1
|
Lin YF. Potassium channels as molecular targets of endocannabinoids. Channels (Austin) 2021; 15:408-423. [PMID: 34282702 PMCID: PMC8293965 DOI: 10.1080/19336950.2021.1910461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 10/25/2022] Open
Abstract
Endocannabinoids are a group of endogenous mediators derived from membrane lipids, which are implicated in a wide variety of physiological functions such as blood pressure regulation, immunity, pain, memory, reward, perception, reproduction, and sleep. N-Arachidonoylethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG) represent two major endocannabinoids in the human body and they exert many of their cellular and organ system effects by activating the Gi/o protein-coupled, cannabinoid type 1 (CB1) and type 2 (CB2) receptors. However, not all effects of cannabinoids are ascribable to their interaction with CB1 and CB2 receptors; indeed, macromolecules like other types of receptors, ion channels, transcription factors, enzymes, transporters, and cellular structure have been suggested to mediate the functional effects of cannabinoids. Among the proposed molecular targets of endocannabinoids, potassium channels constitute an intriguing group, because these channels not only are crucial in shaping action potentials and controlling the membrane potential and cell excitability, thereby regulating a wide array of physiological processes, but also serve as potential therapeutic targets for the treatment of cancer and metabolic, neurological and cardiovascular disorders. This review sought to survey evidence pertaining to the CB1 and CB2 receptor-independent actions of endocannabinoids on ion channels, with an emphasis on AEA and potassium channels. To better understand the functional roles as well as potential medicinal uses of cannabinoids in human health and disease, further mechanistic studies to delineate interactions between various types of cannabinoids and ion channels, including members in the potassium channel superfamily, are warranted.
Collapse
Affiliation(s)
- Yu-Fung Lin
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
- Department of Anesthesiology and Pain Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
2
|
Singh S, Agarwal P, Ravichandiran V. Two-Pore Domain Potassium Channel in Neurological Disorders. J Membr Biol 2021; 254:367-380. [PMID: 34169340 DOI: 10.1007/s00232-021-00189-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/26/2021] [Indexed: 01/10/2023]
Abstract
K2P channel is the leaky potassium channel that is critical to keep up the negative resting membrane potential for legitimate electrical conductivity of the excitable tissues. Recently, many substances and medication elements are discovered that could either straightforwardly or in a roundabout way influence the 15 distinctive K+ ion channels including TWIK, TREK, TASK, TALK, THIK, and TRESK. Opening and shutting of these channels or any adjustment in their conduct is thought to alter the pathophysiological condition of CNS. There is no document available till now to explain in detail about the molecular mechanism of agents acting on K2P channel. Accordingly, in this review we cover the current research and mechanism of action of these channels, we have also tried to mention the detailed effect of drugs and how the channel behavior changes by focusing on recent advances regarding activation and modulation of ion channels.
Collapse
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotions Industrial Park (EPIP), Industrial Area, Hajipur, District, Vaishali, 844102, Bihar, India.
| | - Punita Agarwal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotions Industrial Park (EPIP), Industrial Area, Hajipur, District, Vaishali, 844102, Bihar, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotions Industrial Park (EPIP), Industrial Area, Hajipur, District, Vaishali, 844102, Bihar, India
| |
Collapse
|
3
|
Multiple signals evoked by unisensory stimulation converge onto cerebellar granule and Purkinje cells in mice. Commun Biol 2020; 3:381. [PMID: 32669638 PMCID: PMC7363865 DOI: 10.1038/s42003-020-1110-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/25/2020] [Indexed: 12/27/2022] Open
Abstract
The cerebellum receives signals directly from peripheral sensory systems and indirectly from the neocortex. Even a single tactile stimulus can activate both of these pathways. Here we report how these different types of signals are integrated in the cerebellar cortex. We used in vivo whole-cell recordings from granule cells and unit recordings from Purkinje cells in mice in which primary somatosensory cortex (S1) could be optogenetically inhibited. Tactile stimulation of the upper lip produced two-phase granule cell responses (with latencies of ~8 ms and 29 ms), for which only the late phase was S1 dependent. In Purkinje cells, complex spikes and the late phase of simple spikes were S1 dependent. These results indicate that individual granule cells combine convergent inputs from the periphery and neocortex and send their outputs to Purkinje cells, which then integrate those signals with climbing fiber signals from the neocortex.
Collapse
|
4
|
Duan W, Hicks J, Makara MA, Ilkayeva O, Abraham DM. TASK-1 and TASK-3 channels modulate pressure overload-induced cardiac remodeling and dysfunction. Am J Physiol Heart Circ Physiol 2020; 318:H566-H580. [PMID: 31977249 DOI: 10.1152/ajpheart.00739.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tandem pore domain acid-sensitive K+ (TASK) channels are present in cardiac tissue; however, their contribution to cardiac pathophysiology is not well understood. Here, we investigate the role of TASK-1 and TASK-3 in the pathogenesis of cardiac dysfunction using both human tissue and mouse models of genetic TASK channel loss of function. Compared with normal human cardiac tissue, TASK-1 gene expression is reduced in association with either cardiac hypertrophy alone or combined cardiac hypertrophy and heart failure. In a pressure overload cardiomyopathy model, TASK-1 global knockout (TASK-1 KO) mice have both reduced cardiac hypertrophy and preserved cardiac function compared with wild-type mice. In contrast to the TASK-1 KO mouse pressure overload response, TASK-3 global knockout (TASK-3 KO) mice develop cardiac hypertrophy and a delayed onset of cardiac dysfunction compared with wild-type mice. The cardioprotective effects observed in TASK-1 KO mice are associated with pressure overload-induced augmentation of AKT phosphorylation and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression, with consequent augmentation of cardiac energetics and fatty acid oxidation. The protective effects of TASK-1 loss of function are associated with an enhancement of physiologic hypertrophic signaling and preserved metabolic functions. These findings may provide a rationale for TASK-1 channel inhibition in the treatment of cardiac dysfunction.NEW & NOTEWORTHY The role of tandem pore domain acid-sensitive K+ (TASK) channels in cardiac function is not well understood. This study demonstrates that TASK channel gene expression is associated with the onset of human cardiac hypertrophy and heart failure. TASK-1 and TASK-3 strongly affect the development of pressure overload cardiomyopathies in genetic models of TASK-1 and TASK-3 loss of function. The effects of TASK-1 loss of function were associated with enhanced AKT phosphorylation and expression of peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) transcription factor. These data suggest that TASK channels influence the development of cardiac hypertrophy and dysfunction in response to injury.
Collapse
Affiliation(s)
- Wei Duan
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Jonné Hicks
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | | - Olga Ilkayeva
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Dennis M Abraham
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
5
|
Cerebellar Stellate Cell Excitability Is Coordinated by Shifts in the Gating Behavior of Voltage-Gated Na + and A-Type K + Channels. eNeuro 2019; 6:ENEURO.0126-19.2019. [PMID: 31110133 PMCID: PMC6553571 DOI: 10.1523/eneuro.0126-19.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 01/12/2023] Open
Abstract
Neuronal excitability in the vertebrate brain is governed by the coordinated activity of both ligand- and voltage-gated ion channels. In the cerebellum, spontaneous action potential (AP) firing of inhibitory stellate cells (SCs) is variable, typically operating within the 5- to 30-Hz frequency range. AP frequency is shaped by the activity of somatodendritic A-type K+ channels and the inhibitory effect of GABAergic transmission. An added complication, however, is that whole-cell recording from SCs induces a time-dependent and sustained increase in membrane excitability making it difficult to define the full range of firing rates. Here, we show that whole-cell recording in cerebellar SCs of both male and female mice augments firing rates by reducing the membrane potential at which APs are initiated. AP threshold is lowered due to a hyperpolarizing shift in the gating behavior of voltage-gated Na+ channels. Whole-cell recording also elicits a hyperpolarizing shift in the gating behavior of A-type K+ channels which contributes to increased firing rates. Hodgkin–Huxley modeling and pharmacological experiments reveal that gating shifts in A-type K+ channel activity do not impact AP threshold, but rather promote channel inactivation which removes restraint on the upper limit of firing rates. Taken together, our work reveals an unappreciated impact of voltage-gated Na+ channels that work in coordination with A-type K+ channels to regulate the firing frequency of cerebellar SCs.
Collapse
|
6
|
Leist M, Rinné S, Datunashvili M, Aissaoui A, Pape HC, Decher N, Meuth SG, Budde T. Acetylcholine-dependent upregulation of TASK-1 channels in thalamic interneurons by a smooth muscle-like signalling pathway. J Physiol 2017; 595:5875-5893. [PMID: 28714121 DOI: 10.1113/jp274527] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/10/2017] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS The ascending brainstem transmitter acetylcholine depolarizes thalamocortical relay neurons while it induces hyperpolarization in local circuit inhibitory interneurons. Sustained K+ currents are modulated in thalamic neurons to control their activity modes; for the interneurons the molecular nature of the underlying ion channels is as yet unknown. Activation of TASK-1 K+ channels results in hyperpolarization of interneurons and suppression of their action potential firing. The modulation cascade involves a non-receptor tyrosine kinase, c-Src. The present study identifies a novel pathway for the activation of TASK-1 channels in CNS neurons that resembles cholinergic signalling and TASK-1 current modulation during hypoxia in smooth muscle cells. ABSTRACT The dorsal part of the lateral geniculate nucleus (dLGN) is the main thalamic site for state-dependent transmission of visual information. Non-retinal inputs from the ascending arousal system and inhibition provided by γ-aminobutyric acid (GABA)ergic local circuit interneurons (INs) control neuronal activity within the dLGN. In particular, acetylcholine (ACh) depolarizes thalamocortical relay neurons by inhibiting two-pore domain potassium (K2P ) channels. Conversely, ACh also hyperpolarizes INs via an as-yet-unknown mechanism. By using whole cell patch-clamp recordings in brain slices and appropriate pharmacological tools we here report that stimulation of type 2 muscarinic ACh receptors induces IN hyperpolarization by recruiting the G-protein βγ subunit (Gβγ), class-1A phosphatidylinositol-4,5-bisphosphate 3-kinase, and cellular and sarcoma (c-Src) tyrosine kinase, leading to activation of two-pore domain weakly inwardly rectifying K+ channel (TWIK)-related acid-sensitive K+ (TASK)-1 channels. The latter was confirmed by the use of TASK-1-deficient mice. Furthermore inhibition of phospholipase Cβ as well as an increase in the intracellular level of phosphatidylinositol-3,4,5-trisphosphate facilitated the muscarinic effect. Our results have uncovered a previously unknown role of c-Src tyrosine kinase in regulating IN function in the brain and identified a novel mechanism by which TASK-1 channels are activated in neurons.
Collapse
Affiliation(s)
- Michael Leist
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Susanne Rinné
- Institut für Physiologie und Pathophysiologie, AG Vegetative Physiologie, Philipps-Universität, Deutschhausstraße 1-2, D-35037, Marburg, Germany
| | - Maia Datunashvili
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Ania Aissaoui
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Hans-Christian Pape
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Niels Decher
- Institut für Physiologie und Pathophysiologie, AG Vegetative Physiologie, Philipps-Universität, Deutschhausstraße 1-2, D-35037, Marburg, Germany
| | - Sven G Meuth
- Department of Neurology, Westfälische Wilhelms-Universität, Albert-Schweitzer-Campus 1, D-48149, Münster, Germany
| | - Thomas Budde
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| |
Collapse
|
7
|
Phosphatidylinositol (4,5)-bisphosphate dynamically regulates the K 2P background K + channel TASK-2. Sci Rep 2017; 7:45407. [PMID: 28358046 PMCID: PMC5371824 DOI: 10.1038/srep45407] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/23/2017] [Indexed: 12/22/2022] Open
Abstract
Two-pore domain K2P K+ channels responsible for the background K+ conductance and the resting membrane potential, are also finely regulated by a variety of chemical, physical and physiological stimuli. Hormones and transmitters acting through Gq protein-coupled receptors (GqPCRs) modulate the activity of various K2P channels but the signalling involved has remained elusive, in particular whether dynamic regulation by membrane PI(4,5)P2, common among other classes of K+ channels, affects K2P channels is controversial. Here we show that K2P K+ channel TASK-2 requires PI(4,5)P2 for activity, a dependence that accounts for its run down in the absence of intracellular ATP and its full recovery by addition of exogenous PI(4,5)P2, its inhibition by low concentrations of polycation PI scavengers, and inhibition by PI(4,5)P2 depletion from the membrane. Comprehensive mutagenesis suggests that PI(4,5)P2 interaction with TASK-2 takes place at C-terminus where three basic aminoacids are identified as being part of a putative binding site.
Collapse
|
8
|
Ryoo K, Park JY. Two-pore Domain Potassium Channels in Astrocytes. Exp Neurobiol 2016; 25:222-232. [PMID: 27790056 PMCID: PMC5081468 DOI: 10.5607/en.2016.25.5.222] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/01/2016] [Accepted: 09/15/2016] [Indexed: 12/23/2022] Open
Abstract
Two-pore domain potassium (K2P) channels have a distinct structure and channel properties, and are involved in a background K+ current. The 15 members of the K2P channels are identified and classified into six subfamilies on the basis of their sequence similarities. The activity of the channels is dynamically regulated by various physical, chemical, and biological effectors. The channels are expressed in a wide variety of tissues in mammals in an isoform specific manner, and play various roles in many physiological and pathophysiological conditions. To function as channels, the K2P channels form dimers, and some isoforms form heterodimers that provide diversity in channel properties. In the brain, TWIK1, TREK1, TREK2, TRAAK, TASK1, and TASK3 are predominantly expressed in various regions, including the cerebral cortex, dentate gyrus, CA1-CA3, and granular layer of the cerebellum. TWIK1, TREK1, and TASK1 are highly expressed in astrocytes, where they play specific cellular roles. Astrocytes keep leak K+ conductance, called the passive conductance, which mainly involves TWIK1-TREK1 heterodimeric channel. TWIK1 and TREK1 also mediate glutamate release from astrocytes in an exocytosis-independent manner. The expression of TREK1 and TREK2 in astrocytes increases under ischemic conditions, that enhance neuroprotection from ischemia. Accumulated evidence has indicated that astrocytes, together with neurons, are involved in brain function, with the K2P channels playing critical role in these astrocytes.
Collapse
Affiliation(s)
- Kanghyun Ryoo
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Korea
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Korea
| |
Collapse
|
9
|
Kubota K, Ohtake N, Ohbuchi K, Mase A, Imamura S, Sudo Y, Miyano K, Yamamoto M, Kono T, Uezono Y. Hydroxy-α sanshool induces colonic motor activity in rat proximal colon: a possible involvement of KCNK9. Am J Physiol Gastrointest Liver Physiol 2015; 308:G579-90. [PMID: 25634809 PMCID: PMC4385894 DOI: 10.1152/ajpgi.00114.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 01/22/2015] [Indexed: 01/31/2023]
Abstract
Various colonic motor activities are thought to mediate propulsion and mixing/absorption of colonic content. The Japanese traditional medicine daikenchuto (TU-100), which is widely used for postoperative ileus in Japan, accelerates colonic emptying in healthy humans. Hydroxy-α sanshool (HAS), a readily absorbable active ingredient of TU-100 and a KCNK3/KCNK9/KCNK18 blocker as well as TRPV1/TRPA1 agonist, has been investigated for its effects on colonic motility. Motility was evaluated by intraluminal pressure and video imaging of rat proximal colons in an organ bath. Distribution of KCNKs was investigated by RT-PCR, in situ hybridization, and immunohistochemistry. Current and membrane potential were evaluated with use of recombinant KCNK3- or KCNK9-expressing Xenopus oocytes and Chinese hamster ovary cells. Defecation frequency in rats was measured. HAS dose dependently induced strong propulsive "squeezing" motility, presumably as long-distance contraction (LDC). TRPV1/TRPA1 agonists induced different motility patterns. The effect of HAS was unaltered by TRPV1/TRPA1 antagonists and desensitization. Lidocaine (a nonselective KCNK blocker) and hydroxy-β sanshool (a geometrical isomer of HAS and KCNK3 blocker) also induced colonic motility as a rhythmic propagating ripple (RPR) and a LDC-like motion, respectively. HAS-induced "LDC," but not lidocaine-induced "RPR," was abrogated by a neuroleptic agent tetrodotoxin. KCNK3 and KCNK9 were located mainly in longitudinal smooth muscle cells and in neural cells in the myenteric plexus, respectively. Administration of HAS or TU-100 increased defecation frequency in normal and laparotomy rats. HAS may evoke strong LDC possibly via blockage of the neural KCNK9 channel in the colonic myenteric plexus.
Collapse
Affiliation(s)
| | - Nobuhiro Ohtake
- 1Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan;
| | - Katsuya Ohbuchi
- 1Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan; ,2Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan;
| | - Akihito Mase
- 1Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan;
| | - Sachiko Imamura
- 1Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan;
| | - Yuka Sudo
- 2Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan;
| | - Kanako Miyano
- 2Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan;
| | | | - Toru Kono
- 3Department of Gastroenterology, Hokkaido University Graduate School of Medicine, Sapporo, Japan; and ,4Center for Clinical and Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Yasuhito Uezono
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan;
| |
Collapse
|
10
|
Renigunta V, Schlichthörl G, Daut J. Much more than a leak: structure and function of K₂p-channels. Pflugers Arch 2015; 467:867-94. [PMID: 25791628 DOI: 10.1007/s00424-015-1703-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 11/27/2022]
Abstract
Over the last decade, we have seen an enormous increase in the number of experimental studies on two-pore-domain potassium channels (K2P-channels). The collection of reviews and original articles compiled for this special issue of Pflügers Archiv aims to give an up-to-date summary of what is known about the physiology and pathophysiology of K2P-channels. This introductory overview briefly describes the structure of K2P-channels and their function in different organs. Its main aim is to provide some background information for the 19 reviews and original articles of this special issue of Pflügers Archiv. It is not intended to be a comprehensive review; instead, this introductory overview focuses on some unresolved questions and controversial issues, such as: Do K2P-channels display voltage-dependent gating? Do K2P-channels contribute to the generation of action potentials? What is the functional role of alternative translation initiation? Do K2P-channels have one or two or more gates? We come to the conclusion that we are just beginning to understand the extremely complex regulation of these fascinating channels, which are often inadequately described as 'leak channels'.
Collapse
Affiliation(s)
- Vijay Renigunta
- Institute of Physiology and Pathophysiology, Marburg University, 35037, Marburg, Germany
| | | | | |
Collapse
|
11
|
TASK channels in arterial chemoreceptors and their role in oxygen and acid sensing. Pflugers Arch 2015; 467:1013-25. [PMID: 25623783 PMCID: PMC4428840 DOI: 10.1007/s00424-015-1689-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 01/05/2023]
Abstract
Arterial chemoreceptors play a vital role in cardiorespiratory control by providing the brain with information regarding blood oxygen, carbon dioxide, and pH. The main chemoreceptor, the carotid body, is composed of sensory (type 1) cells which respond to hypoxia or acidosis with a depolarising receptor potential which in turn activates voltage-gated calcium entry, neurosecretion and excitation of adjacent afferent nerves. The receptor potential is generated by inhibition of Twik-related acid-sensitive K(+) channel 1 and 3 (TASK1/TASK3) heterodimeric channels which normally maintain the cells' resting membrane potential. These channels are thought to be directly inhibited by acidosis. Oxygen sensitivity, however, probably derives from a metabolic signalling pathway. The carotid body, isolated type 1 cells, and all forms of TASK channel found in the type 1 cell, are highly sensitive to inhibitors of mitochondrial metabolism. Moreover, type1 cell TASK channels are activated by millimolar levels of MgATP. In addition to their role in the transduction of chemostimuli, type 1 cell TASK channels have also been implicated in the modulation of chemoreceptor function by a number of neurocrine/paracrine signalling molecules including adenosine, GABA, and serotonin. They may also be instrumental in mediating the depression of the acute hypoxic ventilatory response that occurs with some general anaesthetics. Modulation of TASK channel activity is therefore a key mechanism by which the excitability of chemoreceptors can be controlled. This is not only of physiological importance but may also offer a therapeutic strategy for the treatment of cardiorespiratory disorders that are associated with chemoreceptor dysfunction.
Collapse
|
12
|
The role of protein-protein interactions in the intracellular traffic of the potassium channels TASK-1 and TASK-3. Pflugers Arch 2015; 467:1105-20. [PMID: 25559843 DOI: 10.1007/s00424-014-1672-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
Abstract
The intracellular transport of membrane proteins is controlled by trafficking signals: Short peptide motifs that mediate the contact with COPI, COPII or various clathrin-associated coat proteins. In addition, many membrane proteins interact with accessory proteins that are involved in the sorting of these proteins to different intracellular compartments. In the K2P channels, TASK-1 and TASK-3, the influence of protein-protein interactions on sorting decisions has been studied in some detail. Both TASK paralogues interact with the adaptor protein 14-3-3; TASK-1 interacts, in addition, with the adaptor protein p11 (S100A10) and the endosomal SNARE protein syntaxin-8. The role of these interacting proteins in controlling the intracellular traffic of the channels and the underlying molecular mechanisms are summarised in this review. In the case of 14-3-3, the interacting protein masks a retention signal in the C-terminus of the channel; in the case of p11, the interacting protein carries a retention signal that localises the channel to the endoplasmic reticulum; and in the case of syntaxin-8, the interacting protein carries an endocytosis signal that complements an endocytosis signal of the channel. These examples illustrate some of the mechanisms by which interacting proteins may determine the itinerary of a membrane protein within a cell and suggest that the intracellular traffic of membrane proteins may be adapted to the specific functions of that protein by multiple protein-protein interactions.
Collapse
|
13
|
Bista P, Pawlowski M, Cerina M, Ehling P, Leist M, Meuth P, Aissaoui A, Borsotto M, Heurteaux C, Decher N, Pape HC, Oliver D, Meuth SG, Budde T. Differential phospholipase C-dependent modulation of TASK and TREK two-pore domain K+ channels in rat thalamocortical relay neurons. J Physiol 2014; 593:127-44. [PMID: 25556792 DOI: 10.1113/jphysiol.2014.276527] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 09/23/2014] [Indexed: 01/10/2023] Open
Abstract
KEY POINTS During the behavioural states of sleep and wakefulness thalamocortical relay neurons fire action potentials in high frequency bursts or tonic sequences, respectively. The modulation of specific K(+) channel types, termed TASK and TREK, allows these neurons to switch between the two modes of activity. In this study we show that the signalling lipids phosphatidylinositol 4,5-bisphosphate (PIP2) and diacylglycerol (DAG), which are components of their membrane environment, switch on and shut off TREK and TASK channels, respectively. These channel modulations contribute to a better understanding of the molecular basis of the effects of neurotransmitters such as ACh which are released by the brainstem arousal system. The present report introduces PIP2 and DAG as new elements of signal transduction in the thalamus. The activity of two-pore domain potassium channels (K2P ) regulates the excitability and firing modes of thalamocortical (TC) neurons. In particular, the inhibition of two-pore domain weakly inwardly rectifying K(+) channel (TWIK)-related acid-sensitive K(+) (TASK) channels and TWIK-related K(+) (TREK) channels, as a consequence of the stimulation of muscarinic ACh receptors (MAChRs) which are coupled to phosphoinositide-specific phospholipase C (PLCβ), induces a shift from burst to tonic firing. By using a whole cell patch-clamp approach, the contribution of the membrane-bound second messenger molecules phosphatidylinositol 4,5-bisphosphate (PIP2 ) and diacylglycerol (DAG) acting downstream of PLCβ was probed. The standing outward current (ISO ) was used to monitor the current through TASK and TREK channels in TC neurons. By exploiting different manoeuvres to change the intracellular PIP2 level in TC neurons, we here show that the scavenging of PIP2 (by neomycin) results in an increased muscarinic effect on ISO whereas increased availability of PIP2 (inclusion to the patch pipette; histone-based carrier) decreased muscarinic signalling. The degree of muscarinic inhibition specifically depends on phosphatidylinositol phosphate (PIP) and PIP2 but no other phospholipids (phosphatidic acid, phosphatidylserine). The use of specific blockers revealed that PIP2 is targeting TREK but not TASK channels. Furthermore, we demonstrate that the inhibition of TASK channels is induced by the application of the DAG analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG). Under current clamp conditions the activation of MAChRs and PLCβ as well as the application of OAG resulted in membrane depolarization, while PIP2 application via histone carrier induced a hyperpolarization. These results demonstrate a differential role of PIP2 and DAG in K2P channel modulation in native neurons which allows a fine-tuned inhibition of TREK (via PIP2 depletion) and TASK (via DAG) channels following MAChR stimulation.
Collapse
Affiliation(s)
- Pawan Bista
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Straße 27a, D-48149, Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bayliss DA, Barhanin J, Gestreau C, Guyenet PG. The role of pH-sensitive TASK channels in central respiratory chemoreception. Pflugers Arch 2014; 467:917-29. [PMID: 25346157 DOI: 10.1007/s00424-014-1633-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/08/2014] [Accepted: 10/12/2014] [Indexed: 01/16/2023]
Abstract
A number of the subunits within the family of K2P background K(+) channels are sensitive to changes in extracellular pH in the physiological range, making them likely candidates to mediate various pH-dependent processes. Based on expression patterns within several brainstem neuronal cell groups that are believed to function in CO2/H(+) regulation of breathing, three TASK subunits-TASK-1, TASK-2, and TASK-3-were specifically hypothesized to contribute to this central respiratory chemoreflex. For the acid-sensitive TASK-1 and TASK-3 channels, despite widespread expression at multiple levels within the brainstem respiratory control system (including presumptive chemoreceptor populations), experiments in knockout mice provided no evidence for their involvement in CO2 regulation of breathing. By contrast, the alkaline-activated TASK-2 channel has a more restricted brainstem distribution and was localized to the Phox2b-expressing chemoreceptor neurons of the retrotrapezoid nucleus (RTN). Remarkably, in a Phox2b(27Ala/+) mouse genetic model of congenital central hypoventilation syndrome (CCHS) that is characterized by reduced central respiratory chemosensitivity, selective ablation of Phox2b-expressing RTN neurons was accompanied by a corresponding loss of TASK-2 expression. Furthermore, genetic deletion of TASK-2 blunted RTN neuronal pH sensitivity in vitro, reduced alkaline-induced respiratory network inhibition in situ and diminished the ventilatory response to CO2/H(+) in vivo. Notably, a subpopulation of RTN neurons from TASK-2(-/-) mice retained their pH sensitivity, at least in part due to a residual pH-sensitive background K(+) current, suggesting that other mechanisms (and perhaps other K2P channels) for RTN neuronal pH sensitivity are yet to be identified.
Collapse
Affiliation(s)
- Douglas A Bayliss
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908-0735, USA,
| | | | | | | |
Collapse
|
15
|
Bista P, Cerina M, Ehling P, Leist M, Pape HC, Meuth SG, Budde T. The role of two-pore-domain background K⁺ (K₂p) channels in the thalamus. Pflugers Arch 2014; 467:895-905. [PMID: 25346156 DOI: 10.1007/s00424-014-1632-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/09/2014] [Accepted: 10/12/2014] [Indexed: 12/15/2022]
Abstract
The thalamocortical system is characterized by two fundamentally different activity states, namely synchronized burst firing and tonic action potential generation, which mainly occur during the behavioral states of sleep and wakefulness, respectively. The switch between the two firing modes is crucially governed by the bidirectional modulation of members of the K2P channel family, namely tandem of P domains in a weakly inward rectifying K(+) (TWIK)-related acid-sensitive K(+) (TASK) and TWIK-related K(+) (TREK) channels, in thalamocortical relay (TC) neurons. Several physicochemical stimuli including neurotransmitters, protons, di- and multivalent cations as well as clinically used drugs have been shown to modulate K2P channels in these cells. With respect to modulation of these channels by G-protein-coupled receptors, PLCβ plays a unique role with both substrate breakdown and product synthesis exerting important functions. While the degradation of PIP2 leads to the closure of TREK channels, the production of DAG induces the inhibition of TASK channels. Therefore, TASK and TREK channels were found to be central elements in the control of thalamic activity modes. Since research has yet focused on identifying the muscarinic pathway underling the modulation of TASK and TREK channels in TC neurons, future studies should address other thalamic cell types and members of the K2P channel family.
Collapse
Affiliation(s)
- Pawan Bista
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, 48149, Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Martino PF, Olesiak S, Batuuka D, Riley D, Neumueller S, Forster HV, Hodges MR. Strain differences in pH-sensitive K+ channel-expressing cells in chemosensory and nonchemosensory brain stem nuclei. J Appl Physiol (1985) 2014; 117:848-56. [PMID: 25150225 DOI: 10.1152/japplphysiol.00439.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The ventilatory CO2 chemoreflex is inherently low in inbred Brown Norway (BN) rats compared with other strains, including inbred Dahl salt-sensitive (SS) rats. Since the brain stem expression of various pH-sensitive ion channels may be determinants of the CO2 chemoreflex, we tested the hypothesis that there would be fewer pH-sensitive K(+) channel-expressing cells in BN relative to SS rats within brain stem sites associated with respiratory chemoreception, such as the nucleus tractus solitarius (NTS), but not within the pre-Bötzinger complex region, nucleus ambiguus or the hypoglossal motor nucleus. Medullary sections (25 μm) from adult male and female BN and SS rats were stained with primary antibodies targeting TASK-1, Kv1.4, or Kir2.3 K(+) channels, and the total (Nissl-stained) and K(+) channel immunoreactive (-ir) cells counted. For both male and female rats, the numbers of K(+) channel-ir cells within the NTS were reduced in the BN compared with SS rats (P < 0.05), despite equal numbers of total NTS cells. In contrast, we found few differences in the numbers of K(+) channel-ir cells among the strains within the nucleus ambiguus, hypoglossal motor nucleus, or pre-Bötzinger complex regions in both male and female rats. However, there were no predicted functional mutations in each of the K(+) channels studied comparing genomic sequences among these strains. Thus we conclude that the relatively selective reductions in pH-sensitive K(+) channel-expressing cells in the NTS of male and female BN rats may contribute to their severely blunted ventilatory CO2 chemoreflex.
Collapse
Affiliation(s)
- Paul F Martino
- Biology Department, Carthage College, Kenosha, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - S Olesiak
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - D Batuuka
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - D Riley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - S Neumueller
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - H V Forster
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin; and
| | - M R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
17
|
de la Cruz IP, Ma L, Horvitz HR. The Caenorhabditis elegans iodotyrosine deiodinase ortholog SUP-18 functions through a conserved channel SC-box to regulate the muscle two-pore domain potassium channel SUP-9. PLoS Genet 2014; 10:e1004175. [PMID: 24586202 PMCID: PMC3930498 DOI: 10.1371/journal.pgen.1004175] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 12/28/2013] [Indexed: 02/04/2023] Open
Abstract
Loss-of-function mutations in the Caenorhabditis elegans gene sup-18 suppress the defects in muscle contraction conferred by a gain-of-function mutation in SUP-10, a presumptive regulatory subunit of the SUP-9 two-pore domain K+ channel associated with muscle membranes. We cloned sup-18 and found that it encodes the C. elegans ortholog of mammalian iodotyrosine deiodinase (IYD), an NADH oxidase/flavin reductase that functions in iodine recycling and is important for the biosynthesis of thyroid hormones that regulate metabolism. The FMN-binding site of mammalian IYD is conserved in SUP-18, which appears to require catalytic activity to function. Genetic analyses suggest that SUP-10 can function with SUP-18 to activate SUP-9 through a pathway that is independent of the presumptive SUP-9 regulatory subunit UNC-93. We identified a novel evolutionarily conserved serine-cysteine-rich region in the C-terminal cytoplasmic domain of SUP-9 required for its specific activation by SUP-10 and SUP-18 but not by UNC-93. Since two-pore domain K+ channels regulate the resting membrane potentials of numerous cell types, we suggest that the SUP-18 IYD regulates the activity of the SUP-9 channel using NADH as a coenzyme and thus couples the metabolic state of muscle cells to muscle membrane excitability. Iodotyrosine deiodinase (IYD) controls the recycling of iodide in the biogenesis of thyroid hormones that regulate metabolism. Defects in IYD result in congenital hypothyroidism, a multisystem disorder that can lead to growth failure and severe mental retardation. We identified the gene sup-18 of the nematode Caenorhabditis elegans as a regulator of the SUP-9/UNC-93/SUP-10 two-pore domain potassium channel complex and showed that SUP-18 is an ortholog of IYD, a member of the NADH oxidase/flavin reductase family. SUP-18 IYD is required for the activation of the channel complex by a gain-of-function mutation of the SUP-10 protein. SUP-9 channel activation by SUP-18 requires a conserved serine-cysteine-rich region in the C-terminus of SUP-9 and is independent of the function of the conserved multi-transmembrane protein UNC-93. We propose that SUP-18 uses NADH as a coenzyme to activate the SUP-9 channel in response to the activity of SUP-10 and the metabolic state of muscle cells.
Collapse
Affiliation(s)
- Ignacio Perez de la Cruz
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Long Ma
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - H. Robert Horvitz
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Marinc C, Derst C, Prüss H, Veh RW. Immunocytochemical localization of TASK-3 protein (K2P9.1) in the rat brain. Cell Mol Neurobiol 2014; 34:61-70. [PMID: 24077856 DOI: 10.1007/s10571-013-9987-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 09/13/2013] [Indexed: 01/06/2023]
Abstract
Among all K2P channels, TASK-3 shows the most widespread expression in rat brain, regulating neuronal excitability and transmitter release. Using a recently purified and characterized polyclonal monospecific antibody against TASK-3, the entire rat brain was immunocytochemically analyzed for expression of TASK-3 protein. Besides its well-known strong expression in motoneurons and monoaminergic and cholinergic neurons, TASK-3 expression was found in most neurons throughout the brain. However, it was not detected in certain neuronal populations, and neuropil staining was restricted to few areas. Also, it was absent in adult glial cells. In hypothalamic areas, TASK-3 was particularly strongly expressed in the supraoptic and suprachiasmatic nuclei, whereas other hypothalamic nuclei showed lower protein levels. Immunostaining of hippocampal CA1 and CA3 pyramidal neurons showed strongest expression, together with clear staining of CA3 mossy fibers and marked staining also in the dentate gyrus granule cells. In neocortical areas, most neurons expressed TASK-3 with a somatodendritic localization, most obvious in layer V pyramidal neurons. In the cerebellum, TASK-3 protein was found mainly in neurons and neuropil of the granular cell layer, whereas Purkinje cells were only faintly positive. Particularly weak expression was demonstrated in the forebrain. This report provides a comprehensive overview of TASK-3 protein expression in the rat brain.
Collapse
|
19
|
El Hachmane MF, Rees KA, Veale EL, Sumbayev VV, Mathie A. Enhancement of TWIK-related acid-sensitive potassium channel 3 (TASK3) two-pore domain potassium channel activity by tumor necrosis factor α. J Biol Chem 2013; 289:1388-401. [PMID: 24307172 DOI: 10.1074/jbc.m113.500033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TASK3 two-pore domain potassium (K2P) channels are responsible for native leak K channels in many cell types which regulate cell resting membrane potential and excitability. In addition, TASK3 channels contribute to the regulation of cellular potassium homeostasis. Because TASK3 channels are important for cell viability, having putative roles in both neuronal apoptosis and oncogenesis, we sought to determine their behavior under inflammatory conditions by investigating the effect of TNFα on TASK3 channel current. TASK3 channels were expressed in tsA-201 cells, and the current through them was measured using whole cell voltage clamp recordings. We show that THP-1 human myeloid leukemia monocytes, co-cultured with hTASK3-transfected tsA-201 cells, can be activated by the specific Toll-like receptor 7/8 activator, R848, to release TNFα that subsequently enhances hTASK3 current. Both hTASK3 and mTASK3 channel activity is increased by incubation with recombinant TNFα (10 ng/ml for 2-15 h), but other K2P channels (hTASK1, hTASK2, hTREK1, and hTRESK) are unaffected. This enhancement by TNFα is not due to alterations in levels of channel expression at the membrane but rather to an alteration in channel gating. The enhancement by TNFα can be blocked by extracellular acidification but persists for mutated TASK3 (H98A) channels that are no longer acid-sensitive even in an acidic extracellular environment. TNFα action on TASK3 channels is mediated through the intracellular C terminus of the channel. Furthermore, it occurs through the ASK1 pathway and is JNK- and p38-dependent. In combination, TNFα activation and TASK3 channel activity can promote cellular apoptosis.
Collapse
Affiliation(s)
- Mickael-F El Hachmane
- From the Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, ME4 4TB Kent, United Kingdom
| | | | | | | | | |
Collapse
|
20
|
Abstract
Dipeptidyl Peptidase-like Protein 6 (DPP6) is widely expressed in the brain where it co-assembles with Kv4 channels and KChIP auxiliary subunits to regulate the amplitude and functional properties of the somatodendritic A-current, ISA. Here we show that in cerebellar granule (CG) cells DPP6 also regulates resting membrane potential and input resistance by increasing the amplitude of the IK(SO) resting membrane current. Pharmacological analysis shows that DPP6 acts through the control of a channel with properties matching the K2P channel TASK-3. Heterologous expression and co-immunoprecipitation shows that DPP6 co-expression with TASK-3 results in the formation of a protein complex that enhances resting membrane potassium conductance. The co-regulation of resting and voltage-gated channels by DPP6 produces coordinate shifts in resting membrane potential and A-current gating that optimize the sensitivity of ISA inactivation gating to subthreshold fluctuations in resting membrane potential.
Collapse
|
21
|
Plant LD, Zuniga L, Araki D, Marks JD, Goldstein SAN. SUMOylation silences heterodimeric TASK potassium channels containing K2P1 subunits in cerebellar granule neurons. Sci Signal 2012; 5:ra84. [PMID: 23169818 DOI: 10.1126/scisignal.2003431] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The standing outward K(+) current (IKso) governs the response of cerebellar granule neurons to natural and medicinal stimuli including volatile anesthetics. We showed that SUMOylation silenced half of IKso at the surface of cerebellar granule neurons because the underlying channels were heterodimeric assemblies of K2P1, a subunit subject to SUMOylation, and the TASK (two-P domain, acid-sensitive K(+)) channel subunits K2P3 or K2P9. The heterodimeric channels comprised the acid-sensitive portion of IKso and mediated its response to halothane. We anticipate that SUMOylation also influences sensation and homeostatic mechanisms in mammals through TASK channels formed with K2P1.
Collapse
Affiliation(s)
- Leigh D Plant
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | |
Collapse
|
22
|
Huda R, Pollema-Mays SL, Chang Z, Alheid GF, McCrimmon DR, Martina M. Acid-sensing ion channels contribute to chemosensitivity of breathing-related neurons of the nucleus of the solitary tract. J Physiol 2012; 590:4761-75. [PMID: 22890703 DOI: 10.1113/jphysiol.2012.232470] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cellular mechanisms of central pH chemosensitivity remain largely unknown. The nucleus of the solitary tract (NTS) integrates peripheral afferents with central pathways controlling breathing; NTS neurons function as central chemosensors, but only limited information exists concerning the ionic mechanisms involved. Acid-sensing ion channels (ASICs) mediate chemosensitivity in nociceptive terminals, where pH values ∼6.5 are not uncommon in inflammation, but are also abundantly expressed throughout the brain where pHi s tightly regulated and their role is less clear. Here we test the hypothesis that ASICs are expressed in NTS neurons and contribute to intrinsic chemosensitivity and control of breathing. In electrophysiological recordings from acute rat NTS slices, ∼40% of NTS neurons responded to physiological acidification (pH 7.0) with a transient depolarization. This response was also present in dissociated neurons suggesting an intrinsic mechanism. In voltage clamp recordings in slices, a pH drop from 7.4 to 7.0 induced ASIC-like inward currents (blocked by 100 μM amiloride) in ∼40% of NTS neurons, while at pH ≤ 6.5 these currents were detected in all neurons tested; RT-PCR revealed expression of ASIC1 and, less abundantly, ASIC2 in the NTS. Anatomical analysis of dye-filled neurons showed that ASIC-dependent chemosensitive cells (cells responding to pH 7.0) cluster dorsally in the NTS. Using in vivo retrograde labelling from the ventral respiratory column, 90% (9/10) of the labelled neurons showed an ASIC-like response to pH 7.0, suggesting that ASIC currents contribute to control of breathing. Accordingly, amiloride injection into the NTS reduced phrenic nerve activity of anaesthetized rats with an elevated arterial P(CO(2)) .
Collapse
Affiliation(s)
- Rafiq Huda
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
23
|
Gabriel L, Lvov A, Orthodoxou D, Rittenhouse AR, Kobertz WR, Melikian HE. The acid-sensitive, anesthetic-activated potassium leak channel, KCNK3, is regulated by 14-3-3β-dependent, protein kinase C (PKC)-mediated endocytic trafficking. J Biol Chem 2012; 287:32354-66. [PMID: 22846993 DOI: 10.1074/jbc.m112.391458] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The acid-sensitive neuronal potassium leak channel, KCNK3, is vital for setting the resting membrane potential and is the primary target for volatile anesthetics. Recent reports demonstrate that KCNK3 activity is down-regulated by PKC; however, the mechanisms responsible for PKC-induced KCNK3 down-regulation are undefined. Here, we report that endocytic trafficking dynamically regulates KCNK3 activity. Phorbol esters and Group I metabotropic glutamate receptor (mGluR) activation acutely decreased both native and recombinant KCNK3 currents with concomitant KCNK3 surface losses in cerebellar granule neurons and cell lines. PKC-mediated KCNK3 internalization required the presence of both 14-3-3β and a novel potassium channel endocytic motif, because depleting either 14-3-3β protein levels or ablating the endocytic motif completely abrogated PKC-regulated KCNK3 trafficking. These results demonstrate that neuronal potassium leak channels are not static membrane residents but are subject to 14-3-3β-dependent regulated trafficking, providing a straightforward mechanism to modulate neuronal excitability and synaptic plasticity by Group I mGluRs.
Collapse
Affiliation(s)
- Luke Gabriel
- Graduate Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA
| | | | | | | | | | | |
Collapse
|
24
|
Mechanisms contributing to central excitability changes during hearing loss. Proc Natl Acad Sci U S A 2012; 109:8292-7. [PMID: 22566618 DOI: 10.1073/pnas.1116981109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Exposure to loud sound causes cochlear damage resulting in hearing loss and tinnitus. Tinnitus has been related to hyperactivity in the central auditory pathway occurring weeks after loud sound exposure. However, central excitability changes concomitant to hearing loss and preceding those periods of hyperactivity, remain poorly explored. Here we investigate mechanisms contributing to excitability changes in the dorsal cochlear nucleus (DCN) shortly after exposure to loud sound that produces hearing loss. We show that acoustic overexposure alters synaptic transmission originating from the auditory and the multisensory pathway within the DCN in different ways. A reduction in the number of myelinated auditory nerve fibers leads to a reduced maximal firing rate of DCN principal cells, which cannot be restored by increasing auditory nerve fiber recruitment. In contrast, a decreased membrane resistance of DCN granule cells (multisensory inputs) leads to a reduced maximal firing rate of DCN principal cells that is overcome when additional multisensory fibers are recruited. Furthermore, gain modulation by inhibitory synaptic transmission is disabled in both auditory and multisensory pathways. These cellular mechanisms that contribute to decreased cellular excitability in the central auditory pathway are likely to represent early neurobiological markers of hearing loss and may suggest interventions to delay or stop the development of hyperactivity that has been associated with tinnitus.
Collapse
|
25
|
Plant LD. A Role for K2P Channels in the Operation of Somatosensory Nociceptors. Front Mol Neurosci 2012; 5:21. [PMID: 22403526 PMCID: PMC3293133 DOI: 10.3389/fnmol.2012.00021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/09/2012] [Indexed: 12/20/2022] Open
Abstract
The ability to sense mechanical, thermal, and chemical stimuli is critical to normal physiology and the perception of pain. Contact with noxious stimuli triggers a complex series of events that initiate innate protective mechanisms designed to minimize or avoid injury. Extreme temperatures, mechanical stress, and chemical irritants are detected by specific ion channels and receptors clustered on the terminals of nociceptive sensory nerve fibers and transduced into electrical information. Propagation of these signals, from distant sites in the body to the spinal cord and the higher processing centers of the brain, is also orchestrated by distinct groups of ion channels. Since their identification in 1995, evidence has emerged to support roles for K2P channels at each step along this pathway, as receptors for physiological and noxious stimuli, and as determinants of nociceptor excitability and conductivity. In addition, the many subtypes of K2P channels expressed in somatosensory neurons are also implicated in mediating the effects of volatile, general anesthetics on the central and peripheral nervous systems. Here, I offer a critical review of the existing data supporting these attributes of K2P channel function and discuss how diverse regulatory mechanisms that control the activity of K2P channels act to govern the operation of nociceptors.
Collapse
Affiliation(s)
- Leigh D Plant
- Department of Biochemistry, Brandeis University Waltham, MA, USA
| |
Collapse
|
26
|
Identification of the muscarinic pathway underlying cessation of sleep-related burst activity in rat thalamocortical relay neurons. Pflugers Arch 2011; 463:89-102. [PMID: 22083644 DOI: 10.1007/s00424-011-1056-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/19/2011] [Accepted: 10/26/2011] [Indexed: 12/20/2022]
Abstract
Modulation of the standing outward current (I (SO)) by muscarinic acetylcholine (ACh) receptor (MAChR) stimulation is fundamental for the state-dependent change in activity mode of thalamocortical relay (TC) neurons. Here, we probe the contribution of MAChR subtypes, G proteins, phospholipase C (PLC), and two pore domain K(+) (K(2P)) channels to this signaling cascade. By the use of spadin and A293 as specific blockers, we identify TWIK-related K(+) (TREK)-1 channel as new targets and confirm TWIK-related acid-sensitve K(+) (TASK)-1 channels as known effectors of muscarinic signaling in TC neurons. These findings were confirmed using a high affinity blocker of TASK-3 and TREK-1, namely, tetrahexylammonium chloride. It was found that the effect of muscarinic stimulation was inhibited by M(1)AChR-(pirenzepine, MT-7) and M(3)AChR-specific (4-DAMP) antagonists, phosphoinositide-specific PLCβ (PI-PLC) inhibitors (U73122, ET-18-OCH(3)), but not the phosphatidylcholine-specific PLC (PC-PLC) blocker D609. By comparison, depleting guanosine-5'-triphosphate (GTP) in the intracellular milieu nearly completely abolished the effect of MAChR stimulation. The block of TASK and TREK channels was accompanied by a reduction of the muscarinic effect on I (SO). Current-clamp recordings revealed a membrane depolarization following MAChR stimulation, which was sufficient to switch TC neurons from burst to tonic firing under control conditions but not during block of M(1)AChR/M(3)AChR and in the absence of intracellular GTP. These findings point to a critical role of G proteins and PLC as well as TASK and TREK channels in the muscarinic modulation of thalamic activity modes.
Collapse
|
27
|
Kim JE, Yeo SI, Ryu HJ, Chung CK, Kim MJ, Kang TC. Changes in TWIK-related Acid Sensitive K+-1 and -3 Channel Expressions from Neurons to Glia in the Hippocampus of Temporal Lobe Epilepsy Patients and Experimental Animal Model. Neurochem Res 2011; 36:2155-68. [DOI: 10.1007/s11064-011-0540-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2011] [Indexed: 10/18/2022]
|
28
|
Lindner M, Leitner MG, Halaszovich CR, Hammond GRV, Oliver D. Probing the regulation of TASK potassium channels by PI4,5P₂ with switchable phosphoinositide phosphatases. J Physiol 2011; 589:3149-62. [PMID: 21540350 DOI: 10.1113/jphysiol.2011.208983] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
TASK channels are background K+ channels that contribute to the resting conductance in many neurons. A key feature of TASK channels is the reversible inhibition by Gq-coupled receptors, thereby mediating the dynamic regulation of neuronal activity by modulatory transmitters. The mechanism that mediates channel inhibition is not fully understood. While it is clear that activation of Gαq is required, the immediate signal for channel closure remains controversial. Experimental evidence pointed to either phospholipase C (PLC)-mediated depletion of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) as the cause for channel closure or to a direct inhibitory interaction of active Gαq with the channel. Here, we address the role of PI(4,5)P2 for G-protein-coupled receptor (GPCR)-mediated TASK inhibition by using recently developed genetically encoded tools to alter phosphoinositide (PI) concentrations in the living cell.When expressed in CHO cells, TASK-1- and TASK-3-mediated currents were not affected by depletion of plasma membrane PI(4,5)P2 either via the voltage-activated phosphatase Ci-VSP or via chemically triggered recruitment of a PI(4,5)P2-5'-phosphatase. Depletion of both PI(4,5)P2 and PI(4)P via membrane recruitment of a novel engineered dual-specificity phosphatase also did not inhibit TASK currents. In contrast, each of these methods produced robust inhibition of the bona fide PI(4,5)P2-dependent channel KCNQ4. Efficient depletion of PI(4,5)P2 and PI(4)P was further confirmed with a fluorescent phosphoinositide sensor. Moreover, TASK channels recovered normally from inhibition by co-expressed muscarinic M1 receptors when resynthesis of PI(4,5)P2 was prevented by depletion of cellular ATP. These results demonstrate that TASK channel activity is independent of phosphoinositide concentrations within the physiological range. Consequently, Gq-mediated inhibition of TASK channels is not mediated by depletion of PI(4,5)P2.
Collapse
Affiliation(s)
- Moritz Lindner
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, Deutschhausstrasse 1-2, 35037 Marburg, Germany
| | | | | | | | | |
Collapse
|
29
|
Marinc C, Preisig-Müller R, Prüss H, Derst C, Veh RW. Immunocytochemical localization of TASK-3 (K(2P)9.1) channels in monoaminergic and cholinergic neurons. Cell Mol Neurobiol 2011; 31:323-35. [PMID: 21082237 DOI: 10.1007/s10571-010-9625-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 10/20/2010] [Indexed: 10/18/2022]
Abstract
Monoaminergic and cholinergic systems are important regulators of cortical and subcortical systems, and a variety of vegetative functions are controlled by the respective neurotransmitters. Neuronal excitability and transmitter release of these neurons are strongly regulated by their potassium conductances carried by Kir and K(2P) channels. Here we describe the generation and characterization of a polyclonal monospecific antibody against rat TASK-3, a major brain K(2P) channel. After removal of cross-reactivities and affinity purification the antibody was characterized by ELISA, immunocytochemistry of TASK-3 transfected cells, and Western blots indicating that the antibody only detects TASK-3 protein, but not its paralogs TASK-1 and TASK-5. Western blot analysis of brain membrane fractions showed a single band around 45 kD, close to the predicted molecular weight of the TASK-3 protein. In addition, specific immunolabeling using the anti-TASK-3 antibody in Western blot analysis and immunocytochemistry was blocked in a concentration dependent manner by its cognate antigen only. Immunocytochemical analysis of rat brain revealed strong expression of TASK-3 channels in serotoninergic neurons of the dorsal and median raphe, noradrenergic neurons of the locus coeruleus, histaminergic neurons of the tuberomammillary nucleus and in the cholinergic neurons of the basal nucleus of Meynert. Immunofluorescence double-labeling experiments with appropriate marker enzymes confirmed the expression of TASK-3 in cholinergic, serotoninergic, and noradrenergic neurons. In the dopaminergic system strong TASK-3 expression was found in the ventral tegmental area, whereas TASK-3 immunoreactivity in the substantia nigra compacta was only weak. All immunocytochemical results were supported by in situ hybridization using TASK-3 specific riboprobes.
Collapse
Affiliation(s)
- Christiane Marinc
- Institut für Integrative Neuroanatomie, Centrum für Anatomie, Charité-Universitätsmedizin Berlin, Germany
| | | | | | | | | |
Collapse
|
30
|
Giessel AJ, Sabatini BL. M1 muscarinic receptors boost synaptic potentials and calcium influx in dendritic spines by inhibiting postsynaptic SK channels. Neuron 2010; 68:936-47. [PMID: 21145006 PMCID: PMC3052967 DOI: 10.1016/j.neuron.2010.09.004] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2010] [Indexed: 12/23/2022]
Abstract
Acetylcholine release and activation of muscarinic cholinergic receptors (mAChRs) enhance synaptic plasticity in vitro and cognition and memory in vivo. Within the hippocampus, mAChRs promote NMDA-type glutamate receptor-dependent forms of long-term potentiation. Here, we use calcium (Ca) imaging combined with two-photon laser glutamate uncaging at apical spines of CA1 pyramidal neurons to examine postsynaptic mechanisms of muscarinic modulation of glutamatergic transmission. Uncaging-evoked excitatory postsynaptic potentials and Ca transients are increased by muscarinic stimulation; however, this is not due to direct modulation of glutamate receptors. Instead, mAChRs modulate a negative feedback loop in spines that normally suppresses synaptic signals. mAChR activation reduces the Ca sensitivity of small conductance Ca-activated potassium (SK) channels that are found in the spine, resulting in increased synaptic potentials and Ca transients. These effects are mediated by M1-type muscarinic receptors and occur in a casein kinase-2-dependent manner. Thus, muscarinic modulation regulates synaptic transmission by tuning the activity of nonglutamatergic postsynaptic ion channels.
Collapse
Affiliation(s)
- Andrew J Giessel
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
31
|
Bittner S, Budde T, Wiendl H, Meuth SG. From the background to the spotlight: TASK channels in pathological conditions. Brain Pathol 2010; 20:999-1009. [PMID: 20529081 PMCID: PMC8094868 DOI: 10.1111/j.1750-3639.2010.00407.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 04/13/2010] [Indexed: 01/10/2023] Open
Abstract
TWIK-related acid-sensitive potassium channels (TASK1-3) belong to the family of two-pore domain (K(2P) ) potassium channels. Emerging knowledge about an involvement of TASK channels in cancer development, inflammation, ischemia and epilepsy puts the spotlight on a leading role of TASK channels under these conditions. TASK3 has been especially linked to cancer development. The pro-oncogenic potential of TASK3 could be shown in cell lines and in various tumor entities. Pathophysiological hallmarks in solid tumors (e.g. low pH and oxygen deprivation) regulate TASK3 channels. These conditions can also be found in (autoimmune) inflammation. Inhibition of TASK1,2,3 leads to a reduction of T cell effector function. It could be demonstrated that TASK1(-/-) mice are protected from experimental autoimmune inflammation while the same animals display increased infarct volumes after cerebral ischemia. Furthermore, TASK channels have both an anti-epileptic as well as a pro-epileptic potential. The relative contribution of these opposing influences depends on their cell type-specific expression and the conditions of the cellular environment. This indicates that TASK channels are per se neither protective nor detrimental but their functional impact depends on the "pathophysiological" scenario. Based on these findings TASK channels have evolved from "mere background" channels to key modulators in pathophysiological conditions.
Collapse
Affiliation(s)
- Stefan Bittner
- Department of Neurology, University of Wuerzburg, Wuerzburg, Germany
| | - Thomas Budde
- Institute of Physiology I, Westfaelische Wilhelms‐University Muenster, Muenster, Germany
| | - Heinz Wiendl
- Department of Neurology—Inflammatory disorders of the nervous system and neurooncology, University of Muenster, Muenster, Germany
| | - Sven G. Meuth
- Department of Neurology, University of Wuerzburg, Wuerzburg, Germany
- Department of Neurology—Inflammatory disorders of the nervous system and neurooncology, University of Muenster, Muenster, Germany
| |
Collapse
|
32
|
Two pore domain potassium channels in cerebral ischemia: a focus on K2P9.1 (TASK3, KCNK9). EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2010; 2:14. [PMID: 20646278 PMCID: PMC2912796 DOI: 10.1186/2040-7378-2-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 07/20/2010] [Indexed: 11/16/2022]
Abstract
Background Recently, members of the two-pore domain potassium channel family (K2P channels) could be shown to be involved in mechanisms contributing to neuronal damage after cerebral ischemia. K2P3.1-/- animals showed larger infarct volumes and a worse functional outcome following experimentally induced ischemic stroke. Here, we question the role of the closely related K2P channel K2P9.1. Methods We combine electrophysiological recordings in brain-slice preparations of wildtype and K2P9.1-/- mice with an in vivo model of cerebral ischemia (transient middle cerebral artery occlusion (tMCAO)) to depict a functional impact of K2P9.1 in stroke formation. Results Patch-clamp recordings reveal that currents mediated through K2P9.1 can be obtained in slice preparations of the dorsal lateral geniculate nucleus (dLGN) as a model of central nervous relay neurons. Current characteristics are indicative of K2P9.1 as they display an increase upon removal of extracellular divalent cations, an outward rectification and a reversal potential close to the potassium equilibrium potential. Lowering extracellular pH values from 7.35 to 6.0 showed comparable current reductions in neurons from wildtype and K2P9.1-/- mice (68.31 ± 9.80% and 69.92 ± 11.65%, respectively). These results could be translated in an in vivo model of cerebral ischemia where infarct volumes and functional outcomes showed a none significant tendency towards smaller infarct volumes in K2P9.1-/- animals compared to wildtype mice 24 hours after 60 min of tMCAO induction (60.50 ± 17.31 mm3 and 47.10 ± 19.26 mm3, respectively). Conclusions Together with findings from earlier studies on K2P2.1-/- and K2P3.1-/- mice, the results of the present study on K2P9.1-/- mice indicate a differential contribution of K2P channel subtypes to the diverse and complex in vivo effects in rodent models of cerebral ischemia.
Collapse
|
33
|
Veale EL, Rees KA, Mathie A, Trapp S. Dominant negative effects of a non-conducting TREK1 splice variant expressed in brain. J Biol Chem 2010; 285:29295-304. [PMID: 20605797 DOI: 10.1074/jbc.m110.108423] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Two-pore domain potassium (K(2P)) channels modulate neuronal excitability throughout the entire CNS. The stretch-activated channel TREK1 (K(2P)2.1) is expressed widely in brain and has been linked to depression, neuroprotection, pain perception, and epilepsy. Little, however, is known about the regulation of TREK1 expression on the transcriptional and translational level or about its trafficking to the plasma membrane. Here we have used PCR techniques to identify a splice variant of TREK1 expressed in the brain, which encodes a heavily truncated TREK1 protein retaining a single transmembrane domain. Functional expression of this splice variant TREK1ΔEx4 in tsA201 cells in the presence or absence of wild type TREK1 revealed that TREK1ΔEx4 has no channel activity itself but reduced TREK1 whole cell current amplitude. Confocal analysis of the expression of fluorescently tagged TREK1 variants revealed that TREK1ΔEx4 is translated, but it is retained in the intracellular compartment. Additionally, TREK1ΔEx4 reduced the level of TREK1 expression in the plasma membrane. Long and short forms of TREK1 derived from alternative translation initiation are differentially affected by TREK1ΔEx4, with the short form (lacking the first 41 amino acids at its N terminus) unaffected. This differential regulatory role of TREK1ΔEx4 will alter the functional profile of TREK1 current in neurons where they are expressed. These results indicate that the N-terminal domain and first transmembrane domain of TREK1 are likely to be important for channel dimerization and trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Emma L Veale
- Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham Maritime, Kent ME4 4TB, United Kingdom
| | | | | | | |
Collapse
|
34
|
Ortega-Sáenz P, Levitsky KL, Marcos-Almaraz MT, Bonilla-Henao V, Pascual A, López-Barneo J. Carotid body chemosensory responses in mice deficient of TASK channels. ACTA ACUST UNITED AC 2010; 135:379-92. [PMID: 20351062 PMCID: PMC2847918 DOI: 10.1085/jgp.200910302] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background K+ channels of the TASK family are believed to participate in sensory transduction by chemoreceptor (glomus) cells of the carotid body (CB). However, studies on the systemic CB-mediated ventilatory response to hypoxia and hypercapnia in TASK1- and/or TASK3-deficient mice have yielded conflicting results. We have characterized the glomus cell phenotype of TASK-null mice and studied the responses of individual cells to hypoxia and other chemical stimuli. CB morphology and glomus cell size were normal in wild-type as well as in TASK1−/− or double TASK1/3−/− mice. Patch-clamped TASK1/3-null glomus cells had significantly higher membrane resistance and less hyperpolarized resting potential than their wild-type counterpart. These electrical parameters were practically normal in TASK1−/− cells. Sensitivity of background currents to changes of extracellular pH was drastically diminished in TASK1/3-null cells. In contrast with these observations, responsiveness to hypoxia or hypercapnia of either TASK1−/− or double TASK1/3−/− cells, as estimated by the amperometric measurement of catecholamine release, was apparently normal. TASK1/3 knockout cells showed an enhanced secretory rate in basal (normoxic) conditions compatible with their increased excitability. Responsiveness to hypoxia of TASK1/3-null cells was maintained after pharmacological blockade of maxi-K+ channels. These data in the TASK-null mouse model indicate that TASK3 channels contribute to the background K+ current in glomus cells and to their sensitivity to external pH. They also suggest that, although TASK1 channels might be dispensable for O2/CO2 sensing in mouse CB cells, TASK3 channels (or TASK1/3 heteromers) could mediate hypoxic depolarization of normal glomus cells. The ability of TASK1/3−/− glomus cells to maintain a powerful response to hypoxia even after blockade of maxi-K+ channels, suggests the existence of multiple sensor and/or effector mechanisms, which could confer upon the cells a high adaptability to maintain their chemosensory function.
Collapse
Affiliation(s)
- Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Two-pore-domain potassium (K2P) channels are responsible for background leak currents which regulate the membrane potential and excitability of many cell types. Their activity is modulated by a variety of chemical and physical stimuli which act to increase or decrease the open probability of individual K2P channels. Crystallographic data and homology modelling suggest that all K(+) channels possess a highly conserved structure for ion selectivity and gating mechanisms. Like other K(+) channels, K2P channels are thought to have two primary conserved gating mechanisms: an inactivation (or C-type) gate at the selectivity filter close to the extracellular side of the channel and an activation gate at the intracellular entrance to the channel involving key, identified, hinge glycine residues. Zinc and hydrogen ions regulate Drosophila KCNK0 and mammalian TASK channels, respectively, by interacting with the inactivation gate of these channels. In contrast, the voltage dependence of TASK3 channels is mediated through its activation gate. For KCNK0 it has been shown that the gates display positive cooperativity. It is of much interest to determine whether other K2P regulatory compounds interact with either the activation gate or the inactivation gate to alter channel activity or, indeed, whether additional regulatory gating pathways exist.
Collapse
Affiliation(s)
- Alistair Mathie
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK.
| | | | | |
Collapse
|
36
|
Protein kinase G dynamically modulates TASK1-mediated leak K+ currents in cholinergic neurons of the basal forebrain. J Neurosci 2010; 30:5677-89. [PMID: 20410120 DOI: 10.1523/jneurosci.5407-09.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Leak K(+) conductance generated by TASK1/3 channels is crucial for neuronal excitability. However, endogenous modulators activating TASK channels in neurons remained unknown. We previously reported that in the presumed cholinergic neurons of the basal forebrain (BF), activation of NO-cGMP-PKG (protein kinase G) pathway enhanced the TASK1-like leak K(+) current (I-K(leak)). As 8-Br-cGMP enhanced the I-K(leak) mainly at pH 7.3 as if changing the I-K(leak) from TASK1-like to TASK3-like current, such an enhancement of the I-K(leak) would result either from an enhancement of hidden TASK3 component or from an acidic shift in the pH sensitivity profile of TASK1 component. In view of the report that protonation of TASK channel decreases its open probability, the present study was designed to examine whether the activation of PKG increases the conductance of TASK1 channels by reducing their binding affinity for H(+), i.e., by increasing K(d) for protonation, or not. We here demonstrate that PKG activation and inhibition respectively upregulate and downregulate TASK1 channels heterologously expressed in PKG-loaded HEK293 cells at physiological pH, by causing shifts in the K(d) in the acidic and basic directions, respectively. Such PKG modulations of TASK1 channels were largely abolished by mutating pH sensor H98. In the BF neurons that were identified to express ChAT and TASK1 channels, similar dynamic modulations of TASK1-like pH sensitivity of I-K(leak) were caused by PKG. It is strongly suggested that PKG activation and inhibition dynamically modulate TASK1 currents at physiological pH by bidirectionally changing K(d) values for protonation of the extracellular pH sensors of TASK1 channels in cholinergic BF neurons.
Collapse
|
37
|
Chiang PH, Yeh WC, Lee CT, Weng JY, Huang YY, Lien CC. M(1)-like muscarinic acetylcholine receptors regulate fast-spiking interneuron excitability in rat dentate gyrus. Neuroscience 2010; 169:39-51. [PMID: 20433901 DOI: 10.1016/j.neuroscience.2010.04.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 04/21/2010] [Accepted: 04/22/2010] [Indexed: 11/16/2022]
Abstract
Cholinergic transmission through muscarinic acetylcholine receptors (mAChRs) plays a key role in cortical oscillations. Although fast-spiking (FS), parvalbumin-expressing basket cells (BCs) are proposed to be the cellular substrates of gamma oscillations, previous studies reported that FS nonpyramidal cells in neocortical areas are unresponsive to cholinergic modulation. Dentate gyrus (DG) is an independent gamma oscillator in the hippocampal formation. However, in contrast to other cortical regions, the direct impact of mAChR activation on FS BC excitability in this area has not been investigated. Here, we show that bath-applied muscarine or carbachol, two mAChR agonists, depolarize DG BCs in the acute brain slices, leading to action potential firing in the theta-gamma bands in the presence of blockers of ionotropic glutamate and gamma-aminobutyric acid type A receptors at physiological temperatures. The depolarizing action persists in the presence of tetrodotoxin, a voltage-gated Na(+) channel blocker. In voltage-clamp recordings, muscarine markedly reduces background K(+) currents. These effects are mimicked by oxotremorine methiodide, an mAChR-specific agonist, and largely reversed by atropine, a non-selective mAChR antagonist, or pirenzepine, an M(1) receptor antagonist, but not by gallamine, an M(2/4) receptor antagonist. Interestingly, in contrast to M(1)-receptor-mediated depolarization, M(2) receptor activation by the specific agonist arecaidine but-2-ynyl ester tosylate down-regulates GABA release at BC axons-the effect is occluded by gallamine, an M(2) receptor antagonist. Overall, muscarinic activation results in a net increase in phasic inhibitory output to the target cells. Thus, cholinergic activation through M(1)-like receptor enhances BC activity and promotes the generation of nested theta and gamma rhythms, thereby enhancing hippocampal function and associated performance.
Collapse
Affiliation(s)
- P H Chiang
- Institute of Neuroscience and Brain Research Center, National Yang-Ming University, 155, Section 2, Li-Nong Street, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
38
|
Muhammad S, Aller MI, Maser-Gluth C, Schwaninger M, Wisden W. Expression of the kcnk3 potassium channel gene lessens the injury from cerebral ischemia, most likely by a general influence on blood pressure. Neuroscience 2010; 167:758-64. [PMID: 20167264 DOI: 10.1016/j.neuroscience.2010.02.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Revised: 02/08/2010] [Accepted: 02/10/2010] [Indexed: 01/27/2023]
Abstract
We examined the possible protective effect of TASK-1 (TWIK-related acid-sensitive potassium channel-1, kcnk3) and -3 potassium channels during stroke. TASK-1 and TASK-3, members of the two pore domain (K2P or kcnk) potassium channel family, form hetero or homodimers and help set the resting membrane potential. We used male TASK-1 and TASK-3 knockout mice in a model of focal cerebral ischemia, permanent middle cerebral artery occlusion (pMCAO). Infarct volume was measured 48 h after pMCAO. The TASK-1 knockout brains had larger infarct volumes (P=0.004), and those in TASK-3 knockouts were unchanged. As the TASK-1 gene is expressed in adrenal gland, heart and possibly blood vessels, the higher infarct volumes in the TASK-1 knockout mice could be due to TASK-1 regulating blood vessel tone and hence blood pressure or influencing blood vessel microarchitecture and blood flow rate. Indeed, we found that male TASK-1 knockout mice had reduced blood pressure, likely explaining the increased brain injury seen after pMCAO. Thus to make precise conclusions about how TASK-1 protects neurons, neural- or organ-specific deletions of the gene will be needed. Nevertheless, a consequence of having TASK-1 channels expressed (in various non-neuronal tissues and organs) is that neuronal damage is lessened when stroke occurs.
Collapse
Affiliation(s)
- S Muhammad
- Department of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
39
|
Developmental expression of a functional TASK-1 2P domain K+ channel in embryonic chick heart. J Biomed Sci 2009; 16:104. [PMID: 19930646 PMCID: PMC2788539 DOI: 10.1186/1423-0127-16-104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 11/23/2009] [Indexed: 11/30/2022] Open
Abstract
Background Background K+ channels are the principal determinants of the resting membrane potential (RMP) in cardiac myocytes and thus, influence the magnitude and time course of the action potential (AP). Methods RT-PCR and in situ hybridization are used to study the distribution of TASK-1 and whole-cell patch clamp technique is employed to determine the functional expression of TASK-1 in embryonic chick heart. Results Chicken TASK-1 was expressed in the early tubular heart, then substantially decreased in the ventricles by embryonic day 5 (ED5), but remained relatively high in ED5 and ED11 atria. Unlike TASK-1, TASK-3 was uniformly expressed in heart at all developmental stages. In situ hybridization studies further revealed that TASK-1 was expressed throughout myocardium at Hamilton-Hamburger stages 11 and 18 (S11 & S18) heart. In ED11 heart, TASK-1 expression was more restricted to atria. Consistent with TASK-1 expression data, patch clamp studies indicated that there was little TASK-1 current, as measured by the difference currents between pH 8.4 and pH 7.4, in ED5 and ED11 ventricular myocytes. However, TASK-1 current was present in the early embryonic heart and ED11 atrial myocytes. TASK-1 currents were also identified as 3 μM anandamide-sensitive currents. 3 μM anandamide reduced TASK-1 currents by about 58% in ED11 atrial myocytes. Zn2+ (100 μM) which selectively inhibits TASK-3 channel at this concentration had no effect on TASK currents. In ED11 ventricle where TASK-1 expression was down-regulated, IK1 was about 5 times greater than in ED11 atrial myocytes. Conclusion Functional TASK-1 channels are differentially expressed in the developing chick heart and TASK-1 channels contribute to background K+ conductance in the early tubular embryonic heart and in atria. TASK-1 channels act as a contributor to background K+ current to modulate the cardiac excitability in the embryonic heart that expresses little IK1.
Collapse
|
40
|
Riley D, Dwinell M, Qian B, Krause KL, Bonis JM, Neumueller S, Marshall BD, Hodges MR, Forster HV. Differences between three inbred rat strains in number of K+ channel-immunoreactive neurons in the medullary raphé nucleus. J Appl Physiol (1985) 2009; 108:1003-10. [PMID: 19926827 DOI: 10.1152/japplphysiol.00625.2009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ventilatory sensitivity to hypercapnia is greater in Dahl salt-sensitive (SS) rats than in Fawn Hooded hypertensive (FHH) and Brown Norway (BN) inbred rats. Since pH-sensitive potassium ion (K(+)) channels are postulated to contribute to the sensing and signaling of changes in CO(2)-H(+) in chemosensitive neurons, we tested the hypothesis that there are more pH-sensitive K(+) channel-immunoreactive (ir) neurons within the medullary raphé nuclei of the highly chemosensitive SS rats than in the other two strains. Medullary tissues from male and female BN, FHH, and SS rats were stained with cresyl violet or with antibodies targeting TASK-1, K(v)1.4, and Kir2.3 channels. K(+) channel-ir neurons were quantified and compared with the total neurons in the region. The total number of neurons in the medullary raphé 1) was greater in male FHH than the other male rats, 2) did not differ among the female rats, and 3) did not differ between sexes. The average number of K(+) channel-ir neurons per section was 30-60 neurons higher in the male SS than in the other rat strains. In contrast, for the females, the number of K(+) channel-ir neurons was greatest in the BN. We also found significant differences in the number of K(+) channel-ir neurons between sexes in SS (males > females) and BN (females > males) rats, but not the FHH strain. Our findings support the hypothesis for males but not for females, suggesting that both genetic background and sex are determinants of K(+) channel immunoreactivity of medullary raphé neurons, and that the expression of pH-sensitive K(+) channels in the medullary raphé does not correlate with the ventilatory sensitivity to hypercapnia.
Collapse
Affiliation(s)
- D Riley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ashmole I, Vavoulis DV, Stansfeld PJ, Mehta PR, Feng JF, Sutcliffe MJ, Stanfield PR. The response of the tandem pore potassium channel TASK-3 (K(2P)9.1) to voltage: gating at the cytoplasmic mouth. J Physiol 2009; 587:4769-83. [PMID: 19703964 PMCID: PMC2770146 DOI: 10.1113/jphysiol.2009.175430] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 08/24/2009] [Indexed: 02/04/2023] Open
Abstract
Although the tandem pore potassium channel TASK-3 is thought to open and shut at its selectivity filter in response to changes of extracellular pH, it is currently unknown whether the channel also shows gating at its inner, cytoplasmic mouth through movements of membrane helices M2 and M4. We used two electrode voltage clamp and single channel recording to show that TASK-3 responds to voltage in a way that reveals such gating. In wild-type channels, P(open) was very low at negative voltages, but increased with depolarisation. The effect of voltage was relatively weak and the gating charge small, 0.17. Mutants A237T (in M4) and N133A (in M2) increased P(open) at a given voltage, increasing mean open time and the number of openings per burst. In addition, the relationship between P(open) and voltage was shifted to less positive voltages. Mutation of putative hinge glycines (G117A, G231A), residues that are conserved throughout the tandem pore channel family, reduced P(open) at a given voltage, shifting the relationship with voltage to a more positive potential range. None of these mutants substantially affected the response of the channel to extracellular acidification. We have used the results from single channel recording to develop a simple kinetic model to show how gating occurs through two classes of conformation change, with two routes out of the open state, as expected if gating occurs both at the selectivity filter and at its cytoplasmic mouth.
Collapse
Affiliation(s)
- I Ashmole
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Analysis of astroglial K+ channel expression in the developing hippocampus reveals a predominant role of the Kir4.1 subunit. J Neurosci 2009; 29:7474-88. [PMID: 19515915 DOI: 10.1523/jneurosci.3790-08.2009] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Astrocytes in different brain regions display variable functional properties. In the hippocampus, astrocytes predominantly express time- and voltage-independent currents, but the underlying ion channels are not well defined. This ignorance is partly attributable to abundant intercellular coupling of these cells through gap junctions, impeding quantitative analyses of intrinsic membrane properties. Moreover, distinct types of cells with astroglial properties coexist in a given brain area, a finding that confused previous analyses. In the present study, we investigated expression of inwardly rectifying (Kir) and two-pore-domain (K2P) K+ channels in astrocytes, which are thought to be instrumental in the regulation of K+ homeostasis. Freshly isolated astrocytes were used to improve space-clamp conditions and allow for quantitative assessment of functional parameters. Patch-clamp recordings were combined with immunocytochemistry, Western blot analysis, and semiquantitative transcript analysis. Comparative measurements were performed in different CA1 subregions of astrocyte-targeted transgenic mice. While confirming weak Ba2+ sensitivity in situ, our data demonstrate that in freshly isolated astrocytes, the main proportion of membrane currents is sensitive to micromolar Ba2+ concentrations. Upregulation of Kir4.1 transcripts and protein during the first 10 postnatal days was accompanied by a fourfold increase in astrocyte inward current density. Hippocampal astrocytes from Kir4.1-/- mice lacked Ba2+-sensitive currents. In addition, we report functional expression of K2P channels of the TREK subfamily (TREK1, TREK2), which mediate astroglial outward currents. Together, our findings demonstrate that Kir4.1 constitutes the pivotal K+ channel subunit and that superposition of currents through Kir4.1 and TREK channels underlies the "passive" current pattern of hippocampal astrocytes.
Collapse
|
43
|
Nanou E, Kyriakatos A, Kettunen P, El Manira A. Separate signalling mechanisms underlie mGluR1 modulation of leak channels and NMDA receptors in the network underlying locomotion. J Physiol 2009; 587:3001-8. [PMID: 19403613 DOI: 10.1113/jphysiol.2009.172452] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Metabotropic glutamate receptor subtype 1 (mGluR1) contributes importantly to the activity of the spinal locomotor network. For example, it potentiates NMDA current and inhibits leak conductance in lamprey spinal cord neurons. In this study we examined the signalling pathways underlying the mGluR1 modulation of NMDA receptors and leak channels, respectively. Our results show that mGluR1-induced potentiation of NMDA current required activation of phospholipase C (PLC) and was independent of the increase in the intracellular Ca2+ concentration because it was unaffected by the Ca2+ chelator BAPTA and by depletion of the internal Ca2+ stores with thapsigargin. We also show that the mGluR1-mediated inhibition of leak channels is mediated by activation of G-proteins. Finally, we show that blockade of protein kinase C (PKC) abolished the mGluR1-induced inhibition of leak current without affecting the potentiation of NMDA receptors. The contribution of mGluR1-mediated modulation of leak channels to the potentiation of the locomotor cycle frequency was assessed during fictive locomotion. Blockade of PKC significantly decreased the short-term potentiation of locomotor cycle frequency by mGluR1. These results show that the effects of mGluR1 activation on the two cellular targets, the NMDA receptor and leak channels, are mediated through separate signalling pathways.
Collapse
Affiliation(s)
- Evanthia Nanou
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
44
|
Dynamic, nonlinear feedback regulation of slow pacemaking by A-type potassium current in ventral tegmental area neurons. J Neurosci 2008; 28:10905-17. [PMID: 18945898 DOI: 10.1523/jneurosci.2237-08.2008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We analyzed ionic currents that regulate pacemaking in dopaminergic neurons of the mouse ventral tegmental area by comparing voltage trajectories during spontaneous firing with ramp-evoked currents in voltage clamp. Most recordings were made in brain slice, with key experiments repeated using acutely dissociated neurons, which gave identical results. During spontaneous firing, net ionic current flowing between spikes was calculated from the time derivative of voltage multiplied by cell capacitance, signal-averaged over many firing cycles to enhance resolution. Net inward interspike current had a distinctive nonmonotonic shape, reaching a minimum (generally <1 pA) between -60 and -55 mV. Under voltage clamp, ramps over subthreshold voltages elicited a time- and voltage-dependent outward current that peaked near -55 mV. This current was undetectable with 5 mV/s ramps and increased steeply with depolarization rate over the range (10-50 mV/s) typical of natural pacemaking. Ramp-evoked subthreshold current was resistant to alpha-dendrotoxin, paxilline, apamin, and tetraethylammonium but sensitive to 4-aminopyridine and 0.5 mM Ba2+, consistent with A-type potassium current (I(A)). Same-cell comparison of currents elicited by various ramp speeds with natural spontaneous depolarization showed how the steep dependence of I(A) on depolarization rate results in small net inward currents during pacemaking. These results reveal a mechanism in which subthreshold I(A) is near zero at steady state, but is engaged at depolarization rates >10 mV/s to act as a powerful, supralinear feedback element. This feedback mechanism explains how net ionic current can be constrained to <1-2 pA but reliably inward, thus enabling slow, regular firing.
Collapse
|
45
|
Russo MJ, Yau HJ, Nunzi MG, Mugnaini E, Martina M. Dynamic metabotropic control of intrinsic firing in cerebellar unipolar brush cells. J Neurophysiol 2008; 100:3351-60. [PMID: 18945818 DOI: 10.1152/jn.90533.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuronal firing is regulated by the complex interaction of multiple depolarizing and hyperpolarizing currents; intrinsic firing, which defines the neuronal ability to generate action potentials in the absence of synaptic excitation, is particularly sensitive to modulation by currents that are active below the action potential threshold. Cerebellar unipolar brush cells (UBCs) are excitatory granule layer interneurons that are capable of intrinsic firing; here we show that, in acute mouse cerebellar slices, barium-sensitive background potassium channels of UBCs effectively regulate intrinsic firing. We also demonstrate that these channels are regulated by group II metabotropic glutamate receptors (mGluRs), which we show to be present in both of the known subsets of UBCs, one of which expresses calretinin and the other mGluR1alpha. Finally, we show that background potassium currents controlling UBCs' firing are mediated by at least two channel types, one of which is sensitive and the other insensitive to the GIRK blocker tertiapin. Thus in UBCs, glutamatergic transmission appears to have a complex bimodal effect: although it increases spontaneous firing through activation of ionotropic receptors, it also has inhibitory effects through the mGluR-dependent activation of tertiapin-sensitive and -insensitive background potassium currents.
Collapse
Affiliation(s)
- Marco J Russo
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
46
|
Meuth SG, Kleinschnitz C, Broicher T, Austinat M, Braeuninger S, Bittner S, Fischer S, Bayliss DA, Budde T, Stoll G, Wiendl H. The neuroprotective impact of the leak potassium channel TASK1 on stroke development in mice. Neurobiol Dis 2008; 33:1-11. [PMID: 18930826 DOI: 10.1016/j.nbd.2008.09.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 08/05/2008] [Accepted: 09/09/2008] [Indexed: 01/11/2023] Open
Abstract
Oxygen depletion (O(2)) and a decrease in pH are initial pathophysiological events in stroke development, but secondary mechanisms of ischemic cell death are incompletely understood. By patch-clamp recordings of brain slice preparations we show that TASK1 and TASK3 channels are inhibited by pH-reduction (42+/-2%) and O(2) deprivation (36+/-5%) leading to membrane depolarization, increased input resistance and a switch in action potential generation under ischemic conditions. In vivo TASK blockade by anandamide significantly increased infarct volumes at 24 h in mice undergoing 30 min of transient middle cerebral artery occlusion (tMCAO). Moreover, blockade of TASK channels accelerated stroke development. Supporting these findings TASK1(-/-) mice developed significantly larger infarct volumes after tMCAO accompanied by worse outcome in functional neurological tests compared to wild type mice. In conclusion, our data provide evidence for an important role of functional TASK channels in limiting tissue damage during cerebral ischemia.
Collapse
MESH Headings
- Acidosis/physiopathology
- Animals
- Arachidonic Acids/pharmacology
- Brain/pathology
- Brain/physiopathology
- Brain Ischemia/pathology
- Brain Ischemia/physiopathology
- Endocannabinoids
- Hypoxia, Brain/physiopathology
- In Vitro Techniques
- Infarction, Middle Cerebral Artery/physiopathology
- Male
- Membrane Potentials
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/metabolism
- Neurons/physiology
- Polyunsaturated Alkamides/pharmacology
- Potassium Channels/metabolism
- Potassium Channels, Tandem Pore Domain/antagonists & inhibitors
- Potassium Channels, Tandem Pore Domain/metabolism
- RNA, Messenger/metabolism
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Stroke/physiopathology
- TRPV Cation Channels/antagonists & inhibitors
- Thalamus/pathology
- Thalamus/physiopathology
Collapse
Affiliation(s)
- Sven G Meuth
- University of Würzburg, Department of Neurology, Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Distribution of two-pore-domain potassium channels in the adult rat vestibular periphery. Hear Res 2008; 246:1-8. [PMID: 18838117 DOI: 10.1016/j.heares.2008.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 07/31/2008] [Accepted: 09/03/2008] [Indexed: 12/24/2022]
Abstract
Constitutively active background or "leak" two-pore-domain potassium (K(+)) channels (Kcnk family), as defined by lack of voltage and time dependency are central to electrical excitability of cells by controlling resting membrane potential and membrane resistance. Inhibition of these channels by several neurotransmitters, e.g. glutamate, or acetylcholine, induces membrane depolarization and subsequent action potential firing as well as increases membrane resistance amplifying responses to synaptic inputs. In contrast, their opening contributes to hyperpolarization. Because of their central role in determining cellular excitability and response to synaptic stimulation, these channels likely play a role in the differential effects of vestibular efferent neurons on afferent discharge. Microarray data from previous experiments showed Kcnk 1, 2, 3, 6, 12 and 1 5 mRNA in Scarpa's ganglia. Real-time RT-PCR showed Kcnk 1, 2, 3, 6, 12 and 15 mRNA expression in Scarpa's ganglia and Kcnk 1, 2, 3, 6, 12 but not 15 mRNA expression in the crista ampullaris. We studied the distribution of two-pore-domain potassium channels K(2P)1.1, 2.1, 3.1 and 6.1 like immunoreactivity (corresponding to Kcnk genes 1, 2, 3 and 6) in the vestibular periphery. K(2P)1.1 (TWIK 1) immunoreactivity was detected along nerve terminals, supporting cells and blood vessels of the crista ampullaris and in the cytoplasm of neurons of the Scarpa's ganglia. K(2P)2.1 (TREK 1) immunoreactivity was detected in nerve terminals and transitional cells of the crista ampullaris, in the vestibular dark cells and in neuronal fibers and somata of neurons of Scarpa's ganglia. K(2P)3.1 (TASK 1) immunoreactivity was detected in supporting cells and transitional cells of the crista ampullaris, in vestibular dark cells and in neuron cytoplasm within Scarpa's ganglia. K(2P)6.1 (TWIK 2) immunoreactivity was detected in nerve terminals, blood vessels hair cells and transitional cells of the crista ampullaris and in the somata and neuron fibers of Scarpa's ganglia.
Collapse
|
48
|
Matsuyama H, Nguyen T, Hunne B, Thacker M, Needham K, McHugh D, Furness J. Evidence that TASK1 channels contribute to the background current in AH/type II neurons of the guinea-pig intestine. Neuroscience 2008; 155:738-50. [DOI: 10.1016/j.neuroscience.2008.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 05/16/2008] [Accepted: 06/03/2008] [Indexed: 12/27/2022]
|
49
|
Bautista DM, Sigal YM, Milstein AD, Garrison JL, Zorn JA, Tsuruda PR, Nicoll RA, Julius D. Pungent agents from Szechuan peppers excite sensory neurons by inhibiting two-pore potassium channels. Nat Neurosci 2008; 11:772-9. [PMID: 18568022 DOI: 10.1038/nn.2143] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 05/21/2008] [Indexed: 12/28/2022]
Abstract
In traditional folk medicine, Xanthoxylum plants are referred to as 'toothache trees' because their anesthetic or counter-irritant properties render them useful in the treatment of pain. Psychophysical studies have identified hydroxy-alpha-sanshool as the compound most responsible for the unique tingling and buzzing sensations produced by Szechuan peppercorns or other Xanthoxylum preparations. Although it is generally agreed that sanshool elicits its effects by activating somatosensory neurons, the underlying cellular and molecular mechanisms remain a matter of debate. Here we show that hydroxy-alpha-sanshool excites two types of sensory neurons, including small-diameter unmyelinated cells that respond to capsaicin (but not mustard oil) as well as large-diameter myelinated neurons that express the neurotrophin receptor TrkC. We found that hydroxy-alpha-sanshool excites neurons through a unique mechanism involving inhibition of pH- and anesthetic-sensitive two-pore potassium channels (KCNK3, KCNK9 and KCNK18), providing a framework for understanding the unique and complex psychophysical sensations associated with the Szechuan pepper experience.
Collapse
Affiliation(s)
- Diana M Bautista
- Department of Physiology, University of California, San Francisco, 600 16th St., San Francisco, California 94143-2140, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Regulation of two-pore-domain (K2P) potassium leak channels by the tyrosine kinase inhibitor genistein. Br J Pharmacol 2008; 154:1680-90. [PMID: 18516069 DOI: 10.1038/bjp.2008.213] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Two-pore-domain potassium (K2P) channels mediate potassium background (or 'leak') currents, controlling excitability by stabilizing membrane potential below firing threshold and expediting repolarization. Inhibition of K2P currents permits membrane potential depolarization and excitation. As expected for key regulators of excitability, leak channels are under tight control from a plethora of stimuli. Recently, signalling via protein tyrosine kinases (TKs) has been implicated in ion channel modulation. The objective of this study was to investigate TK regulation of K2P channels. EXPERIMENTAL APPROACH The two-electrode voltage clamp technique was used to record K2P currents in Xenopus oocytes. In addition, K2P channels were studied in Chinese hamster ovary (CHO) cells using the whole-cell patch clamp technique. KEY RESULTS Here, we report inhibition of human K2P3.1 (TASK-1) currents by the TK antagonist, genistein, in Xenopus oocytes (IC50=10.7 microM) and in CHO cells (IC50=12.3 microM). The underlying molecular mechanism was studied in detail. hK2P3.1 was not affected by genistin, an inactive analogue of genistein. Perorthovanadate, an inhibitor of tyrosine phosphatase activity, reduced the inhibitory effect of genistein. Current reduction was voltage independent and did not require channel protonation at position H98 or phosphorylation at the single TK phosphorylation site, Y323. Among functional hK2P family members, genistein also reduced K2P6.1 (TWIK-2), K2P9.1 (TASK-3) and K2P13.1 (THIK-1) currents, respectively. CONCLUSIONS AND IMPLICATIONS Modulation of K2P channels by the TK inhibitor, genistein, represents a novel molecular mechanism to alter background K+ currents.
Collapse
|