1
|
Xiong X, Geden CJ, Tan Y, Zhang Y, Zhang D, Werren JH, Wang X. Genome Structure, Evolution, and Host Shift of Nosema. BIOLOGY 2024; 13:952. [PMID: 39596907 PMCID: PMC11592040 DOI: 10.3390/biology13110952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Nosema is a diverse fungal genus of unicellular, obligate symbionts infecting various arthropods. We performed comparative genomic analyses of seven Nosema species that infect bees, wasps, moths, butterflies, and amphipods. As intracellular parasites, these species exhibit significant genome reduction, retaining only about half of the genes found in free-living yeast genomes. Notably, genes related to oxidative phosphorylation are entirely absent (p < 0.001), and those associated with endocytosis are significantly diminished compared to other pathways (p < 0.05). All seven Nosema genomes display significantly lower G-C content compared to their microsporidian outgroup. Species-specific 5~12 bp motifs were identified immediately upstream of start codons for coding genes in all species (p ≤ 1.6 × 10-72). Our RNA-seq data from Nosema muscidifuracis showed that this motif is enriched in highly expressed genes but depleted in lowly expressed ones (p < 0.05), suggesting it functions as a cis-regulatory element in gene expression. We also discovered diverse telomeric repeats within the genus. Phylogenomic analyses revealed two major Nosema clades and incongruency between the Nosema species tree and their hosts' phylogeny, indicating potential host switch events (100% bootstrap values). This study advances the understanding of genomic architecture, gene regulation, and evolution of Nosema, offering valuable insights for developing strategies to control these microbial pathogens.
Collapse
Affiliation(s)
- Xiao Xiong
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (X.X.); (Y.Z.)
| | - Christopher J. Geden
- Center for Medical, Agricultural and Veterinary Entomology, USDA Agricultural Research Service, Gainesville, FL 32608, USA;
| | - Yongjun Tan
- Department of Biology, College of Arts & Sciences, Saint Louis University, St. Louis, MO 63103, USA; (Y.T.); (D.Z.)
| | - Ying Zhang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (X.X.); (Y.Z.)
| | - Dapeng Zhang
- Department of Biology, College of Arts & Sciences, Saint Louis University, St. Louis, MO 63103, USA; (Y.T.); (D.Z.)
| | - John H. Werren
- Department of Biology, University of Rochester, Rochester, NY 14627, USA;
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (X.X.); (Y.Z.)
- Alabama Agricultural Experiment Station, Center for Advanced Science, Innovation and Commerce, Auburn, AL 36849, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
2
|
Peyretaillade E, Akossi RF, Tournayre J, Delbac F, Wawrzyniak I. How to overcome constraints imposed by microsporidian genome features to ensure gene prediction? J Eukaryot Microbiol 2024; 71:e13038. [PMID: 38934348 DOI: 10.1111/jeu.13038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Since the advent of sequencing techniques and due to their continuous evolution, it has become easier and less expensive to obtain the complete genome sequence of any organism. Nevertheless, to elucidate all biological processes governing organism development, quality annotation is essential. In genome annotation, predicting gene structure is one of the most important and captivating challenges for computational biology. This aspect of annotation requires continual optimization, particularly for genomes as unusual as those of microsporidia. Indeed, this group of fungal-related parasites exhibits specific features (highly reduced gene sizes, sequences with high rate of evolution) linked to their evolution as intracellular parasites, requiring the implementation of specific annotation approaches to consider all these features. This review aimed to outline these characteristics and to assess the increasingly efficient approaches and tools that have enhanced the accuracy of gene prediction for microsporidia, both in terms of sensitivity and specificity. Subsequently, a final part will be dedicated to postgenomic approaches aimed at reinforcing the annotation data generated by prediction software. These approaches include the characterization of other understudied genes, such as those encoding regulatory noncoding RNAs or very small proteins, which also play crucial roles in the life cycle of these microorganisms.
Collapse
Affiliation(s)
| | - Reginal F Akossi
- LMGE, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jérémy Tournayre
- INRAE, UMR Herbivores, Université Clermont Auvergne, VetAgro Sup, Saint-Genès-Champanelle, France
| | - Frédéric Delbac
- LMGE, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ivan Wawrzyniak
- LMGE, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
3
|
Belkevich AE, Khalil AY, Decatur WA, Palumbo RJ, Knutson BA. Minimization and complete loss of general transcription factor proteins in the intracellular parasite Encephalitozoon cuniculi. Transcription 2024; 15:97-113. [PMID: 38722258 PMCID: PMC11810082 DOI: 10.1080/21541264.2024.2350162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 01/06/2025] Open
Abstract
Genome compaction is a common evolutionary feature of parasites. The unicellular, obligate intracellular parasite Encephalitozoon cuniculi has one of smallest known eukaryotic genomes, and is nearly four times smaller than its distant fungi relative, the budding yeast Saccharomyces cerevisiae. Comparison of the proteins encoded by compacted genomes to those encoded by larger genomes can reveal the most highly conserved features of the encoded proteins. In this study, we identified the proteins comprising the RNA polymerases and their corresponding general transcription factors by using several bioinformatic approaches to compare the transcription machinery of E. cuniculi and S. cerevisiae. Surprisingly, our analyses revealed an overall reduction in the size of the proteins comprising transcription machinery of E. cuniculi, which includes the loss of entire regions or functional domains from proteins, as well as the loss of entire proteins and complexes. Unexpectedly, we found that the E. cuniculi ortholog of Rpc37 (a RNA Polymerase III subunit) more closely resembles the H. sapiens ortholog of Rpc37 than the S. cerevisiae ortholog of Rpc37, in both size and structure. Overall, our findings provide new insight into the minimal core eukaryotic transcription machinery and help define the most critical features of Pol components and general transcription factors.
Collapse
Affiliation(s)
- Alana E. Belkevich
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Andrew Y. Khalil
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Wayne A. Decatur
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Ryan J. Palumbo
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Bruce A. Knutson
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
4
|
Nanni A, Titus-McQuillan J, Bankole KS, Pardo-Palacios F, Signor S, Vlaho S, Moskalenko O, Morse A, Rogers RL, Conesa A, McIntyre LM. Nucleotide-level distance metrics to quantify alternative splicing implemented in TranD. Nucleic Acids Res 2024; 52:e28. [PMID: 38340337 PMCID: PMC10954468 DOI: 10.1093/nar/gkae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/29/2023] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Advances in affordable transcriptome sequencing combined with better exon and gene prediction has motivated many to compare transcription across the tree of life. We develop a mathematical framework to calculate complexity and compare transcript models. Structural features, i.e. intron retention (IR), donor/acceptor site variation, alternative exon cassettes, alternative 5'/3' UTRs, are compared and the distance between transcript models is calculated with nucleotide level precision. All metrics are implemented in a PyPi package, TranD and output can be used to summarize splicing patterns for a transcriptome (1GTF) and between transcriptomes (2GTF). TranD output enables quantitative comparisons between: annotations augmented by empirical RNA-seq data and the original transcript models; transcript model prediction tools for longread RNA-seq (e.g. FLAIR versus Isoseq3); alternate annotations for a species (e.g. RefSeq vs Ensembl); and between closely related species. In C. elegans, Z. mays, D. melanogaster, D. simulans and H. sapiens, alternative exons were observed more frequently in combination with an alternative donor/acceptor than alone. Transcript models in RefSeq and Ensembl are linked and both have unique transcript models with empirical support. D. melanogaster and D. simulans, share many transcript models and long-read RNAseq data suggests that both species are under-annotated. We recommend combined references.
Collapse
Affiliation(s)
- Adalena Nanni
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - James Titus-McQuillan
- University of North Carolina at Charlotte Department of Bioinformatics and Genomics Charlotte, NC, USA
| | - Kinfeosioluwa S Bankole
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | | | - Sarah Signor
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Srna Vlaho
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Oleksandr Moskalenko
- University of Florida Research Computing, University of Florida, Gainesville, FL 32611, USA
| | - Alison M Morse
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Rebekah L Rogers
- University of North Carolina at Charlotte Department of Bioinformatics and Genomics Charlotte, NC, USA
| | - Ana Conesa
- Institute for Integrative Systems Biology. Spanish National Research Council, Paterna, Spain
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Tournayre J, Polonais V, Wawrzyniak I, Akossi RF, Parisot N, Lerat E, Delbac F, Souvignet P, Reichstadt M, Peyretaillade E. MicroAnnot: A Dedicated Workflow for Accurate Microsporidian Genome Annotation. Int J Mol Sci 2024; 25:880. [PMID: 38255958 PMCID: PMC10815200 DOI: 10.3390/ijms25020880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
With nearly 1700 species, Microsporidia represent a group of obligate intracellular eukaryotes with veterinary, economic and medical impacts. To help understand the biological functions of these microorganisms, complete genome sequencing is routinely used. Nevertheless, the proper prediction of their gene catalogue is challenging due to their taxon-specific evolutionary features. As innovative genome annotation strategies are needed to obtain a representative snapshot of the overall lifestyle of these parasites, the MicroAnnot tool, a dedicated workflow for microsporidian sequence annotation using data from curated databases of accurately annotated microsporidian genes, has been developed. Furthermore, specific modules have been implemented to perform small gene (<300 bp) and transposable element identification. Finally, functional annotation was performed using the signature-based InterProScan software. MicroAnnot's accuracy has been verified by the re-annotation of four microsporidian genomes for which structural annotation had previously been validated. With its comparative approach and transcriptional signal identification method, MicroAnnot provides an accurate prediction of translation initiation sites, an efficient identification of transposable elements, as well as high specificity and sensitivity for microsporidian genes, including those under 300 bp.
Collapse
Affiliation(s)
- Jérémy Tournayre
- INRAE, UMR Herbivores, Université Clermont Auvergne, VetAgro Sup, 63122 Saint-Genès-Champanelle, France; (J.T.); (P.S.); (M.R.)
| | - Valérie Polonais
- LMGE, CNRS, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (V.P.); (I.W.); (R.F.A.); (F.D.)
| | - Ivan Wawrzyniak
- LMGE, CNRS, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (V.P.); (I.W.); (R.F.A.); (F.D.)
| | - Reginald Florian Akossi
- LMGE, CNRS, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (V.P.); (I.W.); (R.F.A.); (F.D.)
| | - Nicolas Parisot
- UMR 203, BF2I, INRAE, INSA Lyon, Université de Lyon, 69621 Villeurbanne, France
| | - Emmanuelle Lerat
- VAS, CNRS, UMR5558, LBBE, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France;
| | - Frédéric Delbac
- LMGE, CNRS, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (V.P.); (I.W.); (R.F.A.); (F.D.)
| | - Pierre Souvignet
- INRAE, UMR Herbivores, Université Clermont Auvergne, VetAgro Sup, 63122 Saint-Genès-Champanelle, France; (J.T.); (P.S.); (M.R.)
| | - Matthieu Reichstadt
- INRAE, UMR Herbivores, Université Clermont Auvergne, VetAgro Sup, 63122 Saint-Genès-Champanelle, France; (J.T.); (P.S.); (M.R.)
| | - Eric Peyretaillade
- LMGE, CNRS, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (V.P.); (I.W.); (R.F.A.); (F.D.)
| |
Collapse
|
6
|
Craig RJ, Gallaher SD, Shu S, Salomé PA, Jenkins JW, Blaby-Haas CE, Purvine SO, O’Donnell S, Barry K, Grimwood J, Strenkert D, Kropat J, Daum C, Yoshinaga Y, Goodstein DM, Vallon O, Schmutz J, Merchant SS. The Chlamydomonas Genome Project, version 6: Reference assemblies for mating-type plus and minus strains reveal extensive structural mutation in the laboratory. THE PLANT CELL 2023; 35:644-672. [PMID: 36562730 PMCID: PMC9940879 DOI: 10.1093/plcell/koac347] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 10/12/2022] [Accepted: 12/16/2022] [Indexed: 05/20/2023]
Abstract
Five versions of the Chlamydomonas reinhardtii reference genome have been produced over the last two decades. Here we present version 6, bringing significant advances in assembly quality and structural annotations. PacBio-based chromosome-level assemblies for two laboratory strains, CC-503 and CC-4532, provide resources for the plus and minus mating-type alleles. We corrected major misassemblies in previous versions and validated our assemblies via linkage analyses. Contiguity increased over ten-fold and >80% of filled gaps are within genes. We used Iso-Seq and deep RNA-seq datasets to improve structural annotations, and updated gene symbols and textual annotation of functionally characterized genes via extensive manual curation. We discovered that the cell wall-less classical reference strain CC-503 exhibits genomic instability potentially caused by deletion of the helicase RECQ3, with major structural mutations identified that affect >100 genes. We therefore present the CC-4532 assembly as the primary reference, although this strain also carries unique structural mutations and is experiencing rapid proliferation of a Gypsy retrotransposon. We expect all laboratory strains to harbor gene-disrupting mutations, which should be considered when interpreting and comparing experimental results. Collectively, the resources presented here herald a new era of Chlamydomonas genomics and will provide the foundation for continued research in this important reference organism.
Collapse
Affiliation(s)
- Rory J Craig
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sean D Gallaher
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA
| | - Shengqiang Shu
- United States Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA
| | - Patrice A Salomé
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095, USA
| | - Jerry W Jenkins
- HudsonAlpha Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Crysten E Blaby-Haas
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Samuel O’Donnell
- Laboratory of Computational and Quantitative Biology, UMR 7238, CNRS, Institut de Biologie Paris-Seine, Sorbonne Université, Paris 75005, France
| | - Kerrie Barry
- United States Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA
| | - Jane Grimwood
- HudsonAlpha Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Daniela Strenkert
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA
| | - Janette Kropat
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Chris Daum
- United States Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA
| | - Yuko Yoshinaga
- United States Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA
| | - David M Goodstein
- United States Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA
| | - Olivier Vallon
- Unité Mixte de Recherche 7141, CNRS, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris 75005, France
| | - Jeremy Schmutz
- United States Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA
- HudsonAlpha Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Sabeeha S Merchant
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
7
|
Marinov GK, Chen X, Wu T, He C, Grossman AR, Kundaje A, Greenleaf WJ. The chromatin organization of a chlorarachniophyte nucleomorph genome. Genome Biol 2022; 23:65. [PMID: 35232465 PMCID: PMC8887012 DOI: 10.1186/s13059-022-02639-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/17/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Nucleomorphs are remnants of secondary endosymbiotic events between two eukaryote cells wherein the endosymbiont has retained its eukaryotic nucleus. Nucleomorphs have evolved at least twice independently, in chlorarachniophytes and cryptophytes, yet they have converged on a remarkably similar genomic architecture, characterized by the most extreme compression and miniaturization among all known eukaryotic genomes. Previous computational studies have suggested that nucleomorph chromatin likely exhibits a number of divergent features. RESULTS In this work, we provide the first maps of open chromatin, active transcription, and three-dimensional organization for the nucleomorph genome of the chlorarachniophyte Bigelowiella natans. We find that the B. natans nucleomorph genome exists in a highly accessible state, akin to that of ribosomal DNA in some other eukaryotes, and that it is highly transcribed over its entire length, with few signs of polymerase pausing at transcription start sites (TSSs). At the same time, most nucleomorph TSSs show very strong nucleosome positioning. Chromosome conformation (Hi-C) maps reveal that nucleomorph chromosomes interact with one other at their telomeric regions and show the relative contact frequencies between the multiple genomic compartments of distinct origin that B. natans cells contain. CONCLUSIONS We provide the first study of a nucleomorph genome using modern functional genomic tools, and derive numerous novel insights into the physical and functional organization of these unique genomes.
Collapse
Affiliation(s)
- Georgi K Marinov
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
| | - Xinyi Chen
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Tong Wu
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
| | - William James Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA.
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
8
|
Abstract
Modern genome-scale methods that identify new genes, such as proteogenomics and ribosome profiling, have revealed, to the surprise of many, that overlap in genes, open reading frames and even coding sequences is widespread and functionally integrated into prokaryotic, eukaryotic and viral genomes. In parallel, the constraints that overlapping regions place on genome sequences and their evolution can be harnessed in bioengineering to build more robust synthetic strains and constructs. With a focus on overlapping protein-coding and RNA-coding genes, this Review examines their discovery, topology and biogenesis in the context of their genome biology. We highlight exciting new uses for sequence overlap to control translation, compress synthetic genetic constructs, and protect against mutation.
Collapse
|
9
|
Jespersen N, Monrroy L, Barandun J. Impact of Genome Reduction in Microsporidia. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:1-42. [PMID: 35543997 DOI: 10.1007/978-3-030-93306-7_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microsporidia represent an evolutionary outlier in the tree of life and occupy the extreme edge of the eukaryotic domain with some of their biological features. Many of these unicellular fungi-like organisms have reduced their genomic content to potentially the lowest limit. With some of the most compacted eukaryotic genomes, microsporidia are excellent model organisms to study reductive evolution and its functional consequences. While the growing number of sequenced microsporidian genomes have elucidated genome composition and organization, a recent increase in complementary post-genomic studies has started to shed light on the impacts of genome reduction in these unique pathogens. This chapter will discuss the biological framework enabling genome minimization and will use one of the most ancient and essential macromolecular complexes, the ribosome, to illustrate the effects of extreme genome reduction on a structural, molecular, and cellular level. We outline how reductive evolution in microsporidia has shaped DNA organization, the composition and function of the ribosome, and the complexity of the ribosome biogenesis process. Studying compacted mechanisms, processes, or macromolecular machines in microsporidia illuminates their unique lifestyle and provides valuable insights for comparative eukaryotic structural biology.
Collapse
Affiliation(s)
- Nathan Jespersen
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory, Umeå University, Umeå, Sweden.
| | - Leonardo Monrroy
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory, Umeå University, Umeå, Sweden
| | - Jonas Barandun
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory, Umeå University, Umeå, Sweden.
| |
Collapse
|
10
|
Reynolds JC, Bwiza CP, Lee C. Mitonuclear genomics and aging. Hum Genet 2020; 139:381-399. [PMID: 31997134 PMCID: PMC7147958 DOI: 10.1007/s00439-020-02119-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/17/2020] [Indexed: 12/25/2022]
Abstract
Our cells operate based on two distinct genomes that are enclosed in the nucleus and mitochondria. The mitochondrial genome presumably originates from endosymbiotic bacteria. With time, a large portion of the original genes in the bacterial genome is considered to have been lost or transferred to the nuclear genome, leaving a reduced 16.5 Kb circular mitochondrial DNA (mtDNA). Traditionally only 37 genes, including 13 proteins, were thought to be encoded within mtDNA, its genetic repertoire is expanding with the identification of mitochondrial-derived peptides (MDPs). The biology of aging has been largely unveiled to be regulated by genes that are encoded in the nuclear genome, whereas the mitochondrial genome remained more cryptic. However, recent studies position mitochondria and mtDNA as an important counterpart to the nuclear genome, whereby the two organelles constantly regulate each other. Thus, the genomic network that regulates lifespan and/or healthspan is likely constituted by two unique, yet co-evolved, genomes. Here, we will discuss aspects of mitochondrial biology, especially mitochondrial communication that may add substantial momentum to aging research by accounting for both mitonuclear genomes to more comprehensively and inclusively map the genetic and molecular networks that govern aging and age-related diseases.
Collapse
Affiliation(s)
- Joseph C Reynolds
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Conscience P Bwiza
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
- USC Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA.
- Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, South Korea.
| |
Collapse
|
11
|
Åsman AKM, Curtis BA, Archibald JM. Nucleomorph Small RNAs in Cryptophyte and Chlorarachniophyte Algae. Genome Biol Evol 2019; 11:1117-1134. [PMID: 30949682 PMCID: PMC6461891 DOI: 10.1093/gbe/evz064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2019] [Indexed: 12/27/2022] Open
Abstract
The regulation of gene expression and RNA maturation underlies fundamental processes such as cell homeostasis, development, and stress acclimation. The biogenesis and modification of RNA is tightly controlled by an array of regulatory RNAs and nucleic acid-binding proteins. While the role of small RNAs (sRNAs) in gene expression has been studied in-depth in select model organisms, little is known about sRNA biology across the eukaryotic tree of life. We used deep sequencing to explore the repertoires of sRNAs encoded by the miniaturized, endosymbiotically derived “nucleomorph” genomes of two single-celled algae, the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. A total of 32.3 and 35.3 million reads were generated from G. theta and B. natans, respectively. In G. theta, we identified nucleomorph U1, U2, and U4 spliceosomal small nuclear RNAs (snRNAs) as well as 11 C/D box small nucleolar RNAs (snoRNAs), five of which have potential plant and animal homologs. The snoRNAs are predicted to perform 2′-O methylation of rRNA (but not snRNA). In B. natans, we found the previously undetected 5S rRNA as well as six orphan sRNAs. Analysis of chlorarachniophyte snRNAs shed light on the removal of the miniature 18–21 nt introns found in B. natans nucleomorph genes. Neither of the nucleomorph genomes appears to encode RNA pseudouridylation machinery, and U5 snRNA cannot be found in the cryptophyte G. theta. Considering the central roles of U5 snRNA and RNA modifications in other organisms, cytoplasm-to-nucleomorph RNA shuttling in cryptophyte algae is a distinct possibility.
Collapse
Affiliation(s)
- Anna K M Åsman
- Department of Biochemistry and Molecular Biology, Dalhousie University, Nova Scotia, Canada.,Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Bruce A Curtis
- Department of Biochemistry and Molecular Biology, Dalhousie University, Nova Scotia, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Nova Scotia, Canada
| |
Collapse
|
12
|
Wong DK, Grisdale CJ, Fast NM. Evolution and Diversity of Pre-mRNA Splicing in Highly Reduced Nucleomorph Genomes. Genome Biol Evol 2018; 10:1573-1583. [PMID: 29860351 PMCID: PMC6009652 DOI: 10.1093/gbe/evy111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2018] [Indexed: 12/13/2022] Open
Abstract
Eukaryotic genes are interrupted by introns that are removed in a conserved process known as pre-mRNA splicing. Though well-studied in select model organisms, we are only beginning to understand the variation and diversity of this process across the tree of eukaryotes. We explored pre-mRNA splicing and other features of transcription in nucleomorphs, the highly reduced remnant nuclei of secondary endosymbionts. Strand-specific transcriptomes were sequenced from the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans, whose plastids are derived from red and green algae, respectively. Both organisms exhibited elevated nucleomorph antisense transcription and gene expression relative to their respective nuclei, suggesting unique properties of gene regulation and transcriptional control in nucleomorphs. Marked differences in splicing were observed between the two nucleomorphs: the few introns of the G. theta nucleomorph were largely retained in mature transcripts, whereas the many short introns of the B. natans nucleomorph are spliced at typical eukaryotic levels (>90%). These differences in splicing levels could be reflecting the ancestries of the respective plastids, the different intron densities due to independent genome reduction events, or a combination of both. In addition to extending our understanding of the diversity of pre-mRNA splicing across eukaryotes, our study also indicates potential links between splicing, antisense transcription, and gene regulation in reduced genomes.
Collapse
Affiliation(s)
- Donald K Wong
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cameron J Grisdale
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Naomi M Fast
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Bijective codon transformations show genetic code symmetries centered on cytosine's coding properties. Theory Biosci 2017; 137:17-31. [PMID: 29147851 DOI: 10.1007/s12064-017-0258-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
Abstract
Homology of some RNAs with template DNA requires systematic exchanges between nucleotides. Such exchanges produce 'swinger' RNA along 23 bijective transformations (nine symmetric, X ↔ Y; and 14 asymmetric, X → Y → Z → X, for example A ↔ C and A → C → G → A, respectively). Here, analyses compare amino acids coded by swinger-transformed codons to those coded by untransformed codons, defining coding invariance after transformations. Swinger transformations cluster according to coding invariance in four groups characterized by transformations into cytosine (C = C, T → C, A → C, and G → C). C's central mutational coding role shows that swinger transformations constrained genetic code genesis. Coding invariance post-transformations correlate positively/negatively with mitochondrial swinger transcription/lepidosaurian body temperature. Presumably, low/high temperatures stabilize/revert rare swinger polymerization modes, producing long swinger sequences/point mutations, respectively. Coding invariance after swinger transformations might compensate effects of swinger polymerizations in species with low body temperatures. Hypothetically, swinger transcription increased coding potential of RNA self-replicating protolife systems under heating/cooling cycles.
Collapse
|
14
|
Pyle JD, Keeling PJ, Nibert ML. Amalga-like virus infecting Antonospora locustae, a microsporidian pathogen of grasshoppers, plus related viruses associated with other arthropods. Virus Res 2017; 233:95-104. [PMID: 28267607 DOI: 10.1016/j.virusres.2017.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 12/16/2022]
Abstract
A previously reported Expressed Sequence Tag (EST) library from spores of microsporidian Antonospora locustae includes a number of clones with sequence similarities to plant amalgaviruses. Reexamining the sequence accessions from that library, we found additional such clones, contributing to a 3247-nt contig that approximates the length of an amalga-like virus genome. Using A. locustae spores stored from that previous study, and new ones obtained from the same source, we newly visualized the putative dsRNA genome of this virus and obtained amplicons yielding a 3387-nt complete genome sequence. Phylogenetic analyses suggested it as prototype strain of a new genus in family Amalgaviridae. The genome contains two partially overlapping long ORFs, with downstream ORF2 in the +1 frame relative to ORF1 and a proposed motif for +1 ribosomal frameshifting in the region of overlap. Subsequent database searches using the predicted fusion protein sequence of this new amalga-like virus identified related sequences in the transcriptome of a basal hexapod, the springtail species Tetrodontophora bielanensis. We speculate that this second new amalga-like virus (contig length, 3475 nt) likely also derived from a microsporidian, or related organism, which was associated with the springtail specimens at the time of sampling for transcriptome analysis. Other findings of interest include evidence that the ORF1 translation products of these two new amalga-like viruses contain a central region of predicted α-helical coiled coil, as recently reported for plant amalgaviruses, and transcriptome-based evidence for another new amalga-like virus in the transcriptome of another basal hexapod, the two-pronged bristletail species Campodea augens.
Collapse
Affiliation(s)
- Jesse D Pyle
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Max L Nibert
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
15
|
The Genome of Nosema sp. Isolate YNPr: A Comparative Analysis of Genome Evolution within the Nosema/Vairimorpha Clade. PLoS One 2016; 11:e0162336. [PMID: 27598992 PMCID: PMC5012567 DOI: 10.1371/journal.pone.0162336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 08/22/2016] [Indexed: 01/13/2023] Open
Abstract
The microsporidian parasite designated here as Nosema sp. Isolate YNPr was isolated from the cabbage butterfly Pieris rapae collected in Honghe Prefecture, Yunnan Province, China. The genome was sequenced by Illumina sequencing and compared to those of two related members of the Nosema/Vairimorpha clade, Nosema ceranae and Nosema apis. Based upon assembly statistics, the Nosema sp. YNPr genome is 3.36 x 106bp with a G+C content of 23.18% and 2,075 protein coding sequences. An “ACCCTT” motif is present approximately 50-bp upstream of the start codon, as reported from other members of the clade and from Encephalitozoon cuniculi, a sister taxon. Comparative small subunit ribosomal DNA (SSU rDNA) analysis as well as genome-wide phylogenetic analysis confirms a closer relationship between N. ceranae and Nosema sp. YNPr than between the two honeybee parasites N. ceranae and N. apis. The more closely related N. ceranae and Nosema sp. YNPr show similarities in a number of structural characteristics such as gene synteny, gene length, gene number, transposon composition and gene reduction. Based on transposable element content of the assemblies, the transposon content of Nosema sp. YNPr is 4.8%, that of N. ceranae is 3.7%, and that of N. apis is 2.5%, with large differences in the types of transposons present among these 3 species. Gene function annotation indicates that the number of genes participating in most metabolic activities is similar in all three species. However, the number of genes in the transcription, general function, and cysteine protease categories is greater in N. apis than in the other two species. Our studies further characterize the evolution of the Nosema/Vairimorpha clade of microsporidia. These organisms maintain variable but very reduced genomes. We are interested in understanding the effects of genetic drift versus natural selection on genome size in the microsporidia and in developing a testable hypothesis for further studies on the genomic ecology of this group.
Collapse
|
16
|
Smith DR, Keeling PJ. Protists and the Wild, Wild West of Gene Expression: New Frontiers, Lawlessness, and Misfits. Annu Rev Microbiol 2016; 70:161-78. [PMID: 27359218 DOI: 10.1146/annurev-micro-102215-095448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The DNA double helix has been called one of life's most elegant structures, largely because of its universality, simplicity, and symmetry. The expression of information encoded within DNA, however, can be far from simple or symmetric and is sometimes surprisingly variable, convoluted, and wantonly inefficient. Although exceptions to the rules exist in certain model systems, the true extent to which life has stretched the limits of gene expression is made clear by nonmodel systems, particularly protists (microbial eukaryotes). The nuclear and organelle genomes of protists are subject to the most tangled forms of gene expression yet identified. The complicated and extravagant picture of the underlying genetics of eukaryotic microbial life changes how we think about the flow of genetic information and the evolutionary processes shaping it. Here, we discuss the origins, diversity, and growing interest in noncanonical protist gene expression and its relationship to genomic architecture.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7;
| | - Patrick J Keeling
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4;
| |
Collapse
|
17
|
Carniel FC, Gerdol M, Montagner A, Banchi E, De Moro G, Manfrin C, Muggia L, Pallavicini A, Tretiach M. New features of desiccation tolerance in the lichen photobiont Trebouxia gelatinosa are revealed by a transcriptomic approach. PLANT MOLECULAR BIOLOGY 2016; 91:319-339. [PMID: 26992400 DOI: 10.1007/s11103-016-0468-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/04/2016] [Indexed: 06/05/2023]
Abstract
Trebouxia is the most common lichen-forming genus of aero-terrestrial green algae and all its species are desiccation tolerant (DT). The molecular bases of this remarkable adaptation are, however, still largely unknown. We applied a transcriptomic approach to a common member of the genus, T. gelatinosa, to investigate the alteration of gene expression occurring after dehydration and subsequent rehydration in comparison to cells kept constantly hydrated. We sequenced, de novo assembled and annotated the transcriptome of axenically cultured T. gelatinosa by using Illumina sequencing technology. We tracked the expression profiles of over 13,000 protein-coding transcripts. During the dehydration/rehydration cycle c. 92 % of the total protein-coding transcripts displayed a stable expression, suggesting that the desiccation tolerance of T. gelatinosa mostly relies on constitutive mechanisms. Dehydration and rehydration affected mainly the gene expression for components of the photosynthetic apparatus, the ROS-scavenging system, Heat Shock Proteins, aquaporins, expansins, and desiccation related proteins (DRPs), which are highly diversified in T. gelatinosa, whereas Late Embryogenesis Abundant Proteins were not affected. Only some of these phenomena were previously observed in other DT green algae, bryophytes and resurrection plants, other traits being distinctive of T. gelatinosa, and perhaps related to its symbiotic lifestyle. Finally, the phylogenetic inference extended to DRPs of other chlorophytes, embryophytes and bacteria clearly pointed out that DRPs of chlorophytes are not orthologous to those of embryophytes: some of them were likely acquired through horizontal gene transfer from extremophile bacteria which live in symbiosis within the lichen thallus.
Collapse
Affiliation(s)
- Fabio Candotto Carniel
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
- Institute of Botany, University of Innsbruck, Sternwartestraße, 15, 6020, Innsbruck, Austria
| | - Marco Gerdol
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy.
| | - Alice Montagner
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
| | - Elisa Banchi
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
| | - Gianluca De Moro
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
| | - Chiara Manfrin
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
| | - Lucia Muggia
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
| | - Alberto Pallavicini
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
| | - Mauro Tretiach
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
| |
Collapse
|
18
|
O'Malley MA, Wideman JG, Ruiz-Trillo I. Losing Complexity: The Role of Simplification in Macroevolution. Trends Ecol Evol 2016; 31:608-621. [PMID: 27212432 DOI: 10.1016/j.tree.2016.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 10/21/2022]
Abstract
Macroevolutionary patterns can be produced by combinations of diverse and even oppositional dynamics. A growing body of data indicates that secondary simplifications of molecular and cellular structures are common. Some major diversifications in eukaryotes have occurred because of loss and minimalisation; numerous episodes in prokaryote evolution have likewise been driven by the reduction of structure. After examining a range of examples of secondary simplification and its consequences across the tree of life, we address how macroevolutionary explanations might incorporate simplification as well as complexification, and adaptive as well as nonadaptive dynamics.
Collapse
Affiliation(s)
- Maureen A O'Malley
- UMR5164, University of Bordeaux, 146 Rue Léo Saignat, Bordeaux 33076, France.
| | | | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain; Departament de Genètica, Universitat de Barcelona, 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats, Pg Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
19
|
Williams TA, Nakjang S, Campbell SE, Freeman MA, Eydal M, Moore K, Hirt RP, Embley TM, Williams BAP. A Recent Whole-Genome Duplication Divides Populations of a Globally Distributed Microsporidian. Mol Biol Evol 2016; 33:2002-15. [PMID: 27189558 PMCID: PMC4948709 DOI: 10.1093/molbev/msw083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Microsporidia are a major group of intracellular fungi and important parasites of animals including insects, fish, and immunocompromised humans. Microsporidian genomes have undergone extreme reductive evolution but there are major differences in genome size and structure within the group: some are prokaryote-like in size and organisation (<3 Mb of gene-dense sequence) while others have more typically eukaryotic genome architectures. To gain fine-scale, population-level insight into the evolutionary dynamics of these tiny eukaryotic genomes, we performed the broadest microsporidian population genomic study to date, sequencing geographically isolated strains of Spraguea, a marine microsporidian infecting goosefish worldwide. Our analysis revealed that population structure across the Atlantic Ocean is associated with a conserved difference in ploidy, with American and Canadian isolates sharing an ancestral whole genome duplication that was followed by widespread pseudogenisation and sorting-out of paralogue pairs. While past analyses have suggested de novo gene formation of microsporidian-specific genes, we found evidence for the origin of new genes from noncoding sequence since the divergence of these populations. Some of these genes experience selective constraint, suggesting the evolution of new functions and local host adaptation. Combining our data with published microsporidian genomes, we show that nucleotide composition across the phylum is shaped by a mutational bias favoring A and T nucleotides, which is opposed by an evolutionary force favoring an increase in genomic GC content. This study reveals ongoing dramatic reorganization of genome structure and the evolution of new gene functions in modern microsporidians despite extensive genomic streamlining in their common ancestor.
Collapse
Affiliation(s)
- Tom A Williams
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sirintra Nakjang
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Scott E Campbell
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Devon, United Kingdom
| | - Mark A Freeman
- Ross University School of Veterinary Medicine, St. Kitts, West Indies
| | - Matthías Eydal
- Institute for Experimental Pathology, University of Iceland, Keldur, Iceland
| | - Karen Moore
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Devon, United Kingdom
| | - Robert P Hirt
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - T Martin Embley
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bryony A P Williams
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Devon, United Kingdom
| |
Collapse
|
20
|
Rolfe SA, Strelkov SE, Links MG, Clarke WE, Robinson SJ, Djavaheri M, Malinowski R, Haddadi P, Kagale S, Parkin IAP, Taheri A, Borhan MH. The compact genome of the plant pathogen Plasmodiophora brassicae is adapted to intracellular interactions with host Brassica spp. BMC Genomics 2016; 17:272. [PMID: 27036196 PMCID: PMC4815078 DOI: 10.1186/s12864-016-2597-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The protist Plasmodiophora brassicae is a soil-borne pathogen of cruciferous species and the causal agent of clubroot disease of Brassicas including agriculturally important crops such as canola/rapeseed (Brassica napus). P. brassicae has remained an enigmatic plant pathogen and is a rare example of an obligate biotroph that resides entirely inside the host plant cell. The pathogen is the cause of severe yield losses and can render infested fields unsuitable for Brassica crop growth due to the persistence of resting spores in the soil for up to 20 years. RESULTS To provide insight into the biology of the pathogen and its interaction with its primary host B. napus, we produced a draft genome of P. brassicae pathotypes 3 and 6 (Pb3 and Pb6) that differ in their host range. Pb3 is highly virulent on B. napus (but also infects other Brassica species) while Pb6 infects only vegetable Brassica crops. Both the Pb3 and Pb6 genomes are highly compact, each with a total size of 24.2 Mb, and contain less than 2 % repetitive DNA. Clustering of genome-wide single nucleotide polymorphisms (SNP) of Pb3, Pb6 and three additional re-sequenced pathotypes (Pb2, Pb5 and Pb8) shows a high degree of correlation of cluster grouping with host range. The Pb3 genome features significant reduction of intergenic space with multiple examples of overlapping untranslated regions (UTRs). Dependency on the host for essential nutrients is evident from the loss of genes for the biosynthesis of thiamine and some amino acids and the presence of a wide range of transport proteins, including some unique to P. brassicae. The annotated genes of Pb3 include those with a potential role in the regulation of the plant growth hormones cytokinin and auxin. The expression profile of Pb3 genes, including putative effectors, during infection and their potential role in manipulation of host defence is discussed. CONCLUSION The P. brassicae genome sequence reveals a compact genome, a dependency of the pathogen on its host for some essential nutrients and a potential role in the regulation of host plant cytokinin and auxin. Genome annotation supported by RNA sequencing reveals significant reduction in intergenic space which, in addition to low repeat content, has likely contributed to the P. brassicae compact genome.
Collapse
Affiliation(s)
- Stephen A. Rolfe
- />Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN UK
| | - Stephen E. Strelkov
- />Department of Agricultural, Food and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, AB T6G 2P5 Canada
| | - Matthew G. Links
- />Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2 Canada
| | - Wayne E. Clarke
- />Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2 Canada
- />Present address: New York Genome Center, 101 6th Ave, New York, NY 10013 USA
| | - Stephen J. Robinson
- />Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2 Canada
| | - Mohammad Djavaheri
- />Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2 Canada
| | - Robert Malinowski
- />Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, ul. Strzeszynska 34, 60-479 Poznan, Poland
| | - Parham Haddadi
- />Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2 Canada
| | - Sateesh Kagale
- />National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9 Canada
| | - Isobel A. P. Parkin
- />Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2 Canada
| | - Ali Taheri
- />Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2 Canada
- />Present address: Department of Agricultural and Environmental Sciences, College of Agriculture, Human and Natural Sciences, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - M. Hossein Borhan
- />Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2 Canada
| |
Collapse
|
21
|
Zhang YC, Lin K. Phylogeny Inference of Closely Related Bacterial Genomes: Combining the Features of Both Overlapping Genes and Collinear Genomic Regions. Evol Bioinform Online 2015; 11:1-9. [PMID: 26715828 PMCID: PMC4686347 DOI: 10.4137/ebo.s33491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/10/2015] [Accepted: 11/16/2015] [Indexed: 11/25/2022] Open
Abstract
Overlapping genes (OGs) represent one type of widespread genomic feature in bacterial genomes and have been used as rare genomic markers in phylogeny inference of closely related bacterial species. However, the inference may experience a decrease in performance for phylogenomic analysis of too closely or too distantly related genomes. Another drawback of OGs as phylogenetic markers is that they usually take little account of the effects of genomic rearrangement on the similarity estimation, such as intra-chromosome/genome translocations, horizontal gene transfer, and gene losses. To explore such effects on the accuracy of phylogeny reconstruction, we combine phylogenetic signals of OGs with collinear genomic regions, here called locally collinear blocks (LCBs). By putting these together, we refine our previous metric of pairwise similarity between two closely related bacterial genomes. As a case study, we used this new method to reconstruct the phylogenies of 88 Enterobacteriale genomes of the class Gammaproteobacteria. Our results demonstrated that the topological accuracy of the inferred phylogeny was improved when both OGs and LCBs were simultaneously considered, suggesting that combining these two phylogenetic markers may reduce, to some extent, the influence of gene loss on phylogeny inference. Such phylogenomic studies, we believe, will help us to explore a more effective approach to increasing the robustness of phylogeny reconstruction of closely related bacterial organisms.
Collapse
Affiliation(s)
- Yan-Cong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China. ; MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Kui Lin
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China. ; MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
22
|
Watson AK, Williams TA, Williams BAP, Moore KA, Hirt RP, Embley TM. Transcriptomic profiling of host-parasite interactions in the microsporidian Trachipleistophora hominis. BMC Genomics 2015; 16:983. [PMID: 26589282 PMCID: PMC4654818 DOI: 10.1186/s12864-015-1989-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/06/2015] [Indexed: 12/28/2022] Open
Abstract
Background Trachipleistophora hominis was isolated from an HIV/AIDS patient and is a member of a highly successful group of obligate intracellular parasites. Methods Here we have investigated the evolution of the parasite and the interplay between host and parasite gene expression using transcriptomics of T. hominis-infected rabbit kidney cells. Results T. hominis has about 30 % more genes than small-genome microsporidians. Highly expressed genes include those involved in growth, replication, defence against oxidative stress, and a large fraction of uncharacterised genes. Chaperones are also highly expressed and may buffer the deleterious effects of the large number of non-synonymous mutations observed in essential T. hominis genes. Host expression suggests a general cellular shutdown upon infection, but ATP, amino sugar and nucleotide sugar production appear enhanced, potentially providing the parasite with substrates it cannot make itself. Expression divergence of duplicated genes, including transporters used to acquire host metabolites, demonstrates ongoing functional diversification during microsporidian evolution. We identified overlapping transcription at more than 100 loci in the sparse T. hominis genome, demonstrating that this feature is not caused by genome compaction. The detection of additional transposons of insect origin strongly suggests that the natural host for T. hominis is an insect. Conclusions Our results reveal that the evolution of contemporary microsporidian genomes is highly dynamic and innovative. Moreover, highly expressed T. hominis genes of unknown function include a cohort that are shared among all microsporidians, indicating that some strongly conserved features of the biology of these enormously successful parasites remain uncharacterised. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1989-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew K Watson
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - Tom A Williams
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - Bryony A P Williams
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Devon, UK.
| | - Karen A Moore
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Devon, UK.
| | - Robert P Hirt
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - T Martin Embley
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
23
|
Corradi N. Microsporidia: Eukaryotic Intracellular Parasites Shaped by Gene Loss and Horizontal Gene Transfers. Annu Rev Microbiol 2015. [PMID: 26195306 DOI: 10.1146/annurev-micro-091014-104136] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microsporidia are eukaryotic parasites of many animals that appear to have adapted to an obligate intracellular lifestyle by modifying the morphology and content of their cells. Living inside other cells, they have lost many, or all, metabolic functions, resulting in genomes that are always gene poor and often very small. The minute content of microsporidian genomes led many to assume that these parasites are biochemically static and uninteresting. However, recent studies have demonstrated that these organisms can be surprisingly complex and dynamic. In this review I detail the most significant recent advances in microsporidian genomics and discuss how these have affected our understanding of many biological aspects of these peculiar eukaryotic intracellular pathogens.
Collapse
Affiliation(s)
- Nicolas Corradi
- Canadian Institute for Advanced Research, Department of Biology, University of Ottawa, Ontario, Canada K1N 6N5;
| |
Collapse
|
24
|
Abstract
Chlorarachniophyte and cryptophyte algae have complex plastids that were acquired by the uptake of a green or red algal endosymbiont via secondary endosymbiosis. The plastid is surrounded by four membranes, and a relict nucleus, called the nucleomorph, remains in the periplastidal compartment that is the remnant cytoplasm of the endosymbiont. Thus, these two algae possess four different genomes in a cell: Nuclear, nucleomorph, plastid, and mitochondrial. Recently, sequencing of the nuclear genomes of the chlorarachniophyte Bigelowiella natans and the cryptophyte Guillardia theta has been completed, and all four genomes have been made available. However, the copy number of each genome has never been investigated. It is important to know the actual DNA content of each genome, especially the highly reduced nucleomorph genome, for studies on genome evolution. In this study, we calculated genomic copy numbers in B. natans and G. theta using a real-time quantitative polymerase chain reaction approach. The nuclear genomes were haploid in both species, whereas the nucleomorph genomes were estimated to be diploid and tetraploid, respectively. Mitochondria and plastids contained a large copy number of genomic DNA in each cell. In the secondary endosymbioses of chlorarachniophytes and cryptophytes, the endosymbiont nuclear genomes were highly reduced in size and in the number of coding genes, whereas the chromosomal copy number was increased, as in bacterial endosymbiont genomes. This suggests that polyploidization is a general characteristic of highly reduced genomes in broad prokaryotic and eukaryotic endosymbionts.
Collapse
Affiliation(s)
- Yoshihisa Hirakawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
25
|
Sun H, Yang S, Tun L, Li Y. IAOseq: inferring abundance of overlapping genes using RNA-seq data. BMC Bioinformatics 2015; 16 Suppl 1:S3. [PMID: 25707673 PMCID: PMC4331702 DOI: 10.1186/1471-2105-16-s1-s3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Overlapping transcription constitutes a common mechanism for regulating gene expression. A major limitation of the overlapping transcription assays is the lack of high throughput expression data. RESULTS We developed a new tool (IAOseq) that is based on reads distributions along the transcribed regions to identify the expression levels of overlapping genes from standard RNA-seq data. Compared with five commonly used quantification methods, IAOseq showed better performance in the estimation accuracy of overlapping transcription levels. For the same strand overlapping transcription, currently existing high-throughput methods are rarely available to distinguish which strand was present in the original mRNA template. The IAOseq results showed that the commonly used methods gave an average of 1.6 fold overestimation of the expression levels of same strand overlapping genes. CONCLUSIONS This work provides a useful tool for mining overlapping transcription levels from standard RNA-seq libraries. IAOseq could be used to help us understand the complex regulatory mechanism mediated by overlapping transcripts. IAOseq is freely available at http://lifecenter.sgst.cn/main/en/IAO_seq.jsp.
Collapse
|
26
|
Overlapping genes: a new strategy of thermophilic stress tolerance in prokaryotes. Extremophiles 2014; 19:345-53. [PMID: 25503326 DOI: 10.1007/s00792-014-0720-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 12/01/2014] [Indexed: 12/29/2022]
Abstract
Overlapping genes (OGs) draw the focus of recent day's research. However, the significance of OGs in prokaryotic genomes remained unexplored. As an adaptation to high temperature, thermophiles were shown to eliminate their intergenic regions. Therefore, it could be possible that prokaryotes would increase their OG content to adapt to high temperature. To test this hypothesis, we carried out a comparative study on OG frequency of 256 prokaryotic genomes comprising both thermophiles and non-thermophiles. It was found that thermophiles exhibit higher frequency of overlapping genes than non-thermophiles. Moreover, overlap frequency was found to correlate with optimal growth temperature (OGT) in prokaryotes. Long overlap frequency was found to hold a positive correlation with OGT resulting in an abundance of long overlaps in thermophiles compared to non-thermophiles. On the other hand, short overlap (1-4 nucleotides) frequency (SOF) did not yield any direct correlation with OGT. However, the correlation of SOF with CAIavg (extent of variation of codon usage bias measured as the mean of codon adaptation index of all genes in a given genome) and IG% (proportion of intergenic regions) indicate that they might upregulate the aforementioned factors (CAIavg and IG%) which are already known to be vital forces for thermophilic adaptation. From these evidences, we propose that the OG content bears a strong link to thermophily. Long overlaps are important for their genome compaction and short overlaps are important to uphold high CAIavg. Our findings will surely help in better understanding of the significance of overlapping gene content in prokaryotic genomes.
Collapse
|
27
|
Peyretaillade E, Boucher D, Parisot N, Gasc C, Butler R, Pombert JF, Lerat E, Peyret P. Exploiting the architecture and the features of the microsporidian genomes to investigate diversity and impact of these parasites on ecosystems. Heredity (Edinb) 2014; 114:441-9. [PMID: 25182222 DOI: 10.1038/hdy.2014.78] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/16/2014] [Accepted: 07/21/2014] [Indexed: 12/16/2022] Open
Abstract
Fungal species play extremely important roles in ecosystems. Clustered at the base of the fungal kingdom are Microsporidia, a group of obligate intracellular eukaryotes infecting multiple animal lineages. Because of their large host spectrum and their implications in host population regulation, they influence food webs, and accordingly, ecosystem structure and function. Unfortunately, their ecological role is not well understood. Present also as highly resistant spores in the environment, their characterisation requires special attention. Different techniques based on direct isolation and/or molecular approaches can be considered to elucidate their role in the ecosystems, but integrating environmental and genomic data (for example, genome architecture, core genome, transcriptional and translational signals) is crucial to better understand the diversity and adaptive capacities of Microsporidia. Here, we review the current status of Microsporidia in trophic networks; the various genomics tools that could be used to ensure identification and evaluate diversity and abundance of these organisms; and how these tools could be used to explore the microsporidian life cycle in different environments. Our understanding of the evolution of these widespread parasites is currently impaired by limited sampling, and we have no doubt witnessed but a small subset of their diversity.
Collapse
Affiliation(s)
- E Peyretaillade
- Genomics, Clermont Université, Université d'Auvergne, EA 4678 CIDAM, Clermont-Ferrand, France
| | - D Boucher
- Genomics, Clermont Université, Université d'Auvergne, EA 4678 CIDAM, Clermont-Ferrand, France
| | - N Parisot
- 1] Genomics, Clermont Université, Université d'Auvergne, EA 4678 CIDAM, Clermont-Ferrand, France [2] CNRS, UMR 6023, LMGE, Aubière, France
| | - C Gasc
- Genomics, Clermont Université, Université d'Auvergne, EA 4678 CIDAM, Clermont-Ferrand, France
| | - R Butler
- Illinois Institute of Technology, BCHS Biology Division, Chicago, IL, USA
| | - J-F Pombert
- Illinois Institute of Technology, BCHS Biology Division, Chicago, IL, USA
| | - E Lerat
- Université de Lyon, Lyon, Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Villeurbanne, France
| | - P Peyret
- Genomics, Clermont Université, Université d'Auvergne, EA 4678 CIDAM, Clermont-Ferrand, France
| |
Collapse
|
28
|
Hirakawa Y, Suzuki S, Archibald JM, Keeling PJ, Ishida KI. Overexpression of molecular chaperone genes in nucleomorph genomes. Mol Biol Evol 2014; 31:1437-43. [PMID: 24603278 DOI: 10.1093/molbev/msu092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chlorarachniophytes and cryptophytes possess complex plastids that were acquired by the ingestion of a green and red algal endosymbiont, respectively. The plastids are surrounded by four membranes, and a relict nucleus, called the nucleomorph, remains in the periplastidal compartment, which corresponds to the remnant cytoplasm of the endosymbiont. Nucleomorphs contain a greatly reduced genome that possesses only several hundred genes with high evolutionary rates. We examined the relative transcription levels of the genes of all proteins encoded by the nucleomorph genomes of two chlorarachniophytes and three cryptophytes using an RNA-seq transcriptomic approach. The genes of two heat shock proteins, Hsp70 and Hsp90, were highly expressed under normal conditions. It has been shown that molecular chaperone overexpression allows an accumulation of genetic mutations in bacteria. Our results suggest that overexpression of heat shock proteins in nucleomorph genomes may play a role in buffering the mutational destabilization of proteins, which might allow the high evolutionary rates of nucleomorph-encoded proteins.
Collapse
Affiliation(s)
- Yoshihisa Hirakawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shigekatsu Suzuki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, CanadaCanadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity
| | - Patrick J Keeling
- Canadian Institute for Advanced Research, Program in Integrated Microbial BiodiversityDepartment of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ken-ichiro Ishida
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
29
|
Tanifuji G, Onodera NT, Moore CE, Archibald JM. Reduced Nuclear Genomes Maintain High Gene Transcription Levels. Mol Biol Evol 2013; 31:625-35. [DOI: 10.1093/molbev/mst254] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
30
|
Castellana NE, Shen Z, He Y, Walley JW, Cassidy CJ, Briggs SP, Bafna V. An automated proteogenomic method uses mass spectrometry to reveal novel genes in Zea mays. Mol Cell Proteomics 2013; 13:157-67. [PMID: 24142994 DOI: 10.1074/mcp.m113.031260] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
New technologies in genomics and proteomics have influenced the emergence of proteogenomics, a field at the confluence of genomics, transcriptomics, and proteomics. First generation proteogenomic toolkits employ peptide mass spectrometry to identify novel protein coding regions. We extend first generation proteogenomic tools to achieve greater accuracy and enable the analysis of large, complex genomes. We apply our pipeline to Zea mays, which has a genome comparable in size to human. Our pipeline begins with the comparison of mass spectra to a putative translation of the genome. We select novel peptides, those that match a region of the genome that was not previously known to be protein coding, for grouping into refinement events. We present a novel, probabilistic framework for evaluating the accuracy of each event. Our calculated event probability, or eventProb, considers the number of supporting peptides and spectra, and the quality of each supporting peptide-spectrum match. Our pipeline predicts 165 novel protein-coding genes and proposes updated models for 741 additional genes.
Collapse
Affiliation(s)
- Natalie E Castellana
- Department of Computer Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92092
| | | | | | | | | | | | | |
Collapse
|
31
|
The genome of Spraguea lophii and the basis of host-microsporidian interactions. PLoS Genet 2013; 9:e1003676. [PMID: 23990793 PMCID: PMC3749934 DOI: 10.1371/journal.pgen.1003676] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/12/2013] [Indexed: 11/19/2022] Open
Abstract
Microsporidia are obligate intracellular parasites with the smallest known eukaryotic genomes. Although they are increasingly recognized as economically and medically important parasites, the molecular basis of microsporidian pathogenicity is almost completely unknown and no genetic manipulation system is currently available. The fish-infecting microsporidian Spraguea lophii shows one of the most striking host cell manipulations known for these parasites, converting host nervous tissue into swollen spore factories known as xenomas. In order to investigate the basis of these interactions between microsporidian and host, we sequenced and analyzed the S. lophii genome. Although, like other microsporidia, S. lophii has lost many of the protein families typical of model eukaryotes, we identified a number of gene family expansions including a family of leucine-rich repeat proteins that may represent pathogenicity factors. Building on our comparative genomic analyses, we exploited the large numbers of spores that can be obtained from xenomas to identify potential effector proteins experimentally. We used complex-mix proteomics to identify proteins released by the parasite upon germination, resulting in the first experimental isolation of putative secreted effector proteins in a microsporidian. Many of these proteins are not related to characterized pathogenicity factors or indeed any other sequences from outside the Microsporidia. However, two of the secreted proteins are members of a family of RICIN B-lectin-like proteins broadly conserved across the phylum. These proteins form syntenic clusters arising from tandem duplications in several microsporidian genomes and may represent a novel family of conserved effector proteins. These computational and experimental analyses establish S. lophii as an attractive model system for understanding the evolution of host-parasite interactions in microsporidia and suggest an important role for lineage-specific innovations and fast evolving proteins in the evolution of the parasitic microsporidian lifecycle. Microsporidia are unusual intracellular parasites that infect a broad range of animal cells. In comparison to their fungal relatives, microsporidian genomes have shrunk during evolution, encoding as few as 2000 proteins. This minimal molecular repertoire makes them a reduced model system for understanding host-parasite interactions. A number of microsporidian genomes have now been sequenced, but the lack of a system for genetic manipulation makes it difficult to translate these data into a better understanding of microsporidian biology. Here we present a deep sequencing project of Spraguea lophii, a fish-infecting microsporidian that is abundantly available from environmental samples. We use our sequence data combined with germination protocols and complex-mix proteomics to identify proteins released by the cell at the earliest stage of germination, representing potential pathogenicity factors. We profile the RNA expression pattern of germinating cells and identify a set of highly transcribed hypothetical genes. Our study provides new insight into the importance of uncharacterized, lineage-specific and/or fast evolving proteins in microsporidia and provides new leads for the investigation of virulence factors in these enigmatic parasites.
Collapse
|
32
|
Oberstaller J, Joseph SJ, Kissinger JC. Genome-wide upstream motif analysis of Cryptosporidium parvum genes clustered by expression profile. BMC Genomics 2013; 14:516. [PMID: 23895416 PMCID: PMC3734150 DOI: 10.1186/1471-2164-14-516] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/09/2013] [Indexed: 11/16/2022] Open
Abstract
Background There are very few molecular genetic tools available to study the apicomplexan parasite Cryptosporidium parvum. The organism is not amenable to continuous in vitro cultivation or transfection, and purification of intracellular developmental stages in sufficient numbers for most downstream molecular applications is difficult and expensive since animal hosts are required. As such, very little is known about gene regulation in C. parvum. Results We have clustered whole-genome gene expression profiles generated from a previous study of seven post-infection time points of 3,281 genes to identify genes that show similar expression patterns throughout the first 72 hours of in vitro epithelial cell culture. We used the algorithms MEME, AlignACE and FIRE to identify conserved, overrepresented DNA motifs in the upstream promoter region of genes with similar expression profiles. The most overrepresented motifs were E2F (5′-TGGCGCCA-3′); G-box (5′-G.GGGG-3′); a well-documented ApiAP2 binding motif (5′-TGCAT-3′), and an unknown motif (5′-[A/C] AACTA-3′). We generated a recombinant C. parvum DNA-binding protein domain from a putative ApiAP2 transcription factor [CryptoDB: cgd8_810] and determined its binding specificity using protein-binding microarrays. We demonstrate that cgd8_810 can putatively bind the overrepresented G-box motif, implicating this ApiAP2 in the regulation of many gene clusters. Conclusion Several DNA motifs were identified in the upstream sequences of gene clusters that might serve as potential cis-regulatory elements. These motifs, in concert with protein DNA binding site data, establish for the first time the beginnings of a global C. parvum gene regulatory map that will contribute to our understanding of the development of this zoonotic parasite.
Collapse
Affiliation(s)
- Jenna Oberstaller
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
33
|
Behura SK, Severson DW. Overlapping genes of Aedes aegypti: evolutionary implications from comparison with orthologs of Anopheles gambiae and other insects. BMC Evol Biol 2013; 13:124. [PMID: 23777277 PMCID: PMC3689595 DOI: 10.1186/1471-2148-13-124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 06/12/2013] [Indexed: 11/11/2022] Open
Abstract
Background Although gene overlapping is a common feature of prokaryote and mitochondria genomes, such genes have also been identified in many eukaryotes. The overlapping genes in eukaryotes are extensively rearranged even between closely related species. In this study, we investigated retention and rearrangement of positionally overlapping genes between the mosquitoes Aedes aegypti (dengue virus vector) and Anopheles gambiae (malaria vector). The overlapping gene pairs of A. aegypti were further compared with orthologs of other selected insects to conduct several hypothesis driven investigations relating to the evolution and rearrangement of overlapping genes. Results The results show that as much as ~10% of the predicted genes of A. aegypti and A. gambiae are localized in positional overlapping manner. Furthermore, the study shows that differential abundance of introns and simple sequence repeats have significant association with positional rearrangement of overlapping genes between the two species. Gene expression analysis further suggests that antisense transcripts generated from the oppositely oriented overlapping genes are differentially regulated and may have important regulatory functions in these mosquitoes. Our data further shows that synonymous and non-synonymous mutations have differential but non-significant effect on overlapping localization of orthologous genes in other insect genomes. Conclusion Gene overlapping in insects may be a species-specific evolutionary process as evident from non-dependency of gene overlapping with species phylogeny. Based on the results, our study suggests that overlapping genes may have played an important role in genome evolution of insects.
Collapse
Affiliation(s)
- Susanta K Behura
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
34
|
Grisdale CJ, Bowers LC, Didier ES, Fast NM. Transcriptome analysis of the parasite Encephalitozoon cuniculi: an in-depth examination of pre-mRNA splicing in a reduced eukaryote. BMC Genomics 2013; 14:207. [PMID: 23537046 PMCID: PMC3629993 DOI: 10.1186/1471-2164-14-207] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/18/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The microsporidian Encephalitozoon cuniculi possesses one of the most reduced and compacted eukaryotic genomes. Reduction in this intracellular parasite has affected major cellular machinery, including the loss of over fifty core spliceosomal components compared to S. cerevisiae. To identify expression changes throughout the parasite's life cycle and also to assess splicing in the context of this reduced system, we examined the transcriptome of E. cuniculi using Illumina RNA-seq. RESULTS We observed that nearly all genes are expressed at three post-infection time-points examined. A large fraction of genes are differentially expressed between the first and second (37.7%) and first and third (43.8%) time-points, while only four genes are differentially expressed between the latter two. Levels of intron splicing are very low, with 81% of junctions spliced at levels below 50%. This is dramatically lower than splicing levels found in two other fungal species examined. We also describe the first case of alternative splicing in a microsporidian, an unexpected complexity given the reduction in spliceosomal components. CONCLUSIONS Low levels of splicing observed are likely the result of an inefficient spliceosome; however, at least in one case, splicing appears to be playing a functional role. Although several RNA decay genes are encoded in E. cuniculi, the lack of a few key players could be reducing decay levels and therefore increasing the proportion of unspliced transcripts. Significant proportions of genes are differentially expressed in the first forty-eight hours but not after, indicative of genetic changes that precede the intracellular to infective stage transition.
Collapse
Affiliation(s)
- Cameron J Grisdale
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
35
|
Abstract
Parasitism, aptly defined as one of the 'living-together' strategies (Trager, 1986), presents a dynamic system in which the parasite and its host are under evolutionary pressure to evolve new and specific adaptations, thus enabling the coexistence of the two closely interacting partners. Microsporidia are very frequently encountered obligatory intracellular protistan parasites that can infect both animals and some protists and are a consummate example of various aspects of the 'living-together' strategy. Microsporidia, relatives of fungi in the superkingdom Opisthokonta, belong to the relatively small group of parasites for which the host cell cytoplasm is the site of both reproduction and maturation. The structural and physiological reduction of their vegetative stage, together with the manipulation of host cell physiology, enables microsporidia to live in the cytosolic environment for most of their life cycle in a way resembling endocytobionts. The ability to form structurally complex spores and the invention and assembly of a unique injection mechanism enable microsporidia to disperse within host tissues and between host organisms, resulting in long-lasting infections. Microsporidia have adapted their genomes to the intracellular way of life, evolved strategies how to obtain nutrients directly from the host and how to manipulate not only the infected cells, but also the hosts themselves. The enormous variability of host organisms and their tissues provide microsporidian parasites a virtually limitless terrain for diversification and ecological expansion. This review attempts to present a general overview of microsporidia, emphasising some less known and/or more recently discovered facets of their biology.
Collapse
|
36
|
The genome of the obligate intracellular parasite Trachipleistophora hominis: new insights into microsporidian genome dynamics and reductive evolution. PLoS Pathog 2012; 8:e1002979. [PMID: 23133373 PMCID: PMC3486916 DOI: 10.1371/journal.ppat.1002979] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/05/2012] [Indexed: 11/30/2022] Open
Abstract
The dynamics of reductive genome evolution for eukaryotes living inside other eukaryotic cells are poorly understood compared to well-studied model systems involving obligate intracellular bacteria. Here we present 8.5 Mb of sequence from the genome of the microsporidian Trachipleistophora hominis, isolated from an HIV/AIDS patient, which is an outgroup to the smaller compacted-genome species that primarily inform ideas of evolutionary mode for these enormously successful obligate intracellular parasites. Our data provide detailed information on the gene content, genome architecture and intergenic regions of a larger microsporidian genome, while comparative analyses allowed us to infer genomic features and metabolism of the common ancestor of the species investigated. Gene length reduction and massive loss of metabolic capacity in the common ancestor was accompanied by the evolution of novel microsporidian-specific protein families, whose conservation among microsporidians, against a background of reductive evolution, suggests they may have important functions in their parasitic lifestyle. The ancestor had already lost many metabolic pathways but retained glycolysis and the pentose phosphate pathway to provide cytosolic ATP and reduced coenzymes, and it had a minimal mitochondrion (mitosome) making Fe-S clusters but not ATP. It possessed bacterial-like nucleotide transport proteins as a key innovation for stealing host-generated ATP, the machinery for RNAi, key elements of the early secretory pathway, canonical eukaryotic as well as microsporidian-specific regulatory elements, a diversity of repetitive and transposable elements, and relatively low average gene density. Microsporidian genome evolution thus appears to have proceeded in at least two major steps: an ancestral remodelling of the proteome upon transition to intracellular parasitism that involved reduction but also selective expansion, followed by a secondary compaction of genome architecture in some, but not all, lineages. Microsporidians are enormously successful obligate intracellular parasites of animals, including humans. Despite their economic and medical importance, there are major gaps in our understanding of how microsporidians have made the transition from a free-living organism to one that can only complete its life cycle by living inside another cell. We present the larger genome of Trachipleistophora hominis isolated from a human patient with HIV/AIDS. Our analyses provide insights into the gene content, genome architecture and intergenic regions of a known opportunistic pathogen, and will facilitate the development of T. hominis as a much-needed model species that can also be grown in co-culture. The genome of T. hominis has more genes than other microsporidians, it has diverse regulatory motifs, and it contains a variety of transposable elements coupled with the machinery for RNA interference, which may eventually allow experimental down-regulation of T. hominis genes. Comparison of the genome of T. hominis with other microsporidians allowed us to infer properties of their common ancestor. Our analyses predict an ancestral microsporidian that was already an intracellular parasite with a reduced core proteome but one with a relatively large genome populated with diverse repetitive elements and a complex transcriptional regulatory network.
Collapse
|
37
|
Cuomo CA, Desjardins CA, Bakowski MA, Goldberg J, Ma AT, Becnel JJ, Didier ES, Fan L, Heiman DI, Levin JZ, Young S, Zeng Q, Troemel ER. Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth. Genome Res 2012; 22:2478-88. [PMID: 22813931 PMCID: PMC3514677 DOI: 10.1101/gr.142802.112] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microsporidia comprise a large phylum of obligate intracellular eukaryotes that are fungal-related parasites responsible for widespread disease, and here we address questions about microsporidia biology and evolution. We sequenced three microsporidian genomes from two species, Nematocida parisii and Nematocida sp1, which are natural pathogens of Caenorhabditis nematodes and provide model systems for studying microsporidian pathogenesis. We performed deep sequencing of transcripts from a time course of N. parisii infection. Examination of pathogen gene expression revealed compact transcripts and a dramatic takeover of host cells by Nematocida. We also performed phylogenomic analyses of Nematocida and other microsporidian genomes to refine microsporidian phylogeny and identify evolutionary events of gene loss, acquisition, and modification. In particular, we found that all microsporidia lost the tumor-suppressor gene retinoblastoma, which we speculate could accelerate the parasite cell cycle and increase the mutation rate. We also found that microsporidia acquired transporters that could import nucleosides to fuel rapid growth. In addition, microsporidian hexokinases gained secretion signal sequences, and in a functional assay these were sufficient to export proteins out of the cell; thus hexokinase may be targeted into the host cell to reprogram it toward biosynthesis. Similar molecular changes appear during formation of cancer cells and may be evolutionary strategies adopted independently by microsporidia to proliferate rapidly within host cells. Finally, analysis of genome polymorphisms revealed evidence for a sexual cycle that may provide genetic diversity to alleviate problems caused by clonal growth. Together these events may explain the emergence and success of these diverse intracellular parasites.
Collapse
Affiliation(s)
- Christina A Cuomo
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Successful COG8 and PDF overlap is mediated by alterations in splicing and polyadenylation signals. Hum Genet 2011; 131:265-74. [PMID: 21805148 DOI: 10.1007/s00439-011-1075-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 07/19/2011] [Indexed: 01/21/2023]
Abstract
Although gene-free areas compose the great majority of eukaryotic genomes, a significant fraction of genes overlaps, i.e., unique nucleotide sequences are part of more than one transcription unit. In this work, the evolutionary history and origin of a same-strand gene overlap is dissected through the analysis of COG8 (component of oligomeric Golgi complex 8) and PDF (peptide deformylase). Comparative genomic surveys reveal that the relative locations of these two genes have been changing over the last 445 million years from distinct chromosomal locations in fish to overlapping in rodents and primates, indicating that the overlap between these genes precedes their divergence. The overlap between the two genes was initiated by the gain of a novel splice donor site between the COG8 stop codon and PDF initiation codon. Splicing is accomplished by the use of the PDF acceptor, leading COG8 to share the 3'end with PDF. In primates, loss of the ancestral polyadenylation signal for COG8 makes the overlap between COG8 and PDF mandatory, while in mouse and rat concurrent overlapping and non-overlapping Cog8 transcripts exist. Altogether, we demonstrate that the origin, evolution and preservation of the COG8/PDF same-strand overlap follow similar mechanistic steps as those documented for antisense overlaps where gain and/or loss of splice sites and polyadenylation signals seems to drive the process.
Collapse
|
39
|
Chavali S, Morais DADL, Gough J, Babu MM. Evolution of eukaryotic genome architecture: Insights from the study of a rapidly evolving metazoan, Oikopleura dioica. Bioessays 2011; 33:592-601. [DOI: 10.1002/bies.201100034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
Hirakawa Y, Burki F, Keeling PJ. Nucleus- and nucleomorph-targeted histone proteins in a chlorarachniophyte alga. Mol Microbiol 2011; 80:1439-49. [PMID: 21470316 DOI: 10.1111/j.1365-2958.2011.07643.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The plastid of chlorarachniophytes is distinguished by the retention of a relict nucleus (nucleomorph) derived from a green algal endosymbiont, which is located in the periplastidal compartment (PPC). The nucleomorph genome of a chlorarachniophyte, Bigelowiella natans, encodes several plastid-targeted proteins and hundreds of housekeeping proteins, but it lacks many fundamental genes to maintain itself. Here we report the first two host nucleus-encoded genes for proteins targeted to the nucleomorph, histone H2A and H2B. We identified 20 histone genes from the host nuclear genome, and based on phylogenetic analyses predicted that most of these are derived from the host, but that two histone genes are symbiont-derived. The genes both encode N-terminal extensions resembling PPC targeting signals, further suggesting they function in the nucleomorph. Using green fluorescent protein (GFP) fusion proteins expressed in transformed cells, we confirmed that the putative symbiont H2A and H2B were targeted into the nucleomorph, whereas putative host proteins were localized to the host nucleus. Furthermore, we have developed a method to temporarily synchronize B. natans cells, and confirmed that both host and symbiont histone expression is controlled during the cell cycle. Our findings provide the first evidence of how the nucleomorph may be regulated by host-encoded gene products.
Collapse
Affiliation(s)
- Yoshihisa Hirakawa
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | | | | |
Collapse
|
41
|
Peyretaillade E, El Alaoui H, Diogon M, Polonais V, Parisot N, Biron DG, Peyret P, Delbac F. Extreme reduction and compaction of microsporidian genomes. Res Microbiol 2011; 162:598-606. [PMID: 21426934 DOI: 10.1016/j.resmic.2011.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/21/2011] [Indexed: 12/19/2022]
Abstract
Microsporidia are fungi-related obligate intracellular parasites with a highly reduced and compact genome, as for Encephalitozoon species which harbor a genome smaller than 3 Mbp. Genome compaction is reflected by high gene density and, for larger microsporidian genomes, size variation is due to repeat elements that do not drastically affect gene density. Furthermore, these pathogens present strong host dependency illustrated by extensive gene loss. Such adaptations associated with genome compaction induced gene size reduction but also simplification of cellular processes such as transcription. Thus, microsporidia are excellent models for eukaryotic genome evolution and gene expression in the context of host-pathogen relationships.
Collapse
Affiliation(s)
- Eric Peyretaillade
- Clermont Université, Université d'Auvergne, Laboratoire Microorganismes Génome et Environnement, BP 10448, F-63000 Clermont-Ferrand, France.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
GRISDALE CAMERONJ, FAST NAOMIM. Patterns of 5′ Untranslated Region Length Distribution in Encephalitozoon cuniculi: Implications for Gene Regulation and Potential Links Between Transcription and Splicing. J Eukaryot Microbiol 2010; 58:68-74. [DOI: 10.1111/j.1550-7408.2010.00523.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
43
|
Corradi N, Slamovits CH. The intriguing nature of microsporidian genomes. Brief Funct Genomics 2010; 10:115-24. [PMID: 21177329 DOI: 10.1093/bfgp/elq032] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Microsporidia are a group of highly adapted unicellular fungi that are known to infect a wide range of animals, including humans and species of great economic importance. These organisms are best known for their very simple cellular and genomic features, an adaptive consequence of their obligate intracellular parasitism. In the last decade, the acquisition of a large amount of genomic and transcriptomic data from several microsporidian species has greatly improved our understanding of the consequences of a purely intracellular lifestyle. In particular, genome sequence data from these pathogens has revealed how obligate intracellular parasitism can result in radical changes in the composition and structure of nuclear genomes and how these changes can affect cellular and evolutionary mechanisms that are otherwise well conserved among eukaryotes. This article reviews our current understanding of the genome content and structure of microsporidia, discussing their evolutionary origin and cataloguing the mechanisms that have often been involved in their extreme reduction.
Collapse
Affiliation(s)
- Nicolas Corradi
- Canadian Institute for Advanced Research, Department of Biology, University of Ottawa, Gendron Hall, ON, Canada.
| | | |
Collapse
|
44
|
Tanifuji G, Onodera NT, Wheeler TJ, Dlutek M, Donaher N, Archibald JM. Complete nucleomorph genome sequence of the nonphotosynthetic alga Cryptomonas paramecium reveals a core nucleomorph gene set. Genome Biol Evol 2010; 3:44-54. [PMID: 21147880 PMCID: PMC3017389 DOI: 10.1093/gbe/evq082] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Nucleomorphs are the remnant nuclei of algal endosymbionts that were engulfed by nonphotosynthetic host eukaryotes. These peculiar organelles are found in cryptomonad and chlorarachniophyte algae, where they evolved from red and green algal endosymbionts, respectively. Despite their independent origins, cryptomonad and chlorarachniophyte nucleomorph genomes are similar in size and structure: they are both <1 million base pairs in size (the smallest nuclear genomes known), comprised three chromosomes, and possess subtelomeric ribosomal DNA operons. Here, we report the complete sequence of one of the smallest cryptomonad nucleomorph genomes known, that of the secondarily nonphotosynthetic cryptomonad Cryptomonas paramecium. The genome is 486 kbp in size and contains 518 predicted genes, 466 of which are protein coding. Although C. paramecium lacks photosynthetic ability, its nucleomorph genome still encodes 18 plastid-associated proteins. More than 90% of the “conserved” protein genes in C. paramecium (i.e., those with clear homologs in other eukaryotes) are also present in the nucleomorph genomes of the cryptomonads Guillardia theta and Hemiselmis andersenii. In contrast, 143 of 466 predicted C. paramecium proteins (30.7%) showed no obvious similarity to proteins encoded in any other genome, including G. theta and H. andersenii. Significantly, however, many of these “nucleomorph ORFans” are conserved in position and size between the three genomes, suggesting that they are in fact homologous to one another. Finally, our analyses reveal an unexpected degree of overlap in the genes present in the independently evolved chlorarachniophyte and cryptomonad nucleomorph genomes: ∼80% of a set of 120 conserved nucleomorph genes in the chlorarachniophyte Bigelowiella natans were also present in all three cryptomonad nucleomorph genomes. This result suggests that similar reductive processes have taken place in unrelated lineages of nucleomorph-containing algae.
Collapse
Affiliation(s)
- Goro Tanifuji
- Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Silver TD, Moore CE, Archibald JM. Nucleomorph ribosomal DNA and telomere dynamics in chlorarachniophyte algae. J Eukaryot Microbiol 2010; 57:453-9. [PMID: 21040099 DOI: 10.1111/j.1550-7408.2010.00511.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chlorarachniophytes are enigmatic marine unicellular algae that acquired photosynthesis by secondary endosymbiosis. Chlorarachniophytes are unusual in that the nucleus of the engulfed algal cell (a green alga) persists in a miniaturized form, termed a nucleomorph. The nucleomorph genome of the model chlorarachniophyte, Bigelowiella natans CCMP621, is 373 kilobase pairs (kbp) in size, the smallest nuclear genome characterized to date. The B. natans nucleomorph genome is composed of three chromosomes, each with canonical eukaryotic telomeres and sub-telomeric ribosomal DNA (rDNA) operons transcribed away from the chromosome end. Here we present the complete rDNA operon and telomeric region from the nucleomorph genome of Lotharella oceanica CCMP622, a newly characterized chlorarachniophyte strain with a genome ∼610 kbp in size, significantly larger than all other known chlorarachniophytes. We show that the L. oceanica rDNA operon is in the opposite chromosomal orientation to that of B. natans. Furthermore, we determined the rDNA operon orientation of five additional chlorarachniophyte strains, the majority of which possess the same arrangement as L. oceanica, with the exception of Chlorarachnion reptans and those very closely related to B. natans. It is thus possible that the ancestral rDNA operon orientation of the chlorarachniophyte nucleomorph genome might have been the same as in the independently evolved, red algal-derived, nucleomorph genomes of cryptophytes. A U2 small nuclear RNA gene was found adjacent to the telomere in Gymnochlora stellata CCMP2057 and Chlorarachnion sp. CCMP2014. This feature may represent a useful evolutionary character for inferring the relationships among extant lineages.
Collapse
Affiliation(s)
- Tia D Silver
- Department of Biochemistry and Molecular Biology, Canadian Institute for Advanced Research, Integrated Microbial Biodiversity Program, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
46
|
Corradi N, Pombert JF, Farinelli L, Didier ES, Keeling PJ. The complete sequence of the smallest known nuclear genome from the microsporidian Encephalitozoon intestinalis. Nat Commun 2010; 1:77. [PMID: 20865802 PMCID: PMC4355639 DOI: 10.1038/ncomms1082] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/25/2010] [Indexed: 12/20/2022] Open
Abstract
The genome of the microsporidia Encephalitozoon cuniculi is widely recognized as a model for extreme reduction and compaction. At only 2.9 Mbp, the genome encodes approximately 2,000 densely packed genes and little else. However, the nuclear genome of its sister, Encephalitozoon intestinalis, is even more reduced; at 2.3 Mbp, it represents a 20% reduction from an already severely compacted genome, raising the question, what else can be lost? In this paper, we describe the complete sequence of the E. intestinalis genome and its comparison with that of E. cuniculi. The two species share a conserved gene content, order and density over most of their genomes. The exceptions are the subtelomeric regions, where E. intestinalis chromosomes are missing large gene blocks of sequence found in E. cuniculi. In the remaining gene-dense chromosome 'cores', the diminutive intergenic sequences and introns are actually more highly conserved than the genes themselves, suggesting that they have reached the limits of reduction for a fully functional genome. A comparison of related genomes provides valuable information about how they evolve. Here, the complete sequence of the smallest known nuclear genome from the microsporidia E. intestinalis is described and compared with its larger sister E. cuniculi, revealing what parts are indispensable in even the most reduced genomes.
Collapse
Affiliation(s)
- Nicolas Corradi
- Department of Botany, Canadian Institute for Advanced Research, University of British Columbia, 3529-6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| | | | | | | | | |
Collapse
|
47
|
Keeling PJ. The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci 2010; 365:729-48. [PMID: 20124341 DOI: 10.1098/rstb.2009.0103] [Citation(s) in RCA: 395] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Plastids and mitochondria each arose from a single endosymbiotic event and share many similarities in how they were reduced and integrated with their host. However, the subsequent evolution of the two organelles could hardly be more different: mitochondria are a stable fixture of eukaryotic cells that are neither lost nor shuffled between lineages, whereas plastid evolution has been a complex mix of movement, loss and replacement. Molecular data from the past decade have substantially untangled this complex history, and we now know that plastids are derived from a single endosymbiotic event in the ancestor of glaucophytes, red algae and green algae (including plants). The plastids of both red algae and green algae were subsequently transferred to other lineages by secondary endosymbiosis. Green algal plastids were taken up by euglenids and chlorarachniophytes, as well as one small group of dinoflagellates. Red algae appear to have been taken up only once, giving rise to a diverse group called chromalveolates. Additional layers of complexity come from plastid loss, which has happened at least once and probably many times, and replacement. Plastid loss is difficult to prove, and cryptic, non-photosynthetic plastids are being found in many non-photosynthetic lineages. In other cases, photosynthetic lineages are now understood to have evolved from ancestors with a plastid of different origin, so an ancestral plastid has been replaced with a new one. Such replacement has taken place in several dinoflagellates (by tertiary endosymbiosis with other chromalveolates or serial secondary endosymbiosis with a green alga), and apparently also in two rhizarian lineages: chlorarachniophytes and Paulinella (which appear to have evolved from chromalveolate ancestors). The many twists and turns of plastid evolution each represent major evolutionary transitions, and each offers a glimpse into how genomes evolve and how cells integrate through gene transfers and protein trafficking.
Collapse
Affiliation(s)
- Patrick J Keeling
- Botany Department, Canadian Institute for Advanced Research, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4.
| |
Collapse
|
48
|
Gill EE, Lee RCH, Corradi N, Grisdale CJ, Limpright VO, Keeling PJ, Fast NM. Splicing and transcription differ between spore and intracellular life stages in the parasitic microsporidia. Mol Biol Evol 2010; 27:1579-84. [PMID: 20167610 DOI: 10.1093/molbev/msq050] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Microsporidia are a diverse group of highly derived fungal relatives that are intracellular parasites of many animals. Both transcription and introns have been shown to be unusual in microsporidia: The complete genome of the human parasite Encephalitozoon cuniculi has only a few very short introns, and two distantly related microsporidian spores have been shown to harbor transcripts encoding several genes that overlap on different strands. However, microsporidia alternate between two life stages: the intracellular proliferative stage and the extracellular and largely metabolically dormant infectious spore. To date, most studies have focused on the spore. Here, we have compared transcription profiles for a number of genes from both life stages of microsporidia and found major differences in both the prevalence of overlapping transcription and splicing. Specifically, spore transcripts in E. cuniculi have longer 5' untranslated regions, overlap more frequently with upstream genes, and have a significantly higher number of transcription initiation sites compared with intracellular transcripts from the same species. In addition, we demonstrate that splicing occurs exclusively in the intracellular stage and not in spore messenger RNAs (mRNAs) in both E. cuniculi and the distantly related Antonospora locustae. These differences between the microsporidian life stages raise questions about the functional importance of transcripts in the spore. We hypothesize that at least some transcripts in spores are a product of the cell's transition into a dormant state and that these unusual mRNAs could play a structural role rather than an informational one.
Collapse
Affiliation(s)
- Erin E Gill
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
49
|
Peyretaillade E, Gonçalves O, Terrat S, Dugat-Bony E, Wincker P, Cornman RS, Evans JD, Delbac F, Peyret P. Identification of transcriptional signals in Encephalitozoon cuniculi widespread among Microsporidia phylum: support for accurate structural genome annotation. BMC Genomics 2009; 10:607. [PMID: 20003517 PMCID: PMC2803860 DOI: 10.1186/1471-2164-10-607] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 12/15/2009] [Indexed: 11/22/2022] Open
Abstract
Background Microsporidia are obligate intracellular eukaryotic parasites with genomes ranging in size from 2.3 Mbp to more than 20 Mbp. The extremely small (2.9 Mbp) and highly compact (~1 gene/kb) genome of the human parasite Encephalitozoon cuniculi has been fully sequenced. The aim of this study was to characterize noncoding motifs that could be involved in regulation of gene expression in E. cuniculi and to show whether these motifs are conserved among the phylum Microsporidia. Results To identify such signals, 5' and 3'RACE-PCR experiments were performed on different E. cuniculi mRNAs. This analysis confirmed that transcription overrun occurs in E. cuniculi and may result from stochastic recognition of the AAUAAA polyadenylation signal. Such experiments also showed highly reduced 5'UTR's (<7 nts). Most of the E. cuniculi genes presented a CCC-like motif immediately upstream from the coding start. To characterize other signals involved in differential transcriptional regulation, we then focused our attention on the gene family coding for ribosomal proteins. An AAATTT-like signal was identified upstream from the CCC-like motif. In rare cases the cytosine triplet was shown to be substituted by a GGG-like motif. Comparative genomic studies confirmed that these different signals are also located upstream from genes encoding ribosomal proteins in other microsporidian species including Antonospora locustae, Enterocytozoon bieneusi, Anncaliia algerae (syn. Brachiola algerae) and Nosema ceranae. Based on these results a systematic analysis of the ~2000 E. cuniculi coding DNA sequences was then performed and brings to highlight that 364 translation initiation codons (18.29% of total CDSs) had been badly predicted. Conclusion We identified various signals involved in the maturation of E. cuniculi mRNAs. Presence of such signals, in phylogenetically distant microsporidian species, suggests that a common regulatory mechanism exists among the microsporidia. Furthermore, 5'UTRs being strongly reduced, these signals can be used to ensure the accurate prediction of translation initiation codons for microsporidian genes and to improve microsporidian genome annotation.
Collapse
Affiliation(s)
- Eric Peyretaillade
- Clermont Université, Université d'Auvergne, Laboratoire: Microorganismes Génome et Environnement, BP 10448, F-63000 CLERMONT-FERRAND.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Nucleomorphs are the remnant nuclei of algal endosymbionts in cryptophytes and chlorarachniophytes, two evolutionarily distinct unicellular eukaryotic lineages that acquired photosynthesis secondarily by the engulfment of red and green algae, respectively. At less than one million base pairs in size, nucleomorph genomes are the most highly reduced nuclear genomes known, with three small linear chromosomes and a gene density similar to that seen in prokaryotes. The independent origin of nucleomorphs in cryptophytes and chlorarachniophytes presents an interesting opportunity to study the reductive evolutionary forces that have led to their remarkable convergence upon similar genome architectures and coding capacities. In this article, we review the current state of knowledge with respect to the structure, function, origin, and evolution of nucleomorph genomes across the known diversity of cryptophyte and chlorarachniophyte algae.
Collapse
Affiliation(s)
- Christa E Moore
- The Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 1X5, Canada
| | | |
Collapse
|