1
|
Jeckelmann JM, Erni B. Carbohydrate Transport by Group Translocation: The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System. Subcell Biochem 2019; 92:223-274. [PMID: 31214989 DOI: 10.1007/978-3-030-18768-2_8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Bacterial Phosphoenolpyruvate (PEP) : Sugar Phosphotransferase System (PTS) mediates the uptake and phosphorylation of carbohydrates, and controls the carbon- and nitrogen metabolism in response to the availability of sugars. PTS occur in eubacteria and in a few archaebacteria but not in animals and plants. All PTS comprise two cytoplasmic phosphotransferase proteins (EI and HPr) and a species-dependent, variable number of sugar-specific enzyme II complexes (IIA, IIB, IIC, IID). EI and HPr transfer phosphorylgroups from PEP to the IIA units. Cytoplasmic IIA and IIB units sequentially transfer phosphates to the sugar, which is transported by the IIC and IICIID integral membrane protein complexes. Phosphorylation by IIB and translocation by IIC(IID) are tightly coupled. The IIC(IID) sugar transporters of the PTS are in the focus of this review. There are four structurally different PTS transporter superfamilies (glucose, glucitol, ascorbate, mannose) . Crystal structures are available for transporters of two superfamilies: bcIICmal (MalT, 5IWS, 6BVG) and bcIICchb (ChbC, 3QNQ) of B. subtilis from the glucose family, and IICasc (UlaA, 4RP9, 5ZOV) of E. coli from the ascorbate superfamily . They are homodimers and each protomer has an independent transport pathway which functions by an elevator-type alternating-access mechanism. bcIICmal and bcIICchb have the same fold, IICasc has a completely different fold. Biochemical and biophysical data accumulated in the past with the transporters for mannitol (IICBAmtl) and glucose (IICBglc) are reviewed and discussed in the context of the bcIICmal crystal structures. The transporters of the mannose superfamily are dimers of protomers consisting of a IIC and a IID protein chain. The crystal structure is not known and the topology difficult to predict. Biochemical data indicate that the IICIID complex employs a different transport mechanism . Species specific IICIID serve as a gateway for the penetration of bacteriophage lambda DNA across, and insertion of class IIa bacteriocins into the inner membrane. PTS transporters are inserted into the membrane by SecYEG translocon and have specific lipid requirements. Immunoelectron- and fluorescence microscopy indicate a non-random distribution and supramolecular complexes of PTS proteins.
Collapse
Affiliation(s)
- Jean-Marc Jeckelmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland.
| | - Bernhard Erni
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland
| |
Collapse
|
2
|
Lee HY, Chao JC, Cheng KY, Leu JY. Misfolding-prone proteins are reversibly sequestered to an Hsp42-associated granule upon chronological aging. J Cell Sci 2018; 131:jcs.220202. [PMID: 30054385 DOI: 10.1242/jcs.220202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/20/2018] [Indexed: 12/19/2022] Open
Abstract
Alteration of protein localization is an important strategy for cells to regulate protein homeostasis upon environmental stresses. In the budding yeast Saccharomyces cerevisiae, many proteins relocalize and form cytosolic granules during chronological aging. However, the functions and exact components of these protein granules remain uncharacterized in most cases. In this study, we performed a genome-wide analysis of protein localization in stationary phase cells, leading to the discovery of 307 granule-forming proteins and the identification of new components in the Hsp42-stationary phase granule (Hsp42-SPG), P-bodies, Ret2 granules and actin bodies. We further characterized the Hsp42-SPG, which contains the largest number of protein components, including many molecular chaperones, metabolic enzymes and regulatory proteins. Formation of the Hsp42-SPG efficiently downregulates the activities of sequestered components, which can be differentially released from the granule based on environmental cues. We found a similar structure in the pre-whole genome duplication yeast species, Lachancea kluyveri, suggesting that the Hsp42-SPG is a common machinery allowing chronologically aged cells to contend with changing environments when available energy is limited. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Hsin-Yi Lee
- Molecular and Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center and Academia Sinica, Taipei 114, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Jung-Chi Chao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Kuo-Yu Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan.,Department of Life Sciences, Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Jun-Yi Leu
- Molecular and Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center and Academia Sinica, Taipei 114, Taiwan .,Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
3
|
Matsumoto K, Hara H, Fishov I, Mileykovskaya E, Norris V. The membrane: transertion as an organizing principle in membrane heterogeneity. Front Microbiol 2015; 6:572. [PMID: 26124753 PMCID: PMC4464175 DOI: 10.3389/fmicb.2015.00572] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/25/2015] [Indexed: 01/05/2023] Open
Abstract
The bacterial membrane exhibits a significantly heterogeneous distribution of lipids and proteins. This heterogeneity results mainly from lipid-lipid, protein-protein, and lipid-protein associations which are orchestrated by the coupled transcription, translation and insertion of nascent proteins into and through membrane (transertion). Transertion is central not only to the individual assembly and disassembly of large physically linked groups of macromolecules (alias hyperstructures) but also to the interactions between these hyperstructures. We review here these interactions in the context of the processes in Bacillus subtilis and Escherichia coli of nutrient sensing, membrane synthesis, cytoskeletal dynamics, DNA replication, chromosome segregation, and cell division.
Collapse
Affiliation(s)
- Kouji Matsumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, SaitamaJapan
| | - Hiroshi Hara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, SaitamaJapan
| | - Itzhak Fishov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-ShevaIsrael
| | - Eugenia Mileykovskaya
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at HoustonHouston, TX, USA
| | - Vic Norris
- Laboratory of Microbiology Signals and Microenvironment EA 4312, Department of Science, University of Rouen, Mont-Saint-AignanFrance
| |
Collapse
|
4
|
Streptococcus pyogenes polymyxin B-resistant mutants display enhanced ExPortal integrity. J Bacteriol 2014; 196:2563-77. [PMID: 24794568 DOI: 10.1128/jb.01596-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The ExPortal protein secretion organelle in Streptococcus pyogenes is an anionic phospholipid-containing membrane microdomain enriched in Sec translocons and postsecretion protein biogenesis factors. Polymyxin B binds to and disrupts ExPortal integrity, resulting in defective secretion of several toxins. To gain insight into factors that influence ExPortal organization, a genetic screen was conducted to select for spontaneous polymyxin B-resistant mutants displaying enhanced ExPortal integrity. Whole-genome resequencing of 25 resistant mutants revealed from one to four mutations per mutant genome clustered primarily within a core set of 10 gene groups. Construction of mutants with individual deletions or insertions demonstrated that 7 core genes confer resistance and enhanced ExPortal integrity through loss of function, while 3 were likely due to gain of function and/or combinatorial effects. Core resistance genes include a transcriptional regulator of lipid biosynthesis, several genes involved in nutrient acquisition, and a variety of genes involved in stress responses. Two members of the latter class also function as novel regulators of the secreted SpeB cysteine protease. Analysis of the most frequently isolated mutation, a single nucleotide deletion in a track of 9 consecutive adenine residues in pstS, encoding a component of a high-affinity Pi transporter, suggests that this sequence functions as a molecular switch to facilitate stress adaptation. Together, these data suggest the existence of a membrane stress response that promotes enhanced ExPortal integrity and resistance to cationic antimicrobial peptides.
Collapse
|
5
|
Dynamic localization of a transcription factor in Bacillus subtilis: the LicT antiterminator relocalizes in response to inducer availability. J Bacteriol 2013; 195:2146-54. [PMID: 23475962 DOI: 10.1128/jb.00117-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis transports β-glucosides such as salicin by a dedicated phosphotransferase system (PTS). The expression of the β-glucoside permease BglP is induced in the presence of the substrate salicin, and this induction requires the binding of the antiterminator protein LicT to a specific RNA target in the 5' region of the bglP mRNA to prevent the formation of a transcription terminator. LicT is composed of an N-terminal RNA-binding domain and two consecutive PTS regulation domains, PRD1 and PRD2. In the absence of salicin, LicT is phosphorylated on PRD1 by BglP and thereby inactivated. In the presence of the inducer, the phosphate group from PRD1 is transferred back to BglP and consequently to the incoming substrate, resulting in the activation of LicT. In this study, we have investigated the intracellular localization of LicT. While the protein was evenly distributed in the cell in the absence of the inducer, we observed a subpolar localization of LicT if salicin was present in the medium. Upon addition or removal of the inducer, LicT rapidly relocalized in the cells. This dynamic relocalization did not depend on the binding of LicT to its RNA target sites, since the localization pattern was not affected by deletion of all LicT binding sites. In contrast, experiments with mutants affected in the PTS components as well as mutations of the LicT phosphorylation sites revealed that phosphorylation of LicT by the PTS components plays a major role in the control of the subcellular localization of this RNA-binding transcription factor.
Collapse
|
6
|
Erni B. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS): an interface between energy and signal transduction. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2012. [DOI: 10.1007/s13738-012-0185-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Liu IC, Chiu SW, Lee HY, Leu JY. The histone deacetylase Hos2 forms an Hsp42-dependent cytoplasmic granule in quiescent yeast cells. Mol Biol Cell 2012; 23:1231-42. [PMID: 22337769 PMCID: PMC3315813 DOI: 10.1091/mbc.e11-09-0752] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/20/2011] [Accepted: 02/09/2012] [Indexed: 12/16/2022] Open
Abstract
One of many physiological adjustments in quiescent cells is spatial regulation of specific proteins and RNA important for the entry to or exit from the stationary phase. By examining the localization of epigenetic-related proteins in Saccharomyces cerevisiae, we observed the formation of a reversible cytosolic "stationary-phase granule" (SPG) by Hos2, a nuclear histone deacetylase. In the stationary phase, hos2 mutants display reduced viability. Additionally, they exhibit a significant delay when recovering from stationary phase. Hos2 SPGs also contained Hst2, a Sir2 homologue, and several stress-related proteins, including Set3, Yca1, Hsp26, Hsp42, and some known components of stress granules. However, Hos2 SPG formation does not depend on the formation of stress granules or processing bodies. The absence or presence of glucose is sufficient to trigger assembly or disassembly of Hos2 SPGs. Among the identified components of Hos2 SPGs, Hsp42 is the first and last member observed in the Hos2 SPG assembly and disassembly processes. Hsp42 is also vital for the relocalization of the other components to Hos2 SPGs, suggesting that Hsp42 plays a central role in spatial regulation of proteins in quiescent cells.
Collapse
Affiliation(s)
- I-Chun Liu
- Institute of Molecular Biology, Academia Sinica, Taipei 114, Taiwan
- Graduate Institute of Biomedical Sciences, Chang-Gung University, Tao-Yuan 333, Taiwan
| | - Sheng-Wen Chiu
- Institute of Molecular Biology, Academia Sinica, Taipei 114, Taiwan
| | - Hsin-Yi Lee
- Molecular Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica, and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Taipei 114, Taiwan
| |
Collapse
|
8
|
Vendeville A, Larivière D, Fourmentin E. An inventory of the bacterial macromolecular components and their spatial organization. FEMS Microbiol Rev 2011; 35:395-414. [DOI: 10.1111/j.1574-6976.2010.00254.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
9
|
The interplay of the EIIA(Ntr) component of the nitrogen-related phosphotransferase system (PTS(Ntr)) of Pseudomonas putida with pyruvate dehydrogenase. Biochim Biophys Acta Gen Subj 2011; 1810:995-1005. [PMID: 21236318 DOI: 10.1016/j.bbagen.2011.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 01/05/2011] [Accepted: 01/06/2011] [Indexed: 11/20/2022]
Abstract
BACKGROUND Pseudomonas putida KT2440 is endowed with a variant of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS(Ntr)), which is not related to sugar transport but believed to rule the metabolic balance of carbon vs. nitrogen. The metabolic targets of such a system are largely unknown. METHODS Dielectric breakdown of P. putida cells grown in rich medium revealed the presence of forms of the EIIA(Ntr) (PtsN) component of PTS(Ntr), which were strongly associated to other cytoplasmic proteins. To investigate such intracellular partners of EIIA(Ntr), a soluble protein extract of bacteria bearing an E epitope tagged version of PtsN was immunoprecipitated with a monoclonal anti-E antibody and the pulled-down proteins identified by mass spectrometry. RESULTS The E1 subunit of the pyruvate dehydrogenase (PDH) complex, the product of the aceE gene, was identified as a major interaction partner of EIIA(Ntr). To examine the effect of EIIA(Ntr) on PDH, the enzyme activity was measured in extracts of isogenic ptsN(+)/ptsN(-)P. putida strains and the role of phosphorylation was determined. Expression of PtsN and AceE proteins fused to different fluorescent moieties and confocal laser microscopy indicated a significant co-localization of the two proteins in the bacterial cytoplasm. CONCLUSION EIIA(Ntr) down-regulates PDH activity. Both genetic and biochemical evidence revealed that the non-phosphorylated form of PtsN is the protein species that inhibits PDH. GENERAL SIGNIFICANCE EIIA(Ntr) takes part in the node of C metabolism that checks the flux of carbon from carbohydrates into the Krebs cycle by means of direct protein-protein interactions with AceE. This type of control might connect metabolism to many other cellular functions. This article is part of a Special Issue entitled: Systems Biology of Microorganisms.
Collapse
|
10
|
Spatial and temporal organization of the E. coli PTS components. EMBO J 2010; 29:3630-45. [PMID: 20924357 DOI: 10.1038/emboj.2010.240] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Accepted: 09/06/2010] [Indexed: 01/25/2023] Open
Abstract
The phosphotransferase system (PTS) controls preferential use of sugars in bacteria. It comprises of two general proteins, enzyme I (EI) and HPr, and various sugar-specific permeases. Using fluorescence microscopy, we show here that EI and HPr localize near the Escherichia coli cell poles. Polar localization of each protein occurs independently, but HPr is released from the poles in an EI- and sugar-dependent manner. Conversely, the β-glucoside-specific permease, BglF, localizes to the cell membrane. EI, HPr and BglF control the β-glucoside utilization (bgl) operon by modulating the activity of the BglG transcription factor; BglF inactivates BglG by membrane sequestration and phosphorylation, whereas EI and HPr activate it by an unknown mechanism in response to β-glucosides availability. Using biochemical, genetic and imaging methodologies, we show that EI and HPr interact with BglG and affect its subcellular localization in a phosphorylation-independent manner. Upon sugar stimulation, BglG migrates from the cell periphery to the cytoplasm through the poles. Hence, the PTS components appear to control bgl operon expression by ushering BglG between the cellular compartments. Our results reinforce the notion that signal transduction in bacteria involves dynamic localization of proteins.
Collapse
|
11
|
Tagourti J, Malki A, Kern R, d'Alençon E, Richarme G. Membrane docking of an aggregation-prone protein improves its solubilization. Gene 2008; 426:32-8. [PMID: 18809475 DOI: 10.1016/j.gene.2008.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 07/31/2008] [Accepted: 08/26/2008] [Indexed: 11/29/2022]
Abstract
We used preS2-S'-beta-galactosidase, a three domain fusion protein that aggregates extensively at 43 degrees C in the cytoplasm of Escherichia coli to search for multicopy suppressors of protein aggregation and inclusion bodies formation, and took advantage of the known differential solubility of preS2-S'-beta-galactosidase at 37 and 43 degrees C to develop a selection procedure for the gene products that would prevent its aggregation in vivo at 43 degrees C. First, we demonstrate that the differential solubility of preS2-S'-beta-galactosidase results in a lactose-positive phenotype at 37 degrees C as opposed to a lactose-negative phenotype at 43 degrees C. We searched for multicopy suppressors of preS2-S'-beta-galactosidase aggregation at 43 degrees C by selecting pink lactose-positive colonies on a background of white lactose-negative colonies after transformation of bacteria with an E. coli gene bank. We found only two multicopy suppressors of preS2-S'-beta-galactosidase aggregation at 43 degrees C, protein isoaspartate methyltransferase (PIMT) and the membrane components ChbBC of the N,N'-diacetylchitobiose phosphotransferase transporter. We have previously shown that PIMT overexpression reduces the level of isoaspartate in preS2-S'-beta-galactosidase, increases its thermal stability and consequently helps in its solubilization at 43 degrees C (Kern et al., J. Bacteriol. 187, 1377-1383). In the present work, we show that ChbBC overexpression targets a fraction of preS2-S'-beta-galactosidase to the membrane, and decreases its amount in inclusion bodies, which results in its decreased thermodenaturation and in a lactose-positive phenotype at 43 degrees C. Cross-linking experiments show that the inner membrane protein ChbC interacts with preS2-S'-beta-galactosidase. Our results suggest that membrane docking of aggregation-prone proteins might be a useful method for their solubilization.
Collapse
Affiliation(s)
- Jihen Tagourti
- Molecules de stress, Institut Jacques Monod, Université Paris 7, 2, place Jussieu, 75005 Paris, France
| | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Dylan M. Morris
- Division of Biology, California Institute of Technology, Pasadena, California 91125;
| | - Grant J. Jensen
- Division of Biology, California Institute of Technology, Pasadena, California 91125;
| |
Collapse
|
13
|
Edgar R, Rokney A, Feeney M, Semsey S, Kessel M, Goldberg MB, Adhya S, Oppenheim AB. Bacteriophage infection is targeted to cellular poles. Mol Microbiol 2008; 68:1107-16. [PMID: 18363799 PMCID: PMC3740151 DOI: 10.1111/j.1365-2958.2008.06205.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The poles of bacteria exhibit several specialized functions related to the mobilization of DNA and certain proteins. To monitor the infection of Escherichia coli cells by light microscopy, we developed procedures for the tagging of mature bacteriophages with quantum dots. Surprisingly, most of the infecting phages were found attached to the bacterial poles. This was true for a number of temperate and virulent phages of E. coli that use widely different receptors and for phages infecting Yersinia pseudotuberculosis and Vibrio cholerae. The infecting phages colocalized with the polar protein marker IcsA-GFP. ManY, an E. coli protein that is required for phage lambda DNA injection, was found to localize to the bacterial poles as well. Furthermore, labelling of lambda DNA during infection revealed that it is injected and replicated at the polar region of infection. The evolutionary benefits that lead to this remarkable preference for polar infections may be related to lambda's developmental decision as well as to the function of poles in the ability of bacterial cells to communicate with their environment and in gene regulation.
Collapse
Affiliation(s)
- Rotem Edgar
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Norris V, den Blaauwen T, Doi RH, Harshey RM, Janniere L, Jiménez-Sánchez A, Jin DJ, Levin PA, Mileykovskaya E, Minsky A, Misevic G, Ripoll C, Saier M, Skarstad K, Thellier M. Toward a hyperstructure taxonomy. Annu Rev Microbiol 2007; 61:309-29. [PMID: 17896876 DOI: 10.1146/annurev.micro.61.081606.103348] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacterial cells contain many large, spatially extended assemblies of ions, molecules, and macromolecules, called hyperstructures, that are implicated in functions that range from DNA replication and cell division to chemotaxis and secretion. Interactions between these hyperstructures would create a level of organization intermediate between macromolecules and the cell itself. To explore this level, a taxonomy is needed. Here, we describe classification criteria based on the form of the hyperstructure and on the processes responsible for this form. These processes include those dependent on coupled transcription-translation, protein-protein affinities, chromosome site-binding by protein, and membrane structures. Various combinations of processes determine the formation, maturation, and demise of many hyperstructures that therefore follow a trajectory within the space of classification by form/process. Hence a taxonomy by trajectory may be desirable. Finally, we suggest that working toward a taxonomy based on speculative interactions between hyperstructures promises most insight into life at this level.
Collapse
Affiliation(s)
- Vic Norris
- Department of Science, University of Rouen, 76821 Mont Saint Aignan Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Norris V, den Blaauwen T, Cabin-Flaman A, Doi RH, Harshey R, Janniere L, Jimenez-Sanchez A, Jin DJ, Levin PA, Mileykovskaya E, Minsky A, Saier M, Skarstad K. Functional taxonomy of bacterial hyperstructures. Microbiol Mol Biol Rev 2007; 71:230-53. [PMID: 17347523 PMCID: PMC1847379 DOI: 10.1128/mmbr.00035-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The levels of organization that exist in bacteria extend from macromolecules to populations. Evidence that there is also a level of organization intermediate between the macromolecule and the bacterial cell is accumulating. This is the level of hyperstructures. Here, we review a variety of spatially extended structures, complexes, and assemblies that might be termed hyperstructures. These include ribosomal or "nucleolar" hyperstructures; transertion hyperstructures; putative phosphotransferase system and glycolytic hyperstructures; chemosignaling and flagellar hyperstructures; DNA repair hyperstructures; cytoskeletal hyperstructures based on EF-Tu, FtsZ, and MreB; and cell cycle hyperstructures responsible for DNA replication, sequestration of newly replicated origins, segregation, compaction, and division. We propose principles for classifying these hyperstructures and finally illustrate how thinking in terms of hyperstructures may lead to a different vision of the bacterial cell.
Collapse
Affiliation(s)
- Vic Norris
- Department of Science, University of Rouen, 76821 Mont Saint Aignan Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2007; 70:939-1031. [PMID: 17158705 PMCID: PMC1698508 DOI: 10.1128/mmbr.00024-06] [Citation(s) in RCA: 998] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.
Collapse
Affiliation(s)
- Josef Deutscher
- Microbiologie et Génétique Moléculaire, INRA-CNRS-INA PG UMR 2585, Thiverval-Grignon, France.
| | | | | |
Collapse
|
17
|
Patel HV, Vyas KA, Savtchenko R, Roseman S. The monomer/dimer transition of enzyme I of the Escherichia coli phosphotransferase system. J Biol Chem 2006; 281:17570-8. [PMID: 16547355 DOI: 10.1074/jbc.m508965200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enzyme I (EI) is the first protein in the phosphotransfer sequence of the bacterial phosphoenolpyruvate:glycose phosphotransferase system. This system catalyzes sugar phosphorylation/transport and is stringently regulated. Since EI homodimer accepts the phosphoryl group from phosphoenolpyruvate (PEP), whereas the monomer does not, EI may be a major factor in controlling sugar uptake. Previous work from this and other laboratories (e.g. Dimitrova, M. N., Szczepanowski, R. H., Ruvinov, S. B., Peterkofsky, A., and Ginsburg A. (2002) Biochem. 41, 906-913), indicate that K(a) is sensitive to several parameters. We report here a systematic study of K(a) determined by sedimentation equilibrium, which showed that it varied by 1000-fold, responding to virtually every parameter tested, including temperature, phosphorylation, pH (6.5 versus 7.5), ionic strength, and especially the ligands Mg(2+) and PEP. This variability may be required for a regulatory protein. Further insight was gained by analyzing EI by sedimentation velocity, by near UV CD spectroscopy, and with a nonphosphorylatable active site mutant, EI-H189Q, which behaved virtually identically to EI. The singular properties of EI are explained by a model consistent with the results reported here and in the accompanying paper (Patel, H. V., Vyas, K. A., Mattoo, R. L., Southworth, M., Perler, F. B., Comb, D., and Roseman, S. (2006) J. Biol. Chem. 281, 17579-17587). We suggest that EI and EI-H189Q each comprise a multiplicity of conformers and progressively fewer conformers as they dimerize and bind Mg(2+) and finally PEP. Mg(2+) alone induces small or no detectable changes in structure, but large conformational changes ensue with Mg(2+)/PEP. This effect is explained by a "swiveling mechanism" (similar to that suggested for pyruvate phosphate dikinase (Herzberg, O., Chen, C. C., Kapadia, G., McGuire, M., Carroll, L. J., Noh, S. J., and Dunaway-Mariano, D. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 2652-2657)), which brings the C-terminal domain with the two bound ligands close to the active site His(189).
Collapse
Affiliation(s)
- Himatkumar V Patel
- Department of Biology, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|