1
|
Wan Y, Jiang G, Shan H, Lin Y, Xia W, Yin F, Jiang C, Shi Z. F-Box and WD repeat domain containing 7 induces infectious osteomyelitis by regulating MYB stability and ubiquitination. Scand J Immunol 2024; 100:e13414. [PMID: 39487565 DOI: 10.1111/sji.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/29/2024] [Accepted: 10/13/2024] [Indexed: 11/04/2024]
Abstract
Osteomyelitis is a bone inflammation initiated by invading pathogens. Macrophages and inflammation play essential roles in osteomyelitis. F-Box and WD repeat domain containing 7 (Fbxw7) is a tumour suppressor and E3 ubiquitin ligase. In the present study, the potential roles of Fbxw7 in osteomyelitis were explored. The mRNA level of Fbxw7 was measured in bone marrow cells from patients with osteomyelitis and Staphylococcus aureus (S. aureus)-infected macrophages. The conditional knockout mice with Fbxw7 deficiency in myeloid cells were generated. The expression of interleukin (IL)-6, IL-23a and nitric oxide synthase 2 (Nos2) was measured in S. aureus-infected Fbxw7-deficient bone marrow-derived macrophages (BMDMs). The body weight loss, bacterial burden, bone loss and formation and serum level of IL-6, IL-23 and TNF-α were measured in S. aureus-infected Fbxw7 conditional KO mice. The interacting partners of Fbxw7 were predicted using STRING and the interaction were tested. Elevated expression of Fbxw7 was observed in bone marrow cells from patients with osteomyelitis and in S. aureus-infected macrophages. The expression of IL-6, IL-23a and Nos2 was remarkably suppressed in S. aureus-infected Fbxw7-deficient BMDMs. Fbxw7 conditional knockout mice had less body weight loss, higher bacterial burden, less bone loss and formation and decreased serum level of cytokines. Fbxw7 interacted with MYB. S. aureus-infected Fbxw7-deficient BMDMs had higher level of MYB and less ubiquitination of MYB. Fbxw7 promotes osteomyelitis symptoms by regulating ubiquitination and stability of MYB.
Collapse
Affiliation(s)
- Yongbo Wan
- Department of Orthopaedic Surgery, Haikou Orthopedic and Diabetes Hospital of Shanghai Sixth People's Hospital, Haikou, Hainan, China
| | - Gehan Jiang
- Department of Orthopaedic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haojie Shan
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwei Lin
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenyang Xia
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuli Yin
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaolai Jiang
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongmin Shi
- Department of Orthopaedic Surgery, Haikou Orthopedic and Diabetes Hospital of Shanghai Sixth People's Hospital, Haikou, Hainan, China
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Qi Y, Rezaeian AH, Wang J, Huang D, Chen H, Inuzuka H, Wei W. Molecular insights and clinical implications for the tumor suppressor role of SCF FBXW7 E3 ubiquitin ligase. Biochim Biophys Acta Rev Cancer 2024; 1879:189140. [PMID: 38909632 PMCID: PMC11390337 DOI: 10.1016/j.bbcan.2024.189140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
FBXW7 is one of the most well-characterized F-box proteins, serving as substrate receptor subunit of SKP1-CUL1-F-box (SCF) E3 ligase complexes. SCFFBXW7 is responsible for the degradation of various oncogenic proteins such as cyclin E, c-MYC, c-JUN, NOTCH, and MCL1. Therefore, FBXW7 functions largely as a major tumor suppressor. In keeping with this notion, FBXW7 gene mutations or downregulations have been found and reported in many types of malignant tumors, such as endometrial, colorectal, lung, and breast cancers, which facilitate the proliferation, invasion, migration, and drug resistance of cancer cells. Therefore, it is critical to review newly identified FBXW7 regulation and tumor suppressor function under physiological and pathological conditions to develop effective strategies for the treatment of FBXW7-altered cancers. Since a growing body of evidence has revealed the tumor-suppressive activity and role of FBXW7, here, we updated FBXW7 upstream and downstream signaling including FBXW7 ubiquitin substrates, the multi-level FBXW7 regulatory mechanisms, and dysregulation of FBXW7 in cancer, and discussed promising cancer therapies targeting FBXW7 regulators and downstream effectors, to provide a comprehensive picture of FBXW7 and facilitate the study in this field.
Collapse
Affiliation(s)
- Yihang Qi
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jingchao Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daoyuan Huang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
3
|
The CMG helicase and cancer: a tumor "engine" and weakness with missing mutations. Oncogene 2023; 42:473-490. [PMID: 36522488 PMCID: PMC9948756 DOI: 10.1038/s41388-022-02572-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
The replicative Cdc45-MCM-GINS (CMG) helicase is a large protein complex that functions in the DNA melting and unwinding steps as a component of replisomes during DNA replication in mammalian cells. Although the CMG performs this important role in cell growth, the CMG is not a simple bystander in cell cycle events. Components of the CMG, specifically the MCM precursors, are also involved in maintaining genomic stability by regulating DNA replication fork speeds, facilitating recovery from replicative stresses, and preventing consequential DNA damage. Given these important functions, MCM/CMG complexes are highly regulated by growth factors such as TGF-ß1 and by signaling factors such as Myc, Cyclin E, and the retinoblastoma protein. Mismanagement of MCM/CMG complexes when these signaling mediators are deregulated, and in the absence of the tumor suppressor protein p53, leads to increased genomic instability and is a contributor to tumorigenic transformation and tumor heterogeneity. The goal of this review is to provide insight into the mechanisms and dynamics by which the CMG is regulated during its assembly and activation in mammalian genomes, and how errors in CMG regulation due to oncogenic changes promote tumorigenesis. Finally, and most importantly, we highlight the emerging understanding of the CMG helicase as an exploitable vulnerability and novel target for therapeutic intervention in cancer.
Collapse
|
4
|
Bondaruk J, Jaksik R, Wang Z, Cogdell D, Lee S, Chen Y, Dinh KN, Majewski T, Zhang L, Cao S, Tian F, Yao H, Kuś P, Chen H, Weinstein JN, Navai N, Dinney C, Gao J, Theodorescu D, Logothetis C, Guo CC, Wang W, McConkey D, Wei P, Kimmel M, Czerniak B. The origin of bladder cancer from mucosal field effects. iScience 2022; 25:104551. [PMID: 35747385 PMCID: PMC9209726 DOI: 10.1016/j.isci.2022.104551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/19/2021] [Accepted: 06/02/2022] [Indexed: 12/30/2022] Open
Abstract
Whole-organ mapping was used to study molecular changes in the evolution of bladder cancer from field effects. We identified more than 100 dysregulated pathways, involving immunity, differentiation, and transformation, as initiators of carcinogenesis. Dysregulation of interleukins signified the involvement of inflammation in the incipient phases of the process. An aberrant methylation/expression of multiple HOX genes signified dysregulation of the differentiation program. We identified three types of mutations based on their geographic distribution. The most common were mutations restricted to individual mucosal samples that targeted uroprogenitor cells. Two types of mutations were associated with clonal expansion and involved large areas of mucosa. The α mutations occurred at low frequencies while the β mutations increased in frequency with disease progression. Modeling revealed that bladder carcinogenesis spans 10-15 years and can be divided into dormant and progressive phases. The progressive phase lasted 1-2 years and was driven by β mutations.
Collapse
Affiliation(s)
- Jolanta Bondaruk
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roman Jaksik
- Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Ziqiao Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Cogdell
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sangkyou Lee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yujie Chen
- Systems, Synthetic and Physical Biology Program, Rice University, Houston, TX, USA
| | - Khanh Ngoc Dinh
- Department of Statistics and the Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Tadeusz Majewski
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhang
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Shaolong Cao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feng Tian
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui Yao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paweł Kuś
- Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Huiqin Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John N. Weinstein
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neema Navai
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Colin Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai, Los Angeles, CA, USA
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Charles C. Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenyi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marek Kimmel
- Department of Statistics, Rice University, Houston, TX, USA
| | - Bogdan Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
KDM5B promotes tumorigenesis of Ewing sarcoma via FBXW7/CCNE1 axis. Cell Death Dis 2022; 13:354. [PMID: 35428764 PMCID: PMC9012801 DOI: 10.1038/s41419-022-04800-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/26/2022]
Abstract
Ewing sarcoma (EwS) is an aggressive tumor that affects children and young adults. Patients with relapsed/refractory diseases have limited treatment options. Targeting the driver fusion oncoproteins of EwS remains a technical problem. Epigenetic mechanisms have been pointed out as key players and alternative therapeutic targets in EwS. Here, we reported that lysine demethylase 5B (KDM5B), a histone demethylase that specifically demethylates tri- and di-methylated H3 Lys-4 (H3K4), was upregulated in EwS and overexpressed KDM5B was correlated with poor outcomes of patients. KDM5B knockdown and KDM5B inhibitor AS-8351 suppressed EwS cell proliferation and induced cell cycle arrest. Bioinformatics analysis revealed that KDM5B mainly influenced the cell cycle pathways in EwS. In mechanistic studies, we found that overexpression of KDM5B resulted in increased CCNE1 protein level, but did not affect the mRNA level of CCNE1. KDM5B upregulation blocked the degradation pathway of CCNE1 by reducing the expression of FBXW7. KDM5B downregulated FBXW7 gene by demethylation of H3K4me3 at promoter region. Moreover, AS-8351 could inhibit tumor growth in nude mice models, indicating the antitumor effect of targeting KDM5B in EwS. Our study uncovered that KDM5B in EwS attenuated FBXW7 transcription and accumulated CCNE1 protein, leading to malignant proliferation of EwS. Epigenetic drug targeting KDM5B could be a potential treatment for EwS.
Collapse
|
6
|
Fan J, Bellon M, Ju M, Zhao L, Wei M, Fu L, Nicot C. Clinical significance of FBXW7 loss of function in human cancers. Mol Cancer 2022; 21:87. [PMID: 35346215 PMCID: PMC8962602 DOI: 10.1186/s12943-022-01548-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
FBXW7 (F-Box and WD Repeat Domain Containing 7) (also referred to as FBW7 or hCDC4) is a component of the Skp1-Cdc53 / Cullin-F-box-protein complex (SCF/β-TrCP). As a member of the F-box protein family, FBXW7 serves a role in phosphorylation-dependent ubiquitination and proteasome degradation of oncoproteins that play critical role(s) in oncogenesis. FBXW7 affects many regulatory functions involved in cell survival, cell proliferation, tumor invasion, DNA damage repair, genomic instability and telomere biology. This thorough review of current literature details how FBXW7 expression and functions are regulated through multiple mechanisms and how that ultimately drives tumorigenesis in a wide array of cell types. The clinical significance of FBXW7 is highlighted by the fact that FBXW7 is frequently inactivated in human lung, colon, and hematopoietic cancers. The loss of FBXW7 can serve as an independent prognostic marker and is significantly correlated with the resistance of tumor cells to chemotherapeutic agents and poorer disease outcomes. Recent evidence shows that genetic mutation of FBXW7 differentially affects the degradation of specific cellular targets resulting in a distinct and specific pattern of activation/inactivation of cell signaling pathways. The clinical significance of FBXW7 mutations in the context of tumor development, progression, and resistance to therapies as well as opportunities for targeted therapies is discussed.
Collapse
Affiliation(s)
- Jingyi Fan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.,Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Marcia Bellon
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
7
|
PRMT5: An Emerging Target for Pancreatic Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13205136. [PMID: 34680285 PMCID: PMC8534199 DOI: 10.3390/cancers13205136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The burden of pancreatic ductal adenocarcinoma (PDAC) increases with rising incidence, yet 5-year overall survival remains poor at 17%. Routine comprehensive genomic profiling of PDAC only finds 2.5% of patients who may benefit and receive matched targeted therapy. Protein arginine methyltransferase 5 (PRMT5) as an anti-cancer target has gained significant interest in recent years and high levels of PRMT5 protein are associated with worse survival outcomes across multiple cancer types. Inhibition of PRMT5 in pre-clinical models can lead to cancer growth inhibition. However, PRMT5 is involved in multiple cellular processes, thus determining its mechanism of action is challenging. While past reviews on PRMT5 have focused on its role in diverse cellular processes and past research studies have focused mainly on haematological malignancies and glioblastoma, this review provides an overview of the possible biological mechanisms of action of PRMT5 inhibition and its potential as a treatment in pancreatic cancer. Abstract The overall survival of pancreatic ductal adenocarcinoma (PDAC) remains poor and its incidence is rising. Targetable mutations in PDAC are rare, thus novel therapeutic approaches are needed. Protein arginine methyltransferase 5 (PRMT5) overexpression is associated with worse survival and inhibition of PRMT5 results in decreased cancer growth across multiple cancers, including PDAC. Emerging evidence also suggests that altered RNA processing is a driver in PDAC tumorigenesis and creates a partial dependency on this process. PRMT5 inhibition induces altered splicing and this vulnerability can be exploited as a novel therapeutic approach. Three possible biological pathways underpinning the action of PRMT5 inhibitors are discussed; c-Myc regulation appears central to its action in the PDAC setting. Whilst homozygous MTAP deletion and symmetrical dimethylation levels are associated with increased sensitivity to PRMT5 inhibition, neither measure robustly predicts its growth inhibitory response. The immunomodulatory effect of PRMT5 inhibitors on the tumour microenvironment will also be discussed, based on emerging evidence that PDAC stroma has a significant bearing on disease behaviour and response to therapy. Lastly, with the above caveats in mind, current knowledge gaps and the implications and rationales for PRMT5 inhibitor development in PDAC will be explored.
Collapse
|
8
|
Dang F, Nie L, Wei W. Ubiquitin signaling in cell cycle control and tumorigenesis. Cell Death Differ 2020; 28:427-438. [PMID: 33130827 PMCID: PMC7862229 DOI: 10.1038/s41418-020-00648-0] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Cell cycle progression is a tightly regulated process by which DNA replicates and cell reproduces. The major driving force underlying cell cycle progression is the sequential activation of cyclin-dependent kinases (CDKs), which is achieved in part by the ubiquitin-mediated proteolysis of their cyclin partners and kinase inhibitors (CKIs). In eukaryotic cells, two families of E3 ubiquitin ligases, anaphase-promoting complex/cyclosome and Skp1-Cul1-F-box protein complex, are responsible for ubiquitination and proteasomal degradation of many of these CDK regulators, ensuring cell cycle progresses in a timely and precisely regulated manner. In the past couple of decades, accumulating evidence have demonstrated that the dysregulated cell cycle transition caused by inefficient proteolytic control leads to uncontrolled cell proliferation and finally results in tumorigenesis. Based upon this notion, targeting the E3 ubiquitin ligases involved in cell cycle regulation is expected to provide novel therapeutic strategies for cancer treatment. Thus, a better understanding of the diversity and complexity of ubiquitin signaling in cell cycle regulation will shed new light on the precise control of the cell cycle progression and guide anticancer drug development. ![]()
Collapse
Affiliation(s)
- Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Li Nie
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
9
|
Cancer and pH Dynamics: Transcriptional Regulation, Proteostasis, and the Need for New Molecular Tools. Cancers (Basel) 2020; 12:cancers12102760. [PMID: 32992762 PMCID: PMC7601256 DOI: 10.3390/cancers12102760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
An emerging hallmark of cancer cells is dysregulated pH dynamics. Recent work has suggested that dysregulated intracellular pH (pHi) dynamics enable diverse cancer cellular behaviors at the population level, including cell proliferation, cell migration and metastasis, evasion of apoptosis, and metabolic adaptation. However, the molecular mechanisms driving pH-dependent cancer-associated cell behaviors are largely unknown. In this review article, we explore recent literature suggesting pHi dynamics may play a causative role in regulating or reinforcing tumorigenic transcriptional and proteostatic changes at the molecular level, and discuss outcomes on tumorigenesis and tumor heterogeneity. Most of the data we discuss are population-level analyses; lack of single-cell data is driven by a lack of tools to experimentally change pHi with spatiotemporal control. Data is also sparse on how pHi dynamics play out in complex in vivo microenvironments. To address this need, at the end of this review, we cover recent advances for live-cell pHi measurement at single-cell resolution. We also discuss the essential role for tool development in revealing mechanisms by which pHi dynamics drive tumor initiation, progression, and metastasis.
Collapse
|
10
|
Garziera M, Roncato R, Montico M, De Mattia E, Gagno S, Poletto E, Scalone S, Canzonieri V, Giorda G, Sorio R, Cecchin E, Toffoli G. New Challenges in Tumor Mutation Heterogeneity in Advanced Ovarian Cancer by a Targeted Next-Generation Sequencing (NGS) Approach. Cells 2019; 8:cells8060584. [PMID: 31197119 PMCID: PMC6627128 DOI: 10.3390/cells8060584] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/06/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
Next-generation sequencing (NGS) technology has advanced knowledge of the genomic landscape of ovarian cancer, leading to an innovative molecular classification of the disease. However, patient survival and response to platinum-based treatments are still not predictable based on the tumor genetic profile. This retrospective study characterized the repertoire of somatic mutations in advanced ovarian cancer to identify tumor genetic markers predictive of platinum chemo-resistance and prognosis. Using targeted NGS, 79 primary advanced (III-IV stage, tumor grade G2-3) ovarian cancer tumors, including 64 high-grade serous ovarian cancers (HGSOCs), were screened with a 26 cancer-genes panel. Patients, enrolled between 1995 and 2011, underwent primary debulking surgery (PDS) with optimal residual disease (RD < 1 cm) and platinum-based chemotherapy as first-line treatment. We found a heterogeneous mutational landscape in some uncommon ovarian histotypes and in HGSOC tumor samples with relevance in predicting platinum sensitivity. In particular, we identified a poor prognostic signature in patients with HGSOC harboring concurrent mutations in two driver actionable genes of the panel. The tumor heterogeneity described, sheds light on the translational potential of targeted NGS approach for the identification of subgroups of patients with distinct therapeutic vulnerabilities, that are modulated by the specific mutational profile expressed by the ovarian tumor.
Collapse
Affiliation(s)
- Marica Garziera
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| | - Rossana Roncato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| | - Marcella Montico
- Scientific Directorate, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| | - Elena De Mattia
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| | - Sara Gagno
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| | - Elena Poletto
- Medical Oncology, "Santa Maria della Misericordia" University Hospital, ASUIUD, 33100 Udine, Italy.
| | - Simona Scalone
- Medical Oncology Unit C, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Giorgio Giorda
- Gynecological Oncology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| | - Roberto Sorio
- Medical Oncology Unit C, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| | - Erika Cecchin
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| |
Collapse
|
11
|
Fonti C, Saumet A, Abi‐Khalil A, Orsetti B, Cleroux E, Bender A, Dumas M, Schmitt E, Colinge J, Jacot W, Weber M, Sardet C, du Manoir S, Theillet C. Distinct oncogenes drive different genome and epigenome alterations in human mammary epithelial cells. Int J Cancer 2019; 145:1299-1311. [DOI: 10.1002/ijc.32413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/15/2019] [Accepted: 05/02/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Claire Fonti
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
| | - Anne Saumet
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
| | - Amanda Abi‐Khalil
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
| | - Béatrice Orsetti
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
- ICM, Institut Régional du Cancer de Montpellier Montpellier France
| | - Elouan Cleroux
- CNRS, University of Strasbourg, UMR 7242 Biotechnology and Cell Signaling Strasbourg France
| | - Ambre Bender
- CNRS, University of Strasbourg, UMR 7242 Biotechnology and Cell Signaling Strasbourg France
| | - Michael Dumas
- CNRS, University of Strasbourg, UMR 7242 Biotechnology and Cell Signaling Strasbourg France
| | - Emeline Schmitt
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
| | - Jacques Colinge
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
| | - William Jacot
- ICM, Institut Régional du Cancer de Montpellier Montpellier France
| | - Michael Weber
- CNRS, University of Strasbourg, UMR 7242 Biotechnology and Cell Signaling Strasbourg France
| | - Claude Sardet
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
| | - Stanislas du Manoir
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
| | - Charles Theillet
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
- ICM, Institut Régional du Cancer de Montpellier Montpellier France
| |
Collapse
|
12
|
Yeh CH, Bellon M, Nicot C. FBXW7: a critical tumor suppressor of human cancers. Mol Cancer 2018; 17:115. [PMID: 30086763 PMCID: PMC6081812 DOI: 10.1186/s12943-018-0857-2] [Citation(s) in RCA: 356] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is involved in multiple aspects of cellular processes, such as cell cycle progression, cellular differentiation, and survival (Davis RJ et al., Cancer Cell 26:455-64, 2014; Skaar JR et al., Nat Rev Drug Discov 13:889-903, 2014; Nakayama KI and Nakayama K, Nat Rev Cancer 6:369-81, 2006). F-box and WD repeat domain containing 7 (FBXW7), also known as Sel10, hCDC4 or hAgo, is a member of the F-box protein family, which functions as the substrate recognition component of the SCF E3 ubiquitin ligase. FBXW7 is a critical tumor suppressor and one of the most commonly deregulated ubiquitin-proteasome system proteins in human cancer. FBXW7 controls proteasome-mediated degradation of oncoproteins such as cyclin E, c-Myc, Mcl-1, mTOR, Jun, Notch and AURKA. Consistent with the tumor suppressor role of FBXW7, it is located at chromosome 4q32, a genomic region deleted in more than 30% of all human cancers (Spruck CH et al., Cancer Res 62:4535-9, 2002). Genetic profiles of human cancers based on high-throughput sequencing have revealed that FBXW7 is frequently mutated in human cancers. In addition to genetic mutations, other mechanisms involving microRNA, long non-coding RNA, and specific oncogenic signaling pathways can inactivate FBXW7 functions in cancer cells. In the following sections, we will discuss the regulation of FBXW7, its role in oncogenesis, and the clinical implications and prognostic value of loss of function of FBXW7 in human cancers.
Collapse
Affiliation(s)
- Chien-Hung Yeh
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Marcia Bellon
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
13
|
Gong J, Zhou Y, Liu D, Huo J. F-box proteins involved in cancer-associated drug resistance. Oncol Lett 2018; 15:8891-8900. [PMID: 29805625 DOI: 10.3892/ol.2018.8500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/24/2018] [Indexed: 12/11/2022] Open
Abstract
The ubiquitin proteasome system (UPS) regulated human biological processes through the appropriate and efficient proteolysis of cellular proteins. F-box proteins are the vital components of SKP1-CUL1-FBP (SCF)-type E3 ubiquitin ligases that determine substrate specificity. As F-box proteins have the ability to control the degradation of several crucial protein targets associated with drug resistance, the dysregulation of these proteins may lead to induction of chemoresistance in cancer cells. Chemotherapy is one of the most conventional therapeutic approaches of treatment of patients with cancer. However, its exclusive application in clinical settings is restricted due to the development of chemoresistance, which typically results treatment failure. Therefore, overcoming drug resistance is considered as one of the most critical issues that researchers and clinician associated with oncology face. The present review serves to provide a comprehensive overview of F-box proteins and their possible targets as well as their correlation with the chemoresistance and chemosensitization of cancer cells. The article also presents an integrated representation of the complex regulatory mechanisms responsible for chemoresistance, which may lay the foundation to explore sensible candidate drugs for therapeutic intervention.
Collapse
Affiliation(s)
- Jian Gong
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yuqian Zhou
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Deliang Liu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jirong Huo
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
14
|
Liu Y, Xu SN, Chen YS, Wu XY, Qiao L, Li K, Yuan L. Study of single nucleotide polymorphisms of FBW7 and its substrate genes revealed a predictive factor for paclitaxel plus cisplatin chemotherapy in Chinese patients with advanced esophageal squamous cell carcinoma. Oncotarget 2018; 7:44330-44339. [PMID: 27259248 DOI: 10.18632/oncotarget.9736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/17/2016] [Indexed: 11/25/2022] Open
Abstract
Paclitaxel plays a major role in the treatment of advanced esophageal squamous cell carcinoma. However, there is no biomarker that could be used to predict the clinical response of paclitaxel. This work was conducted to investigate the association of genetic polymorphisms in FBW7 and its substrate genes and the clinical response of paclitaxel. Patients with advanced esophageal squamous cell carcinoma were treated with paclitaxel 175 mg/m2 over 3 hours day 1 and cisplatin 75 mg/m2 day 1, every 3 weeks. The genotypes of 11 FBW7 and its substrate gene polymorphisms were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Statistical analysis revealed that patients with mTOR rs1057079 AG (ORadjusted: 4.59; 95% CI: 1.78-11.86) genotype had significant correlation with the clinical response of paclitaxel when compared with AA genotype after adjustment for sex, age, and chemotherapy cycle. The median progression-free survival (PFS) of patients with advanced ESCC who received paclitaxel plus cisplatin (TP) as first-line treatment is 14.3 months (95% CI: 9.0-19.60 months). The median PFS (mPFS) of AG genotypes and AA genotypes in mTOR rs1057079 were 17.31 months (95% CI: 15.9-18.67 months) and 9.8 months (95% CI: 8.58-11.02 months) (p=0.019), respectively.
Collapse
Affiliation(s)
- Ying Liu
- Department of Medical Oncology of Henan Cancer Hospital, Zhengzhou University Affiliated Cancer Hospital, Zhengzhou, Henan, China
| | - Shu Ning Xu
- Department of Medical Oncology of Henan Cancer Hospital, Zhengzhou University Affiliated Cancer Hospital, Zhengzhou, Henan, China
| | - Yong Shun Chen
- Department of Radiation Oncology of Henan Cancer Hospital, Zhengzhou University Affiliated Cancer Hospital, Zhengzhou, Henan, China
| | - Xiao Yuan Wu
- Department of Medical Oncology of Henan Cancer Hospital, Zhengzhou University Affiliated Cancer Hospital, Zhengzhou, Henan, China
| | - Lei Qiao
- Department of Medical Oncology of Henan Cancer Hospital, Zhengzhou University Affiliated Cancer Hospital, Zhengzhou, Henan, China
| | - Ke Li
- Department of Medical Oncology of Henan Cancer Hospital, Zhengzhou University Affiliated Cancer Hospital, Zhengzhou, Henan, China
| | - Long Yuan
- Department of Surgical Oncology of Henan Cancer Hospital, Zhengzhou University Affiliated Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Song N, Cao C, Tang Y, Bi L, Jiang Y, Zhou Y, Song X, Liu L, Ge W. The ubiquitin ligase SCF FBXW7α promotes GATA3 degradation. J Cell Physiol 2017; 233:2366-2377. [PMID: 28722108 DOI: 10.1002/jcp.26108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022]
Abstract
GATA3 is a key transcription factor in cell fate determination and its dysregulation has been implicated in various types of malignancies. However, how the abundance and function of GATA3 are regulated remains unclear. Here, we report that GATA3 is physically associated with FBXW7α, and FBXW7α destabilizes GATA3 through assembly of a SKP1-CUL1-F-box E3 ligase complex. Importantly, we showed that FBXW7α promotes GATA3 ubiquitination and degradation in a GSK3 dependent manner. Furthermore, we demonstrated that FBXW7α inhibits breast cancer cells survival through destabilizing GATA3, and the expression level of FBXW7α is negatively correlated with that of GATA3 in breast cancer samples. This study indicated that FBXW7α is a critical negative regulator of GATA3 and revealed a pathway for the maintenance of GATA3 abundance in breast cancer cells.
Collapse
Affiliation(s)
- Nan Song
- Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Cheng Cao
- Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yiman Tang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Liyuan Bi
- Qingdao Haici Medical Treatment Group, Qingdao, China
| | - Yong Jiang
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xin Song
- Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Ling Liu
- Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wenshu Ge
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
16
|
Rustighi A, Zannini A, Campaner E, Ciani Y, Piazza S, Del Sal G. PIN1 in breast development and cancer: a clinical perspective. Cell Death Differ 2016; 24:200-211. [PMID: 27834957 DOI: 10.1038/cdd.2016.122] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 12/12/2022] Open
Abstract
Mammary gland development, various stages of mammary tumorigenesis and breast cancer progression have the peptidyl-prolyl cis/trans isomerase PIN1 at their centerpiece, in virtue of the ability of this unique enzyme to fine-tune the dynamic crosstalk between multiple molecular pathways. PIN1 exerts its action by inducing conformational and functional changes on key cellular proteins, following proline-directed phosphorylation. Through this post-phosphorylation signal transduction mechanism, PIN1 controls the extent and direction of the cellular response to a variety of inputs, in physiology and disease. This review discusses PIN1's roles in normal mammary development and cancerous progression, as well as the clinical impact of targeting this enzyme in breast cancer patients.
Collapse
Affiliation(s)
- Alessandra Rustighi
- National Laboratory CIB (LNCIB), Area Science Park, Padriciano 99, Trieste 34149, Italy
| | - Alessandro Zannini
- National Laboratory CIB (LNCIB), Area Science Park, Padriciano 99, Trieste 34149, Italy.,Department of Life Sciences, University of Trieste, via Weiss 2, Trieste 34128, Italy
| | - Elena Campaner
- National Laboratory CIB (LNCIB), Area Science Park, Padriciano 99, Trieste 34149, Italy.,Department of Life Sciences, University of Trieste, via Weiss 2, Trieste 34128, Italy
| | - Yari Ciani
- National Laboratory CIB (LNCIB), Area Science Park, Padriciano 99, Trieste 34149, Italy
| | - Silvano Piazza
- National Laboratory CIB (LNCIB), Area Science Park, Padriciano 99, Trieste 34149, Italy.,Bioinformatics Core Facility, Centre for Integrative Biology, CIBIO, University of Trento, Via Sommarive 18, 38123, Povo, Trento, Italy
| | - Giannino Del Sal
- National Laboratory CIB (LNCIB), Area Science Park, Padriciano 99, Trieste 34149, Italy.,Department of Life Sciences, University of Trieste, via Weiss 2, Trieste 34128, Italy
| |
Collapse
|
17
|
Xiao D, Yue M, Su H, Ren P, Jiang J, Li F, Hu Y, Du H, Liu H, Qing G. Polo-like Kinase-1 Regulates Myc Stabilization and Activates a Feedforward Circuit Promoting Tumor Cell Survival. Mol Cell 2016; 64:493-506. [PMID: 27773673 DOI: 10.1016/j.molcel.2016.09.016] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/17/2016] [Accepted: 09/14/2016] [Indexed: 01/19/2023]
Abstract
MYCN amplification in human cancers predicts poor prognosis and resistance to therapy. However, pharmacological strategies that directly target N-Myc, the protein encoded by MYCN, remain elusive. Here, we identify a molecular mechanism responsible for reciprocal activation between Polo-like kinase-1 (PLK1) and N-Myc. PLK1 specifically binds to the SCFFbw7 ubiquitin ligase, phosphorylates it, and promotes its autopolyubiquitination and proteasomal degradation, counteracting Fbw7-mediated degradation of N-Myc and additional substrates, including cyclin E and Mcl1. Stabilized N-Myc in turn directly activates PLK1 transcription, constituting a positive feedforward regulatory loop that reinforces Myc-regulated oncogenic programs. Inhibitors of PLK1 preferentially induce potent apoptosis of MYCN-amplified tumor cells from neuroblastoma and small cell lung cancer and synergistically potentiate the therapeutic efficacies of Bcl2 antagonists. These findings reveal a PLK1-Fbw7-Myc signaling circuit that underlies tumorigenesis and validate PLK1 inhibitors, alone or with Bcl2 antagonists, as potential effective therapeutics for MYC-overexpressing cancers.
Collapse
Affiliation(s)
- Daibiao Xiao
- Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Ming Yue
- Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Hexiu Su
- Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Ping Ren
- Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Jue Jiang
- Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Feng Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yufeng Hu
- Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Haining Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hudan Liu
- Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Guoliang Qing
- Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Medical Research Institute, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
18
|
Díaz VM, de Herreros AG. F-box proteins: Keeping the epithelial-to-mesenchymal transition (EMT) in check. Semin Cancer Biol 2016; 36:71-9. [DOI: 10.1016/j.semcancer.2015.10.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/01/2015] [Accepted: 10/17/2015] [Indexed: 12/22/2022]
|
19
|
Gong J, Huang Z, Huo JR. Involvement of F-box proteins in esophageal cancer (Review). Int J Oncol 2016; 48:886-94. [PMID: 26782762 DOI: 10.3892/ijo.2016.3325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/07/2015] [Indexed: 11/06/2022] Open
Abstract
The F-box proteins (FBPs) in esophageal tumorigenesis are pivotal as they govern a broad array of basic physiological responses including cell growth, cell death and DNA damage repair. Esophageal cancer (EC) is a common and highly aggressive cancer worldwide. Aberrant stabilization of crucial proteins participates in esophageal tumorigenesis. Recently, growing evidence has shown that FBPs play a critical role in oncogenesis, invasion, metastasis and prognosis assessment of EC. In this review we summarized published data on the roles of known FBPs, their respective substrates and the key signaling pathways, in the development of EC, aiming to uncover new ways for the rational design of targeted therapies in EC.
Collapse
Affiliation(s)
- Jian Gong
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zheng Huang
- Department of Spine Surgery, Shenzhen Nanshan Hospital of Guangdong Medical College, Shenzhen, Guangdong 510282, P.R. China
| | - Ji-Rong Huo
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
20
|
Lupini L, Bassi C, Mlcochova J, Musa G, Russo M, Vychytilova-Faltejskova P, Svoboda M, Sabbioni S, Nemecek R, Slaby O, Negrini M. Prediction of response to anti-EGFR antibody-based therapies by multigene sequencing in colorectal cancer patients. BMC Cancer 2015; 15:808. [PMID: 26508446 PMCID: PMC4624582 DOI: 10.1186/s12885-015-1752-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 10/09/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (moAbs) cetuximab or panitumumab are administered to colorectal cancer (CRC) patients who harbor wild-type RAS proto-oncogenes. However, a percentage of patients do not respond to this treatment. In addition to mutations in the RAS genes, mutations in other genes, such as BRAF, PI3KCA, or PTEN, could be involved in the resistance to anti-EGFR moAb therapy. METHODS In order to develop a comprehensive approach for the detection of mutations and to eventually identify other genes responsible for resistance to anti-EGFR moAbs, we investigated a panel of 21 genes by parallel sequencing on the Ion Torrent Personal Genome Machine platform. We sequenced 65 CRCs that were treated with cetuximab or panitumumab. Among these, 37 samples were responsive and 28 were resistant. RESULTS We confirmed that mutations in EGFR-pathway genes (KRAS, NRAS, BRAF, PI3KCA) were relevant for conferring resistance to therapy and could predict response (p = 0.001). After exclusion of KRAS, NRAS, BRAF and PI3KCA combined mutations could still significantly associate to resistant phenotype (p = 0.045, by Fisher exact test). In addition, mutations in FBXW7 and SMAD4 were prevalent in cases that were non-responsive to anti-EGFR moAb. After we combined the mutations of all genes (excluding KRAS), the ability to predict response to therapy improved significantly (p = 0.002, by Fisher exact test). CONCLUSIONS The combination of mutations at KRAS and at the five gene panel demonstrates the usefulness and feasibility of multigene sequencing to assess response to anti-EGFR moAbs. The application of parallel sequencing technology in clinical practice, in addition to its innate ability to simultaneously examine the genetic status of several cancer genes, proved to be more accurate and sensitive than the presently in use traditional approaches.
Collapse
Affiliation(s)
- Laura Lupini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| | - Cristian Bassi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| | - Jitka Mlcochova
- Central European Institute of Technology (CEITEC), Molecular Oncology II, University Campus Bohunice Building A3, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Gentian Musa
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| | - Marta Russo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| | - Petra Vychytilova-Faltejskova
- Central European Institute of Technology (CEITEC), Molecular Oncology II, University Campus Bohunice Building A3, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Marek Svoboda
- Central European Institute of Technology (CEITEC), Molecular Oncology II, University Campus Bohunice Building A3, Kamenice 5, 625 00, Brno, Czech Republic.
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
| | - Silvia Sabbioni
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| | - Radim Nemecek
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
| | - Ondrej Slaby
- Central European Institute of Technology (CEITEC), Molecular Oncology II, University Campus Bohunice Building A3, Kamenice 5, 625 00, Brno, Czech Republic.
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| |
Collapse
|
21
|
Parker DJ, Iyer A, Shah S, Moran A, Hjelmeland AB, Basu MK, Liu R, Mitra K. A new mitochondrial pool of cyclin E, regulated by Drp1, is linked to cell-density-dependent cell proliferation. J Cell Sci 2015; 128:4171-82. [PMID: 26446260 DOI: 10.1242/jcs.172429] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/30/2015] [Indexed: 12/15/2022] Open
Abstract
The regulation and function of the crucial cell cycle regulator cyclin E (CycE) remains elusive. Unlike other cyclins, CycE can be uniquely controlled by mitochondrial energetics, the exact mechanism being unclear. Using mammalian cells (in vitro) and Drosophila (in vivo) model systems in parallel, we show that CycE can be directly regulated by mitochondria through its recruitment to the organelle. Active mitochondrial bioenergetics maintains a distinct mitochondrial pool of CycE (mtCycE) lacking a key phosphorylation required for its degradation. Loss of the mitochondrial fission protein dynamin-related protein 1 (Drp1, SwissProt O00429 in humans) augments mitochondrial respiration and elevates the mtCycE pool allowing CycE deregulation, cell cycle alterations and enrichment of stem cell markers. Such CycE deregulation after Drp1 loss attenuates cell proliferation in low-cell-density environments. However, in high-cell-density environments, elevated MEK-ERK signaling in the absence of Drp1 releases mtCycE to support escape of contact inhibition and maintain aberrant cell proliferation. Such Drp1-driven regulation of CycE recruitment to mitochondria might be a mechanism to modulate CycE degradation during normal developmental processes as well as in tumorigenic events.
Collapse
Affiliation(s)
- Danitra J Parker
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Archana Iyer
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Shikha Shah
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aida Moran
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anita B Hjelmeland
- Department of Cell Development and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Malay Kumar Basu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kasturi Mitra
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
22
|
Zhou Z, He C, Wang J. Regulation mechanism of Fbxw7-related signaling pathways (Review). Oncol Rep 2015; 34:2215-24. [PMID: 26324296 DOI: 10.3892/or.2015.4227] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/29/2015] [Indexed: 11/05/2022] Open
Abstract
F-box and WD repeat domain-containing 7 (Fbxw7), the substrate-recognition component of SCFFbxw7 complex, is thought to be a tumor suppressor involved in cell growth, proliferation, differentiation and survival. Although an increasing number of ubiquitin substrates of Fbxw7 have been identified, the best characterized substrates are cyclin E and c-Myc. Fbxw7/cyclin E and Fbxw7/c-Myc pathways are tightly regulated by multiple regulators. Fbxw7 has been identified as a tumor suppressor in hepatocellular carcinoma. This review focused on the regulation of Fbxw7/cyclin E and Fbxw7/c-Myc pathways and discussed findings to gain a better understanding of the role of Fbxw7 in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zhenyu Zhou
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Chuanchao He
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jie Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
23
|
GONG JIAN, CAO JUAN, LIU GUINAN, HUO JIRONG. Function and mechanism of F-box proteins in gastric cancer (Review). Int J Oncol 2015; 47:43-50. [DOI: 10.3892/ijo.2015.2983] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/24/2015] [Indexed: 11/06/2022] Open
|
24
|
Ji S, Qin Y, Shi S, Liu X, Hu H, Zhou H, Gao J, Zhang B, Xu W, Liu J, Liang D, Liu L, Liu C, Long J, Zhou H, Chiao PJ, Xu J, Ni Q, Gao D, Yu X. ERK kinase phosphorylates and destabilizes the tumor suppressor FBW7 in pancreatic cancer. Cell Res 2015; 25:561-73. [PMID: 25753158 PMCID: PMC4423074 DOI: 10.1038/cr.2015.30] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/08/2015] [Accepted: 02/10/2015] [Indexed: 02/06/2023] Open
Abstract
F-box and WD repeat domain-containing 7 (FBW7) is the substrate recognition component of the Skp1-Cul1-F-box (SCF) ubiquitin ligase complex and functions as a major tumor suppressor by targeting various oncoproteins for degradation. Genomic deletion or mutation of FBW7 has frequently been identified in many human cancers but not in pancreatic ductal adenocarcinoma. Thus it is important to know how the tumor suppressive function of FBW7 is impaired in pancreatic cancer. In this study, we first observed that low FBW7 expression correlated significantly with ERK activation in pancreatic cancer clinical samples, primarily due to KRAS mutations in pancreatic cancer. We further showed that ERK directly interacted with FBW7 and phosphorylated FBW7 at Thr205, which sequentially promoted FBW7 ubiquitination and proteasomal degradation. Furthermore, the phospho-deficient T205A FBW7 mutant is resistant to ERK activation and could significantly suppress pancreatic cancer cell proliferation and tumorigenesis. These results collectively demonstrate how the oncogenic KRAS mutation inhibits the tumor suppressor FBW7, thus revealing an important function of KRAS mutations in promoting pancreatic cancer progression.
Collapse
Affiliation(s)
- Shunrong Ji
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Yi Qin
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Si Shi
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xiangyuan Liu
- Key Laboratory of System Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongli Hu
- Key Laboratory of System Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hu Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Gao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bo Zhang
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wenyan Xu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jiang Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Dingkong Liang
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Liang Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Chen Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jiang Long
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Haijun Zhou
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paul J Chiao
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jin Xu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Quanxing Ni
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Daming Gao
- Key Laboratory of System Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xianjun Yu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| |
Collapse
|
25
|
Gong J, Lv L, Huo J. Roles of F-box proteins in human digestive system tumors (Review). Int J Oncol 2014; 45:2199-207. [PMID: 25270675 DOI: 10.3892/ijo.2014.2684] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/16/2014] [Indexed: 12/16/2022] Open
Abstract
F-box proteins (FBPs), the substrate-recognition subunit of E3 ubiquitin (Ub) ligase, are the important components of Ub proteasome system (UPS). FBPs are involved in multiple cellular processes through ubiquitylation and subsequent degradation of their target proteins. Many studies have described the roles of FBPs in human cancers. Digestive system tumors account for a large proportion of all the tumors, and their mortality is very high. This review summarizes for the first time the roles of FBPs in digestive system tumorige-nesis and tumor progression, aiming at finding new routes for the rational design of targeted anticancer therapies in digestive system tumors.
Collapse
Affiliation(s)
- Jian Gong
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Liang Lv
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jirong Huo
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
26
|
Abstract
Proline-directed phosphorylation is a posttranslational modification that is instrumental in regulating signaling from the plasma membrane to the nucleus, and its dysregulation contributes to cancer development. Protein interacting with never in mitosis A1 (Pin1), which is overexpressed in many types of cancer, isomerizes specific phosphorylated Ser/Thr-Pro bonds in many substrate proteins, including glycolytic enzyme, protein kinases, protein phosphatases, methyltransferase, lipid kinase, ubiquitin E3 ligase, DNA endonuclease, RNA polymerase, and transcription activators and regulators. This Pin1-mediated isomerization alters the structures and activities of these proteins, thereby regulating cell metabolism, cell mobility, cell cycle progression, cell proliferation, cell survival, apoptosis and tumor development.
Collapse
Affiliation(s)
- Zhimin Lu
- 1] Brain Tumor Center and Department of Neuro-Oncology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA [2] Department of Molecular and Cellular Oncology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA [3] Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
27
|
Giráldez S, Herrero-Ruiz J, Mora-Santos M, Japón MÁ, Tortolero M, Romero F. SCF(FBXW7α) modulates the intra-S-phase DNA-damage checkpoint by regulating Polo like kinase-1 stability. Oncotarget 2014; 5:4370-83. [PMID: 24970797 PMCID: PMC4147330 DOI: 10.18632/oncotarget.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/26/2014] [Indexed: 12/22/2022] Open
Abstract
The intra-S-checkpoint is essential to control cell progression through S phase under normal conditions and in response to replication stress. When DNA lesions are detected, replication fork progression is blocked allowing time for repair to avoid genomic instability and the risk of cancer. DNA replication initiates at many origins of replication in eukaryotic cells, where a series of proteins form pre-replicative complexes (pre-RCs) that are activated to become pre-initiation complexes and ensure a single round of replication in each cell cycle. PLK1 plays an important role in the regulation of DNA replication, contributing to the regulation of pre-RCs formation by phosphorylating several proteins, under both normal and stress conditions. Here we report that PLK1 is ubiquitinated and degraded by SCFFBXW7α/proteasome. Moreover, we identified a new Cdc4 phosphodegron in PLK1, conserved from yeast to humans, whose mutation prevents PLK1 destruction. We established that endogenous SCFFBXW7α degrades PLK1 in the G1 and S phases of an unperturbed cell cycle and in S phase following UV irradiation. Furthermore, we showed that FBXW7α overexpression or UV irradiation prevented the loading of proteins onto chromatin to form pre-RCs and, accordingly, reduced cell proliferation. We conclude that PLK1 degradation mediated by SCFFBXW7α modulates the intra-S-phase checkpoint.
Collapse
Affiliation(s)
- Servando Giráldez
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Apartado de correos 1095. 41080-Sevilla, Spain
| | - Joaquín Herrero-Ruiz
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Apartado de correos 1095. 41080-Sevilla, Spain
| | - Mar Mora-Santos
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Apartado de correos 1095. 41080-Sevilla, Spain
| | - Miguel Á. Japón
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Anatomía Patológica, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain
| | - Maria Tortolero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Apartado de correos 1095. 41080-Sevilla, Spain
| | - Francisco Romero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Apartado de correos 1095. 41080-Sevilla, Spain
| |
Collapse
|
28
|
Chen L, Cheng PH, Rao XM, McMasters KM, Zhou HS. Indole-3-carbinol (I3C) increases apoptosis, represses growth of cancer cells, and enhances adenovirus-mediated oncolysis. Cancer Biol Ther 2014; 15:1256-67. [PMID: 24972095 DOI: 10.4161/cbt.29690] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Epidemiological studies suggest that high intake of cruciferous vegetables is associated with a lower risk of cancer. Experiments have shown that indole-3-carbinol (I3C), a naturally occurring compound derived from cruciferous vegetables, exhibits potent anticarcinogenic properties in a wide range of cancers. In this study, we showed that higher doses of I3C (≥400 μM) induced apoptotic cancer cell death and lower doses of I3C (≤200 μM) repressed cancer cell growth concurrently with suppressed expression of cyclin E and its partner CDK2. Notably, we found that pretreatment with low doses of I3C enhanced Ad-mediated oncolysis and cytotoxicity of human carcinoma cells by synergistic upregulation of apoptosis. Thus, the vegetable compound I3C as a dietary supplement may benefit cancer prevention and improve Ad oncolytic therapies.
Collapse
Affiliation(s)
- Lan Chen
- Department of Surgery; University of Louisville School of Medicine; Louisville, KY USA
| | - Pei-Hsin Cheng
- Department of Pharmacology and Toxicology; University of Louisville School of Medicine; Louisville, KY USA
| | - Xiao-Mei Rao
- James Graham Brown Cancer Center; University of Louisville School of Medicine; Louisville, KY USA
| | - Kelly M McMasters
- Department of Surgery; University of Louisville School of Medicine; Louisville, KY USA; Department of Pharmacology and Toxicology; University of Louisville School of Medicine; Louisville, KY USA; James Graham Brown Cancer Center; University of Louisville School of Medicine; Louisville, KY USA
| | - Heshan Sam Zhou
- Department of Surgery; University of Louisville School of Medicine; Louisville, KY USA; James Graham Brown Cancer Center; University of Louisville School of Medicine; Louisville, KY USA; Department of Microbiology and Immunology; University of Louisville School of Medicine; Louisville, KY USA
| |
Collapse
|
29
|
Chromosome instability underlies hematopoietic stem cell dysfunction and lymphoid neoplasia associated with impaired Fbw7-mediated cyclin E regulation. Mol Cell Biol 2014; 34:3244-58. [PMID: 24958101 DOI: 10.1128/mcb.01528-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The Fbw7 ubiquitin ligase critically regulates hematopoietic stem cell (HSC) function, though the precise contribution of individual substrate ubiquitination pathways to HSC homeostasis is unknown. In the work reported here, we used a mouse model in which we introduced two knock-in mutations (T74A and T393A [changes of T to A at positions 74 and 393]) to disrupt Fbw7-dependent regulation of cyclin E, its prototypic substrate, and to examine the consequences of cyclin E dysregulation for HSC function. Serial transplantation revealed that cyclin E(T74A T393A) HSCs self-renewed normally; however, we identified defects in their multilineage reconstituting capacity. By inducing hematologic stress, we exposed an impaired self-renewal phenotype in cyclin E knock-in HSCs that was associated with defective cell cycle exit and the emergence of chromosome instability (CIN). Importantly, p53 deletion induced both defects in self-renewal and multilineage reconstitution in cyclin E knock-in HSCs with serial transplantation and CIN in hematopoietic stem and progenitor cells. Moreover, CIN was a feature of fatal T-cell malignancies that ultimately developed in recipients of cyclin E(T74A T393A); p53-null HSCs. Together, our findings demonstrate the importance of Fbw7-dependent cyclin E control to the hematopoietic system and highlight CIN as a characteristic feature of HSC dysfunction and malignancy induced by deregulated cyclin E.
Collapse
|
30
|
Ables ET, Drummond-Barbosa D. Cyclin E controls Drosophila female germline stem cell maintenance independently of its role in proliferation by modulating responsiveness to niche signals. Development 2013; 140:530-40. [PMID: 23293285 DOI: 10.1242/dev.088583] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Stem cells must proliferate while maintaining 'stemness'; however, much remains to be learned about how factors that control the division of stem cells influence their identity. Multiple stem cell types display cell cycles with short G1 phases, thought to minimize susceptibility to differentiation factors. Drosophila female germline stem cells (GSCs) have short G1 and long G2 phases, and diet-dependent systemic factors often modulate G2. We previously observed that Cyclin E (CycE), a known G1/S regulator, is atypically expressed in GSCs during G2/M; however, it remained unclear whether CycE has cell cycle-independent roles in GSCs or whether it acts exclusively by modulating the cell cycle. In this study, we detected CycE activity during G2/M, reflecting its altered expression pattern, and showed that CycE and its canonical partner, Cyclin-dependent kinase 2 (Cdk2), are required not only for GSC proliferation, but also for GSC maintenance. In genetic mosaics, CycE- and Cdk2-deficient GSCs are rapidly lost from the niche, remain arrested in a G1-like state, and undergo excessive growth and incomplete differentiation. However, we found that CycE controls GSC maintenance independently of its role in the cell cycle; GSCs harboring specific hypomorphic CycE mutations are not efficiently maintained despite normal proliferation rates. Finally, CycE-deficient GSCs have an impaired response to niche bone morphogenetic protein signals that are required for GSC self-renewal, suggesting that CycE modulates niche-GSC communication. Taken together, these results show unequivocally that the roles of CycE/Cdk2 in GSC division cycle regulation and GSC maintenance are separable, and thus potentially involve distinct sets of phosphorylation targets.
Collapse
Affiliation(s)
- Elizabeth T Ables
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|
31
|
Caldon CE, Sergio CM, Sutherland RL, Musgrove EA. Differences in degradation lead to asynchronous expression of cyclin E1 and cyclin E2 in cancer cells. Cell Cycle 2013; 12:596-605. [PMID: 23324394 PMCID: PMC3594260 DOI: 10.4161/cc.23409] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cyclin E1 is expressed at the G 1/S phase transition of the cell cycle to drive the initiation of DNA replication and is degraded during S/G2M. Deregulation of its periodic degradation is observed in cancer and is associated with increased proliferation and genomic instability. We identify that in cancer cells, unlike normal cells, the closely related protein cyclin E2 is expressed predominantly in S phase, concurrent with DNA replication. This occurs at least in part because the ubiquitin ligase component that is responsible for cyclin E1 downregulation in S phase, Fbw7, fails to effectively target cyclin E2 for proteosomal degradation. The distinct cell cycle expression of the two E-type cyclins in cancer cells has implications for their roles in genomic instability and proliferation and may explain their associations with different signatures of disease.
Collapse
Affiliation(s)
- C Elizabeth Caldon
- The Kinghorn Cancer Centre and Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW, Australia.
| | | | | | | |
Collapse
|
32
|
Potenza M, Schenkman S, Laverrière M, Tellez-Iñón MT. Functional characterization of TcCYC2 cyclin from Trypanosoma cruzi. Exp Parasitol 2012; 132:537-45. [DOI: 10.1016/j.exppara.2012.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 09/03/2012] [Accepted: 09/04/2012] [Indexed: 11/29/2022]
|
33
|
Voutsadakis IA. The ubiquitin-proteasome system and signal transduction pathways regulating Epithelial Mesenchymal transition of cancer. J Biomed Sci 2012; 19:67. [PMID: 22827778 PMCID: PMC3418218 DOI: 10.1186/1423-0127-19-67] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 07/09/2012] [Indexed: 02/08/2023] Open
Abstract
Epithelial to Mesenchymal transition (EMT) in cancer, a process permitting cancer cells to become mobile and metastatic, has a signaling hardwire forged from development. Multiple signaling pathways that regulate carcinogenesis enabling characteristics in neoplastic cells such as proliferation, resistance to apoptosis and angiogenesis are also the main players in EMT. These pathways, as almost all cellular processes, are in their turn regulated by ubiquitination and the Ubiquitin-Proteasome System (UPS). Ubiquitination is the covalent link of target proteins with the small protein ubiquitin and serves as a signal to target protein degradation by the proteasome or to other outcomes such as endocytosis, degradation by the lysosome or specification of cellular localization. This paper reviews signal transduction pathways regulating EMT and being regulated by ubiquitination.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Centre Pluridisciplinaire d'Oncologie, BH06, Centre Hospitalier Universitaire Vaudois, Bugnon 46, Lausanne, 1011, Switzerland.
| |
Collapse
|
34
|
Ubiquitination and the Ubiquitin-Proteasome System as regulators of transcription and transcription factors in epithelial mesenchymal transition of cancer. Tumour Biol 2012; 33:897-910. [PMID: 22399444 DOI: 10.1007/s13277-012-0355-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/09/2012] [Indexed: 02/06/2023] Open
Abstract
Epithelial to Mesenchymal Transition (EMT) in cancer is a process that allows cancer cells to detach from neighboring cells, become mobile and metastasize and shares many signaling pathways with development. Several molecular mechanisms which regulate oncogenic properties in neoplastic cells such as proliferation, resistance to apoptosis and angiogenesis through transcription factors or other mediators are also regulators of EMT. These pathways and downstream transcription factors are, in their turn, regulated by ubiquitination and the Ubiquitin-Proteasome System (UPS). Ubiquitination, the covalent link of the small 76-amino acid protein ubiquitin to target proteins, serves as a signal for protein degradation by the proteasome or for other outcomes such as endocytosis, degradation by the lysosome or directing these proteins to specific cellular compartments. This review discusses aspects of the regulation of EMT by ubiquitination and the UPS and underlines its complexity focusing on transcription and transcription factors regulating EMT and are being regulated by ubiquitination.
Collapse
|
35
|
Cizmecioglu O, Krause A, Bahtz R, Ehret L, Malek N, Hoffmann I. Plk2 regulates centriole duplication through phosphorylation-mediated degradation of Fbxw7 (human Cdc4). J Cell Sci 2012; 125:981-92. [DOI: 10.1242/jcs.095075] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polo-like kinases (Plks) perform crucial functions during mitosis, cytokinesis and centriole duplication. Plk2 is activated in early G1 phase and is involved in the reproduction of centrosomes. However, the mechanisms underlying Plk2-induced centriole duplication are incompletely understood. Here, we show that Plk2 directly targets the F-box protein F-box/WD repeat-containing protein 7 (Fbxw7), which is a regulator of the ubiquitin-mediated degradation of cyclin E. Plk2 phosphorylates Fbxw7 on serine 176 and the two proteins form a complex in vitro and in vivo. Phosphorylation of Fbxw7 by Plk2 induces destabilization of the F-box protein resulting in accumulation of cyclin E and increased potential for centriole reproduction. In addition, loss of Fbxw7 in human cells leads to uncontrolled centriole duplication, highlighting the importance of Fbxw7 regulation by Plk2. These findings define a previously unknown Plk2-dependent pathway involved at the onset of S phase and in centrosome duplication.
Collapse
Affiliation(s)
- Onur Cizmecioglu
- Cell cycle Control and Carcinogenesis (F045), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Annekatrin Krause
- Cell cycle Control and Carcinogenesis (F045), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Ramona Bahtz
- Cell cycle Control and Carcinogenesis (F045), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Lena Ehret
- Cell cycle Control and Carcinogenesis (F045), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Nisar Malek
- University Hospital Tübingen, Department of Internal Medicine 1, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
| | - Ingrid Hoffmann
- Cell cycle Control and Carcinogenesis (F045), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| |
Collapse
|
36
|
Siu KT, Rosner MR, Minella AC. An integrated view of cyclin E function and regulation. Cell Cycle 2012; 11:57-64. [PMID: 22186781 DOI: 10.4161/cc.11.1.18775] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cancers of diverse cell lineages express high levels of cyclin E, and in various studies, cyclin E overexpression correlates with increased tumor aggression. One way that normal control of cyclin E expression is disabled in cancer cells is via loss-of-function mutations sustained by FBXW7. This gene encodes the Fbw7 tumor suppressor protein that provides substrate specificity for a ubiquitin ligase complex that targets multiple oncoproteins for degradation. Numerous other mechanisms besides Fbw7 mutations can deregulate cyclin E expression and activity in cancer cells. Recent reports demonstrate that inappropriate cyclin E expression may have far-reaching biological consequences for cell physiology, including altering gene expression programs governing proliferation, differentiation, survival and senescence. In this review, we discuss the function of mammalian cyclin E in the context of these new data as well as the complex network that connects cyclin E functions to the cellular controls regulating its expression and activity.
Collapse
Affiliation(s)
- Ka Tat Siu
- Department of Medicine, Hematology/Oncology Division, Integrated Graduate Program in the Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | |
Collapse
|
37
|
Soucy TA, Dick LR, Smith PG, Milhollen MA, Brownell JE. The NEDD8 Conjugation Pathway and Its Relevance in Cancer Biology and Therapy. Genes Cancer 2011; 1:708-16. [PMID: 21779466 DOI: 10.1177/1947601910382898] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cancer cells depend on signals that promote cell cycle progression and prevent programmed cell death that would otherwise result from cumulative, aberrant stress. These activities require the temporally controlled destruction of specific intracellular proteins by the ubiquitin-proteasome system (UPS). To a large extent, the control points in this process include a family of E3 ubiquitin ligases called cullin-RING ligases (CRLs). The ligase activity of these multicomponent complexes requires modification of the cullin protein situated at their core with a ubiquitin-like protein called NEDD8. Neddylation results in conformational rearrangements within the CRL, which are necessary for ubiquitin transfer to a substrate. The NEDD8 pathway thus has a critical role in mediating the ubiquitination of numerous CRL substrate proteins involved in cell cycle progression and survival including the DNA replication licensing factor Cdt-1, the NF-κB transcription factor inhibitor pIκBα, and the cell cycle regulators cyclin E and p27. The initial step required for attachment of NEDD8 to a cullin is catalyzed by the E1, NEDD8-activating enzyme (NAE). The first-in-class inhibitor of NAE, MLN4924, has been shown to block the activity of NAE and prevent the subsequent neddylation of cullins. Preclinical studies have demonstrated antitumor activity in various solid tumors and hematological malignancies, and preliminary clinical data have shown the anticipated pharmacodynamic effects in humans. Here, we review the NEDD8 pathway, its importance in cancer, and the therapeutic potential of NAE inhibition.
Collapse
|
38
|
Wang Z, Fukushima H, Gao D, Inuzuka H, Wan L, Lau AW, Liu P, Wei W. The two faces of FBW7 in cancer drug resistance. Bioessays 2011; 33:851-9. [PMID: 22006825 DOI: 10.1002/bies.201100101] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 07/31/2011] [Accepted: 08/01/2011] [Indexed: 12/15/2022]
Abstract
Chemotherapy is an important therapeutic approach for cancer treatment. However, drug resistance is an obstacle that often impairs the successful use of chemotherapies. Therefore, overcoming drug resistance would lead to better therapeutic outcomes for cancer patients. Recently, studies by our own and other groups have demonstrated that there is an intimate correlation between the loss of the F-box and WD repeat domain-containing 7 (FBW7) tumor suppressor and the incurring drug resistance. While loss of FBW7 sensitizes cancer cells to certain drugs, FBW7-/- cells are more resistant to other types of chemotherapies. FBW7 exerts its tumor suppressor function by promoting the degradation of various oncoproteins that regulate many cellular processes, including cell cycle progression, cellular metabolism, differentiation, and apoptosis. Since loss of the FBW7 tumor suppressor is linked to drug resistance, FBW7 may represent a novel therapeutic target to increase drug sensitivity of cancer cells to conventional chemotherapeutics. This paper thus focuses on the new functional aspects of FBW7 in drug resistance.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
p53: guardian of ploidy. Mol Oncol 2011; 5:315-23. [PMID: 21852209 DOI: 10.1016/j.molonc.2011.07.007] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 11/20/2022] Open
Abstract
Aneuploidy, often preceded by tetraploidy, is one of the hallmarks of solid tumors. Indeed, both aneuploidy and tetraploidy are oncogenic occurrences that are sufficient to drive neoplastic transformation and cancer progression. True to form, the tumor suppressor p53 obstructs propagation of these dangerous chromosomal events by either instigating irreversible cell cycle arrest or apoptosis. The tumor suppressor Lats2, along with other tumor inhibitory proteins such as BRCA1/2 and BubR1, are central to p53-dependent elimination of tetraploid cells. Not surprisingly, these proteins are frequently inactivated or downregulated in tumors, synergizing with p53 inactivation to establish an atmosphere of "tolerance" for a non-diploid state.
Collapse
|
40
|
Xu Y, Sengupta T, Kukreja L, Minella AC. MicroRNA-223 regulates cyclin E activity by modulating expression of F-box and WD-40 domain protein 7. J Biol Chem 2010; 285:34439-46. [PMID: 20826802 DOI: 10.1074/jbc.m110.152306] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
F-box and WD-40 domain protein 7 (Fbw7) provides substrate specificity for the Skp1-Cullin1-F-box protein (SCF) ubiquitin ligase complex that targets multiple oncoproteins for degradation, including cyclin E, c-Myc, c-Jun, Notch, and mammalian target of rapamycin (mTOR). Fbw7 is a bona fide tumor suppressor, and loss-of-function mutations in FBXW7 have been identified in diverse human tumors. Although much is known about targets of the Fbw7 ubiquitin ligase pathway, relatively little is known about the regulation of Fbw7 expression. We identified a panel of candidate microRNA regulators of Fbw7 expression within a study of gene expression alterations in primary erythroblasts obtained from cyclin E(T74A T393A) knock-in mice, which have markedly dysregulated cyclin E expression. We found that overexpression of miR-223, in particular, significantly reduces FBXW7 mRNA levels, increases endogenous cyclin E protein and activity levels, and increases genomic instability. We next confirmed that miR-223 targets the FBXW7 3'-untranslated region. We then found that reduced miR-223 expression in primary mouse embryonic fibroblasts leads to increased Fbw7 expression and decreased cyclin E activity. Finally, we found that miR-223 expression is responsive to acute alterations in cyclin E regulation by the Fbw7 pathway. Together, our data indicate that miR-223 regulates Fbw7 expression and provide the first evidence that activity of the SCF(Fbw7) ubiquitin ligase can be modulated directly by the microRNA pathway.
Collapse
Affiliation(s)
- Yanfei Xu
- Department of Medicine, Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
41
|
Keutgens A, Zhang X, Shostak K, Robert I, Olivier S, Vanderplasschen A, Chapelle JP, Viatour P, Merville MP, Bex F, Gothot A, Chariot A. BCL-3 degradation involves its polyubiquitination through a FBW7-independent pathway and its binding to the proteasome subunit PSMB1. J Biol Chem 2010; 285:25831-40. [PMID: 20558726 DOI: 10.1074/jbc.m110.112128] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oncogenic protein BCL-3 activates or represses gene transcription through binding with the NF-kappaB proteins p50 and p52 and is degraded through a phospho- and GSK3-dependent pathway. However, the mechanisms underlying its degradation remain poorly understood. Yeast two-hybrid analysis led to the identification of the proteasome subunit PSMB1 as a BCL-3-associated protein. The binding of BCL-3 to PSMB1 is required for its degradation through the proteasome. Indeed, PSMB1-depleted cells are defective in degrading polyubiquitinated BCL-3. The N-terminal part of BCL-3 includes lysines 13 and 26 required for the Lys(48)-linked polyubiquitination of BCL-3. Moreover, the E3 ligase FBW7, known to polyubiquitinate a variety of substrates phosphorylated by GSK3, is dispensable for BCL-3 degradation. Thus, our data defined a unique motif of BCL-3 that is needed for its recruitment to the proteasome and identified PSMB1 as a key protein required for the proteasome-mediated degradation of a nuclear and oncogenic IkappaB protein.
Collapse
Affiliation(s)
- Aurore Keutgens
- Interdisciplinary Cluster for Applied Genoproteomics, GIGA-Research, Unit of Medical Chemistry, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Sart-Tilman, 4000 Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
The repressing function of the oncoprotein BCL-3 requires CtBP, while its polyubiquitination and degradation involve the E3 ligase TBLR1. Mol Cell Biol 2010; 30:4006-21. [PMID: 20547759 DOI: 10.1128/mcb.01600-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nuclear and oncogenic BCL-3 protein activates or represses gene transcription when bound to NF-kappaB proteins p50 and p52, yet the molecules that specifically interact with BCL-3 and drive BCL-3-mediated effects on gene expression remain largely uncharacterized. Moreover, GSK3-mediated phosphorylation of BCL-3 triggers its degradation through the proteasome, but the proteins involved in this degradative pathway are poorly characterized. Biochemical purification of interacting partners of BCL-3 led to the identification of CtBP as a molecule required for the ability of BCL-3 to repress gene transcription. CtBP is also required for the oncogenic potential of BCL-3 and for its ability to inhibit UV-mediated cell apoptosis in keratinocytes. We also defined the E3 ligase TBLR1 as a protein involved in BCL-3 degradation through a GSK3-independent pathway. Thus, our data demonstrate that the LSD1/CtBP complex is required for the repressing abilities of an oncogenic I kappaB protein, and they establish a functional link between the E3 ligase TBLR1 and NF-kappaB.
Collapse
|
43
|
Eskandarpour M, Huang F, Reeves KA, Clark E, Hansson J. OncogenicNRAShas multiple effects on the malignant phenotype of human melanoma cells culturedin vitro. Int J Cancer 2009; 124:16-26. [DOI: 10.1002/ijc.23876] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
44
|
Yang Y, Kitagaki J, Wang H, Hou DX, Perantoni AO. Targeting the ubiquitin-proteasome system for cancer therapy. Cancer Sci 2008; 100:24-8. [PMID: 19037995 DOI: 10.1111/j.1349-7006.2008.01013.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The ubiquitin-proteasome system plays a critical role in controlling the level, activity and location of various cellular proteins. Significant progress has been made in investigating the molecular mechanisms of ubiquitination, particularly in understanding the structure of the ubiquitination machinery and identifying ubiquitin protein ligases, the primary specificity-determining enzymes. Therefore, it is now possible to target specific molecules involved in ubiquitination and proteasomal degradation to regulate many cellular processes such as signal transduction, proliferation and apoptosis. In particular, alterations in ubiquitination are observed in most, if not all, cancer cells. This is manifested by destabilization of tumor suppressors, such as p53, and overexpression of oncogenes such as c-Myc and c-Jun. In addition to the development and clinical validation of proteasome inhibitor, bortezomib, in myeloma therapy, recent studies have demonstrated that it is possible to develop inhibitors for specific ubiquitination and deubiquitination enzymes. With the help of structural studies, rational design and chemical synthesis, it is conceivable that we will be able to use 'druggable' inhibitors of the ubiquitin system to evaluate their effects in animal tumor models in the not-so-distant future.
Collapse
Affiliation(s)
- Yili Yang
- Cancer and Developmental Biology Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA.
| | | | | | | | | |
Collapse
|
45
|
Cyclin E phosphorylation regulates cell proliferation in hematopoietic and epithelial lineages in vivo. Genes Dev 2008; 22:1677-89. [PMID: 18559482 DOI: 10.1101/gad.1650208] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Phosphorylations within N- and C-terminal degrons independently control the binding of cyclin E to the SCF(Fbw7) and thus its ubiquitination and proteasomal degradation. We have now determined the physiologic significance of cyclin E degradation by this pathway. We describe the construction of a knockin mouse in which both degrons were mutated by threonine to alanine substitutions (cyclin E(T74A T393A)) and report that ablation of both degrons abolished regulation of cyclin E by Fbw7. The cyclin E(T74A T393A) mutation disrupted cyclin E periodicity and caused cyclin E to continuously accumulate as cells reentered the cell cycle from quiescence. In vivo, the cyclin E(T74A T393A) mutation greatly increased cyclin E activity and caused proliferative anomalies. Cyclin E(T74A T393A) mice exhibited abnormal erythropoiesis characterized by a large expansion of abnormally proliferating progenitors, impaired differentiation, dysplasia, and anemia. This syndrome recapitulates many features of early stage human refractory anemia/myelodysplastic syndrome, including ineffective erythropoiesis. Epithelial cells also proliferated abnormally in cyclin E knockin mice, and the cyclin E(T74A T393A) mutation delayed mammary gland involution, implicating cyclin E degradation in this anti-mitogenic response. Hyperproliferative mammary epithelia contained increased apoptotic cells, suggesting that apoptosis contributes to tissue homeostasis in the setting of cyclin E deregulation. Overall these data show the critical role of both degrons in regulating cyclin E activity and reveal that complete loss of Fbw7-mediated cyclin E degradation causes spontaneous and cell type-specific proliferative anomalies.
Collapse
|
46
|
Tan Y, Sangfelt O, Spruck C. The Fbxw7/hCdc4 tumor suppressor in human cancer. Cancer Lett 2008; 271:1-12. [PMID: 18541364 DOI: 10.1016/j.canlet.2008.04.036] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 04/23/2008] [Accepted: 04/23/2008] [Indexed: 12/11/2022]
Abstract
Fbxw7/hCdc4 is a member of the F-box family of proteins, which function as interchangeable substrate recognition components of the SCF ubiquitin ligases. SCF(Fbxw7/hCdc4) targets several important oncoproteins including c-Myc, c-Jun, cyclin E1, and Notch, for ubiquitin-dependent proteolysis. Recent studies have shown that FBXW7/hCDC4 is mutated in a variety of human tumor types, suggesting that it is a general tumor suppressor in human cancer. Alteration of Fbxw7/hCdc4 function is linked to defects in differentiation, cellular proliferation, and genetic instability. In this review, we summarize what is known about Fbxw7/hCdc4-mediated degradation in the regulation of cellular proliferation and discuss how alteration of its function contributes to human tumorigenesis.
Collapse
Affiliation(s)
- YingMeei Tan
- Department of Tumor Cell Biology, Sidney Kimmel Cancer Center, San Diego, CA 92121, USA
| | | | | |
Collapse
|
47
|
Finkin S, Aylon Y, Anzi S, Oren M, Shaulian E. Fbw7 regulates the activity of endoreduplication mediators and the p53 pathway to prevent drug-induced polyploidy. Oncogene 2008; 27:4411-21. [PMID: 18391985 DOI: 10.1038/onc.2008.77] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fbw7 is a tumor suppressor that is mutated in numerous cancers. It encodes an E3 ubiquitin ligase, whose ability to decrease the levels of pivotal regulators of cell growth and proliferation underlies its tumor suppressor function. Here, we explore the consequences of Fbw7 inactivation on the outcome of chemotherapeutic treatments. When exposed to spindle toxins such as vinblastine and taxol, Fbw7-deficient cells undergo extensive mitotic slippage and endoreduplication, rendering them polyploid. A combined deregulation of several Fbw7 target proteins is required for this phenotype. Specifically, elevated expression of cyclin E and Aurora A in Fbw7-deficient cells is required for drug-induced polyploidy. However, overexpression of either cyclin E or Aurora A alone is not sufficient for drug-induced polyploidy. In addition, we demonstrate that Fbw7 deficiency limits the ability of p53 to respond to mitotic toxins but not to DNA damage. Furthermore, Fbw7 expression regulates the p53-dependent induction of genes such as Lats2 and p21 in response to vinblastine. Hence, we suggest that Fbw7 serves as a master regulator of the mitotic and tetraploidy checkpoints.
Collapse
Affiliation(s)
- S Finkin
- Department of Experimental Medicine and Cancer Research, Hebrew University Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
48
|
Welcker M, Clurman BE. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 2008; 8:83-93. [PMID: 18094723 DOI: 10.1038/nrc2290] [Citation(s) in RCA: 851] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
FBW7 (F-box and WD repeat domain-containing 7) is the substrate recognition component of an evolutionary conserved SCF (complex of SKP1, CUL1 and F-box protein)-type ubiquitin ligase. SCF(FBW7) degrades several proto-oncogenes that function in cellular growth and division pathways, including MYC, cyclin E, Notch and JUN. FBW7 is also a tumour suppressor, the regulatory network of which is perturbed in many human malignancies. Numerous cancer-associated mutations in FBW7 and its substrates have been identified, and loss of FBW7 function causes chromosomal instability and tumorigenesis. This Review focuses on structural and functional aspects of FBW7 and its role in the development of cancer.
Collapse
Affiliation(s)
- Markus Welcker
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA.
| | | |
Collapse
|
49
|
Thompson BJ, Buonamici S, Sulis ML, Palomero T, Vilimas T, Basso G, Ferrando A, Aifantis I. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. ACTA ACUST UNITED AC 2007; 204:1825-35. [PMID: 17646408 PMCID: PMC2118676 DOI: 10.1084/jem.20070872] [Citation(s) in RCA: 372] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent studies have shown that activating mutations of NOTCH1 are responsible for the majority of T cell acute lymphoblastic leukemia (T-ALL) cases. Most of these mutations truncate its C-terminal domain, a region that is important for the NOTCH1 proteasome-mediated degradation. We report that the E3 ligase FBW7 targets NOTCH1 for ubiquitination and degradation. Our studies map in detail the amino acid degron sequence required for NOTCH1–FBW7 interaction. Furthermore, we identify inactivating FBW7 mutations in a large fraction of human T-ALL lines and primary leukemias. These mutations abrogate the binding of FBW7 not only to NOTCH1 but also to the two other characterized targets, c-Myc and cyclin E. The majority of the FBW7 mutations were present during relapse, and they were associated with NOTCH1 HD mutations. Interestingly, most of the T-ALL lines harboring FBW7 mutations were resistant to γ-secretase inhibitor treatment and this resistance appeared to be related to the stabilization of the c-Myc protein. Our data suggest that FBW7 is a novel tumor suppressor in T cell leukemia, and implicate the loss of FBW7 function as a potential mechanism of drug resistance in T-ALL.
Collapse
Affiliation(s)
- Benjamin J Thompson
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Minella AC, Grim JE, Welcker M, Clurman BE. p53 and SCFFbw7 cooperatively restrain cyclin E-associated genome instability. Oncogene 2007; 26:6948-53. [PMID: 17486057 DOI: 10.1038/sj.onc.1210518] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cancers often exhibit high levels of cyclin E expression, and aberrant cyclin E activity causes genomic instability and increased tumorigenesis. Two tumor suppressor pathways protect cells against cyclin E deregulation. The p53 pathway is induced by excess cyclin E in primary cells and opposes cyclin E activity through induction of p21Cip1. In contrast, the Fbw7 pathway targets cyclin E for degradation, and Fbw7 mutations occur commonly in cancers. We investigated the cooperativity of these two pathways in countering cyclin E-induced genomic instability in primary human cells. We find that loss of p53 and Fbw7 synergistically unmasks cyclin E-induced instability. In normal cells, impaired cyclin E degradation produces genome instability, but this is rapidly mitigated by induction of p53 and p21. In contrast, p53 loss allows the high level of cyclin E kinase activity that results from Fbw7 loss to persist and continuously drive genome instability. Moreover, p21 plays a critical role in suppressing cyclin E when Fbw7 is disabled, and in the absence of p21, sustained cyclin E activity induces rapid cell death via apoptosis. These data directly demonstrate the cooperative roles of these Fbw7 and p53 pathways in restraining cyclin E activity and its associated genome instability.
Collapse
Affiliation(s)
- A C Minella
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | | | | | | |
Collapse
|