1
|
Xu J, Liao C, Yin CC, Li G, Zhu Y, Sun F. In situ structural insights into the excitation-contraction coupling mechanism of skeletal muscle. SCIENCE ADVANCES 2024; 10:eadl1126. [PMID: 38507485 PMCID: PMC10954225 DOI: 10.1126/sciadv.adl1126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024]
Abstract
Excitation-contraction coupling (ECC) is a fundamental mechanism in control of skeletal muscle contraction and occurs at triad junctions, where dihydropyridine receptors (DHPRs) on transverse tubules sense excitation signals and then cause calcium release from the sarcoplasmic reticulum via coupling to type 1 ryanodine receptors (RyR1s), inducing the subsequent contraction of muscle filaments. However, the molecular mechanism remains unclear due to the lack of structural details. Here, we explored the architecture of triad junction by cryo-electron tomography, solved the in situ structure of RyR1 in complex with FKBP12 and calmodulin with the resolution of 16.7 Angstrom, and found the intact RyR1-DHPR supercomplex. RyR1s arrange into two rows on the terminal cisternae membrane by forming right-hand corner-to-corner contacts, and tetrads of DHPRs bind to RyR1s in an alternating manner, forming another two rows on the transverse tubule membrane. This unique arrangement is important for synergistic calcium release and provides direct evidence of physical coupling in ECC.
Collapse
Affiliation(s)
- Jiashu Xu
- Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyi Liao
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chang-Cheng Yin
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China
- Electron Microscopy Analysis Laboratory, The Health Science Center, Peking University, Beijing 100191, China
- Center for Protein Science, Peking University, Beijing 100871, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yun Zhu
- Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Sun
- Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, 510005, China
| |
Collapse
|
2
|
Del Rivero Morfin PJ, Marx SO, Ben-Johny M. Sympathetic Nervous System Regulation of Cardiac Calcium Channels. Handb Exp Pharmacol 2023. [PMID: 36592229 DOI: 10.1007/164_2022_632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Calcium influx through voltage-gated calcium channels, Cav1.2, in cardiomyocytes initiates excitation-contraction coupling in the heart. The force and rate of cardiac contraction are modulated by the sympathetic nervous system, mediated substantially by changes in intracellular calcium. Norepinephrine released from sympathetic neurons innervating the heart and epinephrine secreted by the adrenal chromaffin cells bind to β-adrenergic receptors on the sarcolemma of cardiomyocytes initiating a signaling cascade that generates cAMP and activates protein kinase A, the targets of which control calcium influx. For decades, the mechanisms by which PKA regulated calcium channels in the heart were not known. Recently, these mechanisms have been elucidated. In this chapter, we will review the history of the field and the studies that led to the identification of the evolutionarily conserved process.
Collapse
Affiliation(s)
- Pedro J Del Rivero Morfin
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Steven O Marx
- Division of Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA. .,Department of Pharmacology and Molecular Signaling, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
3
|
Yang Y, Yu Z, Geng J, Liu M, Liu N, Li P, Hong W, Yue S, Jiang H, Ge H, Qian F, Xiong W, Wang P, Song S, Li X, Fan Y, Liu X. Cytosolic peptides encoding Ca V1 C-termini downregulate the calcium channel activity-neuritogenesis coupling. Commun Biol 2022; 5:484. [PMID: 35589958 PMCID: PMC9120191 DOI: 10.1038/s42003-022-03438-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 05/03/2022] [Indexed: 12/31/2022] Open
Abstract
L-type Ca2+ (CaV1) channels transduce channel activities into nuclear signals critical to neuritogenesis. Also, standalone peptides encoded by CaV1 DCT (distal carboxyl-terminus) act as nuclear transcription factors reportedly promoting neuritogenesis. Here, by focusing on exemplary CaV1.3 and cortical neurons under basal conditions, we discover that cytosolic DCT peptides downregulate neurite outgrowth by the interactions with CaV1's apo-calmodulin binding motif. Distinct from nuclear DCT, various cytosolic peptides exert a gradient of inhibitory effects on Ca2+ influx via CaV1 channels and neurite extension and arborization, and also the intermediate events including CREB activation and c-Fos expression. The inhibition efficacies of DCT are quantitatively correlated with its binding affinities. Meanwhile, cytosolic inhibition tends to facilitate neuritogenesis indirectly by favoring Ca2+-sensitive nuclear retention of DCT. In summary, DCT peptides as a class of CaV1 inhibitors specifically regulate the channel activity-neuritogenesis coupling in a variant-, affinity-, and localization-dependent manner.
Collapse
Affiliation(s)
- Yaxiong Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China.,X-Laboratory for Ion-Channel Engineering, Beihang University, Beijing, 100083, China
| | - Zhen Yu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China.,X-Laboratory for Ion-Channel Engineering, Beihang University, Beijing, 100083, China
| | - Jinli Geng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China.,X-Laboratory for Ion-Channel Engineering, Beihang University, Beijing, 100083, China
| | - Min Liu
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Nan Liu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Ping Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Weili Hong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Shuhua Yue
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - He Jiang
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Haiyan Ge
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Feng Qian
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Xiong
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ping Wang
- Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China
| | - Sen Song
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xiaomei Li
- School of Medicine, Tsinghua University, Beijing, 100084, China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China.
| | - Xiaodong Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China. .,X-Laboratory for Ion-Channel Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
4
|
Abstract
Each heartbeat is initiated by the action potential, an electrical signal that depolarizes the plasma membrane and activates a cycle of calcium influx via voltage-gated calcium channels, calcium release via ryanodine receptors, and calcium reuptake and efflux via calcium-ATPase pumps and sodium-calcium exchangers. Agonists of the sympathetic nervous system bind to adrenergic receptors in cardiomyocytes, which, via cascading signal transduction pathways and protein kinase A (PKA), increase the heart rate (chronotropy), the strength of myocardial contraction (inotropy), and the rate of myocardial relaxation (lusitropy). These effects correlate with increased intracellular concentration of calcium, which is required for the augmentation of cardiomyocyte contraction. Despite extensive investigations, the molecular mechanisms underlying sympathetic nervous system regulation of calcium influx in cardiomyocytes have remained elusive over the last 40 years. Recent studies have uncovered the mechanisms underlying this fundamental biologic process, namely that PKA phosphorylates a calcium channel inhibitor, Rad, thereby releasing inhibition and increasing calcium influx. Here, we describe an updated model for how signals from adrenergic agonists are transduced to stimulate calcium influx and contractility in the heart.
Collapse
Affiliation(s)
- Arianne Papa
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jared Kushner
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA;
| | - Steven O Marx
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA;
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
5
|
Koschak A, Fernandez-Quintero ML, Heigl T, Ruzza M, Seitter H, Zanetti L. Cav1.4 dysfunction and congenital stationary night blindness type 2. Pflugers Arch 2021; 473:1437-1454. [PMID: 34212239 PMCID: PMC8370969 DOI: 10.1007/s00424-021-02570-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/04/2022]
Abstract
Cav1.4 L-type Ca2+ channels are predominantly expressed in retinal neurons, particularly at the photoreceptor terminals where they mediate sustained Ca2+ entry needed for continuous neurotransmitter release at their ribbon synapses. Cav1.4 channel gating properties are controlled by accessory subunits, associated regulatory proteins, and also alternative splicing. In humans, mutations in the CACNA1F gene encoding for Cav1.4 channels are associated with X-linked retinal disorders such as congenital stationary night blindness type 2. Mutations in the Cav1.4 protein result in a spectrum of altered functional channel activity. Several mouse models broadened our understanding of the role of Cav1.4 channels not only as Ca2+ source at retinal synapses but also as synaptic organizers. In this review, we highlight different structural and functional phenotypes of Cav1.4 mutations that might also occur in patients with congenital stationary night blindness type 2. A further important yet mostly neglected aspect that we discuss is the influence of alternative splicing on channel dysfunction. We conclude that currently available functional phenotyping strategies should be refined and summarize potential specific therapeutic options for patients carrying Cav1.4 mutations. Importantly, the development of new therapeutic approaches will permit a deeper understanding of not only the disease pathophysiology but also the physiological function of Cav1.4 channels in the retina.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Calcium Channel Agonists/pharmacology
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Eye Diseases, Hereditary/genetics
- Eye Diseases, Hereditary/metabolism
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/metabolism
- Humans
- Mutation/physiology
- Myopia/genetics
- Myopia/metabolism
- Night Blindness/genetics
- Night Blindness/metabolism
- Retina/drug effects
- Retina/metabolism
- Synapses/drug effects
- Synapses/genetics
- Synapses/metabolism
Collapse
Affiliation(s)
- Alexandra Koschak
- Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020, Innsbruck, Austria.
| | - Monica L Fernandez-Quintero
- Institute of General, Inorganic and Theoretical Chemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020, Innsbruck, Austria
| | - Thomas Heigl
- Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020, Innsbruck, Austria
| | - Marco Ruzza
- Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020, Innsbruck, Austria
| | - Hartwig Seitter
- Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020, Innsbruck, Austria
| | - Lucia Zanetti
- Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020, Innsbruck, Austria
| |
Collapse
|
6
|
Sang L, Vieira DCO, Yue DT, Ben-Johny M, Dick IE. The molecular basis of the inhibition of Ca V1 calcium-dependent inactivation by the distal carboxy tail. J Biol Chem 2021; 296:100502. [PMID: 33667546 PMCID: PMC8054141 DOI: 10.1016/j.jbc.2021.100502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/26/2022] Open
Abstract
Ca2+/calmodulin-dependent inactivation (CDI) of CaV channels is a critical regulatory process that tunes the kinetics of Ca2+ entry for different cell types and physiologic responses. CDI is mediated by calmodulin (CaM), which is bound to the IQ domain of the CaV carboxy tail. This modulatory process is tailored by alternative splicing such that select splice variants of CaV1.3 and CaV1.4 contain a long distal carboxy tail (DCT). The DCT harbors an inhibitor of CDI (ICDI) module that competitively displaces CaM from the IQ domain, thereby diminishing CDI. While this overall mechanism is now well described, the detailed interactions required for ICDI binding to the IQ domain are yet to be elucidated. Here, we perform alanine-scanning mutagenesis of the IQ and ICDI domains and evaluate the contribution of neighboring regions to CDI inhibition. Through FRET binding analysis, we identify functionally relevant residues within the CaV1.3 IQ domain and the CaV1.4 ICDI and nearby A region, which are required for high-affinity IQ/ICDI binding. Importantly, patch-clamp recordings demonstrate that disruption of this interaction commensurately diminishes ICDI function resulting in the re-emergence of CDI in mutant channels. Furthermore, CaV1.2 channels harbor a homologous DCT; however, the ICDI region of this channel does not appear to appreciably modulate CaV1.2 CDI. Yet coexpression of CaV1.2 ICDI with select CaV1.3 splice variants significantly disrupts CDI, implicating a cross-channel modulatory scheme in cells expressing both channel subtypes. In all, these findings provide new insights into a molecular rheostat that fine-tunes Ca2+-entry and supports normal neuronal and cardiac function.
Collapse
Affiliation(s)
- Lingjie Sang
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daiana C O Vieira
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David T Yue
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Manu Ben-Johny
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA
| | - Ivy E Dick
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
7
|
New aspects in cardiac L-type Ca2+ channel regulation. Biochem Soc Trans 2020; 48:39-49. [PMID: 32065210 DOI: 10.1042/bst20190229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 12/23/2022]
Abstract
Cardiac excitation-contraction coupling is initiated with the influx of Ca2+ ions across the plasma membrane through voltage-gated L-type calcium channels. This process is tightly regulated by modulation of the channel open probability and channel localization. Protein kinase A (PKA) is found in close association with the channel and is one of the main regulators of its function. Whether this kinase is modulating the channel open probability by phosphorylation of key residues or via alternative mechanisms is unclear. This review summarizes recent findings regarding the PKA-mediated channel modulation and will highlight recently discovered regulatory mechanisms that are independent of PKA activity and involve protein-protein interactions and channel localization.
Collapse
|
8
|
Flucher BE. Skeletal muscle Ca V1.1 channelopathies. Pflugers Arch 2020; 472:739-754. [PMID: 32222817 PMCID: PMC7351834 DOI: 10.1007/s00424-020-02368-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/06/2020] [Accepted: 03/17/2020] [Indexed: 12/15/2022]
Abstract
CaV1.1 is specifically expressed in skeletal muscle where it functions as voltage sensor of skeletal muscle excitation-contraction (EC) coupling independently of its functions as L-type calcium channel. Consequently, all known CaV1.1-related diseases are muscle diseases and the molecular and cellular disease mechanisms relate to the dual functions of CaV1.1 in this tissue. To date, four types of muscle diseases are known that can be linked to mutations in the CACNA1S gene or to splicing defects. These are hypo- and normokalemic periodic paralysis, malignant hyperthermia susceptibility, CaV1.1-related myopathies, and myotonic dystrophy type 1. In addition, the CaV1.1 function in EC coupling is perturbed in Native American myopathy, arising from mutations in the CaV1.1-associated protein STAC3. Here, we first address general considerations concerning the possible roles of CaV1.1 in disease and then discuss the state of the art regarding the pathophysiology of the CaV1.1-related skeletal muscle diseases with an emphasis on molecular disease mechanisms.
Collapse
Affiliation(s)
- Bernhard E Flucher
- Department of Physiology and Medical Biophysics, Medical University Innsbruck, Schöpfstraße 41, A6020, Innsbruck, Austria.
| |
Collapse
|
9
|
Esteghamat F, Broughton JS, Smith E, Cardone R, Tyagi T, Guerra M, Szabó A, Ugwu N, Mani MV, Azari B, Kayingo G, Chung S, Fathzadeh M, Weiss E, Bender J, Mane S, Lifton RP, Adeniran A, Nathanson MH, Gorelick FS, Hwa J, Sahin-Tóth M, Belfort-DeAguiar R, Kibbey RG, Mani A. CELA2A mutations predispose to early-onset atherosclerosis and metabolic syndrome and affect plasma insulin and platelet activation. Nat Genet 2019; 51:1233-1243. [PMID: 31358993 PMCID: PMC6675645 DOI: 10.1038/s41588-019-0470-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/20/2019] [Indexed: 12/12/2022]
Abstract
Factors that underlie the clustering of metabolic syndrome traits are not fully known. We performed whole-exome sequence analysis in kindreds with extreme phenotypes of early-onset atherosclerosis and metabolic syndrome, and identified novel loss-of-function mutations in the gene encoding the pancreatic elastase chymotrypsin-like elastase family member 2A (CELA2A). We further show that CELA2A is a circulating enzyme that reduces platelet hyperactivation, triggers both insulin secretion and degradation, and increases insulin sensitivity. CELA2A plasma levels rise postprandially and parallel insulin levels in humans. Loss of these functions by the mutant proteins provides insight into disease mechanisms and suggests that CELA2A could be an attractive therapeutic target.
Collapse
Affiliation(s)
| | - James S Broughton
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Emily Smith
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Rebecca Cardone
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Tarun Tyagi
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Mateus Guerra
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - András Szabó
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Nelson Ugwu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Mitra V Mani
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Bani Azari
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Gerald Kayingo
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Sunny Chung
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Mohsen Fathzadeh
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ephraim Weiss
- Department of Medicine, NYU Medical Center, New York, NY, USA
| | - Jeffrey Bender
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Shrikant Mane
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | | | - Michael H Nathanson
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Fred S Gorelick
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - John Hwa
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Miklós Sahin-Tóth
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | | | - Richard G Kibbey
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Arya Mani
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Single-Channel Resolution of the Interaction between C-Terminal Ca V1.3 Isoforms and Calmodulin. Biophys J 2019; 116:836-846. [PMID: 30773296 DOI: 10.1016/j.bpj.2019.01.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/05/2019] [Accepted: 01/16/2019] [Indexed: 12/21/2022] Open
Abstract
Voltage-dependent calcium (CaV) 1.3 channels are involved in the control of cellular excitability and pacemaking in neuronal, cardiac, and sensory cells. Various proteins interact with the alternatively spliced channel C-terminus regulating gating of CaV1.3 channels. Binding of a regulatory calcium-binding protein calmodulin (CaM) to the proximal C-terminus leads to the boosting of channel activity and promotes calcium-dependent inactivation (CDI). The C-terminal modulator domain (CTM) of CaV1.3 channels can interfere with the CaM binding, thereby inhibiting channel activity and CDI. Here, we compared single-channel gating behavior of two natural CaV1.3 splice isoforms: the long CaV1.342 with the full-length CTM and the short CaV1.342A with the C-terminus truncated before the CTM. We found that CaM regulation of CaV1.3 channels is dynamic on a minute timescale. We observed that at equilibrium, single CaV1.342 channels occasionally switched from low to high open probability, which perhaps reflects occasional binding of CaM despite the presence of CTM. Similarly, when the amount of the available CaM in the cell was reduced, the short CaV1.342A isoform showed patterns of the low channel activity. CDI also underwent periodic changes with corresponding kinetics in both isoforms. Our results suggest that the competition between CTM and CaM is influenced by calcium, allowing further fine-tuning of CaV1.3 channel activity for particular cellular needs.
Collapse
|
11
|
Proteolytic cleavage and PKA phosphorylation of α 1C subunit are not required for adrenergic regulation of Ca V1.2 in the heart. Proc Natl Acad Sci U S A 2017; 114:9194-9199. [PMID: 28784807 DOI: 10.1073/pnas.1706054114] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Calcium influx through the voltage-dependent L-type calcium channel (CaV1.2) rapidly increases in the heart during "fight or flight" through activation of the β-adrenergic and protein kinase A (PKA) signaling pathway. The precise molecular mechanisms of β-adrenergic activation of cardiac CaV1.2, however, are incompletely known, but are presumed to require phosphorylation of residues in α1C and C-terminal proteolytic cleavage of the α1C subunit. We generated transgenic mice expressing an α1C with alanine substitutions of all conserved serine or threonine, which is predicted to be a potential PKA phosphorylation site by at least one prediction tool, while sparing the residues previously shown to be phosphorylated but shown individually not to be required for β-adrenergic regulation of CaV1.2 current (17-mutant). A second line included these 17 putative sites plus the five previously identified phosphoregulatory sites (22-mutant), thus allowing us to query whether regulation requires their contribution in combination. We determined that acute β-adrenergic regulation does not require any combination of potential PKA phosphorylation sites conserved in human, guinea pig, rabbit, rat, and mouse α1C subunits. We separately generated transgenic mice with inducible expression of proteolytic-resistant α1C Prevention of C-terminal cleavage did not alter β-adrenergic stimulation of CaV1.2 in the heart. These studies definitively rule out a role for all conserved consensus PKA phosphorylation sites in α1C in β-adrenergic stimulation of CaV1.2, and show that phosphoregulatory sites on α1C are not redundant and do not each fractionally contribute to the net stimulatory effect of β-adrenergic stimulation. Further, proteolytic cleavage of α1C is not required for β-adrenergic stimulation of CaV1.2.
Collapse
|
12
|
Oz S, Pankonien I, Belkacemi A, Flockerzi V, Klussmann E, Haase H, Dascal N. Protein kinase A regulates C-terminally truncated Ca V 1.2 in Xenopus oocytes: roles of N- and C-termini of the α 1C subunit. J Physiol 2017; 595:3181-3202. [PMID: 28194788 DOI: 10.1113/jp274015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/08/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS β-Adrenergic stimulation enhances Ca2+ entry via L-type CaV 1.2 channels, causing stronger contraction of cardiac muscle cells. The signalling pathway involves activation of protein kinase A (PKA), but the molecular details of PKA regulation of CaV 1.2 remain controversial despite extensive research. We show that PKA regulation of CaV 1.2 can be reconstituted in Xenopus oocytes when the distal C-terminus (dCT) of the main subunit, α1C , is truncated. The PKA upregulation of CaV 1.2 does not require key factors previously implicated in this mechanism: the clipped dCT, the A kinase-anchoring protein 15 (AKAP15), the phosphorylation sites S1700, T1704 and S1928, or the β subunit of CaV 1.2. The gating element within the initial segment of the N-terminus of the cardiac isoform of α1C is essential for the PKA effect. We propose that the regulation described here is one of two or several mechanisms that jointly mediate the PKA regulation of CaV 1.2 in the heart. ABSTRACT β-Adrenergic stimulation enhances Ca2+ currents via L-type, voltage-gated CaV 1.2 channels, strengthening cardiac contraction. The signalling via β-adrenergic receptors (β-ARs) involves elevation of cyclic AMP (cAMP) levels and activation of protein kinase A (PKA). However, how PKA affects the channel remains controversial. Recent studies in heterologous systems and genetically engineered mice stress the importance of the post-translational proteolytic truncation of the distal C-terminus (dCT) of the main (α1C ) subunit. Here, we successfully reconstituted the cAMP/PKA regulation of the dCT-truncated CaV 1.2 in Xenopus oocytes, which previously failed with the non-truncated α1C . cAMP and the purified catalytic subunit of PKA, PKA-CS, injected into intact oocytes, enhanced CaV 1.2 currents by ∼40% (rabbit α1C ) to ∼130% (mouse α1C ). PKA blockers were used to confirm specificity and the need for dissociation of the PKA holoenzyme. The regulation persisted in the absence of the clipped dCT (as a separate protein), the A kinase-anchoring protein AKAP15, and the phosphorylation sites S1700 and T1704, previously proposed as essential for the PKA effect. The CaV β2b subunit was not involved, as suggested by extensive mutagenesis. Using deletion/chimeric mutagenesis, we have identified the initial segment of the cardiac long-N-terminal isoform of α1C as a previously unrecognized essential element involved in PKA regulation. We propose that the observed regulation, that exclusively involves the α1C subunit, is one of several mechanisms underlying the overall PKA action on CaV 1.2 in the heart. We hypothesize that PKA is acting on CaV 1.2, in part, by affecting a structural 'scaffold' comprising the interacting cytosolic N- and C-termini of α1C .
Collapse
Affiliation(s)
- Shimrit Oz
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ines Pankonien
- Max Delbrück Center for Molecular Medicine (MDC), D-13092, and the German Centre for Cardiovascular Research (DZHK) partner site, Berlin, Germany
| | - Anouar Belkacemi
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421, Homburg, Germany
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421, Homburg, Germany
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine (MDC), D-13092, and the German Centre for Cardiovascular Research (DZHK) partner site, Berlin, Germany
| | - Hannelore Haase
- Max Delbrück Center for Molecular Medicine (MDC), D-13092, and the German Centre for Cardiovascular Research (DZHK) partner site, Berlin, Germany
| | - Nathan Dascal
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
13
|
Liu N, Yang Y, Ge L, Liu M, Colecraft HM, Liu X. Cooperative and acute inhibition by multiple C-terminal motifs of L-type Ca 2+ channels. eLife 2017; 6. [PMID: 28059704 PMCID: PMC5279948 DOI: 10.7554/elife.21989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
Inhibitions and antagonists of L-type Ca2+ channels are important to both research and therapeutics. Here, we report C-terminus mediated inhibition (CMI) for CaV1.3 that multiple motifs coordinate to tune down Ca2+ current and Ca2+ influx toward the lower limits determined by end-stage CDI (Ca2+-dependent inactivation). Among IQV (preIQ3-IQ domain), PCRD and DCRD (proximal or distal C-terminal regulatory domain), spatial closeness of any two modules, e.g., by constitutive fusion, facilitates the trio to form the complex, compete against calmodulin, and alter the gating. Acute CMI by rapamycin-inducible heterodimerization helps reconcile the concurrent activation/inactivation attenuations to ensure Ca2+ influx is reduced, in that Ca2+ current activated by depolarization is potently (~65%) inhibited at the peak (full activation), but not later on (end-stage inactivation, ~300 ms). Meanwhile, CMI provides a new paradigm to develop CaV1 inhibitors, the therapeutic potential of which is implied by computational modeling of CaV1.3 dysregulations related to Parkinson’s disease. DOI:http://dx.doi.org/10.7554/eLife.21989.001 All cells need calcium ions to stay healthy, but having too many calcium ions can interfere with important processes in the cell and cause severe problems. Proteins known as calcium channels on the cell surface allow calcium ions to flow into the cell from the surrounding environment. Cells carefully control the opening and closing of these channels to prevent too many calcium ions entering the cell at once. CaV1.3 channels are a type of calcium channel that are important for the heart and brain to work properly. Defects in CaV1.3 channels can lead to irregular heart rhythms and neurodegenerative diseases such as Parkinson’s disease. Studies have shown that part of the CaV1.3 channel that sits inside the cell – known as the “tail” – responds to increases in the levels of calcium ions inside the cell by closing the channel. The tail region of CaV1.3 contains three modules, but how these modules work together to regulate channel activity is not clear. Liu, Yang et al. investigated whether the three modules need to be physically connected to each other in the channel protein. For the experiments, several versions of the protein were constructed with different combinations of tail modules being directly linked as part of the same molecule or present as separate molecules. When any two modules were directly linked, the third module could bind to them and this was enough to close the CaV1.3 channel. However, the channel did not close if the modules were totally isolated from each other as three separate molecules. Certain types of neurons in the brain produce electrical signals in a rhythmic fashion that depends on CaV1.3 channels. In Parkinson’s disease, increased movement of calcium ions into these neurons via CaV1.3 channels interferes with the rhythms of the signals and can cause these cells to die. Liu, Yang et al. performed computer simulations to analyse the effects of closing CaV1.3 channels in these neurons. The results suggest that this can restore normal rhythms of electrical activity and prevent these cells from dying. The next step is to understand the molecular details of how the tail region closes CaV1.3 channels and its role in healthy and diseased cells. This may lead to new ways to block CaV1.3 channels in different types of diseases. DOI:http://dx.doi.org/10.7554/eLife.21989.002
Collapse
Affiliation(s)
- Nan Liu
- X-Lab for Transmembrane Signaling Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Yaxiong Yang
- X-Lab for Transmembrane Signaling Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Lin Ge
- X-Lab for Transmembrane Signaling Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Min Liu
- X-Lab for Transmembrane Signaling Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, New York, United States
| | - Xiaodong Liu
- X-Lab for Transmembrane Signaling Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| |
Collapse
|
14
|
Loss of β-adrenergic-stimulated phosphorylation of CaV1.2 channels on Ser1700 leads to heart failure. Proc Natl Acad Sci U S A 2016; 113:E7976-E7985. [PMID: 27864509 DOI: 10.1073/pnas.1617116113] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
L-type Ca2+ currents conducted by voltage-gated calcium channel 1.2 (CaV1.2) initiate excitation-contraction coupling in the heart, and altered expression of CaV1.2 causes heart failure in mice. Here we show unexpectedly that reducing β-adrenergic regulation of CaV1.2 channels by mutation of a single PKA site, Ser1700, in the proximal C-terminal domain causes reduced contractile function, cardiac hypertrophy, and heart failure without changes in expression, localization, or function of the CaV1.2 protein in the mutant mice (SA mice). These deficits were aggravated with aging. Dual mutation of Ser1700 and a nearby casein-kinase II site (Thr1704) caused accelerated hypertrophy, heart failure, and death in mice with these mutations (STAA mice). Cardiac hypertrophy was increased by voluntary exercise and by persistent β-adrenergic stimulation. PKA expression was increased, and PKA sites Ser2808 in ryanodine receptor type-2, Ser16 in phospholamban, and Ser23/24 in troponin-I were hyperphosphorylated in SA mice, whereas phosphorylation of substrates for calcium/calmodulin-dependent protein kinase II was unchanged. The Ca2+ pool in the sarcoplasmic reticulum was increased, the activity of calcineurin was elevated, and calcineurin inhibitors improved contractility and ameliorated cardiac hypertrophy. Cardio-specific expression of the SA mutation also caused reduced contractility and hypertrophy. These results suggest engagement of compensatory mechanisms, which initially may enhance the contractility of individual myocytes but eventually contribute to an increased sensitivity to cardiovascular stress and to heart failure in vivo. Our results demonstrate that normal regulation of CaV1.2 channels by phosphorylation of Ser1700 in cardiomyocytes is required for cardiovascular homeostasis and normal physiological regulation in vivo.
Collapse
|
15
|
Oláh T, Bodnár D, Tóth A, Vincze J, Fodor J, Reischl B, Kovács A, Ruzsnavszky O, Dienes B, Szentesi P, Friedrich O, Csernoch L. Cannabinoid signalling inhibits sarcoplasmic Ca 2+ release and regulates excitation-contraction coupling in mammalian skeletal muscle. J Physiol 2016; 594:7381-7398. [PMID: 27641745 DOI: 10.1113/jp272449] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/14/2016] [Indexed: 01/09/2023] Open
Abstract
KEY POINTS Marijuana was found to cause muscle weakness, although the exact regulatory role of its receptors (CB1 cannabinoid receptor; CB1R) in the excitation-contraction coupling (ECC) of mammalian skeletal muscle remains unknown. We found that CB1R activation or its knockout did not affect muscle force directly, whereas its activation decreased the Ca2+ -sensitivity of the contractile apparatus and made the muscle fibres more prone to fatigue. We demonstrate that CB1Rs are not connected to the inositol 1,4,5-trisphosphate pathway either in myotubes or in adult muscle fibres. By contrast, CB1Rs constitutively inhibit sarcoplasmic Ca2+ release and sarcoplasmic reticulum Ca2+ ATPase during ECC in a Gi/o protein-mediated way in adult skeletal muscle fibres but not in myotubes. These results help with our understanding of the physiological effects and pathological consequences of CB1R activation in skeletal muscle and may be useful in the development of new cannabinoid drugs. ABSTRACT Marijuana was found to cause muscle weakness, although it is unknown whether it affects the muscles directly or modulates only the motor control of the central nervous system. Although the presence of CB1 cannabinoid receptors (CB1R), which are responsible for the psychoactive effects of the drug in the brain, have recently been demonstrated in skeletal muscle, it is unclear how CB1R-mediated signalling affects the contraction and Ca²⁺ homeostasis of mammalian skeletal muscle. In the present study, we demonstrate that in vitro CB1R activation increased muscle fatigability and decreased the Ca2+ -sensitivity of the contractile apparatus, whereas it did not alter the amplitude of single twitch contractions. In myotubes, CB1R agonists neither evoked, nor influenced inositol 1,4,5-trisphosphate (IP3 )-mediated Ca2+ transients, nor did they alter excitation-contraction coupling. By contrast, in isolated muscle fibres of wild-type mice, although CB1R agonists did not evoke IP3 -mediated Ca2+ transients too, they significantly reduced the amplitude of the depolarization-evoked transients in a pertussis-toxin sensitive manner, indicating a Gi/o protein-dependent mechanism. Concurrently, on skeletal muscle fibres isolated from CB1R-knockout animals, depolarization-evoked Ca2+ transients, as well qas Ca2+ release flux via ryanodine receptors (RyRs), and the total amount of released Ca2+ was significantly greater than that from wild-type mice. Our results show that CB1R-mediated signalling exerts both a constitutive and an agonist-mediated inhibition on the Ca2+ transients via RyR, regulates the activity of the sarcoplasmic reticulum Ca2+ ATPase and enhances muscle fatigability, which might decrease exercise performance, thus playing a role in myopathies, and therefore should be considered during the development of new cannabinoid drugs.
Collapse
Affiliation(s)
- Tamás Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dóra Bodnár
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adrienn Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Vincze
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Barbara Reischl
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Adrienn Kovács
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Olga Ruzsnavszky
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
16
|
Ramachandran R, Altier C, Oikonomopoulou K, Hollenberg MD. Proteinases, Their Extracellular Targets, and Inflammatory Signaling. Pharmacol Rev 2016; 68:1110-1142. [PMID: 27677721 DOI: 10.1124/pr.115.010991] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Given that over 2% of the human genome codes for proteolytic enzymes and their inhibitors, it is not surprising that proteinases serve many physiologic-pathophysiological roles. In this context, we provide an overview of proteolytic mechanisms regulating inflammation, with a focus on cell signaling stimulated by the generation of inflammatory peptides; activation of the proteinase-activated receptor (PAR) family of G protein-coupled receptors (GPCR), with a mechanism in common with adhesion-triggered GPCRs (ADGRs); and by proteolytic ion channel regulation. These mechanisms are considered in the much wider context that proteolytic mechanisms serve, including the processing of growth factors and their receptors, the regulation of matrix-integrin signaling, and the generation and release of membrane-tethered receptor ligands. These signaling mechanisms are relevant for inflammatory, neurodegenerative, and cardiovascular diseases as well as for cancer. We propose that the inflammation-triggering proteinases and their proteolytically generated substrates represent attractive therapeutic targets and we discuss appropriate targeting strategies.
Collapse
Affiliation(s)
- Rithwik Ramachandran
- Inflammation Research Network-Snyder Institute for Chronic Disease, Department of Physiology & Pharmacology (R.R., C.A., M.D.H.) and Department of Medicine (M.D.H.),University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, Toronto Western Hospital, Toronto, Ontario, Canada (K.O.); and Department of Physiology and Pharmacology, Western University, London, Ontario, Canada (R.R.)
| | - Christophe Altier
- Inflammation Research Network-Snyder Institute for Chronic Disease, Department of Physiology & Pharmacology (R.R., C.A., M.D.H.) and Department of Medicine (M.D.H.),University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, Toronto Western Hospital, Toronto, Ontario, Canada (K.O.); and Department of Physiology and Pharmacology, Western University, London, Ontario, Canada (R.R.)
| | - Katerina Oikonomopoulou
- Inflammation Research Network-Snyder Institute for Chronic Disease, Department of Physiology & Pharmacology (R.R., C.A., M.D.H.) and Department of Medicine (M.D.H.),University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, Toronto Western Hospital, Toronto, Ontario, Canada (K.O.); and Department of Physiology and Pharmacology, Western University, London, Ontario, Canada (R.R.)
| | - Morley D Hollenberg
- Inflammation Research Network-Snyder Institute for Chronic Disease, Department of Physiology & Pharmacology (R.R., C.A., M.D.H.) and Department of Medicine (M.D.H.),University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, Toronto Western Hospital, Toronto, Ontario, Canada (K.O.); and Department of Physiology and Pharmacology, Western University, London, Ontario, Canada (R.R.)
| |
Collapse
|
17
|
Catterall WA. Regulation of Cardiac Calcium Channels in the Fight-or-Flight Response. Curr Mol Pharmacol 2016; 8:12-21. [PMID: 25966697 DOI: 10.2174/1874467208666150507103417] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/17/2015] [Accepted: 04/20/2015] [Indexed: 11/22/2022]
Abstract
Intracellular calcium transients generated by activation of voltage-gated calcium (CaV) channels generate local signals, which initiate physiological processes such as secretion, synaptic transmission, and excitation-contraction coupling. Regulation of calcium entry through CaV channels is crucial for control of these physiological processes. In this article, I review experimental results that have emerged over several years showing that cardiac CaV1.2 channels form a local signaling complex, in which their proteolytically processed distal C-terminal domain, an A-Kinase Anchoring Protein, and cyclic AMP-dependent protein kinase (PKA) interact directly with the transmembrane core of the ion channel through the proximal C-terminal domain. This signaling complex is the substrate for β-adrenergic up-regulation of the CaV1.2 channel in the heart during the fight-or-flight response. Protein phosphorylation of two sites at the interface between the distal and proximal C-terminal domains contributes importantly to control of basal CaV1.2 channel activity, and phosphorylation of Ser1700 by PKA at that interface up-regulates CaV1.2 activity in response to β-adrenergic signaling. Thus, the intracellular C-terminal domain of CaV1.2 channels serves as a signaling platform, mediating beat-to-beat physiological regulation of channel activity and up-regulation by β-adrenergic signaling in the fight-or-flight response.
Collapse
Affiliation(s)
- William A Catterall
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195-7280.
| |
Collapse
|
18
|
Nuclear translocation of the cardiac L-type calcium channel C-terminus is regulated by sex and 17β-estradiol. J Mol Cell Cardiol 2016; 97:226-34. [DOI: 10.1016/j.yjmcc.2016.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/03/2016] [Accepted: 06/02/2016] [Indexed: 12/17/2022]
|
19
|
Mahalingam M, Perez CF, Fessenden JD. Fluorescence Resonance Energy Transfer-based Structural Analysis of the Dihydropyridine Receptor α1S Subunit Reveals Conformational Differences Induced by Binding of the β1a Subunit. J Biol Chem 2016; 291:13762-70. [PMID: 27129199 DOI: 10.1074/jbc.m115.704049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Indexed: 11/06/2022] Open
Abstract
The skeletal muscle dihydropyridine receptor α1S subunit plays a key role in skeletal muscle excitation-contraction coupling by sensing membrane voltage changes and then triggering intracellular calcium release. The cytoplasmic loops connecting four homologous α1S structural domains have diverse functions, but their structural arrangement is poorly understood. Here, we used a novel FRET-based method to characterize the relative proximity of these intracellular loops in α1S subunits expressed in intact cells. In dysgenic myotubes, energy transfer was observed from an N-terminal-fused YFP to a FRET acceptor, ReAsH (resorufin arsenical hairpin binder), targeted to each α1S intracellular loop, with the highest FRET efficiencies measured to the α1S II-III loop and C-terminal tail. However, in HEK-293T cells, FRET efficiencies from the α1S N terminus to the II-III and III-IV loops and the C-terminal tail were significantly lower, thus suggesting that these loop structures are influenced by the cellular microenvironment. The addition of the β1a dihydropyridine receptor subunit enhanced FRET to the II-III loop, thus indicating that β1a binding directly affects II-III loop conformation. This specific structural change required the C-terminal 36 amino acids of β1a, which are essential to support EC coupling. Direct FRET measurements between α1S and β1a confirmed that both wild type and truncated β1a bind similarly to α1S These results provide new insights into the role of muscle-specific proteins on the structural arrangement of α1S intracellular loops and point to a new conformational effect of the β1a subunit in supporting skeletal muscle excitation-contraction coupling.
Collapse
Affiliation(s)
- Mohana Mahalingam
- From the Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Claudio F Perez
- From the Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - James D Fessenden
- From the Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115
| |
Collapse
|
20
|
Scharinger A, Eckrich S, Vandael DH, Schönig K, Koschak A, Hecker D, Kaur G, Lee A, Sah A, Bartsch D, Benedetti B, Lieb A, Schick B, Singewald N, Sinnegger-Brauns MJ, Carbone E, Engel J, Striessnig J. Cell-type-specific tuning of Cav1.3 Ca(2+)-channels by a C-terminal automodulatory domain. Front Cell Neurosci 2015; 9:309. [PMID: 26379493 PMCID: PMC4547004 DOI: 10.3389/fncel.2015.00309] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/27/2015] [Indexed: 11/13/2022] Open
Abstract
Cav1.3 L-type Ca(2+)-channel function is regulated by a C-terminal automodulatory domain (CTM). It affects channel binding of calmodulin and thereby tunes channel activity by interfering with Ca(2+)- and voltage-dependent gating. Alternative splicing generates short C-terminal channel variants lacking the CTM resulting in enhanced Ca(2+)-dependent inactivation and stronger voltage-sensitivity upon heterologous expression. However, the role of this modulatory domain for channel function in its native environment is unkown. To determine its functional significance in vivo, we interrupted the CTM with a hemagglutinin tag in mutant mice (Cav1.3DCRD(HA/HA)). Using these mice we provide biochemical evidence for the existence of long (CTM-containing) and short (CTM-deficient) Cav1.3 α1-subunits in brain. The long (HA-labeled) Cav1.3 isoform was present in all ribbon synapses of cochlear inner hair cells. CTM-elimination impaired Ca(2+)-dependent inactivation of Ca(2+)-currents in hair cells but increased it in chromaffin cells, resulting in hyperpolarized resting potentials and reduced pacemaking. CTM disruption did not affect hearing thresholds. We show that the modulatory function of the CTM is affected by its native environment in different cells and thus occurs in a cell-type specific manner in vivo. It stabilizes gating properties of Cav1.3 channels required for normal electrical excitability.
Collapse
Affiliation(s)
- Anja Scharinger
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck Innsbruck, Austria
| | - Stephanie Eckrich
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Saarland University Homburg, Germany
| | - David H Vandael
- Laboratory of Cellular and Molecular Neuroscience, Department of Drug Science, Nanostructured Interfaces and Surfaces Center, University of Torino Torino, Italy
| | - Kai Schönig
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany
| | - Alexandra Koschak
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck Innsbruck, Austria
| | - Dietmar Hecker
- Department of Otorhinolaryngology, Saarland University Homburg, Germany
| | - Gurjot Kaur
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck Innsbruck, Austria
| | - Amy Lee
- Department of Molecular Physiology and Biophysics, University of Iowa Iowa City, IA, USA
| | - Anupam Sah
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck Innsbruck, Austria
| | - Dusan Bartsch
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany
| | - Bruno Benedetti
- Department of Physiology and Medical Physics, Innsbruck Medical University Innsbruck, Austria
| | - Andreas Lieb
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck Innsbruck, Austria
| | - Bernhard Schick
- Department of Otorhinolaryngology, Saarland University Homburg, Germany
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck Innsbruck, Austria
| | - Martina J Sinnegger-Brauns
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck Innsbruck, Austria
| | - Emilio Carbone
- Laboratory of Cellular and Molecular Neuroscience, Department of Drug Science, Nanostructured Interfaces and Surfaces Center, University of Torino Torino, Italy
| | - Jutta Engel
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Saarland University Homburg, Germany
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck Innsbruck, Austria
| |
Collapse
|
21
|
Brunet S, Emrick MA, Sadilek M, Scheuer T, Catterall WA. Phosphorylation sites in the Hook domain of CaVβ subunits differentially modulate CaV1.2 channel function. J Mol Cell Cardiol 2015; 87:248-56. [PMID: 26271711 DOI: 10.1016/j.yjmcc.2015.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/15/2015] [Accepted: 08/07/2015] [Indexed: 10/23/2022]
Abstract
Regulation of L-type calcium current is critical for the development, function, and regulation of many cell types. Ca(V)1.2 channels that conduct L-type calcium currents are regulated by many protein kinases, but the sites of action of these kinases remain unknown in most cases. We combined mass spectrometry (LC-MS/MS) and whole-cell patch clamp techniques in order to identify sites of phosphorylation of Ca(V)β subunits in vivo and test the impact of mutations of those sites on Ca(V)1.2 channel function in vitro. Using the Ca(V)1.1 channel purified from rabbit skeletal muscle as a substrate for phosphoproteomic analysis, we found that Ser(193) and Thr(205) in the HOOK domain of Ca(V)β1a subunits were both phosphorylated in vivo. Ser(193) is located in a potential consensus sequence for casein kinase II, but it was not phosphorylated in vitro by that kinase. In contrast, Thr(205) is located in a consensus sequence for cAMP-dependent phosphorylation, and it was robustly phosphorylated in vitro by PKA. These two sites are conserved in multiple Ca(V)β subunit isoforms, including the principal Ca(V)β subunit of cardiac Ca(V)1.2 channels, Ca(V)β2b. In order to assess potential modulatory effects of phosphorylation at these sites separately from the effects of phosphorylation of the α11.2 subunit, we inserted phosphomimetic or phosphoinhibitory mutations in Ca(V)β2b and analyzed their effects on Ca(V)1.2 channel function in transfected nonmuscle cells. The phosphomimetic mutation Ca(V)β2b(S152E) decreased peak channel currents and shifted the voltage dependence of both activation and inactivation to more positive membrane potentials. The phosphoinhibitory mutation Ca(V)β2b(S152A) had opposite effects. There were no differences in peak Ca(V)1.2 currents or voltage dependence between the phosphomimetic mutation Ca(V)β2b(T164D) and the phosphoinhibitory mutation Ca(V)β2b(T164A). However, calcium-dependent inactivation was significantly increased for the phosphomimetic mutation Ca(V)β2b(T164D). This effect was subunit-specific, as the corresponding mutation in the palmitoylated isoform, Ca(V)β2a, had no effect. Overall, our data identify two conserved sites of phosphorylation of the Hook domain of Ca(V)β subunits in vivo and reveal differential modulatory effects of phosphomimetic mutations in these sites. These results reveal a new dimension of regulation of Ca(V)1.2 channels through phosphorylation of the Hook domains of their β subunits.
Collapse
Affiliation(s)
- Sylvain Brunet
- Department of Pharmacology, University of Washington, Seattle, WA 98195, United States; Department of Neurosciences, Cleveland Clinic Organization, Cleveland, OH 44195, United States
| | - Michelle A Emrick
- Department of Pharmacology, University of Washington, Seattle, WA 98195, United States
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Todd Scheuer
- Department of Pharmacology, University of Washington, Seattle, WA 98195, United States
| | - William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
22
|
Kaur G, Pinggera A, Ortner NJ, Lieb A, Sinnegger-Brauns MJ, Yarov-Yarovoy V, Obermair GJ, Flucher BE, Striessnig J. A Polybasic Plasma Membrane Binding Motif in the I-II Linker Stabilizes Voltage-gated CaV1.2 Calcium Channel Function. J Biol Chem 2015; 290:21086-21100. [PMID: 26100638 PMCID: PMC4543666 DOI: 10.1074/jbc.m115.645671] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Indexed: 12/27/2022] Open
Abstract
L-type voltage-gated Ca(2+) channels (LTCCs) regulate many physiological functions like muscle contraction, hormone secretion, gene expression, and neuronal excitability. Their activity is strictly controlled by various molecular mechanisms. The pore-forming α1-subunit comprises four repeated domains (I-IV), each connected via an intracellular linker. Here we identified a polybasic plasma membrane binding motif, consisting of four arginines, within the I-II linker of all LTCCs. The primary structure of this motif is similar to polybasic clusters known to interact with polyphosphoinositides identified in other ion channels. We used de novo molecular modeling to predict the conformation of this polybasic motif, immunofluorescence microscopy and live cell imaging to investigate the interaction with the plasma membrane, and electrophysiology to study its role for Cav1.2 channel function. According to our models, this polybasic motif of the I-II linker forms a straight α-helix, with the positive charges facing the lipid phosphates of the inner leaflet of the plasma membrane. Membrane binding of the I-II linker could be reversed after phospholipase C activation, causing polyphosphoinositide breakdown, and was accelerated by elevated intracellular Ca(2+) levels. This indicates the involvement of negatively charged phospholipids in the plasma membrane targeting of the linker. Neutralization of four arginine residues eliminated plasma membrane binding. Patch clamp recordings revealed facilitated opening of Cav1.2 channels containing these mutations, weaker inhibition by phospholipase C activation, and reduced expression of channels (as quantified by ON-gating charge) at the plasma membrane. Our data provide new evidence for a membrane binding motif within the I-II linker of LTCC α1-subunits essential for stabilizing normal Ca(2+) channel function.
Collapse
Affiliation(s)
- Gurjot Kaur
- Institute of Pharmacy, Department of Pharmacology and Toxicology, and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Alexandra Pinggera
- Institute of Pharmacy, Department of Pharmacology and Toxicology, and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Nadine J Ortner
- Institute of Pharmacy, Department of Pharmacology and Toxicology, and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Andreas Lieb
- Institute of Pharmacy, Department of Pharmacology and Toxicology, and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Martina J Sinnegger-Brauns
- Institute of Pharmacy, Department of Pharmacology and Toxicology, and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, California 95616
| | - Gerald J Obermair
- Division of Physiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Bernhard E Flucher
- Division of Physiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Jörg Striessnig
- Institute of Pharmacy, Department of Pharmacology and Toxicology, and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria.
| |
Collapse
|
23
|
Ohrtman JD, Romberg CF, Moua O, Bannister RA, Levinson SR, Beam KG. Apparent lack of physical or functional interaction between CaV1.1 and its distal C terminus. ACTA ACUST UNITED AC 2015; 145:303-14. [PMID: 25779869 PMCID: PMC4380213 DOI: 10.1085/jgp.201411292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The distal C-terminal domain of CaV1.1 is not required for depolarization-induced potentiation of L-type Ca2+ current in skeletal muscle. CaV1.1 acts as both the voltage sensor that triggers excitation–contraction coupling in skeletal muscle and as an L-type Ca2+ channel. It has been proposed that, after its posttranslational cleavage, the distal C terminus of CaV1.1 remains noncovalently associated with proximal CaV1.1, and that tethering of protein kinase A to the distal C terminus is required for depolarization-induced potentiation of L-type Ca2+ current in skeletal muscle. Here, we report that association of the distal C terminus with proximal CaV1.1 cannot be detected by either immunoprecipitation of mouse skeletal muscle or by colocalized fluorescence after expression in adult skeletal muscle fibers of a CaV1.1 construct labeled with yellow fluorescent protein (YFP) and cyan fluorescent protein on the N and C termini, respectively. We found that L-type Ca2+ channel activity was similar after expression of constructs that either did (YFP-CaV1.11860) or did not (YFP-CaV1.11666) contain coding sequence for the distal C-terminal domain in dysgenic myotubes null for endogenous CaV1.1. Furthermore, in response to strong (up to 90 mV) or long-lasting prepulses (up to 200 ms), tail current amplitudes and decay times were equally increased in dysgenic myotubes expressing either YFP-CaV1.11860 or YFP-CaV1.11666, suggesting that the distal C-terminal domain was not required for depolarization-induced potentiation. Thus, our experiments do not support the existence of either biochemical or functional interactions between proximal CaV1.1 and the distal C terminus.
Collapse
Affiliation(s)
- Joshua D Ohrtman
- Department of Physiology and Biophysics and Department of Medicine-Cardiology Division, University of Colorado, Denver, Aurora, CO 80045
| | - Christin F Romberg
- Department of Physiology and Biophysics and Department of Medicine-Cardiology Division, University of Colorado, Denver, Aurora, CO 80045
| | - Ong Moua
- Department of Physiology and Biophysics and Department of Medicine-Cardiology Division, University of Colorado, Denver, Aurora, CO 80045
| | - Roger A Bannister
- Department of Physiology and Biophysics and Department of Medicine-Cardiology Division, University of Colorado, Denver, Aurora, CO 80045
| | - S Rock Levinson
- Department of Physiology and Biophysics and Department of Medicine-Cardiology Division, University of Colorado, Denver, Aurora, CO 80045
| | - Kurt G Beam
- Department of Physiology and Biophysics and Department of Medicine-Cardiology Division, University of Colorado, Denver, Aurora, CO 80045
| |
Collapse
|
24
|
Samsó M. 3D Structure of the Dihydropyridine Receptor of Skeletal Muscle. Eur J Transl Myol 2015; 25:4840. [PMID: 26913147 PMCID: PMC4748975 DOI: 10.4081/ejtm.2015.4840] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/16/2014] [Indexed: 11/22/2022] Open
Abstract
Excitation contraction coupling, the rapid and massive Ca2+ release under control of an action potential that triggers muscle contraction, takes places at specialized regions of the cell called triad junctions. There, a highly ordered supramolecular complex between the dihydropyridine receptor (DHPR) and the ryanodine receptor (RyR1) mediates the quasi-instantaneous conversion from T-tubule depolarization into Ca2+ release from the sarcoplasmic reticulum (SR). The DHPR has several key modules required for EC coupling: the voltage sensors and II-III loop in the alpha1s subunit, and the beta subunit. To gain insight into their molecular organization, this review examines the most updated 3D structure of the DHPR as obtained by transmission electron microscopy and image reconstruction. Although structure determination of a heteromeric membrane protein such as the DHPR is challenging, novel technical advances in protein expression and 3D labeling facilitated this task. The 3D structure of the DHPR complex consists of a main body with five irregular corners around its perimeter encompassing the transmembrane alpha 1s subunit besides the intracellular beta subunit, an extended extracellular alpha 2 subunit, and a bulky intracellular II-III loop. The structural definition attained at 19 Å resolution enabled docking of the atomic coordinates of structural homologs of the alpha1s and beta subunits. These structural features, together with their relative location with respect to the RyR1, are discussed in the context of the functional data.
Collapse
Affiliation(s)
- Montserrat Samsó
- Department of Physiology and Biophysics, Virginia Commonwealth University , Richmond, VA, USA
| |
Collapse
|
25
|
Lu L, Sirish P, Zhang Z, Woltz RL, Li N, Timofeyev V, Knowlton AA, Zhang XD, Yamoah EN, Chiamvimonvat N. Regulation of gene transcription by voltage-gated L-type calcium channel, Cav1.3. J Biol Chem 2014; 290:4663-4676. [PMID: 25538241 DOI: 10.1074/jbc.m114.586883] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cav1.3 L-type Ca(2+) channel is known to be highly expressed in neurons and neuroendocrine cells. However, we have previously demonstrated that the Cav1.3 channel is also expressed in atria and pacemaking cells in the heart. The significance of the tissue-specific expression of the channel is underpinned by our previous demonstration of atrial fibrillation in a Cav1.3 null mutant mouse model. Indeed, a recent study has confirmed the critical roles of Cav1.3 in the human heart (Baig, S. M., Koschak, A., Lieb, A., Gebhart, M., Dafinger, C., Nürnberg, G., Ali, A., Ahmad, I., Sinnegger-Brauns, M. J., Brandt, N., Engel, J., Mangoni, M. E., Farooq, M., Khan, H. U., Nürnberg, P., Striessnig, J., and Bolz, H. J. (2011) Nat. Neurosci. 14, 77-84). These studies suggest that detailed knowledge of Cav1.3 may have broad therapeutic ramifications in the treatment of cardiac arrhythmias. Here, we tested the hypothesis that there is a functional cross-talk between the Cav1.3 channel and a small conductance Ca(2+)-activated K(+) channel (SK2), which we have documented to be highly expressed in human and mouse atrial myocytes. Specifically, we tested the hypothesis that the C terminus of Cav1.3 may translocate to the nucleus where it functions as a transcriptional factor. Here, we reported for the first time that the C terminus of Cav1.3 translocates to the nucleus where it functions as a transcriptional regulator to modulate the function of Ca(2+)-activated K(+) channels in atrial myocytes. Nuclear translocation of the C-terminal domain of Cav1.3 is directly regulated by intracellular Ca(2+). Utilizing a Cav1.3 null mutant mouse model, we demonstrate that ablation of Cav1.3 results in a decrease in the protein expression of myosin light chain 2, which interacts and increases the membrane localization of SK2 channels.
Collapse
Affiliation(s)
- Ling Lu
- From the Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, California 95616,; the College of Life Sciences, Nanjing Normal University, Nanjing 210046, China.
| | - Padmini Sirish
- From the Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, California 95616
| | - Zheng Zhang
- From the Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, California 95616
| | - Ryan L Woltz
- From the Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, California 95616
| | - Ning Li
- From the Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, California 95616
| | - Valeriy Timofeyev
- From the Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, California 95616
| | - Anne A Knowlton
- From the Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, California 95616,; the Department of Veterans Affairs, Northern California Health Care System, Mather, California 95655
| | - Xiao-Dong Zhang
- From the Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, California 95616
| | - Ebenezer N Yamoah
- the Department of Physiology, School of Medicine, University of Nevada, Reno, Nevada 89557, and.
| | - Nipavan Chiamvimonvat
- From the Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, California 95616,; the Department of Veterans Affairs, Northern California Health Care System, Mather, California 95655,.
| |
Collapse
|
26
|
Yang L, Katchman A, Weinberg RL, Abrams J, Samad T, Wan E, Pitt GS, Marx SO. The PDZ motif of the α1C subunit is not required for surface trafficking and adrenergic modulation of CaV1.2 channel in the heart. J Biol Chem 2014; 290:2166-74. [PMID: 25505241 DOI: 10.1074/jbc.m114.602508] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Voltage-gated Ca(2+) channels play a key role in initiating muscle excitation-contraction coupling, neurotransmitter release, gene expression, and hormone secretion. The association of CaV1.2 with a supramolecular complex impacts trafficking, localization, turnover, and, most importantly, multifaceted regulation of its function in the heart. Several studies hint at an important role for the C terminus of the α1C subunit as a hub for multidimensional regulation of CaV1.2 channel trafficking and function. Recent studies have demonstrated an important role for the four-residue PDZ binding motif at the C terminus of α1C in interacting with scaffold proteins containing PDZ domains, in the subcellular localization of CaV1.2 in neurons, and in the efficient signaling to cAMP-response element-binding protein in neurons. However, the role of the α1C PDZ ligand domain in the heart is not known. To determine whether the α1C PDZ motif is critical for CaV1.2 trafficking and function in cardiomyocytes, we generated transgenic mice with inducible expression of an N-terminal FLAG epitope-tagged dihydropyridine-resistant α1C with the PDZ motif deleted (ΔPDZ). These mice were crossed with α-myosin heavy chain reverse transcriptional transactivator transgenic mice, and the double-transgenic mice were fed doxycycline. The ΔPDZ channels expressed, trafficked to the membrane, and supported robust excitation-contraction coupling in the presence of nisoldipine, a dihydropyridine Ca(2+) channel blocker, providing functional evidence that they appropriately target to dyads. The ΔPDZ Ca(2+) channels were appropriately regulated by isoproterenol and forskolin. These data indicate that the α1C PDZ motif is not required for surface trafficking, localization to the dyad, or adrenergic stimulation of CaV1.2 in adult cardiomyocytes.
Collapse
Affiliation(s)
- Lin Yang
- From the Division of Cardiology, Departments of Medicine and Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032 and
| | - Alexander Katchman
- From the Division of Cardiology, Departments of Medicine and Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032 and
| | - Richard L Weinberg
- From the Division of Cardiology, Departments of Medicine and Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032 and
| | - Jeffrey Abrams
- From the Division of Cardiology, Departments of Medicine and Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032 and
| | - Tahmina Samad
- From the Division of Cardiology, Departments of Medicine and Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032 and
| | - Elaine Wan
- From the Division of Cardiology, Departments of Medicine and Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032 and
| | - Geoffrey S Pitt
- the Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | - Steven O Marx
- From the Division of Cardiology, Departments of Medicine and Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032 and
| |
Collapse
|
27
|
Fuller MD, Fu Y, Scheuer T, Catterall WA. Differential regulation of CaV1.2 channels by cAMP-dependent protein kinase bound to A-kinase anchoring proteins 15 and 79/150. ACTA ACUST UNITED AC 2014; 143:315-24. [PMID: 24567507 PMCID: PMC3933935 DOI: 10.1085/jgp.201311075] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AKAP79/150 and AKAP15 exert functionally antagonistic effects on CaV1.2 channels. The CaV1.1 and CaV1.2 voltage-gated calcium channels initiate excitation-contraction coupling in skeletal and cardiac myocytes, excitation-transcription coupling in neurons, and many other cellular processes. Up-regulation of their activity by the β-adrenergic–PKA signaling pathway increases these physiological responses. PKA up-regulation of CaV1.2 activity can be reconstituted in a transfected cell system expressing CaV1.2Δ1800 truncated at the in vivo proteolytic processing site, the distal C-terminal domain (DCT; CaV1.2[1801–2122]), the auxiliary α2δ and β subunits of CaV1.2 channels, and A-kinase anchoring protein-15 (AKAP15), which binds to a site in the DCT. AKAP79/150 binds to the same site in the DCT as AKAP15. Here we report that AKAP79 is ineffective in supporting up-regulation of CaV1.2 channel activity by PKA, even though it binds to the same site in the DCT and inhibits the up-regulation of CaV1.2 channel activity supported by AKAP15. Mutation of the calcineurin-binding site in AKAP79 (AKAP79ΔPIX) allows it to support PKA-dependent up-regulation of CaV1.2 channel activity, suggesting that calcineurin bound to AKAP79 rapidly dephosphorylates CaV1.2 channels, thereby preventing their regulation by PKA. Both AKAP15 and AKAP79ΔPIX exert their regulatory effects on CaV1.2 channels in transfected cells by interaction with the modified leucine zipper motif in the DCT. Our results introduce an unexpected mode of differential regulation by AKAPs, in which binding of different AKAPs at a single site can competitively confer differential regulatory effects on the target protein by their association with different signaling proteins.
Collapse
Affiliation(s)
- Matthew D Fuller
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | | | | | | |
Collapse
|
28
|
Basal and β-adrenergic regulation of the cardiac calcium channel CaV1.2 requires phosphorylation of serine 1700. Proc Natl Acad Sci U S A 2014; 111:16598-603. [PMID: 25368181 DOI: 10.1073/pnas.1419129111] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
L-type calcium (Ca(2+)) currents conducted by voltage-gated Ca(2+) channel CaV1.2 initiate excitation-contraction coupling in cardiomyocytes. Upon activation of β-adrenergic receptors, phosphorylation of CaV1.2 channels by cAMP-dependent protein kinase (PKA) increases channel activity, thereby allowing more Ca(2+) entry into the cell, which leads to more forceful contraction. In vitro reconstitution studies and in vivo proteomics analysis have revealed that Ser-1700 is a key site of phosphorylation mediating this effect, but the functional role of this amino acid residue in regulation in vivo has remained uncertain. Here we have studied the regulation of calcium current and cell contraction of cardiomyocytes in vitro and cardiac function and homeostasis in vivo in a mouse line expressing the mutation Ser-1700-Ala in the CaV1.2 channel. We found that preventing phosphorylation at this site decreased the basal L-type CaV1.2 current in both neonatal and adult cardiomyocytes. In addition, the incremental increase elicited by isoproterenol was abolished in neonatal cardiomyocytes and was substantially reduced in young adult myocytes. In contrast, cellular contractility was only moderately reduced compared with wild type, suggesting a greater reserve of contractile function and/or recruitment of compensatory mechanisms. Mutant mice develop cardiac hypertrophy by the age of 3-4 mo, and maximal stress-induced exercise tolerance is reduced, indicating impaired physiological regulation in the fight-or-flight response. Our results demonstrate that phosphorylation at Ser-1700 alone is essential to maintain basal Ca(2+) current and regulation by β-adrenergic activation. As a consequence, blocking PKA phosphorylation at this site impairs cardiovascular physiology in vivo, leading to reduced exercise capacity in the fight-or-flight response and development of cardiac hypertrophy.
Collapse
|
29
|
Zhang SS, Shaw RM. Trafficking highways to the intercalated disc: new insights unlocking the specificity of connexin 43 localization. ACTA ACUST UNITED AC 2014; 21:43-54. [PMID: 24460200 DOI: 10.3109/15419061.2013.876014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
With each heartbeat, billions of cardiomyocytes work in concert to propagate the electrical excitation needed to effectively circulate blood. Regulated expression and timely delivery of connexin proteins to form gap junctions at the specialized cell-cell contact region, known as the intercalated disc, is essential to ventricular cardiomyocyte coupling. We focus this review on several regulatory mechanisms that have been recently found to govern the lifecycle of connexin 43 (Cx43), the short-lived and most abundantly expressed connexin in cardiac ventricular muscle. The Cx43 lifecycle begins with gene expression, followed by oligomerization into hexameric channels, and then cytoskeletal-based transport toward the disc region. Once delivered, hemichannels interact with resident disc proteins and are organized to effect intercellular coupling. We highlight recent studies exploring regulation of Cx43 localization to the intercalated disc, with emphasis on alternatively translated Cx43 isoforms and cytoskeletal transport machinery that together regulate Cx43 gap junction coupling between cardiomyocytes.
Collapse
|
30
|
Age-related homeostatic midchannel proteolysis of neuronal L-type voltage-gated Ca²⁺ channels. Neuron 2014; 82:1045-57. [PMID: 24908485 DOI: 10.1016/j.neuron.2014.04.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2014] [Indexed: 12/11/2022]
Abstract
Neural circuitry and brain activity depend critically on proper function of voltage-gated calcium channels (VGCCs), whose activity must be tightly controlled. We show that the main body of the pore-forming α1 subunit of neuronal L-type VGCCs, Cav1.2, is proteolytically cleaved, resulting in Cav1.2 fragment channels that separate but remain on the plasma membrane. This "midchannel" proteolysis is regulated by channel activity, involves the Ca(2+)-dependent protease calpain and the ubiquitin-proteasome system, and causes attenuation and biophysical alterations of VGCC currents. Recombinant Cav1.2 fragment channels mimicking the products of midchannel proteolysis do not form active channels on their own but, when properly paired, produce currents with distinct biophysical properties. Midchannel proteolysis increases dramatically with age and can be attenuated with an L-type VGCC blocker in vivo. Midchannel proteolysis represents a novel form of homeostatic negative-feedback processing of VGCCs that could profoundly affect neuronal excitability, neurotransmission, neuroprotection, and calcium signaling in physiological and disease states.
Collapse
|
31
|
Burtscher V, Schicker K, Novikova E, Pöhn B, Stockner T, Kugler C, Singh A, Zeitz C, Lancelot ME, Audo I, Leroy BP, Freissmuth M, Herzig S, Matthes J, Koschak A. Spectrum of Cav1.4 dysfunction in congenital stationary night blindness type 2. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:2053-65. [PMID: 24796500 PMCID: PMC4065569 DOI: 10.1016/j.bbamem.2014.04.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/11/2014] [Accepted: 04/23/2014] [Indexed: 11/26/2022]
Abstract
Defective retinal synaptic transmission in patients affected with congenital stationary night blindness type 2 (CSNB2) can result from different dysfunction phenotypes in Cav1.4 L-type calcium channels. Here we investigated two prototypical Cav1.4 variants from either end of the functional spectrum. Using whole-cell and single-channel patch-clamp techniques, we provide analysis of the biophysical characteristics of the point mutation L860P and the C-terminal truncating mutation R1827X. L860P showed a typical loss-of-function phenotype attributed to a reduced number of functional channels expressed at the plasma membrane as implied by gating current and non-stationary noise analyses. This phenotype can be rationalized, because the inserted proline is predicted to break an amphipatic helix close to the transmembrane segment IIIS1 and thus to reduce channel stability and promote misfolding. In fact, L860P was subject to an increased turnover. In contrast, R1827X displayed an apparent gain-of-function phenotype, i.e., due to a hyperpolarizing shift of the IV-curve and increased single-channel activity. However, truncation also resulted in the loss of functional C-terminal modulation and thus unmasked calcium-dependent inactivation. Thus R1827X failed to support continuous calcium influx. Current inactivation curtails the dynamic range of photoreceptors (e.g., when adapting to variation in illumination). Taken together, the analysis of two representative mutations that occur in CSNB2 patients revealed fundamental differences in the underlying defect. These may explain subtle variations in the clinical manifestation and must be taken into account, if channel function is to be restored by pharmacochaperones or related approaches.
Collapse
Affiliation(s)
- Verena Burtscher
- Medical University Vienna, Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Klaus Schicker
- Medical University Vienna, Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Elena Novikova
- University of Cologne, Department of Pharmacology and Center of Molecular Medicine, 50931 Cologne, Germany
| | - Birgit Pöhn
- Medical University Vienna, Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Thomas Stockner
- Medical University Vienna, Center for Physiology and Pharmacology, Department of Pharmacology, Währingerstrasse 13A, 1090 Wien, Austria
| | - Christof Kugler
- Medical University Vienna, Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Anamika Singh
- University of Innsbruck, Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, Innrain 80-82/III, 6020 Innsbruck, Austria
| | - Christina Zeitz
- INSERM, UMR_S968, Paris F-75012, France; CNRS, UMR_7210, Paris F-75012, France; UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris F-75012, France
| | - Marie-Elise Lancelot
- INSERM, UMR_S968, Paris F-75012, France; CNRS, UMR_7210, Paris F-75012, France; UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris F-75012, France
| | - Isabelle Audo
- INSERM, UMR_S968, Paris F-75012, France; CNRS, UMR_7210, Paris F-75012, France; UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris F-75012, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503, Paris F-75012, France; UCL-Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Bart Peter Leroy
- Dept of Ophthalmology & Center for Medical Genetics, Ghent University Hospital & Ghent University, 9000 Ghent, Belgium
| | - Michael Freissmuth
- Medical University Vienna, Center for Physiology and Pharmacology, Department of Pharmacology, Währingerstrasse 13A, 1090 Wien, Austria
| | - Stefan Herzig
- University of Cologne, Department of Pharmacology and Center of Molecular Medicine, 50931 Cologne, Germany
| | - Jan Matthes
- University of Cologne, Department of Pharmacology and Center of Molecular Medicine, 50931 Cologne, Germany
| | - Alexandra Koschak
- Medical University Vienna, Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| |
Collapse
|
32
|
Pyrimidine-2,4,6-triones are a new class of voltage-gated L-type Ca2+ channel activators. Nat Commun 2014; 5:3897. [PMID: 24941892 PMCID: PMC4083433 DOI: 10.1038/ncomms4897] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/15/2014] [Indexed: 12/15/2022] Open
Abstract
Cav1.2 and Cav1.3 are the main L-type Ca2+ channel subtypes in the brain. Cav1.3 channels have recently been implicated in the pathogenesis of Parkinson’s disease. Therefore, Cav1.3-selective blockers are developed as promising neuroprotective drugs. We studied the pharmacological properties of a pyrimidine-2,4,6-trione derivative (1-(3-chlorophenethyl)-3-cyclopentylpyrimidine-2,4,6-(1H,3H,5H)-trione, Cp8) recently reported as the first highly selective Cav1.3 blocker. Here we show, in contrast to this previous study, that Cp8 reproducibly increases inward Ca2+ currents of Cav1.3 and Cav1.2 channels expressed in tsA-201 cells by slowing activation, inactivation and enhancement of tail currents. Similar effects are also observed for native Cav1.3 and Cav1.2 channels in mouse chromaffin cells, while non-L-type currents are unaffected. Evidence for a weak and non-selective inhibition of Cav1.3 and Cav1.2 currents is only observed in a minority of cells using Ba2+ as charge carrier. Therefore, our data identify pyrimidine-2,4,6-triones as Ca2+ channel activators. Selective inhibitors of the L-type Ca2+ channel Cav1.3 are being developed as neuroprotective drugs. Here, Ortner et al. assess the pharmacological properties of a recently reported, selective Cav1.3 blocker and show that this agent is a Ca2+ channel activator.
Collapse
|
33
|
Striessnig J, Pinggera A, Kaur G, Bock G, Tuluc P. L-type Ca 2+ channels in heart and brain. ACTA ACUST UNITED AC 2014; 3:15-38. [PMID: 24683526 PMCID: PMC3968275 DOI: 10.1002/wmts.102] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
L-type calcium channels (Cav1) represent one of the three major classes (Cav1–3) of voltage-gated calcium channels. They were identified as the target of clinically used calcium channel blockers (CCBs; so-called calcium antagonists) and were the first class accessible to biochemical characterization. Four of the 10 known α1 subunits (Cav1.1–Cav1.4) form the pore of L-type calcium channels (LTCCs) and contain the high-affinity drug-binding sites for dihydropyridines and other chemical classes of organic CCBs. In essentially all electrically excitable cells one or more of these LTCC isoforms is expressed, and therefore it is not surprising that many body functions including muscle, brain, endocrine, and sensory function depend on proper LTCC activity. Gene knockouts and inherited human diseases have allowed detailed insight into the physiological and pathophysiological role of these channels. Genome-wide association studies and analysis of human genomes are currently providing even more hints that even small changes of channel expression or activity may be associated with disease, such as psychiatric disease or cardiac arrhythmias. Therefore, it is important to understand the structure–function relationship of LTCC isoforms, their differential contribution to physiological function, as well as their fine-tuning by modulatory cellular processes.
Collapse
Affiliation(s)
- Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center of Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Alexandra Pinggera
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center of Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Gurjot Kaur
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center of Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Gabriella Bock
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center of Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center of Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
34
|
Weiss S, Oz S, Benmocha A, Dascal N. Regulation of cardiac L-type Ca²⁺ channel CaV1.2 via the β-adrenergic-cAMP-protein kinase A pathway: old dogmas, advances, and new uncertainties. Circ Res 2013; 113:617-31. [PMID: 23948586 DOI: 10.1161/circresaha.113.301781] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the heart, adrenergic stimulation activates the β-adrenergic receptors coupled to the heterotrimeric stimulatory Gs protein, followed by subsequent activation of adenylyl cyclase, elevation of cyclic AMP levels, and protein kinase A (PKA) activation. One of the main targets for PKA modulation is the cardiac L-type Ca²⁺ channel (CaV1.2) located in the plasma membrane and along the T-tubules, which mediates Ca²⁺ entry into cardiomyocytes. β-Adrenergic receptor activation increases the Ca²⁺ current via CaV1.2 channels and is responsible for the positive ionotropic effect of adrenergic stimulation. Despite decades of research, the molecular mechanism underlying this modulation has not been fully resolved. On the contrary, initial reports of identification of key components in this modulation were later refuted using advanced model systems, especially transgenic animals. Some of the cardinal debated issues include details of specific subunits and residues in CaV1.2 phosphorylated by PKA, the nature, extent, and role of post-translational processing of CaV1.2, and the role of auxiliary proteins (such as A kinase anchoring proteins) involved in PKA regulation. In addition, the previously proposed crucial role of PKA in modulation of unstimulated Ca²⁺ current in the absence of β-adrenergic receptor stimulation and in voltage-dependent facilitation of CaV1.2 remains uncertain. Full reconstitution of the β-adrenergic receptor signaling pathway in heterologous expression systems remains an unmet challenge. This review summarizes the past and new findings, the mechanisms proposed and later proven, rejected or disputed, and emphasizes the essential issues that remain unresolved.
Collapse
Affiliation(s)
- Sharon Weiss
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel.
| | | | | | | |
Collapse
|
35
|
Distal C terminus of CaV1.2 channels plays a crucial role in the neural differentiation of dental pulp stem cells. PLoS One 2013; 8:e81332. [PMID: 24278424 PMCID: PMC3836819 DOI: 10.1371/journal.pone.0081332] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 10/21/2013] [Indexed: 11/30/2022] Open
Abstract
L-type voltage-dependent CaV1.2 channels play an important role in the maintenance of intracellular calcium homeostasis, and influence multiple cellular processes. C-terminal cleavage of CaV1.2 channels was reported in several types of excitable cells, but its expression and possible roles in non-excitable cells is still not clear. The aim of this study was to determine whether distal C-terminal fragment of CaV1.2 channels is present in rat dental pulp stem cells and its possible role in the neural differentiation of rat dental pulp stem cells. We generated stable CaV1.2 knockdown cells via short hairpin RNA (shRNA). Rat dental pulp stem cells with deleted distal C-terminal of CaV1.2 channels lost the potential of differentiation to neural cells. Re-expression of distal C-terminal of CaV1.2 rescued the effect of knocking down the endogenous CaV1.2 on the neural differentiation of rat dental pulp stem cells, indicating that the distal C-terminal of CaV1.2 is required for neural differentiation of rat dental pulp stem cells. These results provide new insights into the role of voltage-gated Ca2+ channels in stem cells during differentiation.
Collapse
|
36
|
Phosphorylation sites required for regulation of cardiac calcium channels in the fight-or-flight response. Proc Natl Acad Sci U S A 2013; 110:19621-6. [PMID: 24218620 DOI: 10.1073/pnas.1319421110] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
L-type Ca(2+) currents conducted by CaV1.2 channels initiate excitation-contraction coupling in the heart. Their activity is increased by β-adrenergic/cAMP signaling via phosphorylation by PKA in the fight-or-flight response, but the sites of regulation are unknown. We describe the functional role of phosphorylation of Ser1700 and Thr1704-sites of phosphorylation by PKA and casein kinase II at the interface between the proximal and distal C-terminal regulatory domains. Mutation of both residues to Ala in STAA mice reduced basal L-type Ca(2+) currents, due to a small decrease in expression and a substantial decrease in functional activity. The increase in L-type Ca(2+) current caused by isoproterenol was markedly reduced at physiological levels of stimulation (3-10 nM). Maximal increases in calcium current at nearly saturating concentrations of isoproterenol (100 nM) were also significantly reduced, but the mutation effects were smaller, suggesting that alternative regulatory mechanisms are engaged at maximal levels of stimulation. The β-adrenergic increase in cell contraction was also diminished. STAA ventricular myocytes exhibited arrhythmic contractions in response to isoproterenol, and up to 20% of STAA cells failed to sustain contractions when stimulated at 1 Hz. STAA mice have reduced exercise capacity, and cardiac hypertrophy is evident at 3 mo. We conclude that phosphorylation of Ser1700 and Thr1704 is essential for regulation of basal activity of CaV1.2 channels and for up-regulation by β-adrenergic signaling at physiological levels of stimulation. Disruption of phosphorylation at those sites leads to impaired cardiac function in vivo, as indicated by reduced exercise capacity and cardiac hypertrophy.
Collapse
|
37
|
Tyson JR, Snutch TP. Molecular nature of voltage‐gated calcium channels: structure and species comparison. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/wmts.91] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- John R. Tyson
- Michael Smith Laboratories University of British Columbia Vancouver BC Canada
| | - Terrance P. Snutch
- Michael Smith Laboratories University of British Columbia Vancouver BC Canada
| |
Collapse
|
38
|
Yang L, Katchman A, Samad T, Morrow J, Weinberg R, Marx SO. β-adrenergic regulation of the L-type Ca2+ channel does not require phosphorylation of α1C Ser1700. Circ Res 2013; 113:871-80. [PMID: 23825359 DOI: 10.1161/circresaha.113.301926] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
RATIONALE Sympathetic nervous system triggered activation of protein kinase A, which phosphorylates several targets within cardiomyocytes, augments inotropy, chronotropy, and lusitropy. An important target of β-adrenergic stimulation is the sarcolemmal L-type Ca(2+) channel, CaV1.2, which plays a key role in cardiac excitation-contraction coupling. The molecular mechanisms of β-adrenergic regulation of CaV1.2 in cardiomyocytes, however, are incompletely known. Recently, it has been postulated that proteolytic cleavage at Ala(1800) and protein kinase A phosphorylation of Ser(1700) are required for β-adrenergic modulation of CaV1.2. OBJECTIVE To assess the role of Ala(1800) in the cleavage of α1C and the role of Ser(1700) and Thr(1704) in mediating the adrenergic regulation of CaV1.2 in the heart. METHODS AND RESULTS Using a transgenic approach that enables selective and inducible expression in mice of FLAG-epitope-tagged, dihydropyridine-resistant CaV1.2 channels harboring mutations at key regulatory sites, we show that adrenergic regulation of CaV1.2 current and fractional shortening of cardiomyocytes do not require phosphorylation of either Ser(1700) or Thr(1704) of the α1C subunit. The presence of Ala(1800) and the (1798)NNAN(1801) motif in α1C is not required for proteolytic cleavage of the α1C C-terminus, and deletion of these residues did not perturb adrenergic modulation of CaV1.2 current. CONCLUSIONS These results show that protein kinase A phosphorylation of α1C Ser(1700) does not have a major role in the sympathetic stimulation of Ca(2+) current and contraction in the adult murine heart. Moreover, this new transgenic approach enables functional and reproducible screening of α1C mutants in freshly isolated adult cardiomyocytes in a reliable, timely, cost-effective manner.
Collapse
Affiliation(s)
- Lin Yang
- Division of Cardiology, Department of Medicine, College of Physicians and Surgeons, New York, NY 10032
| | - Alexander Katchman
- Division of Cardiology, Department of Medicine, College of Physicians and Surgeons, New York, NY 10032
| | - Tahmina Samad
- Division of Cardiology, Department of Medicine, College of Physicians and Surgeons, New York, NY 10032
| | - John Morrow
- Division of Cardiology, Department of Medicine, College of Physicians and Surgeons, New York, NY 10032
| | - Richard Weinberg
- Division of Cardiology, Department of Medicine, College of Physicians and Surgeons, New York, NY 10032
| | - Steven O Marx
- Division of Cardiology, Department of Medicine, College of Physicians and Surgeons, New York, NY 10032.,Department of Pharmacology Columbia University, College of Physicians and Surgeons, New York, NY 10032
| |
Collapse
|
39
|
A promoter in the coding region of the calcium channel gene CACNA1C generates the transcription factor CCAT. PLoS One 2013; 8:e60526. [PMID: 23613729 PMCID: PMC3628902 DOI: 10.1371/journal.pone.0060526] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 02/27/2013] [Indexed: 11/26/2022] Open
Abstract
The C-terminus of the voltage-gated calcium channel Cav1.2 encodes a transcription factor, the calcium channel associated transcriptional regulator (CCAT), that regulates neurite extension and inhibits Cav1.2 expression. The mechanisms by which CCAT is generated in neurons and myocytes are poorly understood. Here we show that CCAT is produced by activation of a cryptic promoter in exon 46 of CACNA1C, the gene that encodes CaV1.2. Expression of CCAT is independent of Cav1.2 expression in neuroblastoma cells, in mice, and in human neurons derived from induced pluripotent stem cells (iPSCs), providing strong evidence that CCAT is not generated by cleavage of CaV1.2. Analysis of the transcriptional start sites in CACNA1C and immune-blotting for channel proteins indicate that multiple proteins are generated from the 3′ end of the CACNA1C gene. This study provides new insights into the regulation of CACNA1C, and provides an example of how exonic promoters contribute to the complexity of mammalian genomes.
Collapse
|
40
|
Zhang SS, Shaw RM. Multilayered regulation of cardiac ion channels. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:876-85. [PMID: 23103513 PMCID: PMC3568256 DOI: 10.1016/j.bbamcr.2012.10.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 12/27/2022]
Abstract
Essential to beat-to-beat heart function is the ability for cardiomyocytes to propagate electrical excitation and generate contractile force. Both excitation and contractility depend on specific ventricular ion channels, which include the L-type calcium channel (LTCC) and the connexin 43 (Cx43) gap junction. Each of these two channels is localized to a distinct subdomain of the cardiomyocyte plasma membrane. In this review, we focus on regulatory mechanisms that govern the lifecycles of LTCC and Cx43, from their biogenesis in the nucleus to directed delivery to T-tubules and intercalated discs, respectively. We discuss recent findings on how alternative promoter usage, tissue-specific transcription, and alternative splicing determine precise ion channel expression levels within a cardiomyocyte. Moreover, recent work on microtubule and actin-dependent trafficking for Cx43 and LTCC are introduced. Lastly, we discuss how human cardiac disease phenotypes can be attributed to defects in distinct mechanisms of channel regulation at the level of gene expression and channel trafficking. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Collapse
Affiliation(s)
- Shan-Shan Zhang
- University of California, San Francisco, San Francisco, CA 94158, USA
| | | |
Collapse
|
41
|
Reinbothe TM, Alkayyali S, Ahlqvist E, Tuomi T, Isomaa B, Lyssenko V, Renström E. The human L-type calcium channel Cav1.3 regulates insulin release and polymorphisms in CACNA1D associate with type 2 diabetes. Diabetologia 2013; 56:340-9. [PMID: 23229155 DOI: 10.1007/s00125-012-2758-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 10/02/2012] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS Voltage-gated calcium channels of the L-type have been shown to be essential for rodent pancreatic beta cell function, but data about their presence and regulation in humans are incomplete. We therefore sought to elucidate which L-type channel isoform is functionally important and its association with inherited diabetes-related phenotypes. METHODS Beta cells of human islets from cadaver donors were enriched using FACS to study the expression of the genes encoding voltage-gated calcium channel (Cav)1.2 and Cav1.3 by absolute quantitative PCR in whole human and rat islets, as well as in clonal cells. Single-cell exocytosis was monitored as increases in cell capacitance after treatment with small interfering (si)RNA against CACNA1D (which encodes Cav1.3). Three single nucleotide polymorphisms (SNPs) were genotyped in 8,987 non-diabetic and 2,830 type 2 diabetic individuals from Finland and Sweden and analysed for associations with type 2 diabetes and insulin phenotypes. RESULTS In FACS-enriched human beta cells, CACNA1D mRNA expression exceeded that of CACNA1C (which encodes Cav1.2) by approximately 60-fold and was decreased in islets from type 2 diabetes patients. The latter coincided with diminished secretion of insulin in vitro. CACNA1D siRNA reduced glucose-stimulated insulin release in INS-1 832/13 cells and exocytosis in human beta cells. Phenotype/genotype associations of three SNPs in the CACNA1D gene revealed an association between the C allele of the SNP rs312480 and reduced mRNA expression, as well as decreased insulin secretion in vivo, whereas both rs312486/G and rs9841978/G were associated with type 2 diabetes. CONCLUSION/INTERPRETATION We conclude that the L-type calcium channel Cav1.3 is important in human glucose-induced insulin secretion, and common variants in CACNA1D might contribute to type 2 diabetes.
Collapse
Affiliation(s)
- T M Reinbothe
- Department of Clinical Sciences, Islet Pathophysiology, Lund University Diabetes Centre, Jan Waldenströms gata 35, , Malmö, Sweden.
| | | | | | | | | | | | | |
Collapse
|
42
|
Brunet S, Scheuer T, Catterall WA. Increased intracellular magnesium attenuates β-adrenergic stimulation of the cardiac Ca(V)1.2 channel. ACTA ACUST UNITED AC 2012; 141:85-94. [PMID: 23250865 PMCID: PMC3536518 DOI: 10.1085/jgp.201210864] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Increases in intracellular Mg2+ (Mg2+i), as observed in transient cardiac ischemia, decrease L-type Ca2+ current of mammalian ventricular myocytes (VMs). However, cardiac ischemia is associated with an increase in sympathetic tone, which could stimulate L-type Ca2+ current. Therefore, the effect of Mg2+i on L-type Ca2+ current in the context of increased sympathetic tone was unclear. We tested the impact of increased Mg2+i on the β-adrenergic stimulation of L-type Ca2+ current. Exposure of acutely dissociated adult VMs to higher Mg2+i concentrations decreased isoproterenol stimulation of the L-type Ca2+ current from 75 ± 13% with 0.8 mM Mg2+i to 20 ± 8% with 2.4 mM Mg2+i. We activated this signaling cascade at different steps to determine the site or sites of Mg2+i action. Exposure of VMs to increased Mg2+i attenuated the stimulation of L-type Ca2+ current induced by activation of adenylyl cyclase with forskolin, inhibition of cyclic nucleotide phosphodiesterases with isobutylmethylxanthine, and inhibition of phosphoprotein phosphatases I and IIA with calyculin A. These experiments ruled out significant effects of Mg2+i on these upstream steps in the signaling cascade and suggested that Mg2+i acts directly on CaV1.2 channels. One possible site of action is the EF-hand in the proximal C-terminal domain, just downstream in the signaling cascade from the site of regulation of CaV1.2 channels by protein phosphorylation on the C terminus. Consistent with this hypothesis, Mg2+i had no effect on enhancement of CaV1.2 channel activity by the dihydropyridine agonist (S)-BayK8644, which activates CaV1.2 channels by binding to a site formed by the transmembrane domains of the channel. Collectively, our results suggest that, in transient ischemia, increased Mg2+i reduces stimulation of L-type Ca2+ current by the β-adrenergic receptor by directly acting on CaV1.2 channels in a cell-autonomous manner, effectively decreasing the metabolic stress imposed on VMs until blood flow can be reestablished.
Collapse
Affiliation(s)
- Sylvain Brunet
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
43
|
Crump SM, Andres DA, Sievert G, Satin J. The cardiac L-type calcium channel distal carboxy terminus autoinhibition is regulated by calcium. Am J Physiol Heart Circ Physiol 2012. [PMID: 23203963 DOI: 10.1152/ajpheart.00396.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The L-type calcium channel (LTCC) provides trigger Ca(2+) for sarcoplasmic reticulum Ca-release, and LTCC function is influenced by interacting proteins including the LTCC distal COOH terminus (DCT) and calmodulin. DCT is proteolytically cleaved and reassociates with the LTCC complex to regulate calcium channel function. DCT reduces LTCC barium current (I(Ba,L)) in reconstituted channel complexes, yet the contribution of DCT to LTCC Ca(2+) current (I(Ca,L)) in cardiomyocyte systems is unexplored. This study tests the hypothesis that DCT attenuates cardiomyocyte I(Ca,L). We measured LTCC current and Ca(2+) transients with DCT coexpressed in murine cardiomyocytes. We also heterologously coexpressed DCT and Ca(V)1.2 constructs with truncations corresponding to the predicted proteolytic cleavage site, Ca(V)1.2Δ1801, and a shorter deletion corresponding to well-studied construct, Ca(V)1.2Δ1733. DCT inhibited I(Ba,L) in cardiomyocytes, and in human embryonic kidney (HEK) 293 cells expressing Ca(V)1.2Δ1801 and Ca(V)1.2Δ1733. Ca(2+)-CaM relieved DCT block in cardiomyocytes and HEK cells. The selective block of I(Ba,L) combined with Ca(2+)-CaM effects suggested that DCT-mediated blockade may be relieved under conditions of elevated Ca(2+). We therefore tested the hypothesis that DCT block is dynamic, increasing under relatively low Ca(2+), and show that DCT reduced diastolic Ca(2+) at low stimulation frequencies but spared high frequency Ca(2+) entry. DCT reduction of diastolic Ca(2+) and relief of block at high pacing frequencies and under conditions of supraphysiological bath Ca(2+) suggests that a physiological function of DCT is to increase the dynamic range of Ca(2+) transients in response to elevated pacing frequencies. Our data motivate the new hypothesis that DCT is a native reverse use-dependent inhibitor of LTCC current.
Collapse
Affiliation(s)
- Shawn M Crump
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0298, USA
| | | | | | | |
Collapse
|
44
|
Varshavsky A. Augmented generation of protein fragments during wakefulness as the molecular cause of sleep: a hypothesis. Protein Sci 2012; 21:1634-61. [PMID: 22930402 PMCID: PMC3527701 DOI: 10.1002/pro.2148] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 08/21/2012] [Indexed: 02/05/2023]
Abstract
Despite extensive understanding of sleep regulation, the molecular-level cause and function of sleep are unknown. I suggest that they originate in individual neurons and stem from increased production of protein fragments during wakefulness. These fragments are transient parts of protein complexes in which the fragments were generated. Neuronal Ca²⁺ fluxes are higher during wakefulness than during sleep. Subunits of transmembrane channels and other proteins are cleaved by Ca²⁺-activated calpains and by other nonprocessive proteases, including caspases and secretases. In the proposed concept, termed the fragment generation (FG) hypothesis, sleep is a state during which the production of fragments is decreased (owing to lower Ca²⁺ transients) while fragment-destroying pathways are upregulated. These changes facilitate the elimination of fragments and the remodeling of protein complexes in which the fragments resided. The FG hypothesis posits that a proteolytic cleavage, which produces two fragments, can have both deleterious effects and fitness-increasing functions. This (previously not considered) dichotomy can explain both the conservation of cleavage sites in proteins and the evolutionary persistence of sleep, because sleep would counteract deleterious aspects of protein fragments. The FG hypothesis leads to new explanations of sleep phenomena, including a longer sleep after sleep deprivation. Studies in the 1970s showed that ethanol-induced sleep in mice can be strikingly prolonged by intracerebroventricular injections of either Ca²⁺ alone or Ca²⁺ and its ionophore (Erickson et al., Science 1978;199:1219-1221; Harris, Pharmacol Biochem Behav 1979;10:527-534; Erickson et al., Pharmacol Biochem Behav 1980;12:651-656). These results, which were never interpreted in connection to protein fragments or the function of sleep, may be accounted for by the FG hypothesis about molecular causation of sleep.
Collapse
Affiliation(s)
- Alexander Varshavsky
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| |
Collapse
|
45
|
Kathryn ABELE, Jian YANG. Regulation of voltage-gated calcium channels by proteolysis. SHENG LI XUE BAO : [ACTA PHYSIOLOGICA SINICA] 2012; 64:504-514. [PMID: 23090491 PMCID: PMC4355999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Voltage gated calcium channels (VGCCs) are multi-subunit membrane proteins present in a variety of tissues and control many essential physiological processes. Due to their vital importance, VGCCs are regulated by a myriad of proteins and signaling pathways. Here we review the literature on the regulation of VGCCs by proteolysis of the pore-forming α1 subunit, Ca(v)α(1). This form of regulation modulates channel function and degradation and affects cellular gene expression and excitability. L-type Ca(2+) channels are proteolyzed in two ways, depending on tissue localization. In the heart and skeletal muscle, the distal C-terminus of Ca(v)α(1) is cleaved and acts as an autoinhibitor when it reassociates with the proximal C-terminus. Relief of this autoinhibition underlies the β-adrenergic stimulation-induced enhancement of cardiac and skeletal muscle calcium currents, part of the "fight or flight" response. Proteolysis of the distal C-terminus of L-type channels also occurs in the brain and is probably catalyzed by a calpain-like protease. In some brain regions, the entire C-terminus of L-type Ca(2+) channels can be cleaved by an unknown protease and translocates to the nucleus acting as a transcription factor. The distal C-terminus of P/Q-channel Ca(v)α(1) is also proteolyzed and translocates to the nucleus. Truncated forms of the PQ-channel Ca(v)α(1) are produced by many disease-causing mutations and interfere with the function of full-length channels. Truncated forms of N-type channel Ca(v)α(1), generated by mutagenesis, affect the expression of full-length channels. New forms of proteolysis of VGCC subunits remain to be discovered and may represent a fruitful area of VGCC research.
Collapse
Affiliation(s)
| | - YANG Jian
- Corresponding author: Tel: +1-212-854-6161; Fax: +1-212-531-0425;
| |
Collapse
|
46
|
Polster A, Ohrtman JD, Beam KG, Papadopoulos S. Fluorescence resonance energy transfer (FRET) indicates that association with the type I ryanodine receptor (RyR1) causes reorientation of multiple cytoplasmic domains of the dihydropyridine receptor (DHPR) α(1S) subunit. J Biol Chem 2012; 287:41560-8. [PMID: 23071115 DOI: 10.1074/jbc.m112.404194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The skeletal muscle dihydropyridine receptor (DHPR) in the t-tubular membrane serves as the Ca(2+) channel and voltage sensor for excitation-contraction (EC) coupling, triggering Ca(2+) release via the type 1 ryanodine receptor (RyR1) in the sarcoplasmic reticulum (SR). The two proteins appear to be physically linked, and both the α(1S) and β(1a) subunits of the DHPR are essential for EC coupling. Within α(1S), cytoplasmic domains of importance include the I-II loop (to which β(1a) binds), the II-III and III-IV loops, and the C terminus. However, the spatial relationship of these domains to one another has not been established. Here, we have taken the approach of measuring FRET between fluorescent proteins inserted into pairs of α(1S) cytoplasmic domains. Expression of these constructs in dyspedic (RyR1 null) and dysgenic (α(1S) null) myotubes was used to test for function and targeting to plasma membrane/SR junctions and to test whether the presence of RyR1 caused altered FRET. We found that in the absence of RyR1, measureable FRET occurred between the N terminus and C terminus (residue 1636), and between the II-III loop (residue 626) and both the N and C termini; the I-II loop (residue 406) showed weak FRET with the II-III loop but not with the N terminus. Association with RyR1 caused II-III loop FRET to decrease with the C terminus and increase with the N terminus and caused I-II loop FRET to increase with both the II-III loop and N terminus. Overall, RyR1 appears to cause a substantial reorientation of the cytoplasmic α(1S) domains consistent with their becoming more closely packed.
Collapse
Affiliation(s)
- Alexander Polster
- Department of Vegetative Physiology, University of Cologne, D-50931 Cologne, Germany
| | | | | | | |
Collapse
|
47
|
Bannister RA, Beam KG. Ca(V)1.1: The atypical prototypical voltage-gated Ca²⁺ channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1587-97. [PMID: 22982493 DOI: 10.1016/j.bbamem.2012.09.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 11/28/2022]
Abstract
Ca(V)1.1 is the prototype for the other nine known Ca(V) channel isoforms, yet it has functional properties that make it truly atypical of this group. Specifically, Ca(V)1.1 is expressed solely in skeletal muscle where it serves multiple purposes; it is the voltage sensor for excitation-contraction coupling and it is an L-type Ca²⁺ channel which contributes to a form of activity-dependent Ca²⁺ entry that has been termed Excitation-coupled Ca²⁺ entry. The ability of Ca(V)1.1 to serve as voltage-sensor for excitation-contraction coupling appears to be unique among Ca(V) channels, whereas the physiological role of its more conventional function as a Ca²⁺ channel has been a matter of uncertainty for nearly 50 years. In this chapter, we discuss how Ca(V)1.1 supports excitation-contraction coupling, the possible relevance of Ca²⁺ entry through Ca(V)1.1 and how alterations of Ca(V)1.1 function can have pathophysiological consequences. This article is part of a Special Issue entitled: Calcium channels.
Collapse
Affiliation(s)
- Roger A Bannister
- Department of Medicine, Cardiology Division, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | |
Collapse
|
48
|
Naranjo JR, Mellström B. Ca2+-dependent transcriptional control of Ca2+ homeostasis. J Biol Chem 2012; 287:31674-80. [PMID: 22822058 DOI: 10.1074/jbc.r112.384982] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Intracellular free Ca(2+) ions regulate many cellular functions, and in turn, the cell devotes many genes/proteins to keep tight control of the level of intracellular free Ca(2+). Here, we review recent work on Ca(2+)-dependent mechanisms and effectors that regulate the transcription of genes encoding proteins involved in the maintenance of the homeostasis of Ca(2+) in the cell.
Collapse
Affiliation(s)
- Jose R Naranjo
- National Center of Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC) and the Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.
| | | |
Collapse
|
49
|
Asynchronous Ca2+ current conducted by voltage-gated Ca2+ (CaV)-2.1 and CaV2.2 channels and its implications for asynchronous neurotransmitter release. Proc Natl Acad Sci U S A 2012; 109:E452-60. [PMID: 22308469 DOI: 10.1073/pnas.1121103109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have identified an asynchronously activated Ca(2+) current through voltage-gated Ca(2+) (Ca(V))-2.1 and Ca(V)2.2 channels, which conduct P/Q- and N-type Ca(2+) currents that initiate neurotransmitter release. In nonneuronal cells expressing Ca(V)2.1 or Ca(V)2.2 channels and in hippocampal neurons, prolonged Ca(2+) entry activates a Ca(2+) current, I(Async), which is observed on repolarization and decays slowly with a half-time of 150-300 ms. I(Async) is not observed after L-type Ca(2+) currents of similar size conducted by Ca(V)1.2 channels. I(Async) is Ca(2+)-selective, and it is unaffected by changes in Na(+), K(+), Cl(-), or H(+) or by inhibitors of a broad range of ion channels. During trains of repetitive depolarizations, I(Async) increases in a pulse-wise manner, providing Ca(2+) entry that persists between depolarizations. In single-cultured hippocampal neurons, trains of depolarizations evoke excitatory postsynaptic currents that show facilitation followed by depression accompanied by asynchronous postsynaptic currents that increase steadily during the train in parallel with I(Async). I(Async) is much larger for slowly inactivating Ca(V)2.1 channels containing β(2a)-subunits than for rapidly inactivating channels containing β(1b)-subunits. I(Async) requires global rises in intracellular Ca(2+), because it is blocked when Ca(2+) is chelated by 10 mM EGTA in the patch pipette. Neither mutations that prevent Ca(2+) binding to calmodulin nor mutations that prevent calmodulin regulation of Ca(V)2.1 block I(Async). The rise of I(Async) during trains of stimuli, its decay after repolarization, its dependence on global increases of Ca(2+), and its enhancement by β(2a)-subunits all resemble asynchronous release, suggesting that I(Async) is a Ca(2+) source for asynchronous neurotransmission.
Collapse
|
50
|
Bock G, Gebhart M, Scharinger A, Jangsangthong W, Busquet P, Poggiani C, Sartori S, Mangoni ME, Sinnegger-Brauns MJ, Herzig S, Striessnig J, Koschak A. Functional properties of a newly identified C-terminal splice variant of Cav1.3 L-type Ca2+ channels. J Biol Chem 2011; 286:42736-42748. [PMID: 21998310 PMCID: PMC3234942 DOI: 10.1074/jbc.m111.269951] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An intramolecular interaction between a distal (DCRD) and a proximal regulatory domain (PCRD) within the C terminus of long Ca(v)1.3 L-type Ca(2+) channels (Ca(v)1.3(L)) is a major determinant of their voltage- and Ca(2+)-dependent gating kinetics. Removal of these regulatory domains by alternative splicing generates Ca(v)1.3(42A) channels that activate at a more negative voltage range and exhibit more pronounced Ca(2+)-dependent inactivation. Here we describe the discovery of a novel short splice variant (Ca(v)1.3(43S)) that is expressed at high levels in the brain but not in the heart. It lacks the DCRD but, in contrast to Ca(v)1.3(42A), still contains PCRD. When expressed together with α2δ1 and β3 subunits in tsA-201 cells, Ca(v)1.3(43S) also activated at more negative voltages like Ca(v)1.3(42A) but Ca(2+)-dependent inactivation was less pronounced. Single channel recordings revealed much higher channel open probabilities for both short splice variants as compared with Ca(v)1.3(L). The presence of the proximal C terminus in Ca(v)1.3(43S) channels preserved their modulation by distal C terminus-containing Ca(v)1.3- and Ca(v)1.2-derived C-terminal peptides. Removal of the C-terminal modulation by alternative splicing also induced a faster decay of Ca(2+) influx during electrical activities mimicking trains of neuronal action potentials. Our findings extend the spectrum of functionally diverse Ca(v)1.3 L-type channels produced by tissue-specific alternative splicing. This diversity may help to fine tune Ca(2+) channel signaling and, in the case of short variants lacking a functional C-terminal modulation, prevent excessive Ca(2+) accumulation during burst firing in neurons. This may be especially important in neurons that are affected by Ca(2+)-induced neurodegenerative processes.
Collapse
Affiliation(s)
- Gabriella Bock
- Institute of Pharmacy, Pharmacology and Toxicology and Center of Molecular Biosciences Innsbruck, Peter-Mayr-Strasse 1/I, A-6020 Innsbruck, Austria
| | - Mathias Gebhart
- Institute of Pharmacy, Pharmacology and Toxicology and Center of Molecular Biosciences Innsbruck, Peter-Mayr-Strasse 1/I, A-6020 Innsbruck, Austria
| | - Anja Scharinger
- Institute of Pharmacy, Pharmacology and Toxicology and Center of Molecular Biosciences Innsbruck, Peter-Mayr-Strasse 1/I, A-6020 Innsbruck, Austria
| | - Wanchana Jangsangthong
- Department of Pharmacology and Center for Molecular Medicine, University of Cologne, Gleueler Strasse 24 and Robert-Koch-Strasse 21, D-50931 Cologne, Germany
| | - Perrine Busquet
- Institute of Pharmacy, Pharmacology and Toxicology and Center of Molecular Biosciences Innsbruck, Peter-Mayr-Strasse 1/I, A-6020 Innsbruck, Austria
| | - Chiara Poggiani
- Institute of Pharmacy, Pharmacology and Toxicology and Center of Molecular Biosciences Innsbruck, Peter-Mayr-Strasse 1/I, A-6020 Innsbruck, Austria
| | - Simone Sartori
- Institute of Pharmacy, Pharmacology and Toxicology and Center of Molecular Biosciences Innsbruck, Peter-Mayr-Strasse 1/I, A-6020 Innsbruck, Austria
| | - Matteo E Mangoni
- Département de Physiologie, CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France; INSERM, U661, F-34000 Montpellier, France; Universités de Montpellier 1 & 2, UMR-5203, F-34000 Montpellier, France; INSERM, U637, Montpellier, France
| | - Martina J Sinnegger-Brauns
- Institute of Pharmacy, Pharmacology and Toxicology and Center of Molecular Biosciences Innsbruck, Peter-Mayr-Strasse 1/I, A-6020 Innsbruck, Austria
| | - Stefan Herzig
- Department of Pharmacology and Center for Molecular Medicine, University of Cologne, Gleueler Strasse 24 and Robert-Koch-Strasse 21, D-50931 Cologne, Germany
| | - Jörg Striessnig
- Institute of Pharmacy, Pharmacology and Toxicology and Center of Molecular Biosciences Innsbruck, Peter-Mayr-Strasse 1/I, A-6020 Innsbruck, Austria.
| | - Alexandra Koschak
- Institute of Pharmacy, Pharmacology and Toxicology and Center of Molecular Biosciences Innsbruck, Peter-Mayr-Strasse 1/I, A-6020 Innsbruck, Austria.
| |
Collapse
|