1
|
Alves DO, Geens R, da Silva Arruda HR, Jennen L, Corthaut S, Wuyts E, de Andrade GC, Prosdocimi F, Cordeiro Y, Pires JR, Vieira LR, de Oliveira GAP, Sterckx YGJ, Salmon D. Biophysical analysis of the membrane-proximal Venus Flytrap domain of ESAG4 receptor-like adenylate cyclase from Trypanosoma brucei. Mol Biochem Parasitol 2024; 260:111653. [PMID: 39447762 DOI: 10.1016/j.molbiopara.2024.111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The protozoan parasite Trypanosoma brucei possesses a large family of transmembrane receptor-like adenylate cyclases (RACs), primarily located to the flagellar surface and involved in sensing of the extracellular environment. RACs exhibit a conserved topology characterized by a large N-terminal extracellular moiety harbouring two Venus Flytrap (VFT) bilobate structures separated from an intracellular catalytic domain by a single transmembrane helix. RAC activation, which typically occurs under mild acid stress, requires the dimerization of the intracellular catalytic domain. The occurrence of VFT domains in the RAC's extracellular moiety suggests their potential responsiveness to extracellular ligands in the absence of stress, although no such ligands have been identified so far. Herein we report the biophysical characterization of the membrane-proximal VFT2 domain of a bloodstream form-specific RAC called ESAG4, whose ectodomain 3D structure is completely unknown. The paper describes an AlphaFold2-based optimisation of the expression construct, enabling facile and high-yield recombinant production and purification of the target protein. Through an interdisciplinary approach combining various biophysical methods, we demonstrate that the optimised VFT2 domain obtained by recombination is properly folded and behaves as a monomer in solution. The latter suggests a ligand-binding capacity independent of dimerization, unlike typical mammalian VFT receptors, as guanylate cyclase. In silico VFT2 genomic analyses shows divergence among cyclase isoforms, hinting at ligand specificity. Taken together this improved procedure enabling facile and high-yield recombinant production and purification of the target protein could benefit researchers studying trypanosomal RAC VFT domains but also any trypanosome domain with poorly defined boundaries. Additionally, our findings support the stable monomeric VFT2 domain as a useful tool for future structural investigations and ligand screening.
Collapse
Affiliation(s)
- Desirée O Alves
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Rob Geens
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Hiam R da Silva Arruda
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Lisa Jennen
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Sam Corthaut
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Ellen Wuyts
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Guilherme Caldas de Andrade
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Francisco Prosdocimi
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, Rio de Janeiro 21941-902, Brazil
| | - José Ricardo Pires
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Larissa Rezende Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Yann G-J Sterckx
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium.
| | - Didier Salmon
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil.
| |
Collapse
|
2
|
Clark NE, Katolik A, Gallant P, Welch A, Murphy E, Buerer L, Schorl C, Naik N, Naik MT, Holloway SP, Cano K, Weintraub ST, Howard KM, Hart PJ, Jogl G, Damha MJ, Fairbrother WG. Activation of human RNA lariat debranching enzyme Dbr1 by binding protein TTDN1 occurs though an intrinsically disordered C-terminal domain. J Biol Chem 2023; 299:105100. [PMID: 37507019 PMCID: PMC10470207 DOI: 10.1016/j.jbc.2023.105100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
In eukaryotic cells, the introns are excised from pre-mRNA by the spliceosome. These introns typically have a lariat configuration due to the 2'-5' phosphodiester bond between an internal branched residue and the 5' terminus of the RNA. The only enzyme known to selectively hydrolyze the 2'-5' linkage of these lariats is the RNA lariat debranching enzyme Dbr1. In humans, Dbr1 is involved in processes such as class-switch recombination of immunoglobulin genes, and its dysfunction is implicated in viral encephalitis, HIV, ALS, and cancer. However, mechanistic details of precisely how Dbr1 affects these processes are missing. Here we show that human Dbr1 contains a disordered C-terminal domain through sequence analysis and nuclear magnetic resonance. This domain stabilizes Dbr1 in vitro by reducing aggregation but is dispensable for debranching activity. We establish that Dbr1 requires Fe2+ for efficient catalysis and demonstrate that the noncatalytic protein Drn1 and the uncharacterized protein trichothiodystrophy nonphotosensitive 1 directly bind to Dbr1. We demonstrate addition of trichothiodystrophy nonphotosensitive 1 to in vitro debranching reactions increases the catalytic efficiency of human Dbr1 19-fold but has no effect on the activity of Dbr1 from the amoeba Entamoeba histolytica, which lacks a disordered C-terminal domain. Finally, we systematically examine how the identity of the branchpoint nucleotide affects debranching rates. These findings describe new aspects of Dbr1 function in humans and further clarify how Dbr1 contributes to human health and disease.
Collapse
Affiliation(s)
- Nathaniel E Clark
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA.
| | - Adam Katolik
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Pascal Gallant
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Anastasia Welch
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Eileen Murphy
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Luke Buerer
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Christoph Schorl
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Nandita Naik
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Mandar T Naik
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Stephen P Holloway
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Kristin Cano
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Katherine M Howard
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada-Las Vegas, Las Vegas, Nevada, USA
| | - P John Hart
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Gerwald Jogl
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec, Canada.
| | - William G Fairbrother
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
3
|
Mistry H, Gupta GD. Transcription coupled DNA repair protein UVSSA binds to DNA and RNA: Mapping of nucleic acid interaction sites on human UVSSA. Arch Biochem Biophys 2023; 735:109515. [PMID: 36623745 DOI: 10.1016/j.abb.2023.109515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Transcription-coupled repair (TCR) is a dedicated pathway for the preferential repair of bulky transcription-blocking DNA lesions. These lesions stall the elongating RNA-polymerase II (RNAPII) triggering the recruitment of TCR proteins at the damaged site. UV-stimulated scaffold protein A (UVSSA) is a recently identified cofactor which is involved in stabilization of the TCR complex, recruitment of DNA-repair machinery and removal/restoration of RNAPII from the lesion site. Mutations in UVSSA render the cells TCR-deficient and have been linked to UV-sensitive syndrome. Human UVSSA is a 709-residue long protein with two short conserved domains; an N-terminal (residues 1-150) and a C-terminal (residues 495-605) domain, while the rest of the protein is predicted to be intrinsically disordered. The protein is well conserved in eukaryotes, however; none of its homologs have been characterized yet. Here, we have purified the recombinant human UVSSA and have characterized it using bioinformatics, biophysical and biochemical techniques. Using EMSA, SPR and fluorescence-based methods, we have shown that human UVSSA interacts with DNA and RNA. Furthermore, we have mapped the nucleic acid binding regions using several recombinant protein fragments containing either the N-terminal or the C-terminal domains. Our data indicate that UVSSA possesses at least two nucleic acid binding regions; the N-terminal domain and a C-terminal tail region (residues 606-662). These regions, far apart in sequence space, are predicted to be in close proximity in structure-space suggesting a coherent interaction with target DNA/RNA. The study may provide functional clues about the novel family of UVSSA proteins.
Collapse
Affiliation(s)
- Hiral Mistry
- Radiation Biology & Health Science Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Gagan Deep Gupta
- Radiation Biology & Health Science Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, India.
| |
Collapse
|
4
|
Caillet-Saguy C, Brûlé S, Wolff N, Raynal B. PDZ Sample Quality Assessment by Biochemical and Biophysical Characterizations. Methods Mol Biol 2021; 2256:89-124. [PMID: 34014518 DOI: 10.1007/978-1-0716-1166-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
PDZ domains are small globular domains involved in protein-protein interactions. They participate in a wide range of critical cellular processes. These domains, very abundant in the human proteome, are widely studied by high-throughput interactomics approaches and by biophysical and structural methods. However, the quality of the results is strongly related to the optimal folding and solubility of the domains. We provide here a detailed description of protocols for a strict quality assessment of the PDZ constructs. We describe appropriate experimental approaches that have been selected to overcome the small size of such domains to check the purity, identity, homogeneity, stability, and folding of samples.
Collapse
Affiliation(s)
| | - Sébastien Brûlé
- Institut Pasteur, Plate-forme de Biophysique Moléculaire, CNRS UMR 3528, Paris, France
| | - Nicolas Wolff
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS UMR 3571, Paris, France.
| | - Bertrand Raynal
- Institut Pasteur, Plate-forme de Biophysique Moléculaire, CNRS UMR 3528, Paris, France
| |
Collapse
|
5
|
Insights into Structures and Dynamics of Flavivirus Proteases from NMR Studies. Int J Mol Sci 2020; 21:ijms21072527. [PMID: 32260545 PMCID: PMC7177695 DOI: 10.3390/ijms21072527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/29/2022] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy plays important roles in structural biology and drug discovery, as it is a powerful tool to understand protein structures, dynamics, and ligand binding under physiological conditions. The protease of flaviviruses is an attractive target for developing antivirals because it is essential for the maturation of viral proteins. High-resolution structures of the proteases in the absence and presence of ligands/inhibitors were determined using X-ray crystallography, providing structural information for rational drug design. Structural studies suggest that proteases from Dengue virus (DENV), West Nile virus (WNV), and Zika virus (ZIKV) exist in open and closed conformations. Solution NMR studies showed that the closed conformation is predominant in solution and should be utilized in structure-based drug design. Here, we reviewed solution NMR studies of the proteases from these viruses. The accumulated studies demonstrated that NMR spectroscopy provides additional information to understand conformational changes of these proteases in the absence and presence of substrates/inhibitors. In addition, NMR spectroscopy can be used for identifying fragment hits that can be further developed into potent protease inhibitors.
Collapse
|
6
|
Guo C, Xiao Y, Bi F, Lin W, Wang H, Yao, H, Lin D. Recombinant expression, biophysical and functional characterization of ClpS from Mycobacterium tuberculosis. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1158-1167. [PMID: 31650179 DOI: 10.1093/abbs/gmz102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Indexed: 11/13/2022] Open
Abstract
Intracellular proteolysis is attracting more and more attention for its unique and important character in Mycobacterium tuberculosis (Mt). The ClpS protein from Mt (MtClpS) plays a critical role in intracellular proteolysis by recognizing N-end rule substrates, which makes it become a potential target for antibacterial drugs. However, the molecular mechanism of MtClpS recognizing N-end rule substrates remains unclear. Preparation of highly concentrated and pure MtClpS protein is a prerequisite for further structural and functional studies. In the present work, we tried several fusion tags and various expression conditions to maximize the production of MtClpS in Escherichia coli. We established an efficient approach for preparing the MtClpS protein with a high yield of 24.7 mg/l and a high purity of 98%. After buffer screening, we obtained a stable MtClpS protein sample concentrated at 0.63 mM in the presence of glycerol, l-Arginine, and l-Glutamate. Moreover, circular dichroism characterization indicated that the secondary structure of MtClpS consists of 38% α-helix and 24% β-sheet. The 2D 1H-15N HSQC nuclear magnetic resonance spectrum showed a good dispersion of resonance peaks with uniform intensity, indicating that the purified MtClpS protein was well folded and conformationally homogeneous. Isothermal titration calorimetry experiments revealed significant interactions of MtClpS with N-end rule peptides beginning with Leu, Tyr, Trp, or Phe. Furthermore, residues D34, D35, and H66 were confirmed as key residues for MtClpS recognizing the N-end rule peptide. The successful expression and biophysical characterization of MtClpS enabled us to gain insight into the molecular mechanism of MtClpS recognizing N-end rule substrates. The obtained stable and pure recombinant MtClpS will enable future inhibitor screening experiments.
Collapse
Affiliation(s)
- Chenyun Guo
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yihang Xiao
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fangkai Bi
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Weiliang Lin
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huilin Wang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongwei Yao,
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Donghai Lin
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
7
|
Kang C. 19F-NMR in Target-based Drug Discovery. Curr Med Chem 2019; 26:4964-4983. [PMID: 31187703 DOI: 10.2174/0929867326666190610160534] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/14/2018] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
Solution NMR spectroscopy plays important roles in understanding protein structures, dynamics and protein-protein/ligand interactions. In a target-based drug discovery project, NMR can serve an important function in hit identification and lead optimization. Fluorine is a valuable probe for evaluating protein conformational changes and protein-ligand interactions. Accumulated studies demonstrate that 19F-NMR can play important roles in fragment- based drug discovery (FBDD) and probing protein-ligand interactions. This review summarizes the application of 19F-NMR in understanding protein-ligand interactions and drug discovery. Several examples are included to show the roles of 19F-NMR in confirming identified hits/leads in the drug discovery process. In addition to identifying hits from fluorinecontaining compound libraries, 19F-NMR will play an important role in drug discovery by providing a fast and robust way in novel hit identification. This technique can be used for ranking compounds with different binding affinities and is particularly useful for screening competitive compounds when a reference ligand is available.
Collapse
Affiliation(s)
- CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore, 138670, Singapore
| |
Collapse
|
8
|
Burra G, Thakur AK. Insights into the molecular mechanism behind solubilization of amyloidogenic polyglutamine‐containing peptides. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Gunasekhar Burra
- Department of Biological Sciences and BioengineeringIndian Institute of Technology Kanpur Kanpur‐208016 India
| | - Ashwani Kumar Thakur
- Department of Biological Sciences and BioengineeringIndian Institute of Technology Kanpur Kanpur‐208016 India
| |
Collapse
|
9
|
Petit AP, Garcia-Petit C, Bueren-Calabuig JA, Vuillard LM, Ferry G, Boutin JA. A structural study of the complex between neuroepithelial cell transforming gene 1 (Net1) and RhoA reveals a potential anticancer drug hot spot. J Biol Chem 2018; 293:9064-9077. [PMID: 29695506 DOI: 10.1074/jbc.ra117.001123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/18/2018] [Indexed: 12/20/2022] Open
Abstract
The GTPase RhoA is a major player in many different regulatory pathways. RhoA catalyzes GTP hydrolysis, and its catalysis is accelerated when RhoA forms heterodimers with proteins of the guanine nucleotide exchange factor (GEF) family. Neuroepithelial cell transforming gene 1 (Net1) is a RhoA-interacting GEF implicated in cancer, but the structural features supporting the RhoA/Net1 interaction are unknown. Taking advantage of a simple production and purification process, here we solved the structure of a RhoA/Net1 heterodimer with X-ray crystallography at 2-Å resolution. Using a panel of several techniques, including molecular dynamics simulations, we characterized the RhoA/Net1 interface. Moreover, deploying an extremely simple peptide-based scanning approach, we found that short peptides (penta- to nonapeptides) derived from the protein/protein interaction region of RhoA could disrupt the RhoA/Net1 interaction and thereby diminish the rate of nucleotide exchange. The most inhibitory peptide, EVKHF, spanning residues 102-106 in the RhoA sequence, displayed an IC50 of ∼100 μm without further modifications. The peptides identified here could be useful in further investigations of the RhoA/Net1 interaction region. We propose that our structural and functional insights might inform chemical approaches for transforming the pentapeptide into an optimized pseudopeptide that antagonizes Net1-mediated RhoA activation with therapeutic anticancer potential.
Collapse
Affiliation(s)
- Alain-Pierre Petit
- From the Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery and
| | - Christel Garcia-Petit
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom and
| | | | - Laurent M Vuillard
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 78290 Croissy-sur-Seine, France
| | - Gilles Ferry
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 78290 Croissy-sur-Seine, France
| | - Jean A Boutin
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 78290 Croissy-sur-Seine, France
| |
Collapse
|
10
|
Imam HT, Blindauer CA. Differential reactivity of closely related zinc(II)-binding metallothioneins from the plant Arabidopsis thaliana. J Biol Inorg Chem 2018; 23:137-154. [PMID: 29218630 PMCID: PMC5756572 DOI: 10.1007/s00775-017-1516-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/12/2017] [Indexed: 12/04/2022]
Abstract
The dynamics of metal binding to and transfer from metalloproteins involved in metal homeostasis are important for understanding cellular distribution of metal ions. The dicotyledonous plant Arabidopsis thaliana has two type 4 seed-specific metallothionein homologues, MT4a and MT4b, with likely roles in zinc(II) homeostasis. These two metallothioneins are 84% identical, with full conservation of all metal-binding cysteine and histidine residues. Yet, differences in their spatial and temporal expression patterns suggested divergence in their biological roles. To investigate whether biological functions are reflected in molecular properties, we compare aspects of zinc(II)-binding dynamics of full-length MT4a and MT4b, namely the pH dependence of zinc(II) binding and protein folding, and zinc(II) transfer to the chelator EDTA. UV-Vis and NMR spectroscopies as well as native electrospray ionisation mass spectrometry consistently showed that transfer from Zn6MT4a is considerably faster than from Zn6MT4b, with pseudo-first-order rate constants for the fastest observed step of k obs = 2.8 × 10-4 s-1 (MT4b) and k obs = 7.5 × 10-4 s-1 (MT4a) (5 µM protein, 500 µM EDTA, 25 mM Tris buffer, pH 7.33, 298 K). 2D heteronuclear NMR experiments allowed locating the most labile zinc(II) ions in domain II for both proteins. 3D homology models suggest that reactivity of this domain is governed by the local environment around the mononuclear Cys2His2 site that is unique to type 4 MTs. Non-conservative amino acid substitutions in this region affect local electrostatics as well as whole-domain dynamics, with both effects rendering zinc(II) ions bound to MT4a more reactive in metal transfer reactions. Therefore, domain II of MT4a is well suited to rapidly release its bound zinc(II) ions, in broad agreement with a previously suggested role of MT4a in zinc(II) transport and delivery to other proteins.
Collapse
Affiliation(s)
- Hasan T Imam
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK
- School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, UK
| | | |
Collapse
|
11
|
Abdul Ghani H, Henriques ST, Huang YH, Swedberg JE, Schroeder CI, Craik DJ. Structural and functional characterization of chimeric cyclotides from the Möbius and trypsin inhibitor subfamilies. Biopolymers 2017; 108. [DOI: 10.1002/bip.22927] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Hafiza Abdul Ghani
- Institute for Molecular Bioscience, The University of Queensland; Brisbane Queensland 4072 Australia
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience, The University of Queensland; Brisbane Queensland 4072 Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, The University of Queensland; Brisbane Queensland 4072 Australia
| | - Joakim E. Swedberg
- Institute for Molecular Bioscience, The University of Queensland; Brisbane Queensland 4072 Australia
| | - Christina I. Schroeder
- Institute for Molecular Bioscience, The University of Queensland; Brisbane Queensland 4072 Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland; Brisbane Queensland 4072 Australia
| |
Collapse
|
12
|
Gande SL, Saxena K, Sreeramulu S, Linhard V, Kudlinzki D, Heinzlmeir S, Reichert AJ, Skerra A, Kuster B, Schwalbe H. Expression and Purification of EPHA2 Tyrosine Kinase Domain for Crystallographic and NMR Studies. Chembiochem 2016; 17:2257-2263. [DOI: 10.1002/cbic.201600483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Santosh L. Gande
- Center for Biomolecular Magnetic Resonance (BMRZ); Institute for Organic Chemistry and Chemical Biology; Johann Wolfgang Goethe-Universität; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
- German Cancer Consortium (DKTK); In Neuenheimer Feld 280 69120 Heidelberg Germany
- German Cancer Research Center (DKFZ); In Neuenheimer Feld 280 69120 Heidelberg Germany
| | - Krishna Saxena
- Center for Biomolecular Magnetic Resonance (BMRZ); Institute for Organic Chemistry and Chemical Biology; Johann Wolfgang Goethe-Universität; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
- German Cancer Consortium (DKTK); In Neuenheimer Feld 280 69120 Heidelberg Germany
- German Cancer Research Center (DKFZ); In Neuenheimer Feld 280 69120 Heidelberg Germany
| | - Sridhar Sreeramulu
- Center for Biomolecular Magnetic Resonance (BMRZ); Institute for Organic Chemistry and Chemical Biology; Johann Wolfgang Goethe-Universität; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Verena Linhard
- Center for Biomolecular Magnetic Resonance (BMRZ); Institute for Organic Chemistry and Chemical Biology; Johann Wolfgang Goethe-Universität; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Denis Kudlinzki
- Center for Biomolecular Magnetic Resonance (BMRZ); Institute for Organic Chemistry and Chemical Biology; Johann Wolfgang Goethe-Universität; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
- German Cancer Consortium (DKTK); In Neuenheimer Feld 280 69120 Heidelberg Germany
- German Cancer Research Center (DKFZ); In Neuenheimer Feld 280 69120 Heidelberg Germany
| | - Stephanie Heinzlmeir
- German Cancer Consortium (DKTK); In Neuenheimer Feld 280 69120 Heidelberg Germany
- German Cancer Research Center (DKFZ); In Neuenheimer Feld 280 69120 Heidelberg Germany
- Chair of Proteomics and Bioanalytics; Technical University of Munich; Emil-Erlenmeyer-Forum 5 85354 Freising Germany
| | - Andreas J. Reichert
- Chair of Biological Chemistry; Technical University of Munich; Emil-Erlenmeyer-Forum 5 85354 Freising Germany
| | - Arne Skerra
- Chair of Biological Chemistry; Technical University of Munich; Emil-Erlenmeyer-Forum 5 85354 Freising Germany
| | - Bernhard Kuster
- German Cancer Consortium (DKTK); In Neuenheimer Feld 280 69120 Heidelberg Germany
- German Cancer Research Center (DKFZ); In Neuenheimer Feld 280 69120 Heidelberg Germany
- Chair of Proteomics and Bioanalytics; Technical University of Munich; Emil-Erlenmeyer-Forum 5 85354 Freising Germany
- Center for integrated Protein Science Munich (CIPSM); Technical University of Munich; Arcisstrasse 21 80333 München Germany
- Bavarian Biomolecular Mass Spectrometry Center; Technical University of Munich; Gregor-Mendel-Strasse 4 85354 Freising Germany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ); Institute for Organic Chemistry and Chemical Biology; Johann Wolfgang Goethe-Universität; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
- German Cancer Consortium (DKTK); In Neuenheimer Feld 280 69120 Heidelberg Germany
- German Cancer Research Center (DKFZ); In Neuenheimer Feld 280 69120 Heidelberg Germany
| |
Collapse
|
13
|
Serrano P, Dutta SK, Proudfoot A, Mohanty B, Susac L, Martin B, Geralt M, Jaroszewski L, Godzik A, Elsliger M, Wilson IA, Wüthrich K. NMR in structural genomics to increase structural coverage of the protein universe: Delivered by Prof. Kurt Wüthrich on 7 July 2013 at the 38th FEBS Congress in St. Petersburg, Russia. FEBS J 2016; 283:3870-3881. [PMID: 27154589 DOI: 10.1111/febs.13751] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/12/2016] [Accepted: 05/04/2016] [Indexed: 12/12/2022]
Abstract
For more than a decade, the Joint Center for Structural Genomics (JCSG; www.jcsg.org) worked toward increased three-dimensional structure coverage of the protein universe. This coordinated quest was one of the main goals of the four high-throughput (HT) structure determination centers of the Protein Structure Initiative (PSI; www.nigms.nih.gov/Research/specificareas/PSI). To achieve the goals of the PSI, the JCSG made use of the complementarity of structure determination by X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy to increase and diversify the range of targets entering the HT structure determination pipeline. The overall strategy, for both techniques, was to determine atomic resolution structures for representatives of large protein families, as defined by the Pfam database, which had no structural coverage and could make significant contributions to biological and biomedical research. Furthermore, the experimental structures could be leveraged by homology modeling to further expand the structural coverage of the protein universe and increase biological insights. Here, we describe what could be achieved by this structural genomics approach, using as an illustration the contributions from 20 NMR structure determinations out of a total of 98 JCSG NMR structures, which were selected because they are the first three-dimensional structure representations of the respective Pfam protein families. The information from this small sample is representative for the overall results from crystal and NMR structure determination in the JCSG. There are five new folds, which were classified as domains of unknown functions (DUF), three of the proteins could be functionally annotated based on three-dimensional structure similarity with previously characterized proteins, and 12 proteins showed only limited similarity with previous deposits in the Protein Data Bank (PDB) and were classified as DUFs.
Collapse
Affiliation(s)
- Pedro Serrano
- Joint Center for Structural Genomics, The Scripps Research Institute, La Jolla, CA, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Samit K Dutta
- Joint Center for Structural Genomics, The Scripps Research Institute, La Jolla, CA, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Andrew Proudfoot
- Joint Center for Structural Genomics, The Scripps Research Institute, La Jolla, CA, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Biswaranjan Mohanty
- Joint Center for Structural Genomics, The Scripps Research Institute, La Jolla, CA, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lukas Susac
- Joint Center for Structural Genomics, The Scripps Research Institute, La Jolla, CA, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Bryan Martin
- Joint Center for Structural Genomics, The Scripps Research Institute, La Jolla, CA, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Michael Geralt
- Joint Center for Structural Genomics, The Scripps Research Institute, La Jolla, CA, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lukasz Jaroszewski
- Joint Center for Structural Genomics, The Scripps Research Institute, La Jolla, CA, USA.,Program on Bioinformatics and Systems Biology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Adam Godzik
- Joint Center for Structural Genomics, The Scripps Research Institute, La Jolla, CA, USA.,Program on Bioinformatics and Systems Biology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Marc Elsliger
- Joint Center for Structural Genomics, The Scripps Research Institute, La Jolla, CA, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian A Wilson
- Joint Center for Structural Genomics, The Scripps Research Institute, La Jolla, CA, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Kurt Wüthrich
- Joint Center for Structural Genomics, The Scripps Research Institute, La Jolla, CA, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
14
|
Li Y, Ng HQ, Li Q, Kang C. Structure of the Cyclic Nucleotide-Binding Homology Domain of the hERG Channel and Its Insight into Type 2 Long QT Syndrome. Sci Rep 2016; 6:23712. [PMID: 27025590 PMCID: PMC4812329 DOI: 10.1038/srep23712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/14/2016] [Indexed: 01/09/2023] Open
Abstract
The human ether-à-go-go related gene (hERG) channel is crucial for the cardiac action potential by contributing to the fast delayed-rectifier potassium current. Mutations in the hERG channel result in type 2 long QT syndrome (LQT2). The hERG channel contains a cyclic nucleotide-binding homology domain (CNBHD) and this domain is required for the channel gating though molecular interactions with the eag domain. Here we present solution structure of the CNBHD of the hERG channel. The structural study reveals that the CNBHD adopts a similar fold to other KCNH channels. It is self-liganded and it contains a short β-strand that blocks the nucleotide-binding pocket in the β-roll. Folding of LQT2-related mutations in this domain was shown to be affected by point mutation. Mutations in this domain can cause protein aggregation in E. coli cells or induce conformational changes. One mutant-R752W showed obvious chemical shift perturbation compared with the wild-type, but it still binds to the eag domain. The helix region from the N-terminal cap domain of the hERG channel showed unspecific interactions with the CNBHD.
Collapse
Affiliation(s)
- Yan Li
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hui Qi Ng
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Qingxin Li
- Institute of Chemical &Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - CongBao Kang
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
15
|
Cabral KMS, Raymundo DP, Silva VS, Sampaio LAG, Johanson L, Hill LF, Almeida FCL, Cordeiro Y, Almeida MS. Biophysical Studies on BEX3, the p75NTR-Associated Cell Death Executor, Reveal a High-Order Oligomer with Partially Folded Regions. PLoS One 2015; 10:e0137916. [PMID: 26383250 PMCID: PMC4575080 DOI: 10.1371/journal.pone.0137916] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/23/2015] [Indexed: 12/27/2022] Open
Abstract
BEX3 (Brain Expressed X-linked protein 3) is a member of a mammal-specific placental protein family. Several studies have found the BEX proteins to be associated with neurodegeneration, the cell cycle and cancer. BEX3 has been predicted to be intrinsically disordered and also to represent an intracellular hub for cell signaling. The pro-apoptotic activity of BEX3 in association with a number of additional proteins has been widely supported; however, to the best of our knowledge, very limited data are available on the conformation of any of the members of the BEX family. In this study, we structurally characterized BEX3 using biophysical experimental data. Small angle X-ray scattering and atomic force microscopy revealed that BEX3 forms a specific higher-order oligomer that is consistent with a globular molecule. Solution nuclear magnetic resonance, partial proteinase K digestion, circular dichroism spectroscopy, and fluorescence techniques that were performed on the recombinant protein indicated that the structure of BEX3 is composed of approximately 31% α-helix and 20% β-strand, contains partially folded regions near the N- and C-termini, and a core which is proteolysis-resistant around residues 55-120. The self-oligomerization of BEX3 has been previously reported in cell culture and is consistent with our in vitro data.
Collapse
Affiliation(s)
- Katia M. S. Cabral
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diana P. Raymundo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Viviane S. Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laura A. G. Sampaio
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laizes Johanson
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis Fernando Hill
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio C. L. Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yraima Cordeiro
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcius S. Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Kumar AV, Ali RFM, Cao Y, Krishnan VV. Application of data mining tools for classification of protein structural class from residue based averaged NMR chemical shifts. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1545-52. [PMID: 25758094 DOI: 10.1016/j.bbapap.2015.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/25/2015] [Indexed: 10/23/2022]
Abstract
The number of protein sequences deriving from genome sequencing projects is outpacing our knowledge about the function of these proteins. With the gap between experimentally characterized and uncharacterized proteins continuing to widen, it is necessary to develop new computational methods and tools for protein structural information that is directly related to function. Nuclear magnetic resonance (NMR) provides powerful means to determine three-dimensional structures of proteins in the solution state. However, translation of the NMR spectral parameters to even low-resolution structural information such as protein class requires multiple time consuming steps. In this paper, we present an unorthodox method to predict the protein structural class directly by using the residue's averaged chemical shifts (ACS) based on machine learning algorithms. Experimental chemical shift information from 1491 proteins obtained from Biological Magnetic Resonance Bank (BMRB) and their respective protein structural classes derived from structural classification of proteins (SCOP) were used to construct a data set with 119 attributes and 5 different classes. Twenty four different classification schemes were evaluated using several performance measures. Overall the residue based ACS values can predict the protein structural classes with 80% accuracy measured by Matthew correlation coefficient. Specifically protein classes defined by mixed αβ or small proteins are classified with >90% correlation. Our results indicate that this NMR-based method can be utilized as a low-resolution tool for protein structural class identification without any prior chemical shift assignments.
Collapse
Affiliation(s)
- Arun V Kumar
- Department of Computer Science, California State University, Fresno, CA 93740, United States
| | - Rehana F M Ali
- Department of Computer Science, California State University, Fresno, CA 93740, United States
| | - Yu Cao
- Department of Computer Science, California State University, Fresno, CA 93740, United States
| | - V V Krishnan
- Department of Chemistry, California State University, Fresno, CA 93740, United States; Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, CA 95616, United States.
| |
Collapse
|
17
|
Zheng T, Boyle A, Robson Marsden H, Valdink D, Martelli G, Raap J, Kros A. Probing coiled-coil assembly by paramagnetic NMR spectroscopy. Org Biomol Chem 2015; 13:1159-68. [DOI: 10.1039/c4ob02125h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Here a new method to determine the orientation of coiled-coil peptide motifs is described.
Collapse
Affiliation(s)
- TingTing Zheng
- Dept. Supramolecular & Biomaterials Chemistry
- Leiden Institute of Chemistry
- Leiden University
- Leiden
- The Netherlands
| | - Aimee Boyle
- Dept. Supramolecular & Biomaterials Chemistry
- Leiden Institute of Chemistry
- Leiden University
- Leiden
- The Netherlands
| | - Hana Robson Marsden
- Dept. Supramolecular & Biomaterials Chemistry
- Leiden Institute of Chemistry
- Leiden University
- Leiden
- The Netherlands
| | - Dayenne Valdink
- Dept. Supramolecular & Biomaterials Chemistry
- Leiden Institute of Chemistry
- Leiden University
- Leiden
- The Netherlands
| | - Giuliana Martelli
- Dept. Supramolecular & Biomaterials Chemistry
- Leiden Institute of Chemistry
- Leiden University
- Leiden
- The Netherlands
| | - Jan Raap
- Dept. Supramolecular & Biomaterials Chemistry
- Leiden Institute of Chemistry
- Leiden University
- Leiden
- The Netherlands
| | - Alexander Kros
- Dept. Supramolecular & Biomaterials Chemistry
- Leiden Institute of Chemistry
- Leiden University
- Leiden
- The Netherlands
| |
Collapse
|
18
|
Remmele RL, Bee JS, Phillips JJ, Mo WD, Higazi DR, Zhang J, Lindo V, Kippen AD. Characterization of Monoclonal Antibody Aggregates and Emerging Technologies. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1202.ch005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Richard L. Remmele
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Jared S. Bee
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Jonathan J. Phillips
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Wenjun David Mo
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Daniel R. Higazi
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Jifeng Zhang
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Vivian Lindo
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Alistair D. Kippen
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| |
Collapse
|
19
|
Mei Y, Su M, Soni G, Salem S, Colbert CL, Sinha SC. Intrinsically disordered regions in autophagy proteins. Proteins 2014; 82:565-78. [PMID: 24115198 PMCID: PMC3949125 DOI: 10.1002/prot.24424] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/15/2013] [Accepted: 09/02/2013] [Indexed: 12/19/2022]
Abstract
Autophagy is an essential eukaryotic pathway required for cellular homeostasis. Numerous key autophagy effectors and regulators have been identified, but the mechanism by which they carry out their function in autophagy is not fully understood. Our rigorous bioinformatic analysis shows that the majority of key human autophagy proteins include intrinsically disordered regions (IDRs), which are sequences lacking stable secondary and tertiary structure; suggesting that IDRs play an important, yet hitherto uninvestigated, role in autophagy. Available crystal structures corroborate the absence of structure in some of these predicted IDRs. Regions of orthologs equivalent to the IDRs predicted in the human autophagy proteins are poorly conserved, indicating that these regions may have diverse functions in different homologs. We also show that IDRs predicted in human proteins contain several regions predicted to facilitate protein-protein interactions, and delineate the network of proteins that interact with each predicted IDR-containing autophagy protein, suggesting that many of these interactions may involve IDRs. Lastly, we experimentally show that a BCL2 homology 3 domain (BH3D), within the key autophagy effector BECN1 is an IDR. This BH3D undergoes a dramatic conformational change from coil to α-helix upon binding to BCL2s, with the C-terminal half of this BH3D constituting a binding motif, which serves to anchor the interaction of the BH3D to BCL2s. The information presented here will help inform future in-depth investigations of the biological role and mechanism of IDRs in autophagy proteins.
Collapse
Affiliation(s)
- Yang Mei
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
- Center for Protease Research, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Minfei Su
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
- Center for Protease Research, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Gaurav Soni
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
- Center for Protease Research, North Dakota State University, Fargo, ND 58108-6050, USA
- Department of Computer Science, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Saeed Salem
- Department of Computer Science, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Christopher L. Colbert
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
- Center for Protease Research, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Sangita C. Sinha
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
- Center for Protease Research, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
20
|
Glas A, Bier D, Hahne G, Rademacher C, Ottmann C, Grossmann TN. Makrocyclische Peptide mit dem Zielprotein angepassten Kohlenwasserstoffbrücken: Inhibitoren einer pathogenen Protein-Protein-Wechselwirkung. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310082] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Glas A, Bier D, Hahne G, Rademacher C, Ottmann C, Grossmann TN. Constrained Peptides with Target-Adapted Cross-Links as Inhibitors of a Pathogenic Protein-Protein Interaction. Angew Chem Int Ed Engl 2014; 53:2489-93. [DOI: 10.1002/anie.201310082] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Indexed: 11/07/2022]
|
22
|
Makowska-Grzyska M, Kim Y, Maltseva N, Li H, Zhou M, Joachimiak G, Babnigg G, Joachimiak A. Protein production for structural genomics using E. coli expression. Methods Mol Biol 2014; 1140:89-105. [PMID: 24590711 PMCID: PMC4108990 DOI: 10.1007/978-1-4939-0354-2_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The goal of structural biology is to reveal details of the molecular structure of proteins in order to understand their function and mechanism. X-ray crystallography and NMR are the two best methods for atomic level structure determination. However, these methods require milligram quantities of proteins. In this chapter a reproducible methodology for large-scale protein production applicable to a diverse set of proteins is described. The approach is based on protein expression in E. coli as a fusion with a cleavable affinity tag that was tested on over 20,000 proteins. Specifically, a protocol for fermentation of large quantities of native proteins in disposable culture vessels is presented. A modified protocol that allows for the production of selenium-labeled proteins in defined media is also offered. Finally, a method for the purification of His6-tagged proteins on immobilized metal affinity chromatography columns that generates high-purity material is described in detail.
Collapse
Affiliation(s)
- Magdalena Makowska-Grzyska
- Center for Structural Genomics of Infectious Diseases, Computational Institute, University of Chicago, Chicago, IL, 60557, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Strategies for purifying variants of human rhinovirus 14 2C protein. Protein Expr Purif 2013; 95:28-37. [PMID: 24316192 DOI: 10.1016/j.pep.2013.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/14/2013] [Accepted: 11/25/2013] [Indexed: 11/22/2022]
Abstract
The positive strand RNA genome of picornaviruses, including human rhinovirus (HRV), poliovirus (PV) and foot-and-mouth disease virus, is translated immediately into a polyprotein that is cleaved by virally encoded proteinases into 10-13 mature proteins. These include the four proteins required to assemble the viral particle as well as 3D(pol) (the viral RNA polymerase) and 2C, an ATPase and putative helicase. 2C is a protein which is responsible, together with 2B and 3A, for anchoring the replication complexes to membranous structures in the infected cell on which RNA replication takes place. Additionally, expression of 2C and its precursor 2BC in mammalian cells leads to vesicle formation observed in infected cells. 2C is encoded by all picornaviruses; nevertheless, its exact role in viral replication remains unclear. A contributing factor is the absence of structural data for this hydrophobic protein the generation of which has been hampered by an inability to produce soluble and stable material. Here, we compare 2C from several genera and show that the 2C protein has considerable heterogeneity. Using protein structure meta-analysis, we developed models of HRV14 2C that should be useful for mutational analysis. Based on these analyses, we expressed and purified two domains of HRV14 2C using three different protocols and examined the folding by thermal denaturation or (1)H NMR. Both domains were concentrated sufficiently to allow crystal screens or NMR pilot experiments to be performed. This work provides a platform to explore 2C proteins from all picornaviral genera to generate candidates for structural analysis.
Collapse
|
24
|
Pedrini B, Serrano P, Mohanty B, Geralt M, Wüthrich K. NMR-profiles of protein solutions. Biopolymers 2013; 99:825-31. [PMID: 23839514 PMCID: PMC3960936 DOI: 10.1002/bip.22348] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 06/28/2013] [Indexed: 11/11/2022]
Abstract
NMR-Profiles are quantitative one-dimensional (1D) presentations of 2D [¹⁵N, ¹H]-correlation spectra used to monitor the quality of protein solutions prior to and during NMR structure determinations and functional studies. In our current use in structural genomics projects, an NMR-Profile is recorded at the outset of a structure determination, using a uniformly ¹⁵N-labeled microscale sample of the protein. We thus assess the extent to which polypeptide backbone resonance assignments can be achieved with given NMR techniques, for example, conventional triple resonance experiments or APSY-NMR. With the availability of sequence-specific polypeptide backbone resonance assignments in the course of the structure determination, an "Assigned NMR-Profile" is generated, which visualizes the variation of the ¹⁵N - ¹H correlation cross peak intensities along the sequence and thus maps the sequence locations of polypeptide segments for which the NMR line shapes are affected by conformational exchange or other processes. The Assigned NMR-Profile provides a guiding reference during later stages of the structure determination, and is of special interest for monitoring the protein during functional studies, where dynamic features may be modulated during physiological processes.
Collapse
Affiliation(s)
- Bill Pedrini
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Institute of Molecular Biology and Biophysics, ETH Zürich, Schafmattstrasse 20, CH-8093 Zürich, Switzerland
| | - Pedro Serrano
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Joint Center for Structural Genomics, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Biswaranjan Mohanty
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Joint Center for Structural Genomics, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael Geralt
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Joint Center for Structural Genomics, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kurt Wüthrich
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Joint Center for Structural Genomics, The Scripps Research Institute, La Jolla, CA 92037, USA
- Institute of Molecular Biology and Biophysics, ETH Zürich, Schafmattstrasse 20, CH-8093 Zürich, Switzerland
| |
Collapse
|
25
|
Lin H, Kitova EN, Johnson MA, Eugenio L, Ng KKS, Klassen JS. Electrospray ionization-induced protein unfolding. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:2122-2131. [PMID: 22993046 DOI: 10.1007/s13361-012-0483-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/08/2012] [Accepted: 08/21/2012] [Indexed: 06/01/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) measurements were performed under a variety of solution conditions on a highly acidic sub-fragment (B3C) of the C-terminal carbohydrate-binding repeat region of Clostridium difficile toxin B, and two mutants (B4A and B4B) containing fewer acidic residues. ESI-MS measurements performed in negative ion mode on aqueous ammonium acetate solutions of B3C at low ionic strength (I < 80 mM) revealed evidence, based on the measured charge state distribution, of protein unfolding. In contrast, no evidence of unfolding was detected from ESI-MS measurements made in positive ion mode at low I or in either mode at higher I. The results of proton nuclear magnetic resonance and circular dichroism spectroscopy measurements and gel filtration chromatography performed on solutions of B3C under low and high I conditions suggest that the protein exists predominantly in a folded state in neutral aqueous solutions with I > 10 mM. The results of ESI-MS measurements performed on B3C in a series of solutions with high I at pH 5 to 9 rule out the possibility that the structural changes are related to ESI-induced changes in pH. It is proposed that unfolding of B3C, observed in negative mode for solutions with low I, occurs during the ESI process and arises due to Coulombic repulsion between the negatively charged residues and liquid/droplet surface charge. ESI-MS measurements performed in negative ion mode on B4A and B4B also reveal a shift to higher charge states at low I but the magnitude of the changes are smaller than observed for B3C.
Collapse
Affiliation(s)
- Hong Lin
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | | | | | | | | | | |
Collapse
|
26
|
Serrano P, Pedrini B, Mohanty B, Geralt M, Herrmann T, Wüthrich K. The J-UNIO protocol for automated protein structure determination by NMR in solution. JOURNAL OF BIOMOLECULAR NMR 2012; 53:341-54. [PMID: 22752932 PMCID: PMC3541938 DOI: 10.1007/s10858-012-9645-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/12/2012] [Indexed: 05/05/2023]
Abstract
The J-UNIO (JCSG protocol using the software UNIO) procedure for automated protein structure determination by NMR in solution is introduced. In the present implementation, J-UNIO makes use of APSY-NMR spectroscopy, 3D heteronuclear-resolved [(1)H,(1)H]-NOESY experiments, and the software UNIO. Applications with proteins from the JCSG target list with sizes up to 150 residues showed that the procedure is highly robust and efficient. In all instances the correct polypeptide fold was obtained in the first round of automated data analysis and structure calculation. After interactive validation of the data obtained from the automated routine, the quality of the final structures was comparable to results from interactive structure determination. Special advantages are that the NMR data have been recorded with 6-10 days of instrument time per protein, that there is only a single step of chemical shift adjustments to relate the backbone signals in the APSY-NMR spectra with the corresponding backbone signals in the NOESY spectra, and that the NOE-based amino acid side chain chemical shift assignments are automatically focused on those residues that are heavily weighted in the structure calculation. The individual working steps of J-UNIO are illustrated with the structure determination of the protein YP_926445.1 from Shewanella amazonensis, and the results obtained with 17 JCSG targets are critically evaluated.
Collapse
Affiliation(s)
- Pedro Serrano
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Joint Center for Structural Genomics, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bill Pedrini
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Institute of Molecular Biology and Biophysics, ETH Zürich, Schafmattstrasse 20, CH-8093 Zürich, Switzerland
| | - Biswaranjan Mohanty
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Joint Center for Structural Genomics, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael Geralt
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Joint Center for Structural Genomics, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Torsten Herrmann
- Centre de RMN à Très Hauts Champs, Université de Lyon/ UMR 5280 CNRS/ ENS Lyon/ UCB Lyon 1, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Kurt Wüthrich
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Joint Center for Structural Genomics, The Scripps Research Institute, La Jolla, CA 92037, USA
- Institute of Molecular Biology and Biophysics, ETH Zürich, Schafmattstrasse 20, CH-8093 Zürich, Switzerland
| |
Collapse
|
27
|
Alessandri S, Sancho A, Vieths S, Mills CEN, Wal JM, Shewry PR, Rigby N, Hoffmann-Sommergruber K. High-throughput NMR assessment of the tertiary structure of food allergens. PLoS One 2012; 7:e39785. [PMID: 22768312 PMCID: PMC3388089 DOI: 10.1371/journal.pone.0039785] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/30/2012] [Indexed: 11/25/2022] Open
Abstract
Background In vitro component-resolved diagnosis of food allergy requires purified allergens that have to meet high standards of quality. These include the authentication of their conformation, which is relevant for the recognition by specific IgE antibodies from allergic patients. Therefore, highly sensitive and reliable screening methods for the analysis of proteins/allergens are required to assess their structural integrity. In the present study one-dimensional 1H Nuclear Magnetic Resonance (1D 1H-NMR) analysis was adopted for the assessment of overall structural and dynamic properties and authentication of a set of relevant food allergens, including non-specific lipid transfer proteins from apple, peach and hazelnut, 7/8S seed storage globulins from hazelnut and peanut, 11S seed storage globulins from hazelnut and peanut, caseins from cows' and goats' milk and tropomyosin from shrimp. Methodology/Principal Findings Two sets of 1D 1H-NMR experiments, using 700 MHz and 600 MHz instruments at 298 K were carried out to determine the presence and the extent of tertiary structure. Structural similarity among members of the individual allergen families was also assessed and changes under thermal stress investigated. The nuclear magnetic resonance (NMR) results were compared with structural information available either from the literature, Protein Data Bank entries, or derived from molecular models. Conclusions/Significance 1D 1H-NMR analysis of food allergens allowed their classification into molecules with rigid, extended and ordered tertiary structures, molecules without a rigid tertiary structure and molecules which displayed both features. Differences in thermal stability were also detected. In summary, 1D 1H-NMR gives insights into molecular fold of proteins and offers an independent method for assessing structural properties of proteins.
Collapse
Affiliation(s)
- Stefano Alessandri
- CERM, Centro di Ricerca di Risonanze Magnetiche and Department of Agricultural Biotechnology, University of Florence, Florence, Italy
| | - Ana Sancho
- Institute of Food Research, Norwich, United Kingdom
| | | | | | - Jean-Michel Wal
- INRA, UR496 Immuno-Allergie Alimentaire, CEA/iBiTeC-S/SPI, CEA de Saclay, Gif sur Yvette, France
| | | | - Neil Rigby
- Institute of Food Research, Norwich, United Kingdom
| | | |
Collapse
|
28
|
|
29
|
Li Q, Gayen S, Chen AS, Huang Q, Raida M, Kang C. NMR solution structure of the N-terminal domain of hERG and its interaction with the S4–S5 linker. Biochem Biophys Res Commun 2010; 403:126-32. [DOI: 10.1016/j.bbrc.2010.10.132] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 10/28/2010] [Indexed: 01/05/2023]
|
30
|
Graebsch A, Roche S, Kostrewa D, Söding J, Niessing D. Of bits and bugs--on the use of bioinformatics and a bacterial crystal structure to solve a eukaryotic repeat-protein structure. PLoS One 2010; 5:e13402. [PMID: 20976240 PMCID: PMC2954813 DOI: 10.1371/journal.pone.0013402] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 09/24/2010] [Indexed: 11/19/2022] Open
Abstract
Pur-α is a nucleic acid-binding protein involved in cell cycle control, transcription, and neuronal function. Initially no prediction of the three-dimensional structure of Pur-α was possible. However, recently we solved the X-ray structure of Pur-α from the fruitfly Drosophila melanogaster and showed that it contains a so-called PUR domain. Here we explain how we exploited bioinformatics tools in combination with X-ray structure determination of a bacterial homolog to obtain diffracting crystals and the high-resolution structure of Drosophila Pur-α. First, we used sensitive methods for remote-homology detection to find three repetitive regions in Pur-α. We realized that our lack of understanding how these repeats interact to form a globular domain was a major problem for crystallization and structure determination. With our information on the repeat motifs we then identified a distant bacterial homolog that contains only one repeat. We determined the bacterial crystal structure and found that two of the repeats interact to form a globular domain. Based on this bacterial structure, we calculated a computational model of the eukaryotic protein. The model allowed us to design a crystallizable fragment and to determine the structure of Drosophila Pur-α. Key for success was the fact that single repeats of the bacterial protein self-assembled into a globular domain, instructing us on the number and boundaries of repeats to be included for crystallization trials with the eukaryotic protein. This study demonstrates that the simpler structural domain arrangement of a distant prokaryotic protein can guide the design of eukaryotic crystallization constructs. Since many eukaryotic proteins contain multiple repeats or repeating domains, this approach might be instructive for structural studies of a range of proteins.
Collapse
Affiliation(s)
- Almut Graebsch
- Institute of Structural Biology, Helmholtz Zentrum München, Munich, Germany
- Department of Biochemistry, Gene Center of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stéphane Roche
- Institute of Structural Biology, Helmholtz Zentrum München, Munich, Germany
- Department of Biochemistry, Gene Center of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Dirk Kostrewa
- Department of Biochemistry, Gene Center of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Johannes Söding
- Department of Biochemistry, Gene Center of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München, Munich, Germany
- Department of Biochemistry, Gene Center of the Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
31
|
Huang A, de Jong RN, Folkers GE, Boelens R. NMR characterization of foldedness for the production of E3 RING domains. J Struct Biol 2010; 172:120-7. [PMID: 20682345 DOI: 10.1016/j.jsb.2010.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Revised: 07/23/2010] [Accepted: 07/28/2010] [Indexed: 01/17/2023]
Abstract
We summarize the use of NMR spectroscopy in the production and the screening of stability and foldedness of protein domains, and apply it to the RING domains of E3 ubiquitin-ligases. RING domains are involved in specific interactions with E2 ubiquitin-conjugating enzymes and thus play an essential role in the ubiquitination pathway. Protein production of the Zn(2+) containing and cysteine rich RING domains for molecular studies frequently turns out to be problematic. We compared the expression and solubility of 14 E3 RING/U-box domains fused to the N-terminal tags of His(6), His(6)-GB1, His(6)-Trx and His(6)-GST at small scale and analyzed, by NMR spectroscopy, their correct folding after purification. The addition of GST, Trx or GB1 to the N-terminal His(6) tag significantly improved both the expression and solubility of target proteins as compared to His(6) tag alone. More importantly most of the immobilized metal affinity chromatography (IMAC) purified proteins were largely unfolded as judged by analysis of the (1)H-(15)N HSQC spectra. We demonstrate that imidazole causes a concentration dependent decrease in stability of RING proteins ascribed to metal depletion and resulting in unfolding or precipitation. In contrast, using glutathione affinity chromatography, the His(6)-GST fused RING and U-box domains were purified as correctly folded proteins with high yields. Our data clearly demonstrate that IMAC should be avoided and that GST-fusion affinity chromatography is generally applicable for expression and purification of Zn(2+) containing proteins.
Collapse
Affiliation(s)
- Anding Huang
- Department of NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
32
|
Elshemey WM, Mohammad IA, Elsayed AA. Wide-angle X-ray scattering as a probe for insulin denaturation. Int J Biol Macromol 2010; 46:471-7. [DOI: 10.1016/j.ijbiomac.2010.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 03/23/2010] [Indexed: 10/19/2022]
|
33
|
Jensen DR, Woytovich C, Li M, Duvnjak P, Cassidy MS, Frederick RO, Bergeman LF, Peterson FC, Volkman BF. Rapid, robotic, small-scale protein production for NMR screening and structure determination. Protein Sci 2010; 19:570-8. [PMID: 20073081 DOI: 10.1002/pro.335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Three-dimensional protein structure determination is a costly process due in part to the low success rate within groups of potential targets. Conventional validation methods eliminate the vast majority of proteins from further consideration through a time-consuming succession of screens for expression, solubility, purification, and folding. False negatives at each stage incur unwarranted reductions in the overall success rate. We developed a semi-automated protocol for isotopically-labeled protein production using the Maxwell-16, a commercially available bench top robot, that allows for single-step target screening by 2D NMR. In the span of a week, one person can express, purify, and screen 48 different (15)N-labeled proteins, accelerating the validation process by more than 10-fold. The yield from a single channel of the Maxwell-16 is sufficient for acquisition of a high-quality 2D (1)H-(15)N-HSQC spectrum using a 3-mm sample cell and 5-mm cryogenic NMR probe. Maxwell-16 screening of a control group of proteins reproduced previous validation results from conventional small-scale expression screening and large-scale production approaches currently employed by our structural genomics pipeline. Analysis of 18 new protein constructs identified two potential structure targets that included the second PDZ domain of human Par-3. To further demonstrate the broad utility of this production strategy, we solved the PDZ2 NMR structure using [U-(15)N,(13)C] protein prepared using the Maxwell-16. This novel semi-automated protein production protocol reduces the time and cost associated with NMR structure determination by eliminating unnecessary screening and scale-up steps.
Collapse
Affiliation(s)
- Davin R Jensen
- Department of Biochemistry and Center for Eukaryotic Structural Genomics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zucker FH, Stewart C, dela Rosa J, Kim J, Zhang L, Xiao L, Ross J, Napuli AJ, Mueller N, Castaneda LJ, Nakazawa Hewitt SR, Arakaki TL, Larson ET, Subramanian E, Verlinde CLMJ, Fan E, Buckner FS, Van Voorhis WC, Merritt EA, Hol WGJ. Prediction of protein crystallization outcome using a hybrid method. J Struct Biol 2010; 171:64-73. [PMID: 20347992 DOI: 10.1016/j.jsb.2010.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 03/18/2010] [Accepted: 03/23/2010] [Indexed: 10/19/2022]
Abstract
The great power of protein crystallography to reveal biological structure is often limited by the tremendous effort required to produce suitable crystals. A hybrid crystal growth predictive model is presented that combines both experimental and sequence-derived data from target proteins, including novel variables derived from physico-chemical characterization such as R(30), the ratio between a protein's DSF intensity at 30°C and at T(m). This hybrid model is shown to be more powerful than sequence-based prediction alone - and more likely to be useful for prioritizing and directing the efforts of structural genomics and individual structural biology laboratories.
Collapse
Affiliation(s)
- Frank H Zucker
- Medical Structural Genomics of Pathogenic Protozoa, School of Medicine, University of Washington, Seattle, WA 98195-7742, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Grabowski M, Chruszcz M, Zimmerman MD, Kirillova O, Minor W. Benefits of structural genomics for drug discovery research. Infect Disord Drug Targets 2009; 9:459-74. [PMID: 19594422 PMCID: PMC2866842 DOI: 10.2174/187152609789105704] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 06/15/2009] [Indexed: 11/22/2022]
Abstract
While three dimensional structures have long been used to search for new drug targets, only a fraction of new drugs coming to the market has been developed with the use of a structure-based drug discovery approach. However, the recent years have brought not only an avalanche of new macromolecular structures, but also significant advances in the protein structure determination methodology only now making their way into structure-based drug discovery. In this paper, we review recent developments resulting from the Structural Genomics (SG) programs, focusing on the methods and results most likely to improve our understanding of the molecular foundation of human diseases. SG programs have been around for almost a decade, and in that time, have contributed a significant part of the structural coverage of both the genomes of pathogens causing infectious diseases and structurally uncharacterized biological processes in general. Perhaps most importantly, SG programs have developed new methodology at all steps of the structure determination process, not only to determine new structures highly efficiently, but also to screen protein/ligand interactions. We describe the methodologies, experience and technologies developed by SG, which range from improvements to cloning protocols to improved procedures for crystallographic structure solution that may be applied in "traditional" structural biology laboratories particularly those performing drug discovery. We also discuss the conditions that must be met to convert the present high-throughput structure determination pipeline into a high-output structure-based drug discovery system.
Collapse
Affiliation(s)
- Marek Grabowski
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
- Midwest Center for Structural Genomics
- Center for Structural Genomics of Infectious Diseases
| | - Maksymilian Chruszcz
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
- Midwest Center for Structural Genomics
- Center for Structural Genomics of Infectious Diseases
| | - Matthew D. Zimmerman
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
- Midwest Center for Structural Genomics
- Center for Structural Genomics of Infectious Diseases
| | - Olga Kirillova
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
- Midwest Center for Structural Genomics
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
- Midwest Center for Structural Genomics
- Center for Structural Genomics of Infectious Diseases
| |
Collapse
|
36
|
Rasia RM, Noirclerc-Savoye M, Bologna NG, Gallet B, Plevin MJ, Blanchard L, Palatnik JF, Brutscher B, Vernet T, Boisbouvier J. Parallel screening and optimization of protein constructs for structural studies. Protein Sci 2009; 18:434-9. [PMID: 19177520 DOI: 10.1002/pro.46] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A major challenge in structural biology remains the identification of protein constructs amenable to structural characterization. Here, we present a simple method for parallel expression, labeling, and purification of protein constructs (up to 80 kDa) combined with rapid evaluation by NMR spectroscopy. Our approach, which is equally applicable for manual or automated implementation, offers an efficient way to identify and optimize protein constructs for NMR or X-ray crystallographic investigations.
Collapse
Affiliation(s)
- Rodolfo M Rasia
- Institut de Biologie Structurale Jean-Pierre Ebel, Centre National de la Recherche Scientifique, Université Joseph-Fourier, Grenoble, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Swain M, Atreya HS. CSSI-PRO: a method for secondary structure type editing, assignment and estimation in proteins using linear combination of backbone chemical shifts. JOURNAL OF BIOMOLECULAR NMR 2009; 44:185-194. [PMID: 19529884 DOI: 10.1007/s10858-009-9327-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 05/07/2009] [Indexed: 05/27/2023]
Abstract
Estimation of secondary structure in polypeptides is important for studying their structure, folding and dynamics. In NMR spectroscopy, such information is generally obtained after sequence specific resonance assignments are completed. We present here a new methodology for assignment of secondary structure type to spin systems in proteins directly from NMR spectra, without prior knowledge of resonance assignments. The methodology, named Combination of Shifts for Secondary Structure Identification in Proteins (CSSI-PRO), involves detection of specific linear combination of backbone (1)H(alpha) and (13)C' chemical shifts in a two-dimensional (2D) NMR experiment based on G-matrix Fourier transform (GFT) NMR spectroscopy. Such linear combinations of shifts facilitate editing of residues belonging to alpha-helical/beta-strand regions into distinct spectral regions nearly independent of the amino acid type, thereby allowing the estimation of overall secondary structure content of the protein. Comparison of the predicted secondary structure content with those estimated based on their respective 3D structures and/or the method of Chemical Shift Index for 237 proteins gives a correlation of more than 90% and an overall rmsd of 7.0%, which is comparable to other biophysical techniques used for structural characterization of proteins. Taken together, this methodology has a wide range of applications in NMR spectroscopy such as rapid protein structure determination, monitoring conformational changes in protein-folding/ligand-binding studies and automated resonance assignment.
Collapse
Affiliation(s)
- Monalisa Swain
- NMR Research Centre, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
38
|
Sugiki T, Yoshiura C, Kofuku Y, Ueda T, Shimada I, Takahashi H. High-throughput screening of optimal solution conditions for structural biological studies by fluorescence correlation spectroscopy. Protein Sci 2009; 18:1115-20. [PMID: 19388076 PMCID: PMC2771313 DOI: 10.1002/pro.92] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 01/27/2009] [Accepted: 02/02/2009] [Indexed: 11/07/2022]
Abstract
Protein aggregation is an essential molecular event in a wide variety of biological situations, and is a causal factor in several degenerative diseases. The aggregation of proteins also frequently hampers structural biological analyses, such as solution NMR studies. Therefore, precise detection and characterization of protein aggregation are of crucial importance for various research fields. In this study, we demonstrate that fluorescence correlation spectroscopy (FCS) using a single-molecule fluorescence detection system enables the detection of otherwise invisible aggregation of proteins at higher protein concentrations, which are suitable for structural biological experiments, and consumes relatively small amounts of protein over a short measurement time. Furthermore, utilizing FCS, we established a method for high-throughput screening of protein aggregation and optimal solution conditions for structural biological experiments.
Collapse
Affiliation(s)
- Toshihiko Sugiki
- Japan Biological Informatics Consortium (JBiC)Aomi, Koto-ku, Tokyo 135-8073, Japan
- Biomedicinal Information Research Center (BIRC), National Institute of Advanced Industrial Science and Technology (AIST)Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Chie Yoshiura
- Graduate School of Pharmaceutical Sciences, the University of TokyoHongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yutaka Kofuku
- Graduate School of Pharmaceutical Sciences, the University of TokyoHongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takumi Ueda
- Graduate School of Pharmaceutical Sciences, the University of TokyoHongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ichio Shimada
- Biomedicinal Information Research Center (BIRC), National Institute of Advanced Industrial Science and Technology (AIST)Aomi, Koto-ku, Tokyo 135-0064, Japan
- Graduate School of Pharmaceutical Sciences, the University of TokyoHongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideo Takahashi
- Biomedicinal Information Research Center (BIRC), National Institute of Advanced Industrial Science and Technology (AIST)Aomi, Koto-ku, Tokyo 135-0064, Japan
| |
Collapse
|
39
|
Abstract
In the age of structural proteomics when protein structures are targeted on a genome-wide scale, the identification of proteins that are amenable to analysis using x-ray crystallography or NMR spectroscopy is the key to high throughput structure determination. NMR screening is a beneficial part of a structural proteomics pipeline because of its ability to provide detailed biophysical information about the protein targets under investigation at an early stage of the structure determination process. This chapter describes efficient methods for the production of uniformly (15)N-labeled proteins for NMR screening using both conventional IPTG induction and autoinduction approaches in E. coli. Details of sample preparation for NMR and the acquisition of 1D (1)H NMR and 2D (1)H-(15)N HSQC spectra to assess the structural characteristics and suitability of proteins for further structural studies are also provided.
Collapse
|
40
|
Structure of a NEMO/IKK-associating domain reveals architecture of the interaction site. Structure 2008; 16:798-808. [PMID: 18462684 DOI: 10.1016/j.str.2008.02.012] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 01/22/2008] [Accepted: 02/02/2008] [Indexed: 11/20/2022]
Abstract
The phosphorylation of IkappaB by the IKK complex targets it for degradation and releases NF-kappaB for translocation into the nucleus to initiate the inflammatory response, cell proliferation, or cell differentiation. The IKK complex is composed of the catalytic IKKalpha/beta kinases and a regulatory protein, NF-kappaB essential modulator (NEMO; IKKgamma). NEMO associates with the unphosphorylated IKK kinase C termini and activates the IKK complex's catalytic activity. However, detailed structural information about the NEMO/IKK interaction is lacking. In this study, we have identified the minimal requirements for NEMO and IKK kinase association using a variety of biophysical techniques and have solved two crystal structures of the minimal NEMO/IKK kinase associating domains. We demonstrate that the NEMO core domain is a dimer that binds two IKK fragments and identify energetic hot spots that can be exploited to inhibit IKK complex formation with a therapeutic agent.
Collapse
|
41
|
Heterologous high-level E. coli expression, purification and biophysical characterization of the spine-associated RapGAP (SPAR) PDZ domain. Protein Expr Purif 2008; 62:9-14. [PMID: 18678258 DOI: 10.1016/j.pep.2008.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 07/10/2008] [Accepted: 07/11/2008] [Indexed: 11/22/2022]
Abstract
Spine-associated RapGAP (SPAR) is a 1783 residue, multidomain scaffolding protein which is a component of the NMDA receptor/PSD-95 complex in the post-synaptic density (PSD) of dendritic spines. Using a parallel expression screening approach, we identified a strategy to solubly express the SPAR PDZ domain in Escherichia coli. We show that maltose binding protein is required for the production of solubly expressed protein. We also show that small changes in construct length (2-5 residues) result in differential susceptibilities of the expressed proteins to proteolytic digestion, required for the expression tag removal. This has allowed us to identify a large-scale E. coli expression and purification protocol that results in the production of mg quantities of the SPAR PDZ domain. This is the first time that any of the multiple SPAR functional domains have been expressed in E. coli in quantities suitable for biophysical and biochemical studies, allowing us to investigate the role of the PDZ domain in SPAR function within the PSD.
Collapse
|
42
|
The C-terminal segment of the cysteine-rich interdomain of Plasmodium falciparum erythrocyte membrane protein 1 determines CD36 binding and elicits antibodies that inhibit adhesion of parasite-infected erythrocytes. Infect Immun 2008; 76:1837-47. [PMID: 18299339 DOI: 10.1128/iai.00480-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Attachment of erythrocytes infected by Plasmodium falciparum to receptors of the microvasculature is a major contributor to the pathology and morbidity associated with malaria. Adhesion is mediated by the P. falciparum erythrocyte membrane protein 1 (PfEMP-1), which is expressed at the surface of infected erythrocytes and is linked to both antigenic variation and cytoadherence. PfEMP-1 contains multiple adhesive modules, including the Duffy binding-like domain and the cysteine-rich interdomain region (CIDR). The interaction between CIDRalpha and CD36 promotes stable adherence of parasitized erythrocytes to endothelial cells. Here we show that a segment within the C-terminal region of CIDRalpha determines CD36 binding specificity. Antibodies raised against this segment can specifically block the adhesion to CD36 of erythrocytes infected with various parasite strains. Thus, small regions of PfEMP-1 that determine binding specificity could form suitable components of an antisequestration malaria vaccine effective against different parasite strains.
Collapse
|
43
|
Piedra D, Lois S, de la Cruz X. Preservation of protein clefts in comparative models. BMC STRUCTURAL BIOLOGY 2008; 8:2. [PMID: 18199319 PMCID: PMC2249585 DOI: 10.1186/1472-6807-8-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 01/16/2008] [Indexed: 11/29/2022]
Abstract
BACKGROUND Comparative, or homology, modelling of protein structures is the most widely used prediction method when the target protein has homologues of known structure. Given that the quality of a model may vary greatly, several studies have been devoted to identifying the factors that influence modelling results. These studies usually consider the protein as a whole, and only a few provide a separate discussion of the behaviour of biologically relevant features of the protein. Given the value of the latter for many applications, here we extended previous work by analysing the preservation of native protein clefts in homology models. We chose to examine clefts because of their role in protein function/structure, as they are usually the locus of protein-protein interactions, host the enzymes' active site, or, in the case of protein domains, can also be the locus of domain-domain interactions that lead to the structure of the whole protein. RESULTS We studied how the largest cleft of a protein varies in comparative models. To this end, we analysed a set of 53507 homology models that cover the whole sequence identity range, with a special emphasis on medium and low similarities. More precisely we examined how cleft quality - measured using six complementary parameters related to both global shape and local atomic environment, depends on the sequence identity between target and template proteins. In addition to this general analysis, we also explored the impact of a number of factors on cleft quality, and found that the relationship between quality and sequence identity varies depending on cleft rank amongst the set of protein clefts (when ordered according to size), and number of aligned residues. CONCLUSION We have examined cleft quality in homology models at a range of seq.id. levels. Our results provide a detailed view of how quality is affected by distinct parameters and thus may help the user of comparative modelling to determine the final quality and applicability of his/her cleft models. In addition, the large variability in model quality that we observed within each sequence bin, with good models present even at low sequence identities (between 20% and 30%), indicates that properly developed identification methods could be used to recover good cleft models in this sequence range.
Collapse
Affiliation(s)
- David Piedra
- Institut de Recerca Biomèdica, C/Josep Samitier, 1-5, 08028 Barcelona, Spain
| | - Sergi Lois
- Institut de Recerca Biomèdica, C/Josep Samitier, 1-5, 08028 Barcelona, Spain
- Instituto de Biología Molecular de Barcelona, CID, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Xavier de la Cruz
- Institut de Recerca Biomèdica, C/Josep Samitier, 1-5, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
44
|
Abstract
The production of crystals suitable for high-resolution structure determination is still one of the major bottlenecks in the structure determination process. This is especially true in structural genomics (SG) consortia, where the implementation of protein-specific purification and optimization strategies is not readily implemented into the structure determination workflow. This chapter describes four strategies that have been implemented by a number of SG groups to increase the number of protein targets that resulted in atomic resolution structures: (1) orthologue screening; (2) the use of 1D (1)H NMR spectroscopy to screen for the folded state of a protein prior to crystallization; (3) deletion constructs generation, in which regions of the target protein predicted to be disordered are omitted from the construct, to maximize the likelihood of crystal formation; and (4) crystallization optimum solubility screening to identify more suitable buffers for a given protein. The implementation of these strategies can lead to a substantial increase in the number of protein structures solved. Finally, because these strategies do not require the implementation of expensive robotics, they are highly applicable not only for the SG community but also for academic laboratories.
Collapse
Affiliation(s)
- Rebecca Page
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| |
Collapse
|
45
|
Hopson RE, Peti W. Microcoil NMR spectroscopy: a novel tool for biological high throughput NMR spectroscopy. Methods Mol Biol 2008; 426:447-458. [PMID: 18542883 DOI: 10.1007/978-1-60327-058-8_30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Microcoil NMR spectroscopy is based on the increase of coil sensitivity for smaller coil diameters (approximately 1/d). Microcoil NMR probes deliver a remarkable mass-based sensitivity increase (8- to 12-fold) when compared with commonly used 5-mm NMR probes. Although microcoil NMR probes are a well established analytical tool for small molecule liquid-state NMR spectroscopy, after spectroscopy only recently have microcoil NMR probes become available for biomolecular NMR spectroscopy. This chapter highlights differences between commercially available microcoil NMR probes suitable for biomolecular NMR spectroscopy. Furthermore, it provides practical guidance for the use of microcoil probes and shows direct applications for structural biology and structural genomics, such as optimal target screening and structure determination, among others.
Collapse
|
46
|
Barnwal RP, Rout AK, Chary KVR, Atreya HS. Rapid measurement of 3J(H N-H alpha) and 3J(N-H beta) coupling constants in polypeptides. JOURNAL OF BIOMOLECULAR NMR 2007; 39:259-63. [PMID: 17914658 DOI: 10.1007/s10858-007-9200-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 09/13/2007] [Indexed: 05/17/2023]
Abstract
We present two NMR experiments, (3,2)D HNHA and (3,2)D HNHB, for rapid and accurate measurement of 3J(H N-H alpha) and 3J(N-H beta) coupling constants in polypeptides based on the principle of G-matrix Fourier transform NMR spectroscopy and quantitative J-correlation. These experiments, which facilitate fast acquisition of three-dimensional data with high spectral/digital resolution and chemical shift dispersion, will provide renewed opportunities to utilize them for sequence specific resonance assignments, estimation/characterization of secondary structure with/without prior knowledge of resonance assignments, stereospecific assignment of prochiral groups and 3D structure determination, refinement and validation. Taken together, these experiments have a wide range of applications from structural genomics projects to studying structure and folding in polypeptides.
Collapse
Affiliation(s)
- Ravi Pratap Barnwal
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | | | | | | |
Collapse
|
47
|
Savva R, Prodromou C, Driscoll PC. DNA fragmentation based combinatorial approaches to soluble protein expression. Drug Discov Today 2007; 12:939-47. [DOI: 10.1016/j.drudis.2007.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 08/21/2007] [Accepted: 08/28/2007] [Indexed: 11/26/2022]
|
48
|
Derewenda ZS. Protein crystallization in drug design: towards a rational approach. Expert Opin Drug Discov 2007; 2:1329-40. [PMID: 23484529 DOI: 10.1517/17460441.2.10.1329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
X-ray crystallography is the method of choice for the detailed characterization of stereochemistry of interactions of drug leads and potential chemotherapeutics with their protein targets. The resulting atomic models allow for rational enhancement of the lead properties and consequently for the design of high-affinity inhibitors. However, a major bottleneck of the technique is the requirement for the protein and its complexes to yield high quality single crystals. Furthermore, it is highly desirable that such crystals diffract to high resolution, preferably ≥ 1.2 Å, revealing the structures in atomic detail. Unfortunately, only a small portion of proteins readily crystallize in that fashion. New approaches are being developed to circumvent this problem. One proposed option includes rational protein surface engineering to systematically improve the crystallizability of the protein. This is accomplished by creating surface patches readily mediating weak, but specific, intermolecular interactions that take on the role of crystal contacts during nucleation and crystal growth phase.
Collapse
Affiliation(s)
- Zygmunt S Derewenda
- University of Virginia, Integrated Center for Structure and Function Innovation (PSI2), Departments of Molecular Physiology and Biological Physics, PO Box 800736, Jordan Hall, Charlottesville, VA 22908-0736, USA +1 434 243 6842 ; +1 434 982 1616 ;
| |
Collapse
|
49
|
Thaker YR, Roessle M, Grüber G. The boxing glove shape of subunit d of the yeast V-ATPase in solution and the importance of disulfide formation for folding of this protein. J Bioenerg Biomembr 2007; 39:275-89. [PMID: 17896169 DOI: 10.1007/s10863-007-9089-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 05/15/2007] [Indexed: 10/22/2022]
Abstract
The low resolution structure of subunit d (Vma6p) of the Saccharomyces cerevisiae V-ATPase was determined from solution X-ray scattering data. The protein is a boxing glove-shaped molecule consisting of two distinct domains, with a width of about 6.5 nm and 3.5 nm, respectively. To understand the importance of the N- and C-termini inside the protein, four truncated forms of subunit d (d (11-345), d (38-345), d (1-328) and d (1-298)) and mutant subunit d, with a substitution of Cys329 against Ser, were expressed, and only d (11-345), containing all six cysteine residues was soluble. The structural properties of d depends strongly on the presence of a disulfide bond. Changes in response to disulfide formation have been studied by fluorescence- and CD spectroscopy, and biochemical approaches. Cysteins, involved in disulfide bridges, were analyzed by MALDI-TOF mass spectrometry. Finally, the solution structure of subunit d will be discussed in terms of the topological arrangement of the V(1)V(O) ATPase.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Circular Dichroism
- DNA Primers/genetics
- DNA, Fungal/genetics
- Disulfides/chemistry
- Models, Molecular
- Molecular Sequence Data
- Molecular Weight
- Mutagenesis, Site-Directed
- Nuclear Magnetic Resonance, Biomolecular
- Protein Folding
- Protein Structure, Tertiary
- Protein Subunits
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Scattering, Small Angle
- Sequence Homology, Amino Acid
- Spectrometry, Fluorescence
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Vacuolar Proton-Translocating ATPases/chemistry
- Vacuolar Proton-Translocating ATPases/genetics
- X-Ray Diffraction
Collapse
Affiliation(s)
- Youg R Thaker
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | |
Collapse
|
50
|
Yoon HR, Kang CB, Chia J, Tang K, Yoon HS. Expression, purification, and molecular characterization of Plasmodium falciparum FK506-binding protein 35 (PfFKBP35). Protein Expr Purif 2007; 53:179-85. [PMID: 17289400 DOI: 10.1016/j.pep.2006.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 12/14/2006] [Accepted: 12/18/2006] [Indexed: 11/17/2022]
Abstract
The immunosuppressive drug FK506 binds its targets FK506-binding protein (FKBP) family and modulates cellular processes. Recent studies demonstrated that FK506 shows anti-malaria effects. Newly identified FK506-binding protein 35 from Plasmodium falciparum (PfFKBP35) is assumed to be the molecular target of FK506 in the parasite. Currently, molecular and structural basis of growth inhibition of the parasite by FK506 remains unclear. In this study, to examine characteristics of PfFKBP35 and also understand its molecular mechanism of the inhibition by FK506, we have cloned, expressed, and purified the full-length PfFKBP35 and its FK506-binding domain (FKBD). We demonstrate that the full-length PfFKBP35 and the FKBD were properly folded, and suitable for biochemical and biophysical studies. PfFKBP35 showed a basal activity in inhibiting the phosphatase activity of calcineurin in the absence of FK506, but the presence of FK506 greatly enhanced its calcineurin-inhibitory activity. Our NMR data indicate that the FKBD binds FK506 with a high affinity.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acids, Aromatic/chemistry
- Animals
- Calcineurin/analysis
- Calcineurin Inhibitors
- Chromatography, Gel
- Cloning, Molecular
- DNA, Protozoan
- Databases, Protein
- Escherichia coli/genetics
- Gene Expression
- Genetic Vectors
- Genome, Protozoan
- Hydrogen Bonding
- Molecular Sequence Data
- Molecular Weight
- Nuclear Magnetic Resonance, Biomolecular
- Plasmodium falciparum/genetics
- Plasmodium falciparum/metabolism
- Protein Folding
- Protein Structure, Tertiary
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/isolation & purification
- Protozoan Proteins/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Tacrolimus Binding Proteins/antagonists & inhibitors
- Tacrolimus Binding Proteins/chemistry
- Tacrolimus Binding Proteins/genetics
- Tacrolimus Binding Proteins/isolation & purification
- Tacrolimus Binding Proteins/metabolism
- Transformation, Genetic
Collapse
Affiliation(s)
- Hye Rim Yoon
- Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | |
Collapse
|