1
|
Shin J, Meinke G, Bohm AA, Bullock PA. A model for polyomavirus helicase activity derived in part from the AlphaFold2 structure of SV40 T-antigen. J Virol 2024; 98:e0111924. [PMID: 39311578 PMCID: PMC11494911 DOI: 10.1128/jvi.01119-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/11/2024] [Indexed: 09/27/2024] Open
Abstract
The mechanism used by polyomavirus and other viral SF3 helicases to unwind DNA at replication forks remains unknown. Using AlphaFold2, we have determined the structure of a representative SF3 helicase, the SV40 T-antigen (T-ag). This model has been analyzed in terms of the features of T-ag required for helicase activity, particularly the proximity of the T-ag origin binding domain (OBD) to the replication fork and the distribution of basic residues on the surface of the OBD that are known to play roles in DNA unwinding. These and related studies provide additional evidence that the T-ag OBDs have a role in the unwinding of DNA at the replication fork. Nuclear magnetic resonance and modeling experiments also indicate that protonated histidines on the surface of the T-ag OBD play an important role in the unwinding process, and additional modeling studies indicate that protonated histidines are essential in other SF3 and SF6 helicases. Finally, a model for T-ag's helicase activity is presented, which is a variant of the "rope climber." According to this model, the hands are the N-terminal OBD domains that interact with the replication fork, while the C-terminal helicase domains contain the feet that bind to single-stranded DNA. IMPORTANCE Enzymes termed helicases are essential for the replication of DNA tumor viruses. Unfortunately, much remains to be determined about this class of enzymes, including their structures and the mechanism(s) they employ to unwind DNA. Herein, we present the full-length structure of a model helicase encoded by a DNA tumor virus. Moreover, this AI-based structure has been analyzed in terms of its basic functional properties, such as the orientation of the helicase at replication forks and the relative locations of the amino acid residues that are critical for helicase activity. Obtaining this information is important because it permits proposals regarding how DNA is routed through these model helicases. Also presented is structural evidence that the conclusions drawn from our detailed analyses of one model helicase, encoded by one class of tumor viruses, are likely to apply to other viral and eukaryotic helicases.
Collapse
Affiliation(s)
- Jong Shin
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Gretchen Meinke
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Alex A. Bohm
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Peter A. Bullock
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Jaiswal R, Santosh V, Braud B, Washington A, Escalante CR. Cryo-EM Structure of AAV2 Rep68 bound to integration site AAVS1: Insights into the mechanism of DNA melting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587759. [PMID: 38617369 PMCID: PMC11014581 DOI: 10.1101/2024.04.02.587759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The Rep68 protein from Adeno-Associated Virus (AAV) is a multifunctional SF3 helicase that performs most of the DNA transactions required for the viral life cycle. During AAV DNA replication, Rep68 assembles at the origin and catalyzes the DNA melting and nicking reactions during the hairpin rolling replication process to complete the second-strand synthesis of the AAV genome. Here, we report the Cryo-EM structures of Rep68 bound to double-stranded DNA (dsDNA) containing the sequence of the AAVS1 integration site in different nucleotide-bound states. In the apo state, Rep68 forms a heptameric complex around DNA, with three Origin Binding Domains (OBDs) bound to the Rep Binding Site (RBS) sequence and three other OBDs forming transient dimers with them. The AAA+ domains form an open ring with no interactions between subunits and with DNA. We hypothesize the heptameric quaternary structure is necessary to load onto dsDNA. In the ATPγS-bound state, a subset of three subunits binds the nucleotide, undergoing a large conformational change, inducing the formation of intersubunit interactions interaction and interaction with three consecutive DNA phosphate groups. Moreover, the induced conformational change positions three phenylalanine residues to come in close contact with the DNA backbone, producing a distortion in the DNA. We propose that the phenylalanine residues can potentially act as a hydrophobic wedge in the DNA melting process.
Collapse
Affiliation(s)
- R. Jaiswal
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond VA, 23298
- Current address: Department of Biochemistry and Molecular Biology, University of Arkansas for the Medical Sciences, Little Rock AR 72205
| | - V. Santosh
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond VA, 23298
- Current address: US Army DEVCOM Chemical Biological Center, Gunpowder MD
| | - B. Braud
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond VA, 23298
| | - A. Washington
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond VA, 23298
- Current address: Mayo Clinic Graduate School of Biomedical Research, Department of Biochemistry and Molecular Biology, Rochester, MN 55905
| | - Carlos R. Escalante
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond VA, 23298
| |
Collapse
|
3
|
Guan S, Li Z, Han Y, Tian A, Zhou S, Chen H, Peng G, Song Y. Crystal structure of the ATPase domain of porcine circovirus type 2 Rep protein. J Gen Virol 2024; 105. [PMID: 38506716 DOI: 10.1099/jgv.0.001972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
PCV2 belongs to the genus Circovirus in the family Circoviridae, whose genome is replicated by rolling circle replication (RCR). PCV2 Rep is a multifunctional enzyme that performs essential functions at multiple stages of viral replication. Rep is responsible for nicking and ligating single-stranded DNA and unwinding double-stranded DNA (dsDNA). However, the structure and function of the Rep are still poorly understood, which significantly impedes viral replication research. This study successfully resolved the structure of the PCV2 Rep ATPase domain (PRAD) using X-ray crystallography. Homologous structure search revealed that Rep belonged to the superfamily 3 (SF3) helicase, and multiple conserved residues were identified during sequence alignment with SF3 family members. Simultaneously, a hexameric PRAD model was generated for analysing characteristic structures and sites. Mutation of the conserved site and measurement of its activity showed that the hallmark motifs of the SF3 family influenced helicase activity by affecting ATPase activity and β-hairpin just caused the loss of helicase activity. The structural and functional analyses of the PRAD provide valuable insights for future research on PCV2 replication and antiviral strategies.
Collapse
Affiliation(s)
- Shuaiyin Guan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhen Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yang Han
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ang Tian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Saisai Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yunfeng Song
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| |
Collapse
|
4
|
Hutin S, Ling WL, Tarbouriech N, Schoehn G, Grimm C, Fischer U, Burmeister WP. The Vaccinia Virus DNA Helicase Structure from Combined Single-Particle Cryo-Electron Microscopy and AlphaFold2 Prediction. Viruses 2022; 14:2206. [PMID: 36298761 PMCID: PMC9611036 DOI: 10.3390/v14102206] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Poxviruses are large DNA viruses with a linear double-stranded DNA genome circularized at the extremities. The helicase-primase D5, composed of six identical 90 kDa subunits, is required for DNA replication. D5 consists of a primase fragment flexibly attached to the hexameric C-terminal polypeptide (res. 323-785) with confirmed nucleotide hydrolase and DNA-binding activity but an elusive helicase activity. We determined its structure by single-particle cryo-electron microscopy. It displays an AAA+ helicase core flanked by N- and C-terminal domains. Model building was greatly helped by the predicted structure of D5 using AlphaFold2. The 3.9 Å structure of the N-terminal domain forms a well-defined tight ring while the resolution decreases towards the C-terminus, still allowing the fit of the predicted structure. The N-terminal domain is partially present in papillomavirus E1 and polyomavirus LTA helicases, as well as in a bacteriophage NrS-1 helicase domain, which is also closely related to the AAA+ helicase domain of D5. Using the Pfam domain database, a D5_N domain followed by DUF5906 and Pox_D5 domains could be assigned to the cryo-EM structure, providing the first 3D structures for D5_N and Pox_D5 domains. The same domain organization has been identified in a family of putative helicases from large DNA viruses, bacteriophages, and selfish DNA elements.
Collapse
Affiliation(s)
- Stephanie Hutin
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes (UGA), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| | - Wai Li Ling
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes (UGA), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| | - Nicolas Tarbouriech
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes (UGA), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| | - Guy Schoehn
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes (UGA), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| | - Clemens Grimm
- Biozentrum, University of Würzburg, 97070 Würzburg, Germany
| | - Utz Fischer
- Biozentrum, University of Würzburg, 97070 Würzburg, Germany
| | - Wim P. Burmeister
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes (UGA), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| |
Collapse
|
5
|
Khan YA, White KI, Brunger AT. The AAA+ superfamily: a review of the structural and mechanistic principles of these molecular machines. Crit Rev Biochem Mol Biol 2021; 57:156-187. [PMID: 34632886 DOI: 10.1080/10409238.2021.1979460] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ATPases associated with diverse cellular activities (AAA+ proteins) are a superfamily of proteins found throughout all domains of life. The hallmark of this family is a conserved AAA+ domain responsible for a diverse range of cellular activities. Typically, AAA+ proteins transduce chemical energy from the hydrolysis of ATP into mechanical energy through conformational change, which can drive a variety of biological processes. AAA+ proteins operate in a variety of cellular contexts with diverse functions including disassembly of SNARE proteins, protein quality control, DNA replication, ribosome assembly, and viral replication. This breadth of function illustrates both the importance of AAA+ proteins in health and disease and emphasizes the importance of understanding conserved mechanisms of chemo-mechanical energy transduction. This review is divided into three major portions. First, the core AAA+ fold is presented. Next, the seven different clades of AAA+ proteins and structural details and reclassification pertaining to proteins in each clade are described. Finally, two well-known AAA+ proteins, NSF and its close relative p97, are reviewed in detail.
Collapse
Affiliation(s)
- Yousuf A Khan
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University, Stanford, CA, USA.,Department of Photon Science, Stanford University, Stanford, CA, USA.,Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA
| | - K Ian White
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University, Stanford, CA, USA.,Department of Photon Science, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University, Stanford, CA, USA.,Department of Photon Science, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
6
|
Witkin AE, Banerji J, Bullock PA. A model for the formation of the duplicated enhancers found in polyomavirus regulatory regions. Virology 2020; 543:27-33. [PMID: 32056844 DOI: 10.1016/j.virol.2020.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022]
Abstract
When purified from persistent infections, the genomes of most human polyomaviruses contain single enhancers. However, when isolated from productively infected cells from immunocompromised individuals, the genomes of several polyomaviruses contain duplicated enhancers that promote a number of polyoma-based diseases. The mechanism(s) that gives rise to the duplicated enhancers in the polyomaviruses is, however, not known. Herein we propose a model for the duplication of the enhancers that is based on recent advances in our understanding of; 1) the initiation of polyomavirus DNA replication, 2) the formation of long flaps via displacement synthesis and 3) the subsequent generation of duplicated enhancers via double stranded break repair. Finally, we discuss the possibility that the polyomavirus based replication dependent enhancer duplication model may be relevant to the enhancer-associated rearrangements detected in human genomes that are associated with various diseases, including cancers.
Collapse
Affiliation(s)
- Anna E Witkin
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Julian Banerji
- Center for Computational and Integrative Biology, Simches Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Peter A Bullock
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA.
| |
Collapse
|
7
|
Liu JJ, Orlova N, Oakes BL, Ma E, Spinner HB, Baney KLM, Chuck J, Tan D, Knott GJ, Harrington LB, Al-Shayeb B, Wagner A, Brötzmann J, Staahl BT, Taylor KL, Desmarais J, Nogales E, Doudna JA. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 2019; 566:218-223. [PMID: 30718774 PMCID: PMC6662743 DOI: 10.1038/s41586-019-0908-x] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022]
Abstract
The RNA-guided CRISPR-associated (Cas) proteins Cas9 and Cas12a provide adaptive immunity against invading nucleic acids, and function as powerful tools for genome editing in a wide range of organisms. Here we reveal the underlying mechanisms of a third, fundamentally distinct RNA-guided genome-editing platform named CRISPR-CasX, which uses unique structures for programmable double-stranded DNA binding and cleavage. Biochemical and in vivo data demonstrate that CasX is active for Escherichia coli and human genome modification. Eight cryo-electron microscopy structures of CasX in different states of assembly with its guide RNA and double-stranded DNA substrates reveal an extensive RNA scaffold and a domain required for DNA unwinding. These data demonstrate how CasX activity arose through convergent evolution to establish an enzyme family that is functionally separate from both Cas9 and Cas12a.
Collapse
Affiliation(s)
- Jun-Jie Liu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Natalia Orlova
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Benjamin L Oakes
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Enbo Ma
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Hannah B Spinner
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | | | - Jonathan Chuck
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Dan Tan
- Clayton Foundation Laboratories of Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Gavin J Knott
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Lucas B Harrington
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Basem Al-Shayeb
- Department of Plant and Microbiology, University of California, Berkeley, CA, USA
| | | | - Julian Brötzmann
- Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Brett T Staahl
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Kian L Taylor
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - John Desmarais
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Gladstone Institutes, San Francisco, CA, USA.
| |
Collapse
|
8
|
Replication of JC Virus DNA in the G144 Oligodendrocyte Cell Line Is Dependent Upon Akt. J Virol 2017; 91:JVI.00735-17. [PMID: 28768870 DOI: 10.1128/jvi.00735-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/26/2017] [Indexed: 12/24/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is an often-fatal demyelinating disease of the central nervous system. PML results when oligodendrocytes within immunocompromised individuals are infected with the human JC virus (JCV). We have identified an oligodendrocyte precursor cell line, termed G144, that supports robust levels of JCV DNA replication, a central part of the JCV life cycle. In addition, we have determined that JC virus readily infects G144 cells. Furthermore, we have determined that JCV DNA replication in G144 cells is stimulated by myristoylated (i.e., constitutively active) Akt and reduced by the Akt-specific inhibitor MK2206. Thus, this oligodendrocyte-based model system will be useful for a number of purposes, such as studies of JCV infection, establishing key pathways needed for the regulation of JCV DNA replication, and identifying inhibitors of this process.IMPORTANCE The disease progressive multifocal leukoencephalopathy (PML) is caused by the infection of particular brain cells, termed oligodendrocytes, by the JC virus. Studies of PML, however, have been hampered by the lack of an immortalized human cell line derived from oligodendrocytes. Here, we report that the G144 oligodendrocyte cell line supports both infection by JC virus and robust levels of JCV DNA replication. Moreover, we have established that the Akt pathway regulates JCV DNA replication and that JCV DNA replication can be inhibited by MK2206, a compound that is specific for Akt. These and related findings suggest that we have established a powerful oligodendrocyte-based model system for studies of JCV-dependent PML.
Collapse
|
9
|
Chang CW, Lee S, Tsai FTF. Structural Elements Regulating AAA+ Protein Quality Control Machines. Front Mol Biosci 2017; 4:27. [PMID: 28523272 PMCID: PMC5415569 DOI: 10.3389/fmolb.2017.00027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/13/2017] [Indexed: 11/13/2022] Open
Abstract
Members of the ATPases Associated with various cellular Activities (AAA+) superfamily participate in essential and diverse cellular pathways in all kingdoms of life by harnessing the energy of ATP binding and hydrolysis to drive their biological functions. Although most AAA+ proteins share a ring-shaped architecture, AAA+ proteins have evolved distinct structural elements that are fine-tuned to their specific functions. A central question in the field is how ATP binding and hydrolysis are coupled to substrate translocation through the central channel of ring-forming AAA+ proteins. In this mini-review, we will discuss structural elements present in AAA+ proteins involved in protein quality control, drawing similarities to their known role in substrate interaction by AAA+ proteins involved in DNA translocation. Elements to be discussed include the pore loop-1, the Inter-Subunit Signaling (ISS) motif, and the Pre-Sensor I insert (PS-I) motif. Lastly, we will summarize our current understanding on the inter-relationship of those structural elements and propose a model how ATP binding and hydrolysis might be coupled to polypeptide translocation in protein quality control machines.
Collapse
Affiliation(s)
- Chiung-Wen Chang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of MedicineHouston, TX, USA
| | - Sukyeong Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of MedicineHouston, TX, USA
| | - Francis T F Tsai
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of MedicineHouston, TX, USA.,Departments of Molecular and Cellular Biology, and Molecular Virology and Microbiology, Baylor College of MedicineHouston, TX, USA
| |
Collapse
|
10
|
Wang D, Álvarez-Cabrera AL, Chen XS. Study of SV40 large T antigen nucleotide specificity for DNA unwinding. Virol J 2017; 14:79. [PMID: 28410592 PMCID: PMC5391581 DOI: 10.1186/s12985-017-0733-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/19/2017] [Indexed: 02/02/2023] Open
Abstract
Background Simian Virus 40 (SV40) Large Tumor Antigen (LT) is an essential enzyme that plays a vital role in viral DNA replication in mammalian cells. As a replicative helicase and initiator, LT assembles as a double-hexamer at the SV40 origin to initiate genomic replication. In this process, LT converts the chemical energy from ATP binding and hydrolysis into the mechanical work required for unwinding replication forks. It has been demonstrated that even though LT primarily utilizes ATP to unwind DNA, other NTPs can also support low DNA helicase activity. Despite previous studies on specific LT residues involved in ATP hydrolysis, no systematic study has been done to elucidate the residues participating in the selective usage of different nucleotides by LT. In this study, we performed a systematic mutational analysis around the nucleotide pocket and identified residues regulating the specificity for ATP, TTP and UTP in LT DNA unwinding. Methods We performed site-directed mutagenesis to generate 16 LT nucleotide pocket mutants and characterized each mutant’s ability to unwind double-stranded DNA, oligomerize, and bind different nucleotides using helicase assays, size-exclusion chromatography, and isothermal titration calorimetry, respectively. Results We identified four residues in the nucleotide pocket of LT, cS430, tK419, cW393 and cL557 that selectively displayed more profound impact on using certain nucleotides for LT DNA helicase activity. Conclusion Little is known regarding the mechanisms of nucleotide specificity in SV40 LT DNA unwinding despite the abundance of information available for understanding LT nucleotide hydrolysis. The systematic residue analysis performed in this report provides significant insight into the selective usage of different nucleotides in LT helicase activity, increasing our understanding of how LT may structurally prefer different energy sources for its various targeted cellular activities.
Collapse
Affiliation(s)
- Damian Wang
- Genetic, Molecular, and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, 90033, CA, USA
| | - Ana Lucia Álvarez-Cabrera
- Molecular and Computational Biology Program, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, 90089, CA, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology Program, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, 90089, CA, USA. .,Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, 90089, CA, USA. .,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, 90089, CA, USA.
| |
Collapse
|
11
|
Origin DNA Melting-An Essential Process with Divergent Mechanisms. Genes (Basel) 2017; 8:genes8010026. [PMID: 28085061 PMCID: PMC5295021 DOI: 10.3390/genes8010026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/27/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023] Open
Abstract
Origin DNA melting is an essential process in the various domains of life. The replication fork helicase unwinds DNA ahead of the replication fork, providing single-stranded DNA templates for the replicative polymerases. The replication fork helicase is a ring shaped-assembly that unwinds DNA by a steric exclusion mechanism in most DNA replication systems. While one strand of DNA passes through the central channel of the helicase ring, the second DNA strand is excluded from the central channel. Thus, the origin, or initiation site for DNA replication, must melt during the initiation of DNA replication to allow for the helicase to surround a single-DNA strand. While this process is largely understood for bacteria and eukaryotic viruses, less is known about how origin DNA is melted at eukaryotic cellular origins. This review describes the current state of knowledge of how genomic DNA is melted at a replication origin in bacteria and eukaryotes. We propose that although the process of origin melting is essential for the various domains of life, the mechanism for origin melting may be quite different among the different DNA replication initiation systems.
Collapse
|
12
|
Gai D, Wang D, Li SX, Chen XS. The structure of SV40 large T hexameric helicase in complex with AT-rich origin DNA. eLife 2016; 5. [PMID: 27921994 PMCID: PMC5140265 DOI: 10.7554/elife.18129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022] Open
Abstract
DNA replication is a fundamental biological process. The initial step in eukaryotic DNA replication is the assembly of the pre-initiation complex, including the formation of two head-to-head hexameric helicases around the replication origin. How these hexameric helicases interact with their origin dsDNA remains unknown. Here, we report the co-crystal structure of the SV40 Large-T Antigen (LT) hexameric helicase bound to its origin dsDNA. The structure shows that the six subunits form a near-planar ring that interacts with the origin, so that each subunit makes unique contacts with the DNA. The origin dsDNA inside the narrower AAA+ domain channel shows partial melting due to the compression of the two phosphate backbones, forcing Watson-Crick base-pairs within the duplex to flip outward. This structure provides the first snapshot of a hexameric helicase binding to origin dsDNA, and suggests a possible mechanism of origin melting by LT during SV40 replication in eukaryotic cells.
Collapse
Affiliation(s)
- Dahai Gai
- Departments of Biological Sciences and Chemistry, Molecular and Computational Biology Program, University of Southern California, Los Angeles, United States
| | - Damian Wang
- Department of Biological Sciences, Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - Shu-Xing Li
- Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, United States
| | - Xiaojiang S Chen
- Departments of Biological Sciences and Chemistry, Molecular and Computational Biology Program, University of Southern California, Los Angeles, United States.,Department of Biological Sciences, Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, United States.,Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, United States.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, United States
| |
Collapse
|
13
|
Meinke G, Phelan PJ, Shin J, Gagnon D, Archambault J, Bohm A, Bullock PA. Structural Based Analyses of the JC Virus T-Antigen F258L Mutant Provides Evidence for DNA Dependent Conformational Changes in the C-Termini of Polyomavirus Origin Binding Domains. PLoS Pathog 2016; 12:e1005362. [PMID: 26735515 PMCID: PMC4703215 DOI: 10.1371/journal.ppat.1005362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/04/2015] [Indexed: 11/21/2022] Open
Abstract
The replication of human polyomavirus JCV, which causes Progressive Multifocal Leukoencephalopathy, is initiated by the virally encoded T-antigen (T-ag). The structure of the JC virus T-ag origin-binding domain (OBD) was recently solved by X-ray crystallography. This structure revealed that the OBD contains a C-terminal pocket, and that residues from the multifunctional A1 and B2 motifs situated on a neighboring OBD molecule dock into the pocket. Related studies established that a mutation in a pocket residue (F258L) rendered JCV T-ag unable to support JCV DNA replication. To establish why this mutation inactivated JCV T-ag, we have solved the structure of the F258L JCV T-ag OBD mutant. Based on this structure, it is concluded that the structural consequences of the F258L mutation are limited to the pocket region. Further analyses, utilizing the available polyomavirus OBD structures, indicate that the F258 region is highly dynamic and that the relative positions of F258 are governed by DNA binding. The possible functional consequences of the DNA dependent rearrangements, including promotion of OBD cycling at the replication fork, are discussed.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Paul J. Phelan
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Jong Shin
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, United States of America
| | - David Gagnon
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Jacques Archambault
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Andrew Bohm
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Peter A. Bullock
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
14
|
Yu XJ, Greenleaf WB, Shi YS, Chen XS. Mechanism of subunit coordination of an AAA+ hexameric molecular nanomachine. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 11:531-41. [PMID: 25555349 DOI: 10.1016/j.nano.2014.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/15/2014] [Accepted: 11/11/2014] [Indexed: 12/18/2022]
Abstract
Simian virus 40 large tumor antigen (LT) is both a potent oncogenic protein and an efficient hexameric nanomachine that harnesses the energy from ATP binding/hydrolysis to melt origin DNA and unwind replication forks. However, how the six subunits of the helicase motor coordinate during ATP hydrolysis and DNA unwinding/translocation is unresolved. Here we investigated the subunit coordination mechanisms "binomial distribution mutant doping" experiments in the presence of various DNA substrates. For ATP hydrolysis, we observed multiple coordination modes, ranging from random and semi-random, and semi-coordinated modes, depending on which type of DNA is present. For DNA unwinding, however, the results indicated a fully-coordinated mode for the natural origin-containing duplex DNA, but a semi-coordinated mode for a pre-existing fork-DNA, providing direct evidence for LT to use potentially different mechanisms to unwind the two types of substrates. The results of this study provide insights into DNA translocation and unwinding mechanisms for LT hexameric biomotor. From the clinical editor: The study describes the subunit coordination of simian virus 40 large tumor antigen (LT) showing that multiple mechanisms exist that handle the specific needs of different stages of DNA replication.
Collapse
Affiliation(s)
- Xian Jessica Yu
- Molecular and Computational Biology Program, Department of Biology, University of Southern California, Los Angeles, CA, USA
| | - William B Greenleaf
- Molecular and Computational Biology Program, Department of Biology, University of Southern California, Los Angeles, CA, USA
| | - Yemin Stanley Shi
- Molecular and Computational Biology Program, Department of Biology, University of Southern California, Los Angeles, CA, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology Program, Department of Biology, University of Southern California, Los Angeles, CA, USA; Department of Chemistry, University of Southern California, Los Angeles, CA, USA; Norris Cancer Center, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Shin J, Phelan PJ, Chhum P, Bashkenova N, Yim S, Parker R, Gagnon D, Gjoerup O, Archambault J, Bullock PA. Analysis of JC virus DNA replication using a quantitative and high-throughput assay. Virology 2014; 468-470:113-125. [PMID: 25155200 DOI: 10.1016/j.virol.2014.07.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/09/2014] [Accepted: 07/21/2014] [Indexed: 12/17/2022]
Abstract
Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication.
Collapse
Affiliation(s)
- Jong Shin
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Paul J Phelan
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Panharith Chhum
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nazym Bashkenova
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Sung Yim
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Robert Parker
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - David Gagnon
- Institut de Recherches Cliniques de Montreal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Ole Gjoerup
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Jacques Archambault
- Institut de Recherches Cliniques de Montreal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Peter A Bullock
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
16
|
George B, Ruhel R, Mazumder M, Sharma VK, Jain SK, Gourinath S, Chakraborty S. Mutational analysis of the helicase domain of a replication initiator protein reveals critical roles of Lys 272 of the B' motif and Lys 289 of the β-hairpin loop in geminivirus replication. J Gen Virol 2014; 95:1591-1602. [PMID: 24728710 DOI: 10.1099/vir.0.064923-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Replication initiator protein (Rep) is indispensable for rolling-circle replication of geminiviruses, a group of plant-infecting circular ssDNA viruses. However, the mechanism of DNA unwinding by circular ssDNA virus-encoded helicases is unknown. To understand geminivirus Rep function, we compared the sequence and secondary structure of Rep with those of bovine papillomavirus E1 and employed charged residue-to-alanine scanning mutagenesis to generate a set of single-substitution mutants in Walker A (K227), in Walker B (D261, 262), and within or adjacent to the B' motif (K272, K286 and K289). All mutants were asymptomatic and viral accumulation could not be detected by Southern blotting in both tomato and N. benthamiana plants. Furthermore, the K272 and K289 mutants were deficient in DNA binding and unwinding. Biochemical studies and modelling data based on comparisons with the known structures of SF3 helicases suggest that the conserved lysine (K289) located in a predicted β-hairpin loop may interact with ssDNA, while lysine 272 in the B' motif (K272) located on the outer surface of the protein is presumably involved in coupling ATP-induced conformational changes to DNA binding. To the best of our knowledge, this is the first time that the roles of the B' motif and the adjacent β-hairpin loop in geminivirus replication have been elucidated.
Collapse
Affiliation(s)
- Biju George
- Department of Biotechnology, Jamia Hamdard University, New Delhi, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rajrani Ruhel
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mohit Mazumder
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | |
Collapse
|
17
|
Chang YP, Xu M, Machado ACD, Yu XJ, Rohs R, Chen XS. Mechanism of origin DNA recognition and assembly of an initiator-helicase complex by SV40 large tumor antigen. Cell Rep 2013; 3:1117-27. [PMID: 23545501 DOI: 10.1016/j.celrep.2013.03.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 01/10/2013] [Accepted: 03/01/2013] [Indexed: 10/27/2022] Open
Abstract
The DNA tumor virus Simian virus 40 (SV40) is a model system for studying eukaryotic replication. SV40 large tumor antigen (LTag) is the initiator/helicase that is essential for genome replication. LTag recognizes and assembles at the viral replication origin. We determined the structure of two multidomain LTag subunits bound to origin DNA. The structure reveals that the origin binding domains (OBDs) and Zn and AAA+ domains are involved in origin recognition and assembly. Notably, the OBDs recognize the origin in an unexpected manner. The histidine residues of the AAA+ domains insert into a narrow minor groove region with enhanced negative electrostatic potential. Computational analysis indicates that this region is intrinsically narrow, demonstrating the role of DNA shape readout in origin recognition. Our results provide important insights into the assembly of the LTag initiator/helicase at the replication origin and suggest that histidine contacts with the minor groove serve as a mechanism of DNA shape readout.
Collapse
Affiliation(s)
- Y Paul Chang
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | |
Collapse
|
18
|
Analysis of the costructure of the simian virus 40 T-antigen origin binding domain with site I reveals a correlation between GAGGC spacing and spiral assembly. J Virol 2012; 87:2923-34. [PMID: 23269808 DOI: 10.1128/jvi.02549-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyomavirus origins of replication contain multiple occurrences of G(A/G)GGC, the high-affinity binding element for the viral initiator T-antigen (T-ag). The site I regulatory region of simian virus 40, involved in the repression of transcription and the enhancement of DNA replication initiation, contains two GAGGC sequences arranged head to tail and separated by a 7-bp AT-rich sequence. We have solved a 3.2-Å costructure of the SV40 origin-binding domain (OBD) bound to site I. We have also established that T-ag assembly on site I is limited to the formation of a single hexamer. These observations have enabled an analysis of the role(s) of the OBDs bound to the site I pentanucleotides in hexamer formation. Of interest, they reveal a correlation between the OBDs bound to site I and a pair of OBD subunits in the previously described hexameric spiral structure. Based on these findings, we propose that spiral assembly is promoted by pentanucleotide pairs arranged in a head-to-tail manner. Finally, the possibility that spiral assembly by OBD subunits accounts for the heterogeneous distribution of pentanucleotides found in the origins of replication of polyomaviruses is discussed.
Collapse
|
19
|
Structure of RavA MoxR AAA+ protein reveals the design principles of a molecular cage modulating the inducible lysine decarboxylase activity. Proc Natl Acad Sci U S A 2010; 107:22499-504. [PMID: 21148420 DOI: 10.1073/pnas.1009092107] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The MoxR family of AAA+ ATPases is widespread throughout bacteria and archaea but remains poorly characterized. We recently found that the Escherichia coli MoxR protein, RavA (Regulatory ATPase variant A), tightly interacts with the inducible lysine decarboxylase, LdcI/CadA, to form a unique cage-like structure. Here, we present the X-ray structure of RavA and show that the αβα and all-α subdomains in the RavA AAA+ module are arranged as in magnesium chelatases rather than as in classical AAA+ proteins. RavA structure also contains a discontinuous triple-helical domain as well as a β-barrel-like domain forming a unique fold, which we termed the LARA domain. The LARA domain was found to mediate the interaction between RavA and LdcI. The RavA structure provides insights into how five RavA hexamers interact with two LdcI decamers to form the RavA-LdcI cage-like structure.
Collapse
|
20
|
Gai D, Chang YP, Chen XS. Origin DNA melting and unwinding in DNA replication. Curr Opin Struct Biol 2010; 20:756-62. [PMID: 20870402 DOI: 10.1016/j.sbi.2010.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/25/2010] [Accepted: 08/31/2010] [Indexed: 02/04/2023]
Abstract
Genomic DNA replication is a necessary step in the life cycles of all organisms. To initiate DNA replication, the double-stranded DNA (dsDNA) at the origin of replication must be separated or melted; this melted region is propagated and a mature replication fork is formed. To accomplish origin recognition, initial DNA melting, and the eventual formation of a replication fork, coordinated activity of initiators, helicases, and other cellular factors are required. In this review, we focus on recent advances in the structural and biochemical studies of the initiators and the replicative helicases in multiple replication systems, with emphasis on the systems in archaeal and eukaryotic cells. These studies have yielded insights into the plausible mechanisms of the early stages of DNA replication.
Collapse
Affiliation(s)
- Dahai Gai
- Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
21
|
Yoshimoto K, Arora K, Brooks CL. Hexameric helicase deconstructed: interplay of conformational changes and substrate coupling. Biophys J 2010; 98:1449-57. [PMID: 20409463 DOI: 10.1016/j.bpj.2009.12.4315] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 12/22/2009] [Accepted: 12/23/2009] [Indexed: 12/15/2022] Open
Abstract
Hexameric helicases are molecular motor proteins that utilize energy obtained from ATP hydrolysis to translocate along and/or unwind nucleic acids. In this study, we investigate the dynamic behavior of the Simian Virus 40 hexameric helicase bound to DNA by performing molecular dynamics simulations employing a coarse-grained model. Our results elucidate the two most important molecular features of the helicase motion. First, the attractive interactions between the DNA-binding domain of the helicase and the DNA backbone are essential for the helicase to exhibit a unidirectional motion along the DNA strand. Second, the sequence of ATP binding at multiple binding pockets affects the helicase motion. Specifically, concerted ATP binding does not generate a unidirectional motion of the helicase. It is only when the binding of ATP occurs sequentially from one pocket to the next that the helicase moves unidirectionally along the DNA. Interestingly, in the reverse order of sequential ATP binding, the helicase also moves unidirectionally but in the opposite direction. These observations suggest that in nature ATP molecules must distinguish between different available ATP binding pockets of the hexameric helicase in order to function efficiently. To this end, simulations reveal that the binding of ATP in one pocket induces an opening of the next ATP-binding pocket and such an asymmetric deformation may coordinate the sequential ATP binding in a unidirectional manner. Overall, these findings may provide clues toward understanding the mechanism of substrate translocation in other motor proteins.
Collapse
Affiliation(s)
- Kenji Yoshimoto
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | | | | |
Collapse
|
22
|
Affiliation(s)
- Roman Tuma
- The Astbury Centre for Structural Molecular Biology, Institute of Cellular and Molecular Biology, University of Leeds Leeds UK
| |
Collapse
|
23
|
Residues in the central beta-hairpin of the DNA helicase of bacteriophage T7 are important in DNA unwinding. Proc Natl Acad Sci U S A 2010; 107:6782-7. [PMID: 20351255 DOI: 10.1073/pnas.1002734107] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The ring-shaped helicase of bacteriophage T7 (gp4), the product of gene 4, has basic beta-hairpin loops lining its central core where they are postulated to be the major sites of DNA interaction. We have altered multiple residues within the beta-hairpin loop to determine their role during dTTPase-driven DNA unwinding. Residues His-465, Leu-466, and Asn-468 are essential for both DNA unwinding and DNA synthesis mediated by T7 DNA polymerase during leading-strand DNA synthesis. Gp4-K467A, gp4-K471A, and gp4-K473A form fewer hexamers than heptamers compared to wild-type helicase and alone are deficient in DNA unwinding. However, they complement for the growth of T7 bacteriophage lacking gene 4. Single-molecule studies show that these three altered helicases support rates of leading-strand DNA synthesis comparable to that observed with wild-type gp4. Gp4-K467A, devoid of unwinding activity alone, supports leading-strand synthesis in the presence of T7 DNA polymerase. We propose that DNA polymerase limits the backward movement of the helicase during unwinding as well as assisting the forward movement necessary for strand separation.
Collapse
|
24
|
Cuesta I, Núñez-Ramírez R, Scheres SHW, Gai D, Chen XS, Fanning E, Carazo JM. Conformational rearrangements of SV40 large T antigen during early replication events. J Mol Biol 2010; 397:1276-86. [PMID: 20219473 DOI: 10.1016/j.jmb.2010.02.042] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 02/20/2010] [Accepted: 02/23/2010] [Indexed: 11/25/2022]
Abstract
The Simian virus 40 (SV40) large tumor antigen (LTag) functions as the replicative helicase and initiator for viral DNA replication. For SV40 replication, the first essential step is the assembly of an LTag double hexamer at the origin DNA that will subsequently melt the origin DNA to initiate fork unwinding. In this study, we used three-dimensional cryo-electron microscopy to visualize early events in the activation of DNA replication in the SV40 model system. We obtained structures of wild-type double-hexamer complexes of LTag bound to SV40 origin DNA, to which atomic structures have been fitted. Wild-type LTag was observed in two distinct conformations: In one conformation, the central module containing the J-domains and the origin binding domains of both hexamers is a compact closed ring. In the other conformation, the central module is an open ring with a gap formed by rearrangement of the N-terminal regions of the two hexamers, potentially allowing for the passage of single-stranded DNA generated from the melted origin DNA. Double-hexamer complexes containing mutant LTag that lacks the N-terminal J-domain show the central module predominantly in the closed-ring state. Analyses of the LTag C-terminal regions reveal that the LTag hexamers bound to the A/T-rich tract origin of replication and early palindrome origin of replication elements are structurally distinct. Lastly, visualization of DNA density protruding from the LTag C-terminal domains suggests that oligomerization of the LTag complex takes place on double-stranded DNA.
Collapse
Affiliation(s)
- Isabel Cuesta
- Unidad de Biocomputación, Centro Nacional de Biotecnología-CSIC, C/Darwin 3, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Structure-based mutational analysis of the bovine papillomavirus E1 helicase domain identifies residues involved in the nonspecific DNA binding activity required for double trimer formation. J Virol 2010; 84:4264-76. [PMID: 20147403 DOI: 10.1128/jvi.02214-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The papillomavirus E1 protein is a multifunctional initiator protein responsible for preparing the viral DNA template for initiation of DNA replication. The E1 protein encodes two DNA binding activities that are required for initiation of DNA replication. A well-characterized sequence-specific DNA binding activity resides in the E1 DBD and is used to tether E1 to the papillomavirus ori. A non-sequence-specific DNA binding activity is also required for formation of the E1 double trimer (DT) complex, which is responsible for the local template melting that precedes loading of the E1 helicase. This DNA binding activity is very poorly understood. We use a structure-based mutagenesis approach to identify residues in the E1 helicase domain that are required for the non-sequence-specific DNA binding and DT formation. We found that three groups of residues are involved in nonspecific DNA binding: the E1 beta-hairpin structure containing R505, K506, and H507; a hydrophobic loop containing F464; and a charged loop containing K461 together generate the binding surface involved in nonspecific DNA binding. These residues are well conserved in the T antigens from the polyomaviruses, indicating that the polyomaviruses share this nonspecific DNA binding activity.
Collapse
|
26
|
Substrate interactions and promiscuity in a viral DNA packaging motor. Nature 2009; 461:669-73. [PMID: 19794496 PMCID: PMC2769991 DOI: 10.1038/nature08443] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 08/20/2009] [Indexed: 11/15/2022]
Abstract
The ASCE superfamily of proteins consists of structurally similar ATPases associated with diverse cellular activities involving metabolism and transport of proteins and nucleic acids in all forms of life1. A subset of these enzymes are multimeric ringed pumps responsible for DNA transport in processes including genome packaging in adenoviruses, herpesviruses, poxviruses, and tailed bacteriophages2. While their mechanism of mechanochemical conversion is beginning to be understood3, little is known about how these motors engage their nucleic acid substrates. Do motors contact a single DNA element, such as a phosphate or a base, or are contacts distributed over multiple parts of the DNA? In addition, what role do these contacts play in the mechanochemical cycle? Here we use the genome packaging motor of the Bacillus subtilis bacteriophage φ294 to address these questions. The full mechanochemical cycle of the motor, whose ATPase is a pentameric-ring5 of gene product 16, involves two phases-- an ATP loading dwell followed by a translocation burst of four 2.5-bp steps6 triggered by hydrolysis product release7. By challenging the motor with a variety of modified DNA substrates, we find that during the dwell phase important contacts are made with adjacent phosphates every 10-bp on the 5’-3’ strand in the direction of packaging. In addition to providing stable, long-lived contacts, these phosphate interactions also regulate the chemical cycle. In contrast, during the burst phase, we find that DNA translocation is driven against large forces by extensive contacts, some of which are not specific to the chemical moieties of DNA. Such promiscuous, non-specific contacts may reflect common translocase-substrate interactions for both the nucleic acid and protein translocases of the ASCE superfamily1.
Collapse
|
27
|
Simian virus 40 large T antigen can specifically unwind the central palindrome at the origin of DNA replication. J Virol 2009; 83:3312-22. [PMID: 19144705 DOI: 10.1128/jvi.01867-08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The hydrophilic channels between helicase domains of simian virus 40 (SV40) large T antigen play a critical role in DNA replication. Previous mutagenesis of residues in the channels identified one class of mutants (class A: D429A, N449S, and N515S) with normal DNA binding and ATPase and helicase activities but with a severely reduced ability to unwind origin DNA and to support SV40 DNA replication in vitro. Here, we further studied these mutants to gain insights into how T antigen unwinds the origin. We found that the mutants were compromised in melting the imperfect palindrome (EP) but normal in untwisting the AT-rich track. However, the mutants' defect in EP melting was not the major reason they failed to unwind the origin because supplying an EP region as a mismatched bubble, or deleting the EP region altogether, did not rescue their unwinding deficiency. These results suggested that specific separation of the central palindrome of the origin (site II) is an essential step in unwinding origin DNA by T antigen. In support of this, wild-type T antigen was able to specifically unwind a 31-bp DNA containing only site II in an ATPase-dependent reaction, whereas D429A and N515S failed to do so. By performing a systematic mutagenesis of 31-bp site II DNA, we identified discrete regions in each pentanucleotide necessary for normal origin unwinding. These data indicate that T antigen has a mechanism to specifically unwind the central palindrome. Various models are proposed to illustrate how T antigen could separate the central origin.
Collapse
|
28
|
Crystal structure of a near-full-length archaeal MCM: functional insights for an AAA+ hexameric helicase. Proc Natl Acad Sci U S A 2008; 105:20191-6. [PMID: 19073923 DOI: 10.1073/pnas.0808037105] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The minichromosome maintenance protein (MCM) complex is an essential replicative helicase for DNA replication in Archaea and Eukaryotes. Whereas the eukaryotic complex consists of 6 homologous proteins (MCM2-7), the archaeon Sulfolobus solfataricus has only 1 MCM protein (ssoMCM), 6 subunits of which form a homohexamer. Here, we report a 4.35-A crystal structure of the near-full-length ssoMCM. The structure shows an elongated fold, with 5 subdomains that are organized into 2 large N- and C-terminal domains. A near-full-length ssoMCM hexamer generated based on the 6-fold symmetry of the N-terminal Methanothermobacter thermautotrophicus (mtMCM) hexamer shows intersubunit distances suitable for bonding contacts, including the interface around the ATP pocket. Four unusual beta-hairpins of each subunit are located inside the central channel or around the side channels in the hexamer. Additionally, the hexamer fits well into the double-hexamer EM map of mtMCM. Our mutational analysis of residues at the intersubunit interfaces and around the side channels demonstrates their critical roles for hexamerization and helicase function. These structural and biochemical results provide a basis for future study of the helicase mechanisms of the archaeal and eukaryotic MCM complexes in DNA replication.
Collapse
|
29
|
Duderstadt KE, Berger JM. AAA+ ATPases in the initiation of DNA replication. Crit Rev Biochem Mol Biol 2008; 43:163-87. [PMID: 18568846 DOI: 10.1080/10409230802058296] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
All cellular organisms and many viruses rely on large, multi-subunit molecular machines, termed replisomes, to ensure that genetic material is accurately duplicated for transmission from one generation to the next. Replisome assembly is facilitated by dedicated initiator proteins, which serve to both recognize replication origins and recruit requisite replisomal components to the DNA in a cell-cycle coordinated manner. Exactly how imitators accomplish this task, and the extent to which initiator mechanisms are conserved among different organisms have remained outstanding issues. Recent structural and biochemical findings have revealed that all cellular initiators, as well as the initiators of certain classes of double-stranded DNA viruses, possess a common adenine nucleotide-binding fold belonging to the ATPases Associated with various cellular Activities (AAA+) family. This review focuses on how the AAA+ domain has been recruited and adapted to control the initiation of DNA replication, and how the use of this ATPase module underlies a common set of initiator assembly states and functions. How biochemical and structural properties correlate with initiator activity, and how species-specific modifications give rise to unique initiator functions, are also discussed.
Collapse
Affiliation(s)
- Karl E Duderstadt
- Department Molecular and Cell Biology and Biophysics Graduate Group, California Institute for Quantitative Biology, University of California, Berkeley, California 94720-3220, USA.
| | | |
Collapse
|
30
|
Evidence for a structural relationship between BRCT domains and the helicase domains of the replication initiators encoded by the Polyomaviridae and Papillomaviridae families of DNA tumor viruses. J Virol 2008; 82:8849-62. [PMID: 18579587 DOI: 10.1128/jvi.00553-08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies of DNA tumor viruses have provided important insights into fundamental cellular processes and oncogenic transformation. They have revealed, for example, that upon expression of virally encoded proteins, cellular pathways involved in DNA repair and cell cycle control are disrupted. Herein, evidence is presented that BRCT-related regions are present in the helicase domains of the viral initiators encoded by the Polyomaviridae and Papillomaviridae viral families. Of interest, BRCT domains in cellular proteins recruit factors involved in diverse pathways, including DNA repair and the regulation of cell cycle progression. Therefore, the viral BRCT-related regions may compete with host BRCT domains for particular cellular ligands, a process that would help to explain the pleiotropic effects associated with infections with many DNA tumor viruses.
Collapse
|
31
|
Systematic study of the functions for the residues around the nucleotide pocket in simian virus 40 AAA+ hexameric helicase. J Virol 2008; 82:6017-23. [PMID: 18400864 DOI: 10.1128/jvi.00387-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The high-resolution structural data for simian virus 40 large-T-antigen helicase revealed a set of nine residues bound to ATP/ADP directly or indirectly. The functional role of each of these residues in ATP hydrolysis and also the helicase function of this AAA+ (ATPases associated with various cellular activities) molecular motor are unclear. Here, we report our mutational analysis of each of these residues to examine their functionality in oligomerization, DNA binding, ATP hydrolysis, and double-stranded DNA (dsDNA) unwinding. All mutants were capable of oligomerization in the presence of ATP and could bind single-stranded DNA and dsDNA. ATP hydrolysis was substantially reduced for proteins with mutations of residues making direct contact with the gamma-phosphate of ATP or the apical water molecule. A potentially noncanonical "arginine finger" residue, K418, is critical for ATP hydrolysis and helicase function, suggesting a new type of arginine finger role by a lysine in the stabilization of the transition state during ATP hydrolysis. Interestingly, our mutational data suggest that the positive- and negative-charge interactions in the uniquely observed residue pairs, R498/D499 and R540/D502, in large-T-antigen helicase are critically involved in the transfer of energy of ATP binding/hydrolysis to DNA unwinding.
Collapse
|
32
|
Enemark EJ, Joshua-Tor L. On helicases and other motor proteins. Curr Opin Struct Biol 2008; 18:243-57. [PMID: 18329872 DOI: 10.1016/j.sbi.2008.01.007] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 01/17/2008] [Accepted: 01/21/2008] [Indexed: 01/30/2023]
Abstract
Helicases are molecular machines that utilize energy derived from ATP hydrolysis to move along nucleic acids and to separate base-paired nucleotides. The movement of the helicase can also be described as a stationary helicase that pumps nucleic acid. Recent structural data for the hexameric E1 helicase of papillomavirus in complex with single-stranded DNA and MgADP has provided a detailed atomic and mechanistic picture of its ATP-driven DNA translocation. The structural and mechanistic features of this helicase are compared with the hexameric helicase prototypes T7gp4 and SV40 T-antigen. The ATP-binding site architectures of these proteins are structurally similar to the sites of other prototypical ATP-driven motors such as F1-ATPase, suggesting related roles for the individual site residues in the ATPase activity.
Collapse
Affiliation(s)
- Eric J Enemark
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, United States
| | | |
Collapse
|
33
|
Sanders CM. A DNA-binding activity in BPV initiator protein E1 required for melting duplex ori DNA but not processive helicase activity initiated on partially single-stranded DNA. Nucleic Acids Res 2008; 36:1891-9. [PMID: 18267969 PMCID: PMC2330243 DOI: 10.1093/nar/gkn041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The papillomavirus replication protein E1 assembles on the viral origin of replication (ori) as a series of complexes. It has been proposed that the ori DNA is first melted by a head-to-tail double trimer of E1 that evolves into two hexamers that encircle and unwind DNA bi-directionally. Here the role of a conserved lysine residue in the smaller tier or collar of the E1 helicase domain in ori processing is described. Unlike the residues of the AAA+ domain DNA-binding segments (β-hairpin and hydrophobic loop; larger tier), this residue functions in the initial melting of duplex ori DNA but not in the processive DNA unwinding of partially single-stranded test substrates. These data therefore define a new DNA-binding related activity in the E1 protein and demonstrate that separate functional elements for DNA melting and helicase activity can be distinguished. New insights into the mechanism of ori melting are elaborated, suggesting the coordinated involvement of rigid and flexible DNA-binding components in E1.
Collapse
Affiliation(s)
- Cyril M Sanders
- Institute for Cancer Studies, University of Sheffield, Beech Hill Rd, Sheffield, S10 2RX, UK.
| |
Collapse
|
34
|
Moreau MJ, McGeoch AT, Lowe AR, Itzhaki LS, Bell SD. ATPase site architecture and helicase mechanism of an archaeal MCM. Mol Cell 2007; 28:304-14. [PMID: 17964268 DOI: 10.1016/j.molcel.2007.08.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 04/27/2007] [Accepted: 08/15/2007] [Indexed: 10/22/2022]
Abstract
The subunits of the presumptive replicative helicase of archaea and eukaryotes, the MCM complex, are members of the AAA+ (ATPase-associated with various cellular activities) family of ATPases. Proteins within this family harness the chemical energy of ATP hydrolysis to perform a broad range of cellular processes. Here, we investigate the function of the AAA+ site in the mini-chromosome maintenance (MCM) complex of the archaeon Sulfolobus solfataricus (SsoMCM). We find that SsoMCM has an unusual active-site architecture, with a unique blend of features previously found only in distinct families of AAA+ proteins. We additionally describe a series of mutant doping experiments to investigate the mechanistic basis of intersubunit coordination in the generation of helicase activity. Our results indicate that MCM can tolerate catalytically inactive subunits and still function as a helicase, leading us to propose a semisequential model for helicase activity of this complex.
Collapse
Affiliation(s)
- Matthew J Moreau
- MRC Cancer Cell Unit, Hutchison MRC Research Centre, Hills Road, Cambridge, CB2 2XZ, UK
| | | | | | | | | |
Collapse
|
35
|
Sanders CM, Kovalevskiy OV, Sizov D, Lebedev AA, Isupov MN, Antson AA. Papillomavirus E1 helicase assembly maintains an asymmetric state in the absence of DNA and nucleotide cofactors. Nucleic Acids Res 2007; 35:6451-7. [PMID: 17881379 PMCID: PMC2095799 DOI: 10.1093/nar/gkm705] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Concerted, stochastic and sequential mechanisms of action have been proposed for different hexameric AAA+ molecular motors. Here we report the crystal structure of the E1 helicase from bovine papillomavirus, where asymmetric assembly is for the first time observed in the absence of nucleotide cofactors and DNA. Surprisingly, the ATP-binding sites adopt specific conformations linked to positional changes in the DNA-binding hairpins, which follow a wave-like trajectory, as observed previously in the E1/DNA/ADP complex. The protein's assembly thus maintains such an asymmetric state in the absence of DNA and nucleotide cofactors, allowing consideration of the E1 helicase action as the propagation of a conformational wave around the protein ring. The data imply that the wave's propagation within the AAA+ domains is not necessarily coupled with a strictly sequential hydrolysis of ATP. Since a single ATP hydrolysis event would affect the whole hexamer, such events may simply serve to rectify the direction of the wave's motion.
Collapse
Affiliation(s)
- Cyril M. Sanders
- Institute for Cancer Studies, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia, York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5YW, UK, Taras Shevchenko Kiev State University, Biology Faculty, Virology Department, Glushkova Avenue 2, 03127 Kiev, Ukraine and Henry Wellcome Building for Biocatalysis, School of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Oleg V. Kovalevskiy
- Institute for Cancer Studies, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia, York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5YW, UK, Taras Shevchenko Kiev State University, Biology Faculty, Virology Department, Glushkova Avenue 2, 03127 Kiev, Ukraine and Henry Wellcome Building for Biocatalysis, School of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Dmytro Sizov
- Institute for Cancer Studies, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia, York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5YW, UK, Taras Shevchenko Kiev State University, Biology Faculty, Virology Department, Glushkova Avenue 2, 03127 Kiev, Ukraine and Henry Wellcome Building for Biocatalysis, School of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Andrey A. Lebedev
- Institute for Cancer Studies, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia, York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5YW, UK, Taras Shevchenko Kiev State University, Biology Faculty, Virology Department, Glushkova Avenue 2, 03127 Kiev, Ukraine and Henry Wellcome Building for Biocatalysis, School of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Michail N. Isupov
- Institute for Cancer Studies, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia, York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5YW, UK, Taras Shevchenko Kiev State University, Biology Faculty, Virology Department, Glushkova Avenue 2, 03127 Kiev, Ukraine and Henry Wellcome Building for Biocatalysis, School of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Alfred A. Antson
- Institute for Cancer Studies, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia, York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5YW, UK, Taras Shevchenko Kiev State University, Biology Faculty, Virology Department, Glushkova Avenue 2, 03127 Kiev, Ukraine and Henry Wellcome Building for Biocatalysis, School of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- *To whom correspondence should be addressed. +44 1904328255+44 1904328266
| |
Collapse
|
36
|
Fradet-Turcotte A, Vincent C, Joubert S, Bullock PA, Archambault J. Quantitative analysis of the binding of simian virus 40 large T antigen to DNA. J Virol 2007; 81:9162-74. [PMID: 17596312 PMCID: PMC1951407 DOI: 10.1128/jvi.00384-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
SV40 large T antigen (T-ag) is a multifunctional protein that successively binds to 5'-GAGGC-3' sequences in the viral origin of replication, melts the origin, unwinds DNA ahead of the replication fork, and interacts with host DNA replication factors to promote replication of the simian virus 40 genome. The transition of T-ag from a sequence-specific binding protein to a nonspecific helicase involves its assembly into a double hexamer whose formation is likely dictated by the propensity of T-ag to oligomerize and its relative affinities for the origin as well as for nonspecific double- and single-stranded DNA. In this study, we used a sensitive assay based on fluorescence anisotropy to measure the affinities of wild-type and mutant forms of the T-ag origin-binding domain (OBD), and of a larger fragment containing the N-terminal domain (N260), for different DNA substrates. We report that the N-terminal domain does not contribute to binding affinity but reduces the propensity of the OBD to self-associate. We found that the OBD binds with different affinities to its four sites in the origin and determined a consensus binding site by systematic mutagenesis of the 5'-GAGGC-3' sequence and of the residue downstream of it, which also contributes to affinity. Interestingly, the OBD also binds to single-stranded DNA with an approximately 10-fold higher affinity than to nonspecific duplex DNA and in a mutually exclusive manner. Finally, we provide evidence that the sequence specificity of full-length T-ag is lower than that of the OBD. These results provide a quantitative basis onto which to anchor our understanding of the interaction of T-ag with the origin and its assembly into a double hexamer.
Collapse
Affiliation(s)
- Amélie Fradet-Turcotte
- Laboratory of Molecular Virology, Institut de Recherches Cliniques de Montréal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
37
|
Liu X, Schuck S, Stenlund A. Adjacent residues in the E1 initiator beta-hairpin define different roles of the beta-hairpin in Ori melting, helicase loading, and helicase activity. Mol Cell 2007; 25:825-37. [PMID: 17386260 DOI: 10.1016/j.molcel.2007.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Revised: 12/22/2006] [Accepted: 02/05/2007] [Indexed: 11/30/2022]
Abstract
We have analyzed two residues in the helicase domain of the E1 initiator protein. These residues are part of a highly conserved structural motif, the beta-hairpin, which is present in the helicase domain of all papovavirus initiator proteins. These proteins are unique in their ability to transition from local template melting activity to unwinding. We demonstrate that the beta-hairpin has two functions. First, it is the tool used by the E1 double trimer (DT) to pry open and melt double-stranded DNA. Second, it is required for the unwinding activity of the hexameric E1 helicase. The fact that the same structural element, but not the same residues, contacts both dsDNA in the DT for melting and ssDNA in the double hexamer (DH) for helicase activity provides a link between local origin melting and DNA helicase activity and suggests how the transition between these two states comes about.
Collapse
Affiliation(s)
- Xiaofei Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | |
Collapse
|
38
|
Wang W, Manna D, Simmons DT. Role of the hydrophilic channels of simian virus 40 T-antigen helicase in DNA replication. J Virol 2007; 81:4510-9. [PMID: 17301125 PMCID: PMC1900167 DOI: 10.1128/jvi.00003-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The simian virus 40 (SV40) hexameric helicase consists of a central channel and six hydrophilic channels located between adjacent large tier domains within each hexamer. To study the function of the hydrophilic channels in SV40 DNA replication, a series of single-point substitutions were introduced at sites not directly involved in protein-protein contacts. The mutants were characterized biochemically in various ways. All mutants oligomerized normally in the absence of DNA. Interestingly, 8 of the 10 mutants failed to unwind an origin-containing DNA fragment and nine of them were totally unable to support SV40 DNA replication in vitro. The mutants fell into four classes based on their biochemical properties. Class A mutants bound DNA normally and had normal ATPase and helicase activities but failed to unwind origin DNA and support SV40 DNA replication. Class B mutants were compromised in single-stranded DNA and origin DNA binding at low protein concentrations. They were defective in helicase activity and unwinding of the origin and in supporting DNA replication. Class C and D mutants possessed higher-than-normal single-stranded DNA binding activity at low protein concentrations. The class C mutants failed to separate origin DNA and support DNA replication. The class D mutants unwound origin DNA normally but were compromised in their ability to support DNA replication. Taken together, these results suggest that the hydrophilic channels have an active role in the unwinding of SV40 DNA from the origin and the placement of the resulting single strands within the helicase.
Collapse
Affiliation(s)
- Weiping Wang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716-2590, USA
| | | | | |
Collapse
|
39
|
Kumar A, Meinke G, Reese DK, Moine S, Phelan PJ, Fradet-Turcotte A, Archambault J, Bohm A, Bullock PA. Model for T-antigen-dependent melting of the simian virus 40 core origin based on studies of the interaction of the beta-hairpin with DNA. J Virol 2007; 81:4808-18. [PMID: 17287270 PMCID: PMC1900137 DOI: 10.1128/jvi.02451-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction of simian virus 40 (SV40) T antigen (T-ag) with the viral origin has served as a model for studies of site-specific recognition of a eukaryotic replication origin and the mechanism of DNA unwinding. These studies have revealed that a motif termed the "beta-hairpin" is necessary for assembly of T-ag on the SV40 origin. Herein it is demonstrated that residues at the tip of the "beta-hairpin" are needed to melt the origin-flanking regions and that the T-ag helicase domain selectively assembles around one of the newly generated single strands in a manner that accounts for its 3'-to-5' helicase activity. Furthermore, T-ags mutated at the tip of the "beta-hairpin" are defective for oligomerization on duplex DNA; however, they can assemble on hybrid duplex DNA or single-stranded DNA (ssDNA) substrates provided the strand containing the 3' extension is present. Collectively, these experiments indicate that residues at the tip of the beta-hairpin generate ssDNA in the core origin and that the ssDNA is essential for subsequent oligomerization events.
Collapse
Affiliation(s)
- Anuradha Kumar
- Department of Biochemistry A703, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Meinke G, Phelan P, Moine S, Bochkareva E, Bochkarev A, Bullock PA, Bohm A. The crystal structure of the SV40 T-antigen origin binding domain in complex with DNA. PLoS Biol 2007; 5:e23. [PMID: 17253903 PMCID: PMC1779811 DOI: 10.1371/journal.pbio.0050023] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 11/17/2006] [Indexed: 01/07/2023] Open
Abstract
DNA replication is initiated upon binding of "initiators" to origins of replication. In simian virus 40 (SV40), the core origin contains four pentanucleotide binding sites organized as pairs of inverted repeats. Here we describe the crystal structures of the origin binding domain (obd) of the SV40 large T-antigen (T-ag) both with and without a subfragment of origin-containing DNA. In the co-structure, two T-ag obds are oriented in a head-to-head fashion on the same face of the DNA, and each T-ag obd engages the major groove. Although the obds are very close to each other when bound to this DNA target, they do not contact one another. These data provide a high-resolution structural model that explains site-specific binding to the origin and suggests how these interactions help direct the oligomerization events that culminate in assembly of the helicase-active dodecameric complex of T-ag.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Biochemistry, School of Medicine, and the Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Paul Phelan
- Department of Biochemistry, School of Medicine, and the Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Stephanie Moine
- Department of Biochemistry, School of Medicine, and the Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Elena Bochkareva
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Alexey Bochkarev
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Peter A Bullock
- Department of Biochemistry, School of Medicine, and the Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Andrew Bohm
- Department of Biochemistry, School of Medicine, and the Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
Hopfner KP, Michaelis J. Mechanisms of nucleic acid translocases: lessons from structural biology and single-molecule biophysics. Curr Opin Struct Biol 2006; 17:87-95. [PMID: 17157498 DOI: 10.1016/j.sbi.2006.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 10/18/2006] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
Enzymes that translocate nucleic acids using ATP hydrolysis include DNA and RNA helicases, viral genome packaging motors and chromatin remodeling ATPases. Recent structural analysis, in conjunction with single-molecule studies, has revealed a wealth of new insights into how these enzymes use ATP-driven conformational changes to move on nucleic acids.
Collapse
|
42
|
Costa A, Pape T, van Heel M, Brick P, Patwardhan A, Onesti S. Structural basis of the Methanothermobacter thermautotrophicus MCM helicase activity. Nucleic Acids Res 2006; 34:5829-38. [PMID: 17062628 PMCID: PMC1635305 DOI: 10.1093/nar/gkl708] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The MCM complex from the archaeon Methanother-mobacter thermautotrophicus is a model for the eukaryotic MCM2-7 helicase. We present electron-microscopy single-particle reconstructions of a DNA treated M.thermautotrophicus MCM sample and a ADP.AlF(x) treated sample, respectively assembling as double hexamers and double heptamers. The electron-density maps display an unexpected asymmetry between the two rings, suggesting that large conformational changes can occur within the complex. The structure of the MCM N-terminal domain, as well as the AAA+ and the C-terminal HTH dom-ains of ZraR can be fitted into the reconstructions. Distinct configurations can be modelled for the AAA+ and the HTH domains, suggesting the nature of the conformational change within the complex. The pre-sensor 1 and the helix 2 insertions, important for the activity, can be located pointing towards the centre of the channel in the presence of DNA. We propose a mechanistic model for the helicase activity, based on a ligand-controlled rotation of the AAA+ subunits.
Collapse
Affiliation(s)
| | - Tillmann Pape
- Division of Molecular Biosciences, Faculty of Natural Sciences,Imperial CollegeLondon SW7 2AZ, UK
| | - Marin van Heel
- Division of Molecular Biosciences, Faculty of Natural Sciences,Imperial CollegeLondon SW7 2AZ, UK
| | | | - Ardan Patwardhan
- Division of Molecular Biosciences, Faculty of Natural Sciences,Imperial CollegeLondon SW7 2AZ, UK
| | - Silvia Onesti
- To whom correspondence should be addressed. Tel: +44 20 7594 7647; Fax: +44 20 75890191;
| |
Collapse
|
43
|
Reese DK, Meinke G, Kumar A, Moine S, Chen K, Sudmeier JL, Bachovchin W, Bohm A, Bullock PA. Analyses of the interaction between the origin binding domain from simian virus 40 T antigen and single-stranded DNA provide insights into DNA unwinding and initiation of DNA replication. J Virol 2006; 80:12248-59. [PMID: 17005644 PMCID: PMC1676264 DOI: 10.1128/jvi.01201-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA helicases are essential for DNA metabolism; however, at the molecular level little is known about how they assemble or function. Therefore, as a model for a eukaryotic helicase, we are analyzing T antigen (T-ag) the helicase encoded by simian virus 40. In this study, nuclear magnetic resonance (NMR) methods were used to investigate the transit of single-stranded DNA (ssDNA) through the T-ag origin-binding domain (T-ag OBD). When the residues that interact with ssDNA are viewed in terms of the structure of a hexamer of the T-ag OBD, comprised of residues 131 to 260, they indicate that ssDNA passes over one face of the T-ag OBD and then transits through a gap in the open ring structure. The NMR-based conclusions are supported by an analysis of previously described mutations that disrupt critical steps during the initiation of DNA replication. These and related observations are discussed in terms of the threading of DNA through T-ag hexamers and the initiation of viral DNA replication.
Collapse
Affiliation(s)
- Danielle K Reese
- Department of Biochemistry A703, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Clérot D, Bernardi F. DNA helicase activity is associated with the replication initiator protein rep of tomato yellow leaf curl geminivirus. J Virol 2006; 80:11322-30. [PMID: 16943286 PMCID: PMC1642161 DOI: 10.1128/jvi.00924-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rep protein of tomato yellow leaf curl Sardinia virus (TYLCSV), a single-stranded DNA virus of plants, is the replication initiator essential for virus replication. TYLCSV Rep has been classified among ATPases associated with various cellular activities (AAA+ ATPases), in superfamily 3 of small DNA and RNA virus replication initiators whose paradigmatic member is simian virus 40 large T antigen. Members of this family are DNA- or RNA-dependent ATPases with helicase activity necessary for viral replication. Another distinctive feature of AAA+ ATPases is their quaternary structure, often composed of hexameric rings. TYLCSV Rep has ATPase activity, but the helicase activity, which is instrumental in further characterization of the mechanism of rolling-circle replication used by geminiviruses, has been a longstanding question. We present results showing that TYLCSV Rep lacking the 121 N-terminal amino acids has helicase activity comparable to that of the other helicases: requirements for a 3' overhang and 3'-to-5' polarity of unwinding, with some distinct features and with a minimal AAA+ ATPase domain. We also show that the helicase activity is dependent on the oligomeric state of the protein.
Collapse
Affiliation(s)
- Danielle Clérot
- Institut des Sciences du Végétal, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | |
Collapse
|
45
|
Castella S, Burgin D, Sanders CM. Role of ATP hydrolysis in the DNA translocase activity of the bovine papillomavirus (BPV-1) E1 helicase. Nucleic Acids Res 2006; 34:3731-41. [PMID: 16893956 PMCID: PMC1557793 DOI: 10.1093/nar/gkl554] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The E1 protein of bovine papillomavirus type-1 is the viral replication initiator protein and replicative helicase. Here we show that the C-terminal approximately 300 amino acids of E1, that share homology with members of helicase superfamily 3 (SF3), can act as an autonomous helicase. E1 is monomeric in the absence of ATP but assembles into hexamers in the presence of ATP, single-stranded DNA (ssDNA) or both. A 16 base sequence is the minimum for efficient hexamerization, although the complex protects approximately 30 bases from nuclease digestion, supporting the notion that the DNA is bound within the protein complex. In the absence of ATP, or in the presence of ADP or the non-hydrolysable ATP analogue AMP-PNP, the interaction with short ssDNA oligonucleotides is exceptionally tight (T(1/2) > 6 h). However, in the presence of ATP, the interaction with DNA is destabilized (T(1/2) approximately 60 s). These results suggest that during the ATP hydrolysis cycle an internal DNA-binding site oscillates from a high to a low-affinity state, while protein-protein interactions switch from low to high affinity. This reciprocal change in protein-protein and protein-DNA affinities could be part of a mechanism for tethering the protein to its substrate while unidirectional movement along DNA proceeds.
Collapse
Affiliation(s)
| | | | - Cyril M. Sanders
- To whom correspondence should be addressed. Tel: +44 114 2712482; Fax: +44 114 2713892;
| |
Collapse
|
46
|
Abstract
Complex cellular events commonly depend on the activity of molecular "machines" that efficiently couple enzymatic and regulatory functions within a multiprotein assembly. An essential and expanding subset of these assemblies comprises proteins of the ATPases associated with diverse cellular activities (AAA+) family. The defining feature of AAA+ proteins is a structurally conserved ATP-binding module that oligomerizes into active arrays. ATP binding and hydrolysis events at the interface of neighboring subunits drive conformational changes within the AAA+ assembly that direct translocation or remodeling of target substrates. In this review, we describe the critical features of the AAA+ domain, summarize our current knowledge of how this versatile element is incorporated into larger assemblies, and discuss specific adaptations of the AAA+ fold that allow complex molecular manipulations to be carried out for a highly diverse set of macromolecular targets.
Collapse
Affiliation(s)
- Jan P Erzberger
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
47
|
Castella S, Bingham G, Sanders CM. Common determinants in DNA melting and helicase-catalysed DNA unwinding by papillomavirus replication protein E1. Nucleic Acids Res 2006; 34:3008-19. [PMID: 16738139 PMCID: PMC1474052 DOI: 10.1093/nar/gkl384] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
E1 and T-antigen of the tumour viruses bovine papillomavirus (BPV-1) and Simian virus 40 (SV40) are the initiator proteins that recognize and melt their respective origins of replication in the initial phase of DNA replication. These proteins then assemble into processive hexameric helicases upon the single-stranded DNA that they create. In T-antigen, a characteristic loop and hairpin structure (the pre-sensor 1β hairpin, PS1βH) project into a central cavity generated by protein hexamerization. This channel undergoes large ATP-dependent conformational changes, and the loop/PS1βH is proposed to form a DNA binding site critical for helicase activity. Here, we show that conserved residues in BPV E1 that probably form a similar loop/hairpin structure are required for helicase activity and also origin (ori) DNA melting. We propose that DNA melting requires the cooperation of the E1 helicase domain (E1HD) and the origin binding domain (OBD) tethered to DNA. One possible mechanism is that with the DNA locked in the loop/PS1βH DNA binding site, ATP-dependent conformational changes draw the DNA inwards in a twisting motion to promote unwinding.
Collapse
Affiliation(s)
| | | | - Cyril M. Sanders
- To whom correspondence should be addressed. Tel: +1 14 2712482; Fax: +1 14 2713892;
| |
Collapse
|
48
|
Duggin IG, Bell SD. The chromosome replication machinery of the archaeon Sulfolobus solfataricus. J Biol Chem 2006; 281:15029-32. [PMID: 16467299 DOI: 10.1074/jbc.r500029200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the three domains of life, the archaea, bacteria, and eukarya, there are two general lineages of DNA replication proteins: the bacterial and the eukaryal/archaeal lineages. The hyperthermophilic archaeon Sulfolobus solfataricus provides an attractive model for biochemical study of DNA replication. Its relative simplicity in both genomic and biochemical contexts, together with high protein thermostability, has already provided insight into the function of the more complex yet homologous molecules of the eukaryotic domain. Here, we provide an overview of recent insights into the functioning of the chromosome replication machinery of S. solfataricus, focusing on some of the relatively well characterized core components that act at the DNA replication fork.
Collapse
Affiliation(s)
- Iain G Duggin
- MRC Cancer Cell Unit, Hutchison/Medical Research Council Research Centre, Hills Road, Cambridge CB2 2XZ, United Kingdom
| | | |
Collapse
|
49
|
Fletcher RJ, Shen J, Gómez-Llorente Y, Martín CS, Carazo JM, Chen XS. Double hexamer disruption and biochemical activities of Methanobacterium thermoautotrophicum MCM. J Biol Chem 2005; 280:42405-10. [PMID: 16221679 DOI: 10.1074/jbc.m509773200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methanobacterium thermoautotrophicum MCM (mtMCM) is a helicase required for DNA replication. Previous electron microscopy studies have shown mtMCM in several oligomeric forms. However, biochemical studies suggest that mtMCM is a dodecamer, likely a double hexamer (dHex). The crystal structure of the N-terminal fragment of mtMCM reveals a stable dHex architecture. To further confirm that the dHex is not an artifact of crystal packing of two hexamers, we investigated the relevance of the dHex by disrupting the hexamer-hexamer interactions seen in the crystal structure via site-directed mutagenesis and examining various biochemical activities of the mutants in vitro. Using a combination of biochemical and structural assays, we demonstrated that changing arginine to alanine at amino acid position 161 or the insertion of a six-aminoacid peptide at the hexamer-hexamer interface disrupted dHex formation and produced stable single hexamers (sHex). Furthermore, we showed that the sHex mutants retained wild-type level of ATPase and DNA binding activities but had decreased helicase activity when compared with the wild type dHex protein. These biochemical properties of mtMCM are reminiscent of those of SV40 large T antigen, suggesting that the dHex form of mtMCM may be the active helicase for DNA unwinding during the bidirectional DNA replication.
Collapse
Affiliation(s)
- Ryan J Fletcher
- Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | | | |
Collapse
|
50
|
|