1
|
Li Z, He F, Tong Z, Li X, Yang Q, Hannaway DB. Metabolomic changes in crown of alfalfa (Medicago sativa L.) during de-acclimation. Sci Rep 2022; 12:14977. [PMID: 36056096 DOI: 10.21203/rs.3.rs-1515778/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/29/2022] [Indexed: 05/28/2023] Open
Abstract
Alfalfa is a high-quality forage legume species that is widely cultivated at high latitudes worldwide. However, a decrease in cold tolerance in early spring seriously affects regrowth and persistence of alfalfa. There has been limited research on the metabolomic changes that occur during de-acclimation. In this study, a liquid chromatography-mass spectrometry system was used to compare the metabolites in two alfalfa cultivars during a simulated overwintering treatment. In four pairwise comparisons, 367 differential metabolites were identified, of which 31 were annotated according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Many of these metabolites were peptides, carbohydrates, and lipids. At the subclass level, 17 major pathways were revealed to be significantly enriched (P < 0.05). The main differential metabolites included amino acids, peptides and analogs, carbohydrates, and glycerol phosphocholines. A metabolomic analysis showed that the up-regulation of unsaturated fatty acids and amino acids as well as the enhancement of the related metabolic pathways might be an effective strategy for increasing alfalfa cold tolerance. Furthermore, glycerophospholipid metabolism affects alfalfa cold tolerance in early spring. Study results provide new insights about the changes in alfalfa metabolites that occur during de-acclimation, with potential implications for the selection and breeding of cold-tolerant cultivars.
Collapse
Affiliation(s)
- Zhensong Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Feng He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Zongyong Tong
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xianglin Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - David B Hannaway
- Department of Crop & Soil Science, Oregon State University, Corvallis, USA
| |
Collapse
|
2
|
Li Z, He F, Tong Z, Li X, Yang Q, Hannaway DB. Metabolomic changes in crown of alfalfa (Medicago sativa L.) during de-acclimation. Sci Rep 2022; 12:14977. [PMID: 36056096 PMCID: PMC9440230 DOI: 10.1038/s41598-022-19388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Alfalfa is a high-quality forage legume species that is widely cultivated at high latitudes worldwide. However, a decrease in cold tolerance in early spring seriously affects regrowth and persistence of alfalfa. There has been limited research on the metabolomic changes that occur during de-acclimation. In this study, a liquid chromatography-mass spectrometry system was used to compare the metabolites in two alfalfa cultivars during a simulated overwintering treatment. In four pairwise comparisons, 367 differential metabolites were identified, of which 31 were annotated according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Many of these metabolites were peptides, carbohydrates, and lipids. At the subclass level, 17 major pathways were revealed to be significantly enriched (P < 0.05). The main differential metabolites included amino acids, peptides and analogs, carbohydrates, and glycerol phosphocholines. A metabolomic analysis showed that the up-regulation of unsaturated fatty acids and amino acids as well as the enhancement of the related metabolic pathways might be an effective strategy for increasing alfalfa cold tolerance. Furthermore, glycerophospholipid metabolism affects alfalfa cold tolerance in early spring. Study results provide new insights about the changes in alfalfa metabolites that occur during de-acclimation, with potential implications for the selection and breeding of cold-tolerant cultivars.
Collapse
Affiliation(s)
- Zhensong Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Feng He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Zongyong Tong
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xianglin Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - David B Hannaway
- Department of Crop & Soil Science, Oregon State University, Corvallis, USA
| |
Collapse
|
3
|
Villouta C, Workmaster BA, Livingston DP, Atucha A. Acquisition of Freezing Tolerance in Vaccinium macrocarpon Ait. Is a Multi-Factor Process Involving the Presence of an Ice Barrier at the Bud Base. FRONTIERS IN PLANT SCIENCE 2022; 13:891488. [PMID: 35599888 PMCID: PMC9115472 DOI: 10.3389/fpls.2022.891488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/18/2022] [Indexed: 05/17/2023]
Abstract
Bud freezing survival strategies have in common the presence of an ice barrier that impedes the propagation of lethally damaging ice from the stem into the internal structures of buds. Despite ice barriers' essential role in buds freezing stress survival, the nature of ice barriers in woody plants is not well understood. High-definition thermal recordings of Vaccinium macrocarpon Ait. buds explored the presence of an ice barrier at the bud base in September, January, and May. Light and confocal microscopy were used to evaluate the ice barrier region anatomy and cell wall composition related to their freezing tolerance. Buds had a temporal ice barrier at the bud base in September and January, although buds were only freezing tolerant in January. Lack of functionality of vascular tissues may contribute to the impedance of ice propagation. Pith tissue at the bud base had comparatively high levels of de-methyl-esterified homogalacturonan (HG), which may also block ice propagation. By May, the ice barrier was absent, xylogenesis had resumed, and de-methyl-esterified HG reached its lowest levels, translating into a loss of freezing tolerance. The structural components of the barrier had a constitutive nature, resulting in an asynchronous development of freezing tolerance between anatomical and metabolic adaptations.
Collapse
Affiliation(s)
- Camilo Villouta
- Arnold Arboretum of Harvard University, Boston, MA, United States
| | - Beth Ann Workmaster
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, United States
| | - David P. Livingston
- Department of Crop and Soil Sciences, USDA-ARS and North Carolina State University, Raleigh, NC, United States
| | - Amaya Atucha
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Amaya Atucha,
| |
Collapse
|
4
|
Baier M, Bittner A, Prescher A, van Buer J. Preparing plants for improved cold tolerance by priming. PLANT, CELL & ENVIRONMENT 2019; 42:782-800. [PMID: 29974962 DOI: 10.1111/pce.13394] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 05/26/2023]
Abstract
Cold is a major stressor, which limits plant growth and development in many parts of the world, especially in the temperate climate zones. A large number of experimental studies has demonstrated that not only acclimation and entrainment but also the experience of single short stress events of various abiotic or biotic kinds (priming stress) can improve the tolerance of plants to chilling temperatures. This process, called priming, depends on a stress "memory". It does not change cold sensitivity per se but beneficially modifies the response to cold and can last for days, months, or even longer. Elicitor factors and antagonists accumulate due to increased biosynthesis or decreased degradation either during or after the priming stimulus. Comparison of priming studies investigating improved tolerance to chilling temperatures highlighted key regulatory functions of ROS/RNS and antioxidant enzymes, plant hormones, especially jasmonates, salicylates, and abscisic acid, and signalling metabolites, such as β- and γ-aminobutyric acid (BABA and GABA) and melatonin. We conclude that these elicitors and antagonists modify local and systemic cold tolerance by integration into cold-induced signalling cascades.
Collapse
Affiliation(s)
- Margarete Baier
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Andras Bittner
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Andreas Prescher
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Jörn van Buer
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| |
Collapse
|
5
|
Hurry V. Metabolic reprogramming in response to cold stress is like real estate, it's all about location. PLANT, CELL & ENVIRONMENT 2017; 40:599-601. [PMID: 28105656 DOI: 10.1111/pce.12923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 06/06/2023]
Abstract
This article comments on: Subcellular reprogramming of metabolism during cold acclimation in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Vaughan Hurry
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| |
Collapse
|
6
|
Metabolomics, a Powerful Tool for Agricultural Research. Int J Mol Sci 2016; 17:ijms17111871. [PMID: 27869667 PMCID: PMC5133871 DOI: 10.3390/ijms17111871] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 11/17/2022] Open
Abstract
Metabolomics, which is based mainly on nuclear magnetic resonance (NMR), gas-chromatography (GC) or liquid-chromatography (LC) coupled to mass spectrometry (MS) analytical technologies to systematically acquire the qualitative and quantitative information of low-molecular-mass endogenous metabolites, provides a direct snapshot of the physiological condition in biological samples. As complements to transcriptomics and proteomics, it has played pivotal roles in agricultural and food science research. In this review, we discuss the capacities of NMR, GC/LC-MS in the acquisition of plant metabolome, and address the potential promise and diverse applications of metabolomics, particularly lipidomics, to investigate the responses of Arabidopsis thaliana, a primary plant model for agricultural research, to environmental stressors including heat, freezing, drought, and salinity.
Collapse
|
7
|
Juszczak I, Cvetkovic J, Zuther E, Hincha DK, Baier M. Natural Variation of Cold Deacclimation Correlates with Variation of Cold-Acclimation of the Plastid Antioxidant System in Arabidopsis thaliana Accessions. FRONTIERS IN PLANT SCIENCE 2016; 7:305. [PMID: 27014325 PMCID: PMC4794505 DOI: 10.3389/fpls.2016.00305] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/26/2016] [Indexed: 05/21/2023]
Abstract
Temperature variations impact on the balance between photosynthetic electron transport and electron-consuming assimilation reactions and transiently increase generation of reactive oxygen species (ROS). Previous studies demonstrated that the expression of C-repeat binding factors (CBFs), which activate cold acclimation reactions, respond to chloroplast ROS signals and that cold deacclimation is partly halted for days after the transfer of acclimated plants to optimal growth conditions in four Arabidopsis accessions from cold-continental habitats. We hypothesized that these accessions differ from others in the regulation of the plastid antioxidant system (PAS). In the present study, we compared the expression intensity of the 12 most prominent PAS genes for peroxidases, superoxide dismutase and low molecular weight antioxidant regenerating enzymes in 10 Arabidopsis accessions with regulation of CBF and COR (cold regulated genes) transcript levels and cold-regulated metabolite levels prior to cold, after 2 week long cold acclimation and during the first 3 days of deacclimation. In the accessions with prolonged activation of cold responses, by trend, weaker induction of various cold-inducible PAS genes and stronger decreases in the expression of negatively cold-regulated PAS genes were observed. Low PAS gene expression delayed the post-cold decrease in H2O2 levels after transfer of the plants from cold to optimal growth conditions. We conclude that weaker expression of various PAS genes in the cold is an adapted strategy of the Arabidopsis accessions N14, N13, Ms-0, and Kas-1 to avoid full inactivation of cold-responses in the first days after the end of the cold period.
Collapse
Affiliation(s)
- Ilona Juszczak
- Plant Physiology, Dahlem Center of Plant Sciences, Free University of BerlinBerlin, Germany
- Molecular Physiology, Institute of Molecular Physiology and Biotechnology of Plants, University of BonnBonn, Germany
| | - Jelena Cvetkovic
- Plant Physiology, Dahlem Center of Plant Sciences, Free University of BerlinBerlin, Germany
| | - Ellen Zuther
- Max-Planck-Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Dirk K. Hincha
- Max-Planck-Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Margarete Baier
- Plant Physiology, Dahlem Center of Plant Sciences, Free University of BerlinBerlin, Germany
- *Correspondence: Margarete Baier
| |
Collapse
|
8
|
Byun YJ, Koo MY, Joo HJ, Ha-Lee YM, Lee DH. Comparative analysis of gene expression under cold acclimation, deacclimation and reacclimation in Arabidopsis. PHYSIOLOGIA PLANTARUM 2014; 152:256-74. [PMID: 24494996 DOI: 10.1111/ppl.12163] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/20/2013] [Accepted: 12/27/2013] [Indexed: 05/20/2023]
Abstract
Cold acclimated plants show an elevated tolerance against subsequent cold stress. Such adaptation requires alterations in gene expression as well as physiological changes. We were interested in gene expression changes at the transcriptional level during adaptation processes. The patterns of transcriptional changes associated with cold acclimation, deacclimation and reacclimation in Arabidopsis leaves were characterized using the Coldstresschip. Gene expression profiles were further analyzed by 'coexpressed gene sets' using gene set enrichment analysis (GSEA). Genes involved in signal transduction through calcium, and cascades of kinases and transcription factor genes, were distinctively induced in the early response of cold acclimation. On the other hand, genes involved in antioxidation, cell wall biogenesis and sterol synthesis were upregulated in the late response of cold acclimation. After the removal of cold, the expression patterns of most genes rapidly returned to the original states. However, photosynthetic light-harvesting complex genes and lipid metabolism-related genes stayed upregulated in cold deacclimated plants compared to non-treated plants. It is also notable that many well-known cold-inducible genes are slightly induced in reacclimation and their expression remains at relatively low levels in cold reacclimation compared to the expression during the first cold acclimation. The results in this study show the dynamic nature of gene expression occurring during cold acclimation, deacclimation and reacclimation. Our results suggest that there is a memory of cold stress and that the 'memory of cold stress' is possibly due to elevated photosynthetic efficiency, modified lipid metabolism, increased calcium signaling, pre-existing defense protein made during first cold acclimation and/or modified signal transduction from pre-existing defense protein.
Collapse
Affiliation(s)
- Youn-Jung Byun
- Graduate Department of Life and Pharmaceutical Science, Ewha Womans University, Seoul, 120-750, South Korea
| | | | | | | | | |
Collapse
|
9
|
Kim HS, Oh JM, Luan S, Carlson JE, Ahn SJ. Cold stress causes rapid but differential changes in properties of plasma membrane H(+)-ATPase of camelina and rapeseed. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:828-37. [PMID: 23399403 DOI: 10.1016/j.jplph.2013.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 01/05/2013] [Accepted: 01/10/2013] [Indexed: 05/09/2023]
Abstract
Camelina (Camelina sativa) and rapeseed (Brassica napus) are well-established oil-seed crops with great promise also for biofuels. Both are cold-tolerant, and camelina is regarded to be especially appropriate for production on marginal lands. We examined physiological and biochemical alterations in both species during cold stress treatment for 3 days and subsequent recovery at the temperature of 25°C for 0, 0.25, 0.5, 1, 2, 6, and 24h, with particular emphasis on the post-translational regulation of the plasma membrane (PM) H(+)-ATPase (EC3.6.3.14). The activity and translation of the PM H(+)-ATPase, as well as 14-3-3 proteins, increased after 3 days of cold stress in both species but recovery under normal conditions proceeded differently. The increase in H(+)-ATPase activity was the most dramatic in camelina roots after recovery for 2h at 25°C, followed by decay to background levels within 24h. In rapeseed, the change in H(+)-ATPase activity during the recovery period was less pronounced. Furthermore, H(+)-pumping increased in both species after 15min recovery, but to twice the level in camelina roots compared to rapeseed. Protein gel blot analysis with phospho-threonine anti-bodies showed that an increase in phosphorylation levels paralleled the increase in H(+)-transport rate. Thus our results suggest that cold stress and recovery in camelina and rapeseed are associated with PM H(+)-fluxes that may be regulated by specific translational and post-translational modifications.
Collapse
Affiliation(s)
- Hyun-Sung Kim
- Department of Bioenergy Science and Technology, Bio-energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | |
Collapse
|
10
|
Amantonico A, Urban PL, Fagerer SR, Balabin RM, Zenobi R. Single-cell MALDI-MS as an analytical tool for studying intrapopulation metabolic heterogeneity of unicellular organisms. Anal Chem 2011; 82:7394-400. [PMID: 20707357 DOI: 10.1021/ac1015326] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heterogeneity is a characteristic feature of all populations of living organisms. Here we make an attempt to validate a single-cell mass spectrometric method for detection of changes in metabolite levels occurring in populations of unicellular organisms. Selected metabolites involved in central metabolism (ADP, ATP, GTP, and UDP-Glucose) could readily be detected in single cells of Closterium acerosum by means of negative-mode matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). The analytical capabilities of this approach were characterized using standard compounds. The method was then used to study populations of individual cells with different levels of the chosen metabolites. With principal component analysis and support vector machine algorithms, it was possible to achieve a clear separation of individual C. acerosum cells in different metabolic states. This study demonstrates the suitability of mass spectrometric analysis of metabolites in single cells to measure cell-population heterogeneity.
Collapse
Affiliation(s)
- Andrea Amantonico
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
11
|
Solecka D, Żebrowski J, Kacperska A. Are pectins involved in cold acclimation and de-acclimation of winter oil-seed rape plants? ANNALS OF BOTANY 2008; 101:521-30. [PMID: 18222909 PMCID: PMC2710196 DOI: 10.1093/aob/mcm329] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 10/09/2007] [Accepted: 12/04/2007] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS The hypothesis was tested that pectin content and methylation degree participate in regulation of cell wall mechanical properties and in this way may affect tissue growth and freezing resistance over the course of plant cold acclimation and de-acclimation. METHODS Experiments were carried on the leaves of two double-haploid lines of winter oil-seed rape (Brassica napus subsp. oleifera), differing in winter survival and resistance to blackleg fungus (Leptosphaeria maculans). KEY RESULTS Plant acclimation in the cold (2 degrees C) brought about retardation of leaf expansion, concomitant with development of freezing resistance. These effects were associated with the increases in leaf tensile stiffness, cell wall and pectin contents, pectin methylesterase (EC 3.1.1.11) activity and the low-methylated pectin content, independently of the genotype studied. However, the cold-induced modifications in the cell wall properties were more pronounced in the leaves of the more pathogen-resistant genotype. De-acclimation promoted leaf expansion and reversed most of the cold-induced effects, with the exception of pectin methylesterase activity. CONCLUSIONS The results show that the temperature-dependent modifications in pectin content and their methyl esterification degree correlate with changes in tensile strength of a leaf tissue, and in this way affect leaf expansion ability and its resistance to freezing and to fungus pathogens.
Collapse
Affiliation(s)
- Danuta Solecka
- Department of Plant Molecular Biology, Institute of Experimental Plant Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Jacek Żebrowski
- Institute of Plant Breeding and Acclimation, Radzików, 95-870 Błonie, Poland
- Department of Plant Physiology, Faculty of Biotechnology, University of Rzeszow, Rejtana 16c, 35-959 Rzeszów, Poland
| | - Alina Kacperska
- Department of Plant Molecular Biology, Institute of Experimental Plant Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
- For correspondence. E-mail
| |
Collapse
|
12
|
Kaplan F, Kopka J, Sung DY, Zhao W, Popp M, Porat R, Guy CL. Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:967-81. [PMID: 17461790 DOI: 10.1111/j.1365-313x.2007.03100.x] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Exposure of Arabidopsis to low temperatures results in cold acclimation where freezing tolerance is enhanced. To achieve a wider view of the role of transcriptome to biochemical changes that occur during cold acclimation, analyses of concurrent transcript and metabolite changes during cold acclimation was performed revealing the dynamics of selected gene-metabolite relationships. Exposure to low temperature resulted in broad transcriptional and metabolite responses. Principal component analysis revealed sequentially progressive, global changes in both gene expression and metabolite profiles during cold acclimation. Changes in transcript abundance for many metabolic processes, including protein amino acid biosynthetic pathways and soluble carbohydrates, during cold acclimation were observed. For some metabolic processes, changes in transcript abundance temporally correlated with changes in metabolite levels. For other metabolic processes, changes in transcript levels were not correlated with changes in metabolite levels. The present findings demonstrate that regulatory processes independent of transcript abundance represent a key part of the metabolic adjustments that occur during cold acclimation.
Collapse
Affiliation(s)
- Fatma Kaplan
- Plant Molecular and Cellular Biology Program, Department of Environmental Horticulture, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Bohn M, Lüthje S, Sperling P, Heinz E, Dörffling K. Plasma membrane lipid alterations induced by cold acclimation and abscisic acid treatment of winter wheat seedlings differing in frost resistance. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:146-56. [PMID: 16500724 DOI: 10.1016/j.jplph.2005.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 12/07/2005] [Indexed: 05/06/2023]
Abstract
Cold acclimation of plants affects many aspects of metabolism. Changes in plasma membrane lipids have always been considered to be important for development of frost resistance and survival at subzero temperatures. We studied different cultivars of winter wheat (Triticum aestivum L.) that differed in frost resistance induced either by cold acclimation or treatment with the plant hormone abscisic acid (ABA). Plasma membranes were isolated from non-acclimated and cold- as well as from ABA-acclimated plants, and were subjected to detailed lipid analysis. Cold acclimation affected virtually all plasma membrane lipid components and their constituents, resulting in both increases and decreases, which varied between the three groups of plants investigated. Including the cold-induced variations observed in the few plant species studied in detail previously, cerebrosides were the only components reduced by cold acclimation in all plants. In wheat, more uniform and consistent patterns were obtained when considering colligative parameters such as total free sterols, phospholipids or glycolipids, either as the proportion of total lipids or based on plasma membrane protein. The parameter which changed most significantly in parallel to the increase of inducible frost resistance in the three groups of plants was the ratio of free sterols/glycolipids, which increased. ABA treatment resulted in qualitatively similar effects in only one cultivar, but in general these changes were less pronounced. Compared to changes in transcription rates of several cold-induced genes and in the concentration of various compatible solutes reported for other plants, the observed changes in plasma membrane lipids are minor ones. This may indicate that acclimation-induced changes can be accomplished by posttranscriptional regulation of enzymatic activities, which is in agreement with the failure to detect significant changes in transcription of the corresponding genes during cold induction.
Collapse
Affiliation(s)
- Matthias Bohn
- Biozentrum Klein Flottbek, Universität Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany
| | | | | | | | | |
Collapse
|
14
|
Goulas E, Schubert M, Kieselbach T, Kleczkowski LA, Gardeström P, Schröder W, Hurry V. The chloroplast lumen and stromal proteomes of Arabidopsis thaliana show differential sensitivity to short- and long-term exposure to low temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:720-34. [PMID: 16923014 DOI: 10.1111/j.1365-313x.2006.02821.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cold acclimation and over-wintering by herbaceous plants are energetically expensive and are dependent on functional plastid metabolism. To understand how the stroma and the lumen proteomes adapt to low temperatures, we have taken a proteomic approach (difference gel electrophoresis) to identify proteins that changed in abundance in Arabidopsis chloroplasts during cold shock (1 day), and short- (10 days) and long-term (40 days) acclimation to 5 degrees C. We show that cold shock (1 day) results in minimal change in the plastid proteomes, while short-term (10 days) acclimation results in major changes in the stromal but few changes in the lumen proteome. Long-term acclimation (40 days) results in modulation of the proteomes of both compartments, with new proteins appearing in the lumen and further modulations in protein abundance occurring in the stroma. We identify 43 differentially displayed proteins that participate in photosynthesis, other plastid metabolic functions, hormone biosynthesis and stress sensing and signal transduction. These findings not only provide new insights into the cold response and acclimation of Arabidopsis, but also demonstrate the importance of studying changes in protein abundance within the relevant cellular compartment.
Collapse
Affiliation(s)
- Estelle Goulas
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-901 87 Umeå, Sweden
| | | | | | | | | | | | | |
Collapse
|
15
|
Krutovsky KV, Neale DB. Nucleotide diversity and linkage disequilibrium in cold-hardiness- and wood quality-related candidate genes in Douglas fir. Genetics 2005; 171:2029-41. [PMID: 16157674 PMCID: PMC1456123 DOI: 10.1534/genetics.105.044420] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 08/29/2005] [Indexed: 11/18/2022] Open
Abstract
Nuclear sequence variation and linkage disequilibrium (LD) were studied in 15 cold-hardiness- and 3 wood quality-related candidate genes in Douglas fir [Pseudotsuga menziesii (Mirb.) Franco]. This set of genes was selected on the basis of its function in other plants and collocation with cold-hardiness-related quantitative trait loci (QTL). The single-nucleotide polymorphism (SNP) discovery panel represented 24 different trees from six regions in Washington and Oregon plus parents of a segregating population used in the QTL study. The frequency of SNPs was one SNP per 46 bp across coding and noncoding regions on average. Haplotype and nucleotide diversities were also moderately high with H(d) = 0.827 +/- 0.043 and pi = 0.00655 +/- 0.00082 on average, respectively. The nonsynonymous (replacement) nucleotide substitutions were almost five times less frequent than synonymous ones and substitutions in noncoding regions. LD decayed relatively slowly but steadily within genes. Haploblock analysis was used to define haplotype tag SNPs (htSNPs). These data will help to select SNPs for association mapping, which is already in progress.
Collapse
Affiliation(s)
- Konstantin V Krutovsky
- Institute of Forest Genetics, Pacific Southwest Research Station, US Department of Agriculture Forest Service, Davis, CA 95616, USA
| | | |
Collapse
|
16
|
Abstract
The evolution of higher plants depended on the ability of cells to express hereditary information in many different ways and led to the development of specialized cell types, reflecting an elaborate system of control over gene expression in the individual component cells of various tissues. Bulk tissue sampling results in the loss of spatial resolution, and recent efforts have been directed toward improving access to specialized cell types in plants. Access to the contents of individual cells followed by analyses using post-genomic technologies promise to revolutionize our understanding of the differentiation of specialized cell types, and to enable downstream applications aimed at harnessing their unique biochemical properties.
Collapse
Affiliation(s)
- B Markus Lange
- Institute of Biological Chemistry and Center for Integrated Biotechnology, Washington State University, PO Box 646340, Pullman, Washington 99164-6340, USA.
| |
Collapse
|