spermatogonial stem cells (SSCs). Disturbing this equilibrium will likely manifest through sub- or infertility, a global health issue with often idiopathic presentation. In this respect, disease phenotypes caused by haploinsufficiency of otherwise vital developmental genes are of particular interest. Here, we show that mice heterozygous for Trim28, an essential epigenetic regulator, suffer gradual testicular degeneration. Contrary to previous reports we detect Trim28 expression in spermatogonia, albeit at low levels. Further reduction through Trim28 heterozygosity increases the propensity of SSCs to differentiate at the cost of self-renewal. TRIM28/KAP1 haploinsufficiency causes testicular degeneration and infertility TRIM28/KAP1 is expressed in spermatogonia stem cell compartment Stem cell homeostasis in the testis is dependent on proper TRIM28/KAP1 levels
Collapse
Affiliation(s)
- Joel H L Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore; NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore 119077, Singapore
| | - Heike Wollmann
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Daniel M Messerschmidt
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore.
| |
Collapse
|
8
|
Zhang Z, Huang Q, Wang Z, Zou J, Yu Z, Strauss Iii JF, Zhang Z. Elongin B is a binding partner of the male germ cell nuclear speckle protein sperm-associated antigen 16S (SPAG16S) and is regulated post-transcriptionally in the testis. Reprod Fertil Dev 2020; 31:962-971. [PMID: 30811962 DOI: 10.1071/rd18303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
In this study we identified Elongin B, a regulatory subunit of the trimeric elongation factor Elongin ABC, which increases the overall rate of elongation by RNA polymerase II, as a major binding partner of sperm-associated antigen 16S (SPAG16S), a component of nuclear speckles. Nuclear speckles are nuclear subcompartments involved in RNA maturation. Previously, we showed that SPAG16S is essential for spermatogenesis. In the present study, a specific antibody against mouse Elongin B was generated and reacted with a protein with the predicted size of Elongin B in the testis; immunofluorescence staining revealed that the Elongin B was located in the nuclei and residual bodies. In round spermatids, Elongin B was colocalised with splicing factor SC35 (SC35), a marker of nuclear speckles. During the first wave of spermatogenesis, Elongin B transcripts were initially detected at Postnatal Day (PND) 8, and levels were greatly increased afterwards. However, Elongin B protein was only found from PND30, when germ cells progressed through spermiogenesis. Polysomal gradient analysis of Elongin B transcripts isolated from adult mouse testes revealed that most of the Elongin B mRNA was associated with translationally inactive, non-polysomal ribonucleoproteins. An RNA electrophoretic mobility shift assay demonstrated that the 3' untranslated region of the Elongin B transcript was bound by proteins present in testis but not liver extracts. These findings suggest that post-transcriptional regulation of Elongin B occurs in the testis, which is a common phenomenon during male germ cell development. As a major binding partner of SPAG16S, Elongin B may play an important role in spermatogenesis by modulating RNA maturation.
Collapse
Affiliation(s)
- Zhengang Zhang
- Department of Gastroenterology, Tongji Hospital, Huazhong University of Science and Technology, 1095 Jiefang da dao, Wuhan, Hubei 430030, China; and Department of Obstetrics and Gynecology, Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, VA 23298, USA
| | - Qian Huang
- Department of Physiology, Wayne State University, 275E Hancock Street, Detroit, MI 48201, USA; and Department of Occupational and Environmental Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, 2 Huangjiahu xi lu, Wuhan, Hubei 430060, China
| | - Zhenyu Wang
- Department of Physiology, Wayne State University, 275E Hancock Street, Detroit, MI 48201, USA; and Department of Biochemistry, School of Medicine, Wuhan University of Science and Technology, 2 Huangjiahu xi lu, Wuhan, Hubei 430065, China
| | - Jie Zou
- Wuhan Institute of Skin Disease Prevention and Control, 64 Wusheng lu, Wuhan, Hubei 430030, China
| | - Zuoren Yu
- Research Center for Translational Medicine, Tongji University School of Medicine, Shanghai East Hospital, 150 Jimo lu, Shanghai, China
| | - Jerome F Strauss Iii
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, VA 23298, USA
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, 275E Hancock Street, Detroit, MI 48201, USA; and Department of Obstetrics and Gynecology, Wayne State University, 275E Hancock Street, Detroit, MI 48201, USA; and Corresponding author.
| |
Collapse
|
9
|
Ito C, Akutsu H, Yao R, Yoshida K, Yamatoya K, Mutoh T, Makino T, Aoyama K, Ishikawa H, Kunimoto K, Tsukita S, Noda T, Kikkawa M, Toshimori K. Odf2 haploinsufficiency causes a new type of decapitated and decaudated spermatozoa, Odf2-DDS, in mice. Sci Rep 2019; 9:14249. [PMID: 31582806 PMCID: PMC6776547 DOI: 10.1038/s41598-019-50516-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022] Open
Abstract
Outer dense fibre 2 (Odf2 or ODF2) is a cytoskeletal protein required for flagella (tail)-beating and stability to transport sperm cells from testes to the eggs. There are infertile males, including human patients, who have a high percentage of decapitated and decaudated spermatozoa (DDS), whose semen contains abnormal spermatozoa with tailless heads and headless tails due to head-neck separation. DDS is untreatable in reproductive medicine. We report for the first time a new type of Odf2-DDS in heterozygous mutant Odf2+/- mice. Odf2+/- males were infertile due to haploinsufficiency caused by heterozygous deletion of the Odf2 gene, encoding the Odf2 proteins. Odf2 haploinsufficiency induced sperm neck-midpiece separation, a new type of head-tail separation, leading to the generation of headneck sperm cells or headnecks composed of heads with necks and neckless tails composed of only the main parts of tails. The headnecks were immotile but alive and capable of producing offspring by intracytoplasmic headneck sperm injection (ICSI). The neckless tails were motile and could induce capacitation but had no significant forward motility. Further studies are necessary to show that ICSI in humans, using headneck sperm cells, is viable and could be an alternative for infertile patients suffering from Odf2-DDS.
Collapse
Affiliation(s)
- Chizuru Ito
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.
| | - Hidenori Akutsu
- Department of Reproductive Medicine, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Ryoji Yao
- Department of Cell Biology, Japanese Foundation for Cancer Research (JFCR) Cancer Institute, Tokyo, 135-8550, Japan
| | - Keiichi Yoshida
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
- Next-generation Development Center for Cancer Treatment, Osaka International Cancer Institute, Osaka, 541-8567, Japan
| | - Kenji Yamatoya
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
- Institute for Environmental & Gender-specific Medicine, Juntendo University Graduate School of Medicine, Chiba, 279-0021, Japan
| | - Tohru Mutoh
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Tsukasa Makino
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazuhiro Aoyama
- Materials and Structural Analysis (ex FEI), Thermo Ficher Scientific, Shinagawa Seaside West Tower 1F, 4-12-2 HigashiSinagawa, Shinagawa-ku, Tokyo, 140-0002, Japan
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Hiroaki Ishikawa
- Department of Biochemistry and Biophysics, University of California San Francisco 600 16th St., San Francisco, CA, 94143, USA
| | - Koshi Kunimoto
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Sachiko Tsukita
- Graduate School of Frontier Biosciences and Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Tetsuo Noda
- Director's Room, Japanese Foundation for Cancer Research (JFCR) Cancer Institute, Tokyo, 135-8550, Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kiyotaka Toshimori
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.
- Future Medicine Research Center, Chiba University, Chiba, 260-8670, Japan.
| |
Collapse
|
10
|
Buddenborg SK, Kamel B, Hanelt B, Bu L, Zhang SM, Mkoji GM, Loker ES. The in vivo transcriptome of Schistosoma mansoni in the prominent vector species Biomphalaria pfeifferi with supporting observations from Biomphalaria glabrata. PLoS Negl Trop Dis 2019; 13:e0007013. [PMID: 31568484 PMCID: PMC6797213 DOI: 10.1371/journal.pntd.0007013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 10/17/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The full scope of the genes expressed by schistosomes during intramolluscan development has yet to be characterized. Understanding the gene products deployed by larval schistosomes in their snail hosts will provide insights into their establishment, maintenance, asexual reproduction, ability to castrate their hosts, and their prolific production of human-infective cercariae. Using the Illumina platform, the intramolluscan transcriptome of Schistosoma mansoni was investigated in field-derived specimens of the prominent vector species Biomphalaria pfeifferi at 1 and 3 days post infection (d) and from snails shedding cercariae. These S. mansoni samples were derived from the same snails used in our complementary B. pfeifferi transcriptomic study. We supplemented this view with microarray analyses of S. mansoni from B. glabrata at 2d, 4d, 8d, 16d, and 32d to highlight robust features of S. mansoni transcription, even when a different technique and vector species was used. PRINCIPAL FINDINGS Transcripts representing at least 7,740 (66%) of known S. mansoni genes were expressed during intramolluscan development, with the greatest number expressed in snails shedding cercariae. Many transcripts were constitutively expressed throughout development featuring membrane transporters, and metabolic enzymes involved in protein and nucleic acid synthesis and cell division. Several proteases and protease inhibitors were expressed at all stages, including some proteases usually associated with cercariae. Transcripts associated with G-protein coupled receptors, germ cell perpetuation, and stress responses and defense were well represented. We noted transcripts homologous to planarian anti-bacterial factors, several neural development or neuropeptide transcripts including neuropeptide Y, and receptors that may be associated with schistosome germinal cell maintenance that could also impact host reproduction. In at least one snail the presence of larvae of another digenean species (an amphistome) was associated with repressed S. mansoni transcriptional activity. CONCLUSIONS/SIGNIFICANCE This in vivo study, emphasizing field-derived snails and schistosomes, but supplemented with observations from a lab model, provides a distinct view from previous studies of development of cultured intramolluscan stages from lab-maintained organisms. We found many highly represented transcripts with suspected or unknown functions, with connection to intramolluscan development yet to be elucidated.
Collapse
Affiliation(s)
- Sarah K. Buddenborg
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States of America
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- * E-mail:
| | - Bishoy Kamel
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States of America
| | - Ben Hanelt
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States of America
| | - Lijing Bu
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States of America
| | - Si-Ming Zhang
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States of America
| | - Gerald M. Mkoji
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairob,i Kenya
| | - Eric S. Loker
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States of America
| |
Collapse
|
11
|
Alciaturi J, Anesetti G, Irigoin F, Skowronek F, Sapiro R. Distribution of sperm antigen 6 (SPAG6) and 16 (SPAG16) in mouse ciliated and non-ciliated tissues. J Mol Histol 2019; 50:189-202. [PMID: 30911868 DOI: 10.1007/s10735-019-09817-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022]
Abstract
The cilia and flagella of eukaryotic cells serve many functions, exhibiting remarkable conservation of both structure and molecular composition in widely divergent eukaryotic organisms. SPAG6 and SPAG16 are the homologous in the mice to Chlamydomonas reinhardtii PF16 and PF20. Both proteins are associated with the axonemal central apparatus and are essential for ciliary and flagellar motility in mammals. Recent data derived from high-throughput studies revealed expression of these genes in tissues that do not contain motile cilia. However, the distribution of SPAG6 and SPAG16 in ciliated and non-ciliated tissues is not completely understood. In this work, we performed a quantitative analysis of the expression of Spag6 and Spag16 genes in parallel with the immune-localization of the proteins in several tissues of adult mice. Expression of mRNA was higher in the testis and tissues bearing motile cilia than in the other analyzed tissues. Both proteins were present in ciliated and non-ciliated tissues. In the testis, SPAG6 was detected in spermatogonia, spermatocytes, and in the sperm flagella whereas SPAG16 was found in spermatocytes and in the sperm flagella. In addition, both proteins were detected in the cytoplasm of cells from the brain, spinal cord, and ovary. A small isoform of SPAG16 was localized in the nucleus of germ cells and some neurons. In a parallel set of experiments, we overexpressed EGFP-SPAG6 in cultured cells and observed that the protein co-localized with a subset of acetylated cytoplasmic microtubules. A role of these proteins stabilizing the cytoplasmic microtubules of eukaryotic cells is discussed.
Collapse
Affiliation(s)
- Jimena Alciaturi
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo, Uruguay
| | - Gabriel Anesetti
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo, Uruguay
| | - Florencia Irigoin
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo, Uruguay.,Laboratorio de Genética Molecular Humana, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, Uruguay
| | - Fernanda Skowronek
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo, Uruguay
| | - Rossana Sapiro
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo, Uruguay.
| |
Collapse
|
12
|
Lehti MS, Sironen A. Formation and function of sperm tail structures in association with sperm motility defects†. Biol Reprod 2017; 97:522-536. [DOI: 10.1093/biolre/iox096] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/28/2017] [Indexed: 12/26/2022] Open
|
13
|
Zhang L, Liu Y, Li W, Zhang Q, Li Y, Liu J, Min J, Shuang C, Song S, Zhang Z. Transcriptional regulation of human sperm-associated antigen 16 gene by S-SOX5. BMC Mol Biol 2017; 18:2. [PMID: 28137312 PMCID: PMC5282894 DOI: 10.1186/s12867-017-0082-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/24/2017] [Indexed: 11/12/2022] Open
Abstract
Background The mammalian sperm-associated antigen 16 gene (Spag16) uses alternative promoters to produce two major transcript isoforms (Spag16L and Spag16S) and encode proteins that are involved in the cilia/flagella formation and motility. In silico analysis of both mouse and human SPAG16L promoters reveals the existence of multiple putative SOX5 binding sites. Given that the SOX5 gene encodes a 48-kDa transcription factor (S-SOX5) and the presence of putative SOX5 binding sites at the SPAG16L promoter, regulation of SPAG16L expression by S-SOX5 was studied in the present work. Results S-SOX5 activated human SPAG16L promoter activity in the human bronchial epithelia cell line BEAS-2B cells. Mutation of S-SOX5 binding sites abolished the stimulatory effect. Overexpression of S-SOX5 resulted in a significant increase in the abundance of SPAG16L transcripts whereas silencing of S-SOX5 by RNAi largely reduced the SPAG16L expression. Chromatin immunoprecipitation assays showed that S-SOX5 directly interacts with the SPAG16L promoter. Conclusion S-SOX5 regulates transcription of human SPAG16L gene via directly binding to the promoter of SPAG16L. It has been reported that expression of sperm-associated antigen 6 (SPAG6), encoding another axonemal protein, is activated by S-SOX5. Therefore, S-SOX5 may regulate formation of motile cilia/flagella through globally mediating expression of genes encoding axonemal proteins.
Collapse
Affiliation(s)
- Ling Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China. .,Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - Yunhao Liu
- School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China
| | - Wei Li
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Qiaoling Zhang
- Central China Normal University, Wuhan, Hubei, 430000, China
| | - Yanwei Li
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298, USA.,Department of Computer Science, Wellesley College, Wellesley, MA, 02481-5701, USA
| | - Junpin Liu
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298, USA.,Wuhan Hospital for the Prevention and Treatment of Occupational Diseases, Wuhan, 430000, Hubei, China
| | - Jie Min
- School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China
| | - Chaofan Shuang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China
| | - Shizheng Song
- School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China
| | - Zhibing Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
14
|
Teves ME, Nagarkatti-Gude DR, Zhang Z, Strauss JF. Mammalian axoneme central pair complex proteins: Broader roles revealed by gene knockout phenotypes. Cytoskeleton (Hoboken) 2016; 73:3-22. [PMID: 26785425 DOI: 10.1002/cm.21271] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 11/22/2015] [Accepted: 12/24/2015] [Indexed: 01/09/2023]
Abstract
The axoneme genes, their encoded proteins, their functions and the structures they form are largely conserved across species. Much of our knowledge of the function and structure of axoneme proteins in cilia and flagella is derived from studies on model organisms like the green algae, Chlamydomonas reinhardtii. The core structure of cilia and flagella is the axoneme, which in most motile cilia and flagella contains a 9 + 2 configuration of microtubules. The two central microtubules are the scaffold of the central pair complex (CPC). Mutations that disrupt CPC genes in Chlamydomonas and other model organisms result in defects in assembly, stability and function of the axoneme, leading to flagellar motility defects. However, targeted mutations generated in mice in the orthologous CPC genes have revealed significant differences in phenotypes of mutants compared to Chlamydomonas. Here we review observations that support the concept of cell-type specific roles for the CPC genes in mice, and an expanded repertoire of functions for the products of these genes in cilia, including non-motile cilia, and other microtubule-associated cellular functions.
Collapse
Affiliation(s)
- Maria E Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - David R Nagarkatti-Gude
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia.,Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Zhibing Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia.,Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Jerome F Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia.,Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
15
|
Lehti MS, Sironen A. Formation and function of the manchette and flagellum during spermatogenesis. Reproduction 2016; 151:R43-54. [DOI: 10.1530/rep-15-0310] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 01/20/2016] [Indexed: 12/19/2022]
Abstract
The last phase of spermatogenesis involves spermatid elongation (spermiogenesis), where the nucleus is remodeled by chromatin condensation, the excess cytoplasm is removed and the acrosome and sperm tail are formed. Protein transport during spermatid elongation is required for correct formation of the sperm tail and acrosome and shaping of the head. Two microtubular-based protein delivery platforms transport proteins to the developing head and tail: the manchette and the sperm tail axoneme. The manchette is a transient skirt-like structure surrounding the elongating spermatid head and is only present during spermatid elongation. In this review, we consider current understanding of the assembly, disassembly and function of the manchette and the roles of these processes in spermatid head shaping and sperm tail formation. Recent studies have shown that at least some of the structural proteins of the sperm tail are transported through the intra-manchette transport to the basal body at the base of the developing sperm tail and through the intra-flagellar transport to the construction site in the flagellum. This review focuses on the microtubule-based mechanisms involved and the consequences of their disruption in spermatid elongation.
Collapse
|
16
|
Dissecting the structural basis of MEIG1 interaction with PACRG. Sci Rep 2016; 6:18278. [PMID: 26726850 PMCID: PMC4698733 DOI: 10.1038/srep18278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/16/2015] [Indexed: 11/21/2022] Open
Abstract
The product of the meiosis-expressed gene 1 (MEIG1) is found in the cell bodies of spermatocytes and recruited to the manchette, a structure unique to elongating spermatids, by Parkin co-regulated gene (PACRG). This complex is essential for targeting cargo to the manchette during sperm flagellum assembly. Here we show that MEIG1 adopts a unique fold that provides a large surface for interacting with other proteins. We mutated 12 exposed and conserved amino acids and show that four of these mutations (W50A, K57E, F66A, Y68A) dramatically reduce binding to PACRG. These four amino acids form a contiguous hydrophobic patch on one end of the protein. Furthermore, each of these four mutations diminishes the ability of MEIG1 to stabilize PACRG when expressed in bacteria. Together these studies establish the unique structure and key interaction surface of MEIG1 and provide a framework to explore how MEIG1 recruits proteins to build the sperm tail.
Collapse
|
17
|
Li W, Tang W, Teves ME, Zhang Z, Zhang L, Li H, Archer KJ, Peterson DL, Williams DC, Strauss JF, Zhang Z. A MEIG1/PACRG complex in the manchette is essential for building the sperm flagella. Development 2015; 142:921-30. [PMID: 25715396 PMCID: PMC4352978 DOI: 10.1242/dev.119834] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A key event in the process of spermiogenesis is the formation of the flagella, which enables sperm to reach eggs for fertilization. Yeast two-hybrid studies revealed that meiosis-expressed gene 1 (MEIG1) and Parkin co-regulated gene (PACRG) interact, and that sperm-associated antigen 16, which encodes an axoneme central apparatus protein, is also a binding partner of MEIG1. In spermatocytes of wild-type mice, MEIG1 is expressed in the whole germ cell bodies, but the protein migrates to the manchette, a unique structure at the base of elongating spermatid that directs formation of the flagella. In the elongating spermatids of wild-type mice, PACRG colocalizes with α-tubulin, a marker for the manchette, whereas this localization was not changed in the few remaining elongating spermatids of Meig1-deficient mice. In addition, MEIG1 no longer localizes to the manchette in the remaining elongating spermatids of Pacrg-deficient mice, indicating that PACRG recruits MEIG1 to the manchette. PACRG is not stable in mammalian cells, but can be stabilized by MEIG1 or by inhibition of proteasome function. SPAG16L is present in the spermatocyte cytoplasm of wild-type mice, and in the manchette of elongating spermatids, but in the Meig1 or Pacrg-deficient mice, SPAG16L no longer localizes to the manchette. By contrast, MEIG1 and PACRG are still present in the manchette of Spag16L-deficient mice, indicating that SPAG16L is a downstream partner of these two proteins. Together, our studies demonstrate that MEIG1/PACRG forms a complex in the manchette and that this complex is necessary to transport cargos, such as SPAG16L, to build the sperm flagella. Summary: In the manchette, a structure at the base of the elongating spermatid, the proteins MEIG1 and PACRG act in a complex to control cargo transport and direct formation of the flagellum.
Collapse
Affiliation(s)
- Wei Li
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Waixing Tang
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria E Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Zhengang Zhang
- Department of Infectious Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Hongfei Li
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Kellie J Archer
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Darrell L Peterson
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - David C Williams
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jerome F Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA 23298, USA Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Zhibing Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA 23298, USA School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
18
|
Coutton C, Escoffier J, Martinez G, Arnoult C, Ray PF. Teratozoospermia: spotlight on the main genetic actors in the human. Hum Reprod Update 2015; 21:455-85. [PMID: 25888788 DOI: 10.1093/humupd/dmv020] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/25/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Male infertility affects >20 million men worldwide and represents a major health concern. Although multifactorial, male infertility has a strong genetic basis which has so far not been extensively studied. Recent studies of consanguineous families and of small cohorts of phenotypically homogeneous patients have however allowed the identification of a number of autosomal recessive causes of teratozoospermia. Homozygous mutations of aurora kinase C (AURKC) were first described to be responsible for most cases of macrozoospermia. Other genes defects have later been identified in spermatogenesis associated 16 (SPATA16) and dpy-19-like 2 (DPY19L2) in patients with globozoospermia and more recently in dynein, axonemal, heavy chain 1 (DNAH1) in a heterogeneous group of patients presenting with flagellar abnormalities previously described as dysplasia of the fibrous sheath or short/stump tail syndromes, which we propose to call multiple morphological abnormalities of the flagella (MMAF). METHODS A comprehensive review of the scientific literature available in PubMed/Medline was conducted for studies on human genetics, experimental models and physiopathology related to teratozoospermia in particular globozoospermia, large headed spermatozoa and flagellar abnormalities. The search included all articles with an English abstract available online before September 2014. RESULTS Molecular studies of numerous unrelated patients with globozoospermia and large-headed spermatozoa confirmed that mutations in DPY19L2 and AURKC are mainly responsible for their respective pathological phenotype. In globozoospermia, the deletion of the totality of the DPY19L2 gene represents ∼ 81% of the pathological alleles but point mutations affecting the protein function have also been described. In macrozoospermia only two recurrent mutations were identified in AURKC, accounting for almost all the pathological alleles, raising the possibility of a putative positive selection of heterozygous individuals. The recent identification of DNAH1 mutations in a proportion of patients with MMAF is promising but emphasizes that this phenotype is genetically heterogeneous. Moreover, the identification of mutations in a dynein strengthens the emerging point of view that MMAF may be a phenotypic variation of the classical forms of primary ciliary dyskinesia. Based on data from human and animal models, the MMAF phenotype seems to be favored by defects directly or indirectly affecting the central pair of axonemal microtubules of the sperm flagella. CONCLUSIONS The studies described here provide valuable information regarding the genetic and molecular defects causing infertility, to improve our understanding of the physiopathology of teratozoospermia while giving a detailed characterization of specific features of spermatogenesis. Furthermore, these findings have a significant influence on the diagnostic strategy for teratozoospermic patients allowing the clinician to provide the patient with informed genetic counseling, to adopt the best course of treatment and to develop personalized medicine directly targeting the defective gene products.
Collapse
Affiliation(s)
- Charles Coutton
- Université Grenoble Alpes, Grenoble, F-38000, France Equipe 'Genetics Epigenetics and Therapies of Infertility' Institut Albert Bonniot, INSERM U823, La Tronche, F-38706, France CHU de Grenoble, UF de Génétique Chromosomique, Grenoble, F-38000, France
| | - Jessica Escoffier
- Université Grenoble Alpes, Grenoble, F-38000, France Equipe 'Genetics Epigenetics and Therapies of Infertility' Institut Albert Bonniot, INSERM U823, La Tronche, F-38706, France Departments of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Guillaume Martinez
- Université Grenoble Alpes, Grenoble, F-38000, France Equipe 'Genetics Epigenetics and Therapies of Infertility' Institut Albert Bonniot, INSERM U823, La Tronche, F-38706, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Grenoble, F-38000, France Equipe 'Genetics Epigenetics and Therapies of Infertility' Institut Albert Bonniot, INSERM U823, La Tronche, F-38706, France
| | - Pierre F Ray
- Université Grenoble Alpes, Grenoble, F-38000, France Equipe 'Genetics Epigenetics and Therapies of Infertility' Institut Albert Bonniot, INSERM U823, La Tronche, F-38706, France CHU de Grenoble, UF de Biochimie et Génétique Moléculaire, Grenoble, F-38000, France
| |
Collapse
|
19
|
de Boer P, de Vries M, Ramos L. A mutation study of sperm head shape and motility in the mouse: lessons for the clinic. Andrology 2014; 3:174-202. [PMID: 25511638 DOI: 10.1111/andr.300] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/19/2014] [Accepted: 09/24/2014] [Indexed: 12/11/2022]
Abstract
Mouse mutants that show effects on sperm head shape, the sperm tail (flagellum), and motility were analysed in a systematic way. This was achieved by grouping mutations in the following classes: manchette, acrosome, Sertoli cell contact, chromatin remodelling, and mutations involved in complex regulations such as protein (de)phosphorylation and RNA stability, and flagellum/motility mutations. For all mutant phenotypes, flagellum function (motility) was affected. Head shape, including the nucleus, was also affected in spermatozoa of most mouse models, though with considerable variation. For the mutants that were categorized in the flagellum/motility group, generally normal head shapes were found, even when the flagellum did not develop or only poorly so. Most mutants are sterile, an occasional one semi-sterile. For completeness, the influence of the sex chromosomes on sperm phenotype is included. Functionally, the genes involved can be categorized as regulators of spermiogenesis. When extrapolating these data to human sperm samples, in vivo selection for motility would be the tool for weeding out the products of suboptimal spermiogenesis and epididymal sperm maturation. The striking dependency of motility on proper sperm head development is not easy to understand, but likely is of evolutionary benefit. Also, sperm competition after mating can never act against the long-term multi-generation interest of genetic integrity. Hence, it is plausible to suggest that short-term haplophase fitness i.e., motility, is developmentally integrated with proper nucleus maturation, including genetic integrity to protect multi-generation fitness. We hypothesize that, when the prime defect is in flagellum formation, apparently a feedback loop was not necessary as head morphogenesis in these mutants is mostly normal. Extrapolating to human-assisted reproductive techniques practice, this analysis would supply the arguments for the development of tools to select for motility as a continuous (non-discrete) parameter.
Collapse
Affiliation(s)
- P de Boer
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
20
|
Lesich KA, dePinho TG, Dionne BJ, Lindemann CB. The effects of Ca2+ and ADP on dynein switching during the beat cycle of reactivated bull sperm models. Cytoskeleton (Hoboken) 2014; 71:611-27. [PMID: 25355469 DOI: 10.1002/cm.21196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/14/2014] [Accepted: 10/20/2014] [Indexed: 12/22/2022]
Abstract
Calcium regulation of flagellar motility is the basis for chemotaxis, phototaxis, and hyperactivation responses in eukaryotic flagellates and spermatozoa. Ca2+ is the internal messenger for these responses, but the coupling between Ca2+ and the motor mechanism that generates the flagellar beat is incompletely understood. We examined the effects of Ca2+ on the flagellar curvature at the switch-points of the beat cycle in bull sperm. The sperm were detergent extracted and reactivated with 0.1 mM adenosine triphosphate (ATP). With their heads immobilized and their tails beating freely it is possible to calculate the bending torque and the transverse force acting on the flagellum at the switch-points. An increase in the free Ca2+ concentration (pCa 8 to pCa 4) significantly decreased the development of torque and t-force in the principal bending direction, while having negligible effect on the reverse bend. The action of Ca2+ was more pronounced when the sperm were also treated with 4 mM adenosine diphosphate (ADP); it was sufficient to change the direction of bending that reaches the greater curvature. We also observed that the curvature of the distal half of the flagellum became locked in one direction in the presence of Ca2+ . This indicates that a subset of the dynein becomes continuously activated by Ca2+ and fails to switch with the beat cycle. Our evidence suggests this subset of dyneins is localized to doublets #1-4 of the axoneme.
Collapse
Affiliation(s)
- Kathleen A Lesich
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| | | | | | | |
Collapse
|
21
|
Fu G, Nagasato C, Oka S, Cock JM, Motomura T. Proteomics analysis of heterogeneous flagella in brown algae (stramenopiles). Protist 2014; 165:662-75. [PMID: 25150613 DOI: 10.1016/j.protis.2014.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 10/25/2022]
Abstract
Flagella are conserved organelles among eukaryotes and they are composed of many proteins, which are necessary for flagellar assembly, maintenance and function. Stramenopiles, which include brown algae, diatoms and oomycetes, possess two laterally inserted flagella. The anterior flagellum (AF) extends forward and bears tripartite mastigonemes, whilst the smooth posterior flagellum (PF) often has a paraflagellar body structure. These heterogeneous flagella have served as crucial structures in algal studies especially from a viewpoint of phylogeny. However, the protein compositions of the flagella are still largely unknown. Here we report a LC-MS/MS based proteomics analysis of brown algal flagella. In total, 495 flagellar proteins were identified. Functional annotation of the proteome data revealed that brown algal flagellar proteins were associated with cell motility, signal transduction and various metabolic activities. We separately isolated AF and PF and analyzed their protein compositions. This analysis led to the identification of several AF- and PF-specific proteins. Among the PF-specific proteins, we found a candidate novel blue light receptor protein involved in phototaxis, and named it HELMCHROME because of the steering function of PF. Immunological analysis revealed that this protein was localized along the whole length of the PF and concentrated in the paraflagellar body.
Collapse
Affiliation(s)
- Gang Fu
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran 051-0013, Hokkaido, Japan
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran 051-0013, Hokkaido, Japan
| | - Seiko Oka
- Instrumental Analysis Division, Equipment Management Center, Creative Research Institution, Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| | - J Mark Cock
- University Pierre et Marie Curie and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Laboratoire International Associé Dispersal and Adaptation in Marine Species, Station Biologique de Roscoff, 29682 Roscoff Cedex, France
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran 051-0013, Hokkaido, Japan.
| |
Collapse
|
22
|
Hanson SJ, Stelzer CP, Welch DBM, Logsdon JM. Comparative transcriptome analysis of obligately asexual and cyclically sexual rotifers reveals genes with putative functions in sexual reproduction, dormancy, and asexual egg production. BMC Genomics 2013; 14:412. [PMID: 23782598 PMCID: PMC3701536 DOI: 10.1186/1471-2164-14-412] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 05/31/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Sexual reproduction is a widely studied biological process because it is critically important to the genetics, evolution, and ecology of eukaryotes. Despite decades of study on this topic, no comprehensive explanation has been accepted that explains the evolutionary forces underlying its prevalence and persistence in nature. Monogonont rotifers offer a useful system for experimental studies relating to the evolution of sexual reproduction due to their rapid reproductive rate and close relationship to the putatively ancient asexual bdelloid rotifers. However, little is known about the molecular underpinnings of sex in any rotifer species. RESULTS We generated mRNA-seq libraries for obligate parthenogenetic (OP) and cyclical parthenogenetic (CP) strains of the monogonont rotifer, Brachionus calyciflorus, to identify genes specific to both modes of reproduction. Our differential expression analysis identified receptors with putative roles in signaling pathways responsible for the transition from asexual to sexual reproduction. Differential expression of a specific copy of the duplicated cell cycle regulatory gene CDC20 and specific copies of histone H2A suggest that such duplications may underlie the phenotypic plasticity required for reproductive mode switch in monogononts. We further identified differential expression of genes involved in the formation of resting eggs, a process linked exclusively to sex in this species. Finally, we identified transcripts from the bdelloid rotifer Adineta ricciae that have significant sequence similarity to genes with higher expression in CP strains of B. calyciflorus. CONCLUSIONS Our analysis of global gene expression differences between facultatively sexual and exclusively asexual populations of B. calyciflorus provides insights into the molecular nature of sexual reproduction in rotifers. Furthermore, our results offer insight into the evolution of obligate asexuality in bdelloid rotifers and provide indicators important for the use of monogononts as a model system for investigating the evolution of sexual reproduction.
Collapse
Affiliation(s)
- Sara J Hanson
- Department of Biology and Interdisciplinary Program in Genetics, University of Iowa, 301 Biology Building, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
23
|
Teves ME, Zhang Z, Costanzo RM, Henderson SC, Corwin FD, Zweit J, Sundaresan G, Subler M, Salloum FN, Rubin BK, Strauss JF. Sperm-associated antigen-17 gene is essential for motile cilia function and neonatal survival. Am J Respir Cell Mol Biol 2013; 48:765-72. [PMID: 23418344 PMCID: PMC3727877 DOI: 10.1165/rcmb.2012-0362oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/16/2013] [Indexed: 11/24/2022] Open
Abstract
Primary ciliary dyskinesia (PCD), resulting from defects in cilia assembly or motility, is caused by mutations in a number of genes encoding axonemal proteins. PCD phenotypes are variable, and include recurrent respiratory tract infections, bronchiectasis, hydrocephaly, situs inversus, and male infertility. We generated knockout mice for the sperm-associated antigen-17 (Spag17) gene, which encodes a central pair (CP) protein present in the axonemes of cells with "9 + 2" motile cilia or flagella. The targeting of Spag17 resulted in a severe phenotype characterized by immotile nasal and tracheal cilia, reduced clearance of nasal mucus, profound respiratory distress associated with lung fluid accumulation and disruption of the alveolar epithelium, cerebral ventricular expansion consistent with emerging hydrocephalus, failure to suckle, and neonatal demise within 12 hours of birth. Ultrastructural analysis revealed the loss of one CP microtubule in approximately one quarter of tracheal cilia axonemes, an absence of a C1 microtubule projection, and other less frequent CP structural abnormalities. SPAG6 and SPAG16 (CP proteins that interact with SPAG17) were increased in tracheal tissue from SPAG17-deficient mice. We conclude that Spag17 plays a critical role in the function and structure of motile cilia, and that neonatal lethality is likely explained by impaired airway mucociliary clearance.
Collapse
Affiliation(s)
| | - Zhibing Zhang
- Department of Obstetrics and Gynecology
- Department of Biochemistry and Molecular Biology
| | | | | | | | - Jamal Zweit
- Department of Biochemistry and Molecular Biology
- Department of Radiology
| | | | | | - Fadi N. Salloum
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, and
| | - Bruce K. Rubin
- Department of Physiology and Biophysics
- Department of Pediatrics, Virginia Commonwealth University, Richmond, Virginia
| | - Jerome F. Strauss
- Department of Obstetrics and Gynecology
- Department of Biochemistry and Molecular Biology
| |
Collapse
|
24
|
Shi Y, Zhang L, Song S, Teves ME, Li H, Wang Z, Hess RA, Jiang G, Zhang Z. The mouse transcription factor-like 5 gene encodes a protein localized in the manchette and centriole of the elongating spermatid. Andrology 2013; 1:431-9. [PMID: 23444080 DOI: 10.1111/j.2047-2927.2013.00069.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/05/2013] [Accepted: 01/11/2013] [Indexed: 12/17/2022]
Abstract
Spermiogenesis is the final phase of spermatogenesis. During this process, haploid round spermatids differentiate into spermatozoa, with dramatic morphological changes, including elongation and condensation of the nuclei, and formation of the flagella. Meig1 is one of many genes involved in the regulation of this process. Male mice deficient in MEIG1 are sterile with a severe defect in spermiogenesis, associated with dramatic disruption of the spermatid manchette and failure of flagellogenesis. A yeast two-hybrid screen using full-length MEIG1 as bait identified transcription factor-like 5 protein (TCFL5) as a putative interacting proteins. Interestingly, this protein was also identified as a potential binding partner of SPAG16, another protein essential for spermatogenesis, and also a binding partner of MEIG1. The interaction between TCFL5 and MEIG1 was confirmed in cultured cells over-expressing the two proteins. The mouse Tcfl5 transcript is present only in the testis, and its expression is significantly increased during spermiogenesis. However, little is known about TCFL5 protein and its role in male germ cells. A rabbit polyclonal antibody was generated against the C-terminal region of TCFL5. Mouse TCFL5 protein was expressed in the testis but not in mature spermatozoa. During the first wave of spermatogenesis, TCFL5 expression was dramatically increased at day 30 after birth. In the testis and a mixture of dispersed testicular cells, the protein co-localized with α-tubulin, a manchette marker in early elongating spermatids. The protein also localized in the centrioles of late elongating spermatids. No obvious differences in TCFL5 epitope abundance and localization were observed between wild type and the Meig1-deficient mice. These findings suggest that TCFL5 may play a role upstream of MEIG1 action, and based on putative binding partners and localization is likely to be involved in spermiogenesis and formation of the sperm flagella.
Collapse
Affiliation(s)
- Y Shi
- School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Association between a Tetranucleotide Repeat Polymorphism of SPAG16 Gene and Cataract in Male Children. J Biomark 2013; 2013:810395. [PMID: 26317022 PMCID: PMC4437386 DOI: 10.1155/2013/810395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/13/2012] [Indexed: 11/17/2022] Open
Abstract
Purpose. Studies involving genotyping of STR markers at 2q34 have repeatedly found the region to host the disease haplotype for pediatric cataract. Present study investigated the association of D2S2944 marker, in sperm associated antigen 16 (SPAG16) gene and rs2289917 polymorphism, in γ-crystallin B gene, with childhood cataract. Methods. 97 pediatric cataract cases and 110 children with no ocular defects were examined for tetranucleotide repeat marker/SNP using PCR-SSLP/RFLP techniques. Polymorphisms were assessed for association using contingency tables and linkage disequilibrium among alleles of the markers was estimated. Energy-optimization program predicted the secondary structure models of repeats of D2S2944. Results. Seven alleles of D2S2944, with 9–15 “GATA” repeats, were observed. Frequency of the longer allele of D2S2944, ≥(GATA)13 repeats, was 0.73 in cases and 0.56 in controls (P = 0.0123). Male children bearing ≥(GATA)13 repeats showed >3-fold higher risk for cataract (CI95% = 1.43–7.00, P = 0.0043, Pc = 0.0086) as compared to female children (OR = 1.19, CI95% = 0.49–2.92, P = 0.70). Cases with haplotype—≥(GATA)13 of D2S2944 and “C” allele rs2289917—have a higher risk for pediatric cataract (OR = 2.952, CI95% = 1.595~5.463, P = 0.000453). >(GATA)13 repeats formed energetically more favorable stem-loop structure. Conclusion. Intragenic microsatellite repeat expansion in SPAG16 gene increases predisposition to pediatric cataract by probably interfering posttranscriptional events and affecting the expression of adjacent lens transparency gene/s in a gender bias manner.
Collapse
|
26
|
Nagarkatti-Gude DR, Collodel G, Hill LD, Moretti E, Geminiani M, Zhang Z, Strauss JF. Genetic variation in SPAG16 regions encoding the WD40 repeats is not associated with reduced sperm motility and axonemal defects in a population of infertile males. BMC Urol 2012; 12:27. [PMID: 22963137 PMCID: PMC3487941 DOI: 10.1186/1471-2490-12-27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/31/2012] [Indexed: 11/13/2022] Open
Abstract
Background SPAG16 is a critical structural component of motile cilia and flagella. In the eukaryotic unicellular algae Chlamydomonas, loss of gene function causes flagellar paralysis and prevents assembly of the “9 + 2” axoneme central pair. In mice, we have previously shown that loss of Spag16 gene function causes male infertility and severe sperm motility defects. We have also reported that a heterozygous mutation of the human SPAG16 gene reduces stability of the sperm axonemal central apparatus. Methods In the present study, we analyzed DNA samples from 60 infertile male volunteers of Western European (Italian) origin, to search for novel SPAG16 gene mutations, and to determine whether increased prevalence of SPAG16 single nucleotide polymorphisms (SNPs) was associated with infertility phenotypes. Semen parameters were evaluated by light microscopy and sperm morphology was comprehensively analyzed by transmission electron microscopy (TEM). Results For gene analysis, sequences were generated covering exons encoding the conserved WD40 repeat region of the SPAG16 protein and the flanking splice junctions. No novel mutations were found, and the four SNPs in the assessed gene region were present at expected frequencies. The minor alleles were not associated with any assessed sperm parameter in the sample population. Conclusions Analysis of the SPAG16 regions encoding the conserved WD repeats revealed no evidence for association of mutations or genetic variation with sperm motility and ultrastructural sperm characteristics in a cohort of Italian infertile males.
Collapse
Affiliation(s)
- David R Nagarkatti-Gude
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Teves ME, Jha KN, Song J, Nagarkatti-Gude DR, Herr JC, Foster JA, Strauss JF, Zhang Z. Germ cell-specific disruption of the Meig1 gene causes impaired spermiogenesis in mice. Andrology 2012; 1:37-46. [PMID: 23258628 DOI: 10.1111/j.2047-2927.2012.00001.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 05/13/2012] [Accepted: 05/29/2012] [Indexed: 11/28/2022]
Abstract
Meiosis expressed gene 1 (Meig1) was originally identified in a search for mammalian genes potentially involved in meiosis. Seven mouse Meig1 transcripts with the same coding region, but different 5'-UTRs, have been identified. These transcripts have different tissue distributions, two are only present in the testis. In the testis, Meig1 is present in germ cells and Sertoli cells. A Meig1 conditional knockout model has been generated. When Meig1 was inactivated globally by crossing with Cmv-Cre transgenic mice, the Meig1-deficient males were sterile due to severe spermiogenic defects, and had no obvious defects in meiosis. To further study its role in individual cell types in the testis, the Meig1(flox) mice were crossed with Hsp2a-Cre, Prm-Cre, and Amh-Cre mice, in which the Cre recombinase is driven by the heat shock protein 2 (Hsp2a) gene promoter (expressed in spermatocytes), the protamine 1 gene promoter (expressed in post-meiotic spermatids) and the anti-Mullerian hormone (Amh) gene promoter (expressed in Sertoli cells) respectively. Both Meig1 mRNA and protein were undetectable in testis of the Hsp2a-Cre; Meig1(flox/flox) mice and all the mutant adult males tested were sterile. This phenotype mirrors that of the Cmv-Cre; Meig1(flox/flox) mice. Even though the total testicular Meig1 mRNA and protein expression levels were dramatically reduced in testis of the Prm-Cre; Meig1(flox/flox) males, all the mice tested were fertile, and there was no significant difference in sperm count and sperm motility compared with age-matched Meig1(flox/flox) male mice. Disruption of Meig1 in the Sertoli cells did not affect the MEIG1 protein expression. Amh-Cre; Meig1(flox/flox) males were fertile, and produced the same amount of spermatozoa as age-matched Meig1(flox/flox) mice. The testicular histology was also normal. Our results indicate that MEIG1 regulates spermiogenesis through effects in germ cells alone, and that the Meig1 gene must be active during a discrete period in spermatogenesis after which it is dispensable.
Collapse
Affiliation(s)
- M E Teves
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang J, Teves ME, Shen X, Nagarkatti-Gude DR, Hess RA, Henderson SC, Strauss JF, Zhang Z. Mouse RC/BTB2, a member of the RCC1 superfamily, localizes to spermatid acrosomal vesicles. PLoS One 2012; 7:e39846. [PMID: 22768142 PMCID: PMC3387240 DOI: 10.1371/journal.pone.0039846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/31/2012] [Indexed: 12/01/2022] Open
Abstract
Mouse RC/BTB2 is an unstudied protein of the RCC1 (Regulator of Chromosome Condensation) superfamily. Because of the significant remodeling of chromatin that occurs during spermiogenesis, we characterized the expression and localization of mouse RC/BTB2 in the testis and male germ cells. The Rc/btb2 gene yields two major transcripts: 2.3 kb Rc/btb2-s, present in most somatic tissues examined; and 2.5 kb Rc/btb2-t, which contains a unique non-translated exon in its 5'-UTR that is only detected in the testis. During the first wave of spermatogenesis, Rc/btb2-t mRNA is expressed from day 8 after birth, reaching highest levels of expression at day 30 after birth. The full-length protein contains three RCC1 domains in the N-terminus, and a BTB domain in the C-terminus. In the testis, the protein is detectable from day 12, but is progressively up-regulated to day 30 and day 42 after birth. In spermatids, some of the protein co-localizes with acrosomal markers sp56 and peanut lectin, indicating that it is an acrosomal protein. A GFP-tagged RCC1 domain is present throughout the cytoplasm of transfected CHO cells. However, both GFP-tagged, full-length RC/BTB2 and a GFP-tagged BTB domain localize to vesicles in close proximity to the nuclear membrane, suggesting that the BTB domain might play a role in mediating full-length RC/BTB2 localization. Since RCC1 domains associate with Ran, a small GTPase that regulates molecular trafficking, it is possible that RC/BTB2 plays a role in transporting proteins during acrosome formation.
Collapse
Affiliation(s)
- Jiannan Wang
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Maria E. Teves
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Xuening Shen
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - David R. Nagarkatti-Gude
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Rex A. Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, United States of America
| | - Scott C. Henderson
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jerome F. Strauss
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Zhibing Zhang
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
29
|
Lesich KA, Kelsch CB, Ponichter KL, Dionne BJ, Dang L, Lindemann CB. The Calcium Response of Mouse Sperm Flagella: Role of Calcium Ions in the Regulation of Dynein Activity1. Biol Reprod 2012; 86:105. [DOI: 10.1095/biolreprod.111.094953] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
30
|
Nagarkatti-Gude DR, Jaimez R, Henderson SC, Teves ME, Zhang Z, Strauss JF. Spag16, an axonemal central apparatus gene, encodes a male germ cell nuclear speckle protein that regulates SPAG16 mRNA expression. PLoS One 2011; 6:e20625. [PMID: 21655194 PMCID: PMC3105110 DOI: 10.1371/journal.pone.0020625] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/05/2011] [Indexed: 11/28/2022] Open
Abstract
Spag16 is the murine orthologue of Chlamydomonas reinhardtii PF20, a protein known to be essential to the structure and function of the "9+2" axoneme. In Chlamydomonas, the PF20 gene encodes a single protein present in the central pair of the axoneme. Loss of PF20 prevents central pair assembly/integrity and results in flagellar paralysis. Here we demonstrate that the murine Spag16 gene encodes two proteins: 71 kDa SPAG16L, which is found in all murine cells with motile cilia or flagella, and 35 kDa SPAG16S, representing the C terminus of SPAG16L, which is expressed only in male germ cells, and is predominantly found in specific regions within the nucleus that also contain SC35, a known marker of nuclear speckles enriched in pre-mRNA splicing factors. SPAG16S expression precedes expression of SPAG16L. Mice homozygous for a knockout of SPAG16L alone are infertile, but show no abnormalities in spermatogenesis. Mice chimeric for a mutation deleting the transcripts for both SPAG16L and SPAG16S have a profound defect in spermatogenesis. We show here that transduction of SPAG16S into cultured dispersed mouse male germ cells and BEAS-2B human bronchial epithelial cells increases SPAG16L expression, but has no effect on the expression of several other axoneme components. We also demonstrate that the Spag16L promoter shows increased activity in the presence of SPAG16S. The distinct nuclear localization of SPAG16S and its ability to modulate Spag16L mRNA expression suggest that SPAG16S plays an important role in the gene expression machinery of male germ cells. This is a unique example of a highly conserved axonemal protein gene that encodes two protein products with different functions.
Collapse
Affiliation(s)
- David R. Nagarkatti-Gude
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ruth Jaimez
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Scott C. Henderson
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Maria E. Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Zhibing Zhang
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jerome F. Strauss
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
31
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 3: developmental changes in spermatid flagellum and cytoplasmic droplet and interaction of sperm with the zona pellucida and egg plasma membrane. Microsc Res Tech 2010; 73:320-63. [PMID: 19941287 DOI: 10.1002/jemt.20784] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spermiogenesis constitutes the steps involved in the metamorphosis of spermatids into spermatozoa. It involves modification of several organelles in addition to the formation of several structures including the flagellum and cytoplasmic droplet. The flagellum is composed of a neck region and middle, principal, and end pieces. The axoneme composed of nine outer microtubular doublets circularly arranged to form a cylinder around a central pair of microtubules is present throughout the flagellum. The middle and principal pieces each contain specific components such as the mitochondrial sheath and fibrous sheath, respectively, while outer dense fibers are common to both. A plethora of proteins are constituents of each of these structures, with each playing key roles in functions related to the fertility of spermatozoa. At the end of spermiogenesis, a portion of spermatid cytoplasm remains associated with the released spermatozoa, referred to as the cytoplasmic droplet. The latter has as its main feature Golgi saccules, which appear to modify the plasma membrane of spermatozoa as they move down the epididymal duct and hence may be partly involved in male gamete maturation. The end product of spermatogenesis is highly streamlined and motile spermatozoa having a condensed nucleus equipped with an acrosome. Spermatozoa move through the female reproductive tract and eventually penetrate the zona pellucida and bind to the egg plasma membrane. Many proteins have been implicated in the process of fertilization as well as a plethora of proteins involved in the development of spermatids and sperm, and these are high lighted in this review.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
32
|
Salzberg Y, Eldar T, Karminsky OD, Itach SBS, Pietrokovski S, Don J. Meig1 deficiency causes a severe defect in mouse spermatogenesis. Dev Biol 2010; 338:158-67. [DOI: 10.1016/j.ydbio.2009.11.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 10/14/2009] [Accepted: 11/22/2009] [Indexed: 11/26/2022]
|
33
|
Lesich KA, Zhang Z, Kelsch CB, Ponichter KL, Strauss JF, Lindemann CB. Functional deficiencies and a reduced response to calcium in the flagellum of mouse sperm lacking SPAG16L. Biol Reprod 2009; 82:736-44. [PMID: 20042536 DOI: 10.1095/biolreprod.109.080143] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Spag16L gene codes for a protein that is localized to the central apparatus which is essential for normal sperm motility and male fertility. Sperm from mice homozygous for a targeted deletion of the Spag16L gene were examined to assess their flagellar motor functions compared with age- and strain-matched control sperm. Sperm were also demembranated with Triton X-100 and examined for their ability to respond to free calcium, as well as for their ability to undergo microtubule sliding driven by dynein action. In addition, the passive flagella, inhibited by sodium metavanadate to disable the dyneins, were examined for mechanical abnormalities. Live Spag16L-null sperm exhibited much less bending of the flagellum during the beat. The amount of microtubule sliding in the R-bend direction of the beat was selectively restricted, which suggests that there is limited activation of the dyneins on one side of the axoneme in the live cells. This is corroborated by the results on detergent-extracted sperm models. The flagellar response to calcium is greatly reduced. The calcium response requires the activation of the dyneins on outer doublets 1, 2, 3, and 4. These are the same dyneins required for R-bend formation. In axonemes prepared to disintegrate by microtubule sliding, we observed little or no extrusion of doublets 1 and 2, consistent with a reduced activity of their dyneins. This deficit in motor function, and an increased rigidity of the midpiece region which we detected in the passive flagella, together can explain the observed motility characteristics of the Spag16L-null sperm.
Collapse
Affiliation(s)
- Kathleen A Lesich
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Spermatogenesis can be divided into three stages: spermatogonial mitosis, meiosis of spermatocytes, and spermiogenesis. During spermiogenesis, spermatids undergo dramatic morphological changes including formation of a flagellum and chromosomal packaging and condensation of the nucleus into the sperm head. The genes regulating the latter processes are largely unknown. We previously discovered that a bi-functional gene, Spag16, is essential for spermatogenesis. SPAG16S, the 35 kDa, testis-specific isoform derived from the Spag16 gene, was found to bind to meiosis expressed gene 1 product (MEIG1), a protein originally thought to play a role in meiosis. We inactivated the Meig1 gene and, unexpectedly, found that Meig1 mutant male mice had no obvious defect in meiosis, but were sterile as a result of impaired spermatogenesis at the stage of elongation and condensation. Transmission electron microscopy revealed that the manchette, a microtubular organelle essential for sperm head and flagellar formation was disrupted in spermatids of MEIG1-deficient mice. We also found that MEIG1 associates with the Parkin co-regulated gene (PACRG) protein, and that testicular PACRG protein is reduced in MEIG1-deficient mice. PACRG is thought to play a key role in assembly of the axonemes/flagella and the reproductive phenotype of Pacrg-deficient mice mirrors that of the Meig1 mutant mice. Our findings reveal a critical role for the MEIG1/PARCG partnership in manchette structure and function and the control of spermiogenesis.
Collapse
|
35
|
Huh MS, Todd MAM, Picketts DJ. SCO-ping out the mechanisms underlying the etiology of hydrocephalus. Physiology (Bethesda) 2009; 24:117-26. [PMID: 19364914 DOI: 10.1152/physiol.00039.2008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The heterogeneous nature of congenital hydrocephalus has hampered our understanding of the molecular basis of this common clinical problem. However, disease gene identification and characterization of multiple transgenic mouse models has highlighted the importance of the subcommissural organ (SCO) and the ventricular ependymal (vel) cells. Here, we review how altered development and function of the SCO and vel cells contributes to hydrocephalus.
Collapse
Affiliation(s)
- Michael S Huh
- Regenerative Medicine Program, Ottawa Health Research Institute, Canada
| | | | | |
Collapse
|
36
|
Lin YH, Lin YM, Wang YY, Yu IS, Lin YW, Wang YH, Wu CM, Pan HA, Chao SC, Yen PH, Lin SW, Kuo PL. The expression level of septin12 is critical for spermiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1857-68. [PMID: 19359518 DOI: 10.2353/ajpath.2009.080955] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Septins belong to a family of polymerizing GTP-binding proteins that are required for many cellular functions, such as membrane compartmentalization, vesicular trafficking, mitosis, and cytoskeletal remodeling. One family member, septin12, is expressed specifically in the testis. In this study, we found septin12 expressed in multiple subcellular compartments during terminal differentiation of mouse germ cells. In humans, the testicular tissues of men with either hypospermatogenesis or maturation arrest had lower levels of SEPTIN12 transcripts than normal men. In addition, increased numbers of spermatozoa with abnormal head, neck, and tail morphologies lacked SEPT12 immunostaining signals, as compared with normal spermatozoa. To elucidate the role of septin12, we generated 129 embryonic stem cells containing a septin12 mutant allele with a deletion in the exons that encode the N-terminal GTP-binding domain. Most chimeras derived from the targeted embryonic stem cells were infertile, and the few fertile chimeras only produced offspring with a C57BL/6 background. Semen analysis of the infertile chimeras showed a decreased sperm count, decreased sperm motility, and spermatozoa with defects involving all subcellular compartments. The testicular phenotypes included maturation arrest of germ cells at the spermatid stage, sloughing of round spermatids, and increased apoptosis of germ cells. Electron microscopic examination of spermatozoa showed misshapen nuclei, disorganized mitochondria, and broken acrosomes. Our data indicate that Septin12 expression levels are critical for mammalian spermiogenesis.
Collapse
Affiliation(s)
- Ying-Hung Lin
- Graduate Institute of Basic Medical Sciences, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Silva C, Wood JR, Salvador L, Zhang Z, Kostetskii I, Williams CJ, Strauss JF. Expression profile of male germ cell-associated genes in mouse embryonic stem cell cultures treated with all-trans retinoic acid and testosterone. Mol Reprod Dev 2009; 76:11-21. [PMID: 18425777 DOI: 10.1002/mrd.20925] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cells that morphologically and functionally resemble male germ cells can be spontaneously derived from ES cells. However, this process is inefficient and unpredictable suggesting that the expression pattern of male germ cell associated genes during spontaneous ES cell differentiation does not mimic the in vivo profiles of the genes. Thus, in the present study, the temporal profile of genes expressed at different stages of male germ cell development was examined in differentiating ES cells. The effect of all-trans retinoic acid (RA) which is a known inducer of primordial germ cell (PGC) proliferation/survival in vitro and testosterone which is required for spermatogenesis in vivo on the expression of these genes was also determined. Each of the 12 genes analyzed exhibited one of four temporal expression patterns in untreated differentiating ES cells: progressively decreased (Dppa3, Sycp3, Msy2), initially low and then increased (Stra8, Sycp1, Dazl, Act, Prm1), initially decreased and then increased (Piwil2, Tex14), or relatively unchanged (Akap3, Odf2). RA-treated cells exhibited increased expression of Stra8, Dazl, Act, and Prm1 and suppressed expression of Dppa3 compared to untreated controls. Furthermore, testosterone increased expression of Stra8 while the combination of RA and testosterone synergistically increased expression of Act. Our findings establish a comprehensive profile of male germ cell gene expression during spontaneous differentiation of murine ES cells and describe the capacity of RA and testosterone to modulate the expression of these genes. Furthermore, these data represent an important first step in designing a plausible directed differentiation protocol for male germ cells.
Collapse
Affiliation(s)
- Celso Silva
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of South Florida, Tampa, Florida, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Ehrmann I, Dalgliesh C, Tsaousi A, Paronetto MP, Heinrich B, Kist R, Cairns P, Li W, Mueller C, Jackson M, Peters H, Nayernia K, Saunders P, Mitchell M, Stamm S, Sette C, Elliott DJ. Haploinsufficiency of the germ cell-specific nuclear RNA binding protein hnRNP G-T prevents functional spermatogenesis in the mouse. Hum Mol Genet 2008; 17:2803-18. [PMID: 18562473 DOI: 10.1093/hmg/ddn179] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Human HNRNPGT, encoding the protein hnRNP G-T, is one of several autosomal retrogenes derived from RBMX. It has been suggested that HNRNPGT functionally replaces the sex-linked RBMX and RBMY genes during male meiosis. We show here that during normal mouse germ cell development, hnRNP G-T protein is strongly expressed during and after meiosis when proteins expressed from Rbmx or Rbmx-like genes are absent. Amongst these Rbmx-like genes, DNA sequence analyses indicate that two other mouse autosomal Rbmx-derived retrogenes have evolved recently in rodents and one already shows signs of degenerating into a non-expressed pseudogene. In contrast, orthologues of Hnrnpgt are present in all four major groups of placental mammals. The sequence of Hnrnpgt is under considerable positive selection suggesting it performs an important germ cell function in eutherians. To test this, we inactivated Hnrnpgt in ES cells and studied its function during spermatogenesis in chimaeric mice. Although germ cells heterozygous for this targeted allele could produce sperm, they did not contribute to the next generation. Chimaeric mice with a high level of mutant germ cells were infertile with low sperm counts and a high frequency of degenerate seminiferous tubules and abnormal sperm. Chimaeras made from a 1:1 mix of targeted and wild-type ES cell clones transmitted wild-type germ cells only. Our data show that haploinsufficiency of Hnrnpgt results in abnormal sperm production in the mouse. Genetic defects resulting in reduced levels of HNRNPGT could, therefore, be a cause of male infertility in humans.
Collapse
Affiliation(s)
- Ingrid Ehrmann
- Institute of Human Genetics, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Targeted deletion of Tssk1 and 2 causes male infertility due to haploinsufficiency. Dev Biol 2008; 319:211-22. [PMID: 18533145 DOI: 10.1016/j.ydbio.2008.03.047] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 03/24/2008] [Accepted: 03/31/2008] [Indexed: 11/22/2022]
Abstract
Targeted deletion of Tssk1 and 2 resulted in male chimeras which produced sperm/spermatogenic cells bearing the mutant allele, however this allele was never transmitted to offspring, indicating infertility due to haploinsufficiency. Morphological defects in chimeras included failure to form elongated spermatids, apoptosis of spermatocytes and spermatids, and the appearance of numerous round cells in the epididymal lumen. Characterization of TSSK2 and its interactions with the substrate, TSKS, were further investigated in human and mouse. The presence of both kinase and substrate in the testis was confirmed, while persistence of both proteins in spermatozoa was revealed for the first time. In vivo binding interactions between TSSK2 and TSKS were established through co-immunoprecipitation of TSSK2/TSKS complexes from both human sperm and mouse testis extracts. A role for the human TSKS N-terminus in enzyme binding was defined by deletion mapping. TSKS immunoprecipitated from both mouse testis and human sperm extracts was actively phosphorylated. Ser281 was identified as a phosphorylation site in mouse TSKS. These results confirm both TSSK 2 and TSKS persist in sperm, define the critical role of TSKS' N-terminus in enzyme interaction, identify Ser 281 as a TSKS phosphorylation site and indicate an indispensable role for TSSK 1 and 2 in spermiogenesis.
Collapse
|
40
|
Zhang Z, Shen X, Jones BH, Xu B, Herr JC, Strauss JF. Phosphorylation of mouse sperm axoneme central apparatus protein SPAG16L by a testis-specific kinase, TSSK2. Biol Reprod 2008; 79:75-83. [PMID: 18367677 DOI: 10.1095/biolreprod.107.066308] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The mammalian protein SPAG16L, the ortholog of Chlamydomonas Pf20, is an axoneme central apparatus protein necessary for flagellar motility. The SPAG16L protein sequence contains multiple potential phosphorylation sites, and the protein was confirmed to be phosphorylated in vivo. A yeast two-hybrid screen identified the testis-specific kinase, TSSK2, to be a potential SPAG16L binding partner. SPAG16L and TSSK2 interactions were confirmed by coimmunoprecipitation of both proteins from testis extracts and cell lysates expressing these proteins, and their colocalization was also noted by confocal microscopy in Chinese hamster ovary cells, where they were coexpressed. TSSK2 associates with SPAG16L via its C-terminal domain bearing WD repeats. The N-terminal domain containing a coiled coil motif does not associate with TSSK2. SPAG16L can be phosphorylated by TSSK2 in vitro. Finally, TSSK2 is absent or markedly reduced from the testes in most of the SPAG16L-null mice. These data support the conclusion that SPAG16L is a TSSK2 substrate.
Collapse
Affiliation(s)
- Zhibing Zhang
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Suh JM, Zeve D, McKay R, Seo J, Salo Z, Li R, Wang M, Graff JM. Adipose is a conserved dosage-sensitive antiobesity gene. Cell Metab 2007; 6:195-207. [PMID: 17767906 PMCID: PMC2587167 DOI: 10.1016/j.cmet.2007.08.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 05/30/2007] [Accepted: 08/06/2007] [Indexed: 01/04/2023]
Abstract
Adipose (Adp) is an evolutionarily conserved gene isolated from naturally occurring obese flies homozygous for an adp mutation. Here we show that the anti-obesity function of Adp (worm Y73E7A.9, fly adp, and murine Wdtc1) is conserved from worms to mammals. Further, Adp appears to inhibit fat formation in a dosage-sensitive manner. Adp heterozygous flies and Adp heterozygous mutant mice are obese and insulin resistant, as are mice that express a dominant negative form of Adp in fat cells. Conversely, fat-restricted Adp transgenic mice are lean and display improved metabolic profiles. A transient transgenic increase in Adp activity in adult fly fat tissues reduces fat accumulation, indicating therapeutic potential. ADP may elicit these anti-adipogenic functions by regulating chromatin dynamics and gene transcription, as it binds both histones and HDAC3 and inhibits PPARgamma activity. Thus Adp appears to be involved in an ancient pathway that regulates fat accumulation.
Collapse
Affiliation(s)
- Jae Myoung Suh
- Department of Developmental Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, NB5.118, Dallas, TX 75390-9133, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhang Z, Zariwala MA, Mahadevan MM, Caballero-Campo P, Shen X, Escudier E, Duriez B, Bridoux AM, Leigh M, Gerton GL, Kennedy M, Amselem S, Knowles MR, Strauss JF. A heterozygous mutation disrupting the SPAG16 gene results in biochemical instability of central apparatus components of the human sperm axoneme. Biol Reprod 2007; 77:864-71. [PMID: 17699735 DOI: 10.1095/biolreprod.107.063206] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The SPAG16 gene encodes two major transcripts, one for the 71-kDa SPAG16L, which is the orthologue of the Chlamydomonas rheinhardtii central apparatus protein PF20, and a smaller transcript, which codes for the 35-kDa SPAG16S nuclear protein that represents the C-terminus (exons 11-16) of SPAG16L. We have previously reported that a targeted mutation in exon 11 of the Spag16 gene impairs spermatogenesis and prevents transmission of the mutant allele in chimeric mice. In the present report, we describe a heterozygous mutation in exon 13 of the SPAG16 gene, which causes a frame shift and premature stop codon, affording the opportunity to compare mutations with similar impacts on SPAG16L and SPAG16S for male reproductive function in mice and men. We studied two male heterozygotes for the SPAG16 mutation, both of which were fertile. Freezing-boiling of isolated sperm from both affected males resulted in the loss of the SPAG16L protein, SPAG6, another central apparatus protein that interacts with SPAG16L, and the 28-kDa fragment of SPAG17, which associates with SPAG6. These proteins were also lost after freezing-boiling cycles of sperm extracts from mice that were heterozygous for an inactivating mutation (exons 2 and 3) in Spag16. Our findings suggest that a heterozygous mutation that affects both SPAG16L and SPAG16S does not cause male infertility in man, but is associated with reduced stability of the interacting proteins of the central apparatus in response to a thermal challenge, a phenotype shared by the sperm of mice heterozygous for a mutation that affects SPAG16L.
Collapse
Affiliation(s)
- Zhibing Zhang
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhang Z, Tang W, Zhou R, Shen X, Wei Z, Patel AM, Povlishock JT, Bennett J, Strauss JF. Accelerated mortality from hydrocephalus and pneumonia in mice with a combined deficiency of SPAG6 and SPAG16L reveals a functional interrelationship between the two central apparatus proteins. ACTA ACUST UNITED AC 2007; 64:360-76. [PMID: 17323374 DOI: 10.1002/cm.20189] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SPAG6 and SPAG16L are proteins localized to the "9+2" axoneme central apparatus. Both are essential for sperm motility and male fertility. These two proteins are also expressed in other tissues containing ciliated cells, such as brain and lung. To study the effects of combined deficiency of these two proteins, a double mutant mouse model was created. The double mutant mice displayed a more profound phenotype of growth retardation and hydrocephalus compared to mice nullizygous for SPAG6 and SPAG16L alone. The double mutant mice died younger, and mortality was significantly higher than in single mutant mice. In addition, the double mutant mice demonstrated pneumonia and its complications, including hemorrhage, edema, and atelectasis, phenotypes not observed in mice nullizygous for mutations in the individual genes. No other cilia-related phenotypic change was detected in double mutant mice including lateralization defects. The ultrastructure of cilia in both the brain and lung of the double mutant mice appeared normal. This model of combined SPAG6 and SPAG16L deficiency provides a new platform to study primary ciliary dyskinesia. The findings also demonstrate that SPAG6 and SPAG16L have related roles in controlling the function of cilia in the brain and lung.
Collapse
Affiliation(s)
- Zhibing Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lefièvre L, Bedu-Addo K, Conner SJ, Machado-Oliveira GSM, Chen Y, Kirkman-Brown JC, Afnan MA, Publicover SJ, Ford WCL, Barratt CLR. Counting sperm does not add up any more: time for a new equation? Reproduction 2007; 133:675-84. [PMID: 17504912 DOI: 10.1530/rep-06-0332] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although sperm dysfunction is the single most common cause of infertility, we have poor methods of diagnosis and surprisingly no effective treatment (excluding assisted reproductive technology). In this review, we challenge the usefulness of a basic semen analysis and argue that a new paradigm is required immediately. We discuss the use of at-home screening to potentially improve the diagnosis of the male and to streamline the management of the sub-fertile couple. Additionally, we outline the recent progress in the field, for example, in proteomics, which will allow the development of new biomarkers of sperm function. This new knowledge will transform our understanding of the spermatozoon as a machine and is likely to lead to non-ART treatments for men with sperm dysfunction.
Collapse
Affiliation(s)
- Linda Lefièvre
- Reproductive Biology and Genetics Group, Division of Reproductive and Child Health, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ralston KS, Lerner AG, Diener DR, Hill KL. Flagellar motility contributes to cytokinesis in Trypanosoma brucei and is modulated by an evolutionarily conserved dynein regulatory system. EUKARYOTIC CELL 2006; 5:696-711. [PMID: 16607017 PMCID: PMC1459671 DOI: 10.1128/ec.5.4.696-711.2006] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The flagellum of Trypanosoma brucei is a multifunctional organelle with critical roles in motility and other aspects of the trypanosome life cycle. Trypanin is a flagellar protein required for directional cell motility, but its molecular function is unknown. Recently, a trypanin homologue in Chlamydomonas reinhardtii was reported to be part of a dynein regulatory complex (DRC) that transmits regulatory signals from central pair microtubules and radial spokes to axonemal dynein. DRC genes were identified as extragenic suppressors of central pair and/or radial spoke mutations. We used RNA interference to ablate expression of radial spoke (RSP3) and central pair (PF16) components individually or in combination with trypanin. Both rsp3 and pf16 single knockdown mutants are immotile, with severely defective flagellar beat. In the case of rsp3, this loss of motility is correlated with the loss of radial spokes, while in the case of pf16 the loss of motility correlates with an aberrant orientation of the central pair microtubules within the axoneme. Genetic interaction between trypanin and PF16 is demonstrated by the finding that loss of trypanin suppresses the pf16 beat defect, indicating that the DRC represents an evolutionarily conserved strategy for dynein regulation. Surprisingly, we discovered that four independent mutants with an impaired flagellar beat all fail in the final stage of cytokinesis, indicating that flagellar motility is necessary for normal cell division in T. brucei. These findings present the first evidence that flagellar beating is important for cell division and open the opportunity to exploit enzymatic activities that drive flagellar beat as drug targets for the treatment of African sleeping sickness.
Collapse
Affiliation(s)
- Katherine S Ralston
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, 609 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
46
|
Abstract
Cilia are microtubule-based organelles that project like antennae from the surface of most cells in the body. Motile cilia move fluid past cells, for example mucus in the airway. Non-motile primary cilia, however, transduce a multitude of sensory stimuli, including chemical concentrations of growth factors, hormones, odorants, and developmental morphogens, as well as osmolarity, light intensity, and fluid flow. Cilia have evolved a complex ultrastructure to accommodate these diverse functions, and an extensive molecular machinery has developed to support the assembly of these organelles. Defects in the cilia themselves, or the machinery required to assemble them, lead to a broad spectrum of human disease symptoms, including polycystic kidney disease, nephronophthisis, hydrocephalus, polydactyly, situs inversus, retinal degeneration, and obesity. While these diseases highlight the pivotal roles of cilia in physiology and development, the mechanistic link between cilia, physiology, and disease remains unclear.
Collapse
Affiliation(s)
- Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th St., San Francisco, California 94143, USA.
| | | |
Collapse
|
47
|
Li S, Lu MM, Zhou D, Hammes SR, Morrisey EE. GLP-1: a novel zinc finger protein required in somatic cells of the gonad for germ cell development. Dev Biol 2006; 301:106-16. [PMID: 16982049 PMCID: PMC1790961 DOI: 10.1016/j.ydbio.2006.07.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 07/07/2006] [Accepted: 07/28/2006] [Indexed: 12/11/2022]
Abstract
Mouse gonadal development is regulated by a variety of transcription factors. Here we report the identification and characterization of a novel nuclear zinc finger protein called GATA like protein-1 (GLP-1), which is expressed at high levels in the somatic cells of the developing gonads, including Leydig cells in the testes and granulosa cells in the ovaries. Biochemical analysis of GLP-1 shows that it acts as a transcriptional repressor of GATA factor function. To determine the necessity of GLP-1 in gonadal development, a null allele in mice was generated by replacing all of the coding exons with the bacterial lacZ gene. GLP-1(lacZ) null mice are viable with no detectable defects in visceral organ development; however, both males and females are completely infertile. Loss of GLP-1 leads to defective sperm development in males with a marked reduction in mature spermatids observed as early as postnatal week 1. In females, loss of GLP-1 leads to a severe block in germ cell development as early as E17.5. Together, these data identify GLP-1 as a critical nuclear repressor in somatic cells of the gonad that is required for germ cell development, and highlight the importance of somatic-germ cell interactions in the regulation of this critical process.
Collapse
Affiliation(s)
| | | | | | - Stephen R. Hammes
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Edward E. Morrisey
- Department of Medicine
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
- * To whom correspondence should be addressed: Edward E. Morrisey, Ph.D., University of Pennsylvania, 956 BRB II/III, 421 Curie Blvd., Philadelphia, PA 19104, Phone: 215-573-3010, FAX: 215-573-2094,
| |
Collapse
|
48
|
Abstract
To date, 21 knockout mouse models are known to bear specific anomalies of the sperm flagellum structures leading to motility disorders. In addition, genes responsible for flagellar defects of two well-known spontaneous mutant mice have recently been identified. These models reveal genetic factors, which are required for the proper assembly of the axoneme, the annulus, the mitochondrial sheath and the fibrous sheath. Many of these genetic factors follow unexpected cellular pathways to act on sperm flagellum morphogenesis. These mouse models may bear anomalies which are restricted to the spermatozoa or display more complex phenotypes that often include neuropathies and/or cilia-related diseases. In human, several structural disorders of the sperm flagellum found in brothers or consanguineous men probably have a genetic origin, but the genes involved have not yet been identified. The mutant mice we present in this review are invaluable models, which can be used to identify potential candidate genes for infertile men with specific sperm flagellum anomalies.
Collapse
Affiliation(s)
- Denise Escalier
- Andrology Department, University Paris XI, CHU Kremlin Bicêtre, France.
| |
Collapse
|
49
|
Sironen A, Thomsen B, Andersson M, Ahola V, Vilkki J. An intronic insertion in KPL2 results in aberrant splicing and causes the immotile short-tail sperm defect in the pig. Proc Natl Acad Sci U S A 2006; 103:5006-11. [PMID: 16549801 PMCID: PMC1458785 DOI: 10.1073/pnas.0506318103] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The immotile short-tail sperm defect is an autosomal recessive disease within the Finnish Yorkshire pig population. This disease specifically affects the axoneme structure of sperm flagella, whereas cilia in other tissues appear unaffected. Recently, the disease locus was mapped to a 3-cM region on porcine chromosome 16. To facilitate identification of candidate genes, we constructed a porcine-human comparative map, which anchored the disease locus to a region on human chromosome 5p13.2 containing eight annotated genes. Sequence analysis of a candidate gene KPL2 revealed the presence of an inserted retrotransposon within an intron. The insertion affects splicing of the KPL2 transcript in two ways; it either causes skipping of the upstream exon, or causes the inclusion of an intronic sequence as well as part of the insertion in the transcript. Both changes alter the reading frame leading to premature termination of translation. Further work revealed that the aberrantly spliced exon is expressed predominantly in testicular tissue, which explains the tissue-specificity of the immotile short-tail sperm defect. These findings show that the KPL2 gene is important for correct axoneme development and provide insight into abnormal sperm development and infertility disorders.
Collapse
Affiliation(s)
- Anu Sironen
- MTT Agrifood Research Finland, Animal Production Research, Animal Breeding, FIN-31600, Jokioinen, Finland.
| | | | | | | | | |
Collapse
|
50
|
Roy A, Matzuk MM. Deconstructing mammalian reproduction: using knockouts to define fertility pathways. Reproduction 2006; 131:207-19. [PMID: 16452715 DOI: 10.1530/rep.1.00530] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reproduction is thesine qua nonfor the propagation of species and continuation of life. It is a complex biological process that is regulated by multiple factors during the reproductive life of an organism. Over the past decade, the molecular mechanisms regulating reproduction in mammals have been rapidly unraveled by the study of a vast number of mouse gene knockouts with impaired fertility. The use of reverse genetics to generate null mutants in mice through targeted disruption of specific genes has enabled researchers to identify essential regulators of spermatogenesis and oogenesisin vivoand model human disorders affecting reproduction. This review focuses on the merits, utility, and the variations of the knockout technology in studies of reproduction in mammals.
Collapse
Affiliation(s)
- Angshumoy Roy
- Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|