1
|
Lu L, Varshney S, Yuan Y, Wei HX, Tanwar A, Sundaram S, Nauman M, Haltiwanger RS, Stanley P. In vivo evidence for GDP-fucose transport in the absence of transporter SLC35C1 and putative transporter SLC35C2. J Biol Chem 2023; 299:105406. [PMID: 38270391 PMCID: PMC10709068 DOI: 10.1016/j.jbc.2023.105406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 01/26/2024] Open
Abstract
Slc35c1 encodes an antiporter that transports GDP-fucose into the Golgi and returns GMP to the cytoplasm. The closely related gene Slc35c2 encodes a putative GDP-fucose transporter and promotes Notch fucosylation and Notch signaling in cultured cells. Here, we show that HEK293T cells lacking SLC35C1 transferred reduced amounts of O-fucose to secreted epidermal growth factor-like repeats from NOTCH1 or secreted thrombospondin type I repeats from thrombospondin 1. However, cells lacking SLC35C2 did not exhibit reduced fucosylation of these epidermal growth factor-like repeats or thrombospondin type I repeats. To investigate SLC35C2 functions in vivo, WW6 embryonic stem cells were targeted for Slc35c2. Slc35c2[-/-] mice were viable and fertile and exhibited no evidence of defective Notch signaling during skeletal or T cell development. By contrast, mice with inactivated Slc35c1 exhibited perinatal lethality and marked skeletal defects in late embryogenesis, typical of defective Notch signaling. Compound Slc35c1[-/-]Slc35c2[-/-] mutants were indistinguishable in skeletal phenotype from Slc35c1[-/-] embryos and neonates. Double mutants did not exhibit the exacerbated skeletal defects predicted if SLC35C2 was functionally important for Notch signaling in vivo. In addition, NOTCH1 immunoprecipitated from Slc35c1[-/-]Slc35c2[-/-] neonatal lung carried fucose detected by binding of Aleuria aurantia lectin. Given that the absence of both SLC35C1, a known GDP-fucose transporter, and SLC35C2, a putative GDP-fucose transporter, did not lead to afucosylated NOTCH1 nor to the severe Notch signaling defects and embryonic lethality expected if all GDP-fucose transport were abrogated, at least one more mechanism of GDP-fucose transport into the secretory pathway must exist in mammals.
Collapse
Affiliation(s)
- Linchao Lu
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Shweta Varshney
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Youxi Yuan
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Hua-Xing Wei
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Ankit Tanwar
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Subha Sundaram
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Mohd Nauman
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Pamela Stanley
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA.
| |
Collapse
|
2
|
Marini C, Hardies K, Pisano T, May P, Weckhuysen S, Cellini E, Suls A, Mei D, Balling R, Jonghe PD, Helbig I, Garozzo D, Guerrini R. Recessive mutations in SLC35A3 cause early onset epileptic encephalopathy with skeletal defects. Am J Med Genet A 2017; 173:1119-1123. [PMID: 28328131 DOI: 10.1002/ajmg.a.38112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/28/2016] [Accepted: 12/09/2016] [Indexed: 11/08/2022]
Abstract
We describe the clinical and whole genome sequencing (WGS) study of a non-consanguineous Italian family in which two siblings, a boy and a girl, manifesting a severe epileptic encephalopathy (EE) with skeletal abnormalities, carried novel SLC35A3 compound heterozygous mutations. Both siblings exhibited infantile spasms, associated with focal, and tonic vibratory seizures from early infancy. EEG recordings showed a suppression-burst (SB) pattern and multifocal paroxysmal activity in both. In addition both had quadriplegia, acquired microcephaly, and severe intellectual disability. General examination showed distal arthrogryposis predominant in the hands in both siblings and severe left dorso-lumbar convex scoliosis in one. WGS of the siblings-parents quartet identified novel compound heterozygous mutations in SLC35A3 in both children. SLC35A3 encodes the major Golgi uridine diphosphate N-acetylglucosamine transporter. With this study, we add SLC35A3 to the gene list of epilepsies. Neurological symptoms and skeletal abnormalities might result from impaired glycosylation of proteins involved in normal development and function of the central nervous system and skeletal apparatus.
Collapse
Affiliation(s)
- Carla Marini
- Neurology Unit and Neurogenetics Laboratories, Meyer Children Hospital, Florence, Italy
| | - Katia Hardies
- Neurogenetics Group, VIB-Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Tiziana Pisano
- Neurology Unit and Neurogenetics Laboratories, Meyer Children Hospital, Florence, Italy
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg.,Institute for Systems Biology (ISB), Seattle, Washington
| | - Sarah Weckhuysen
- Neurogenetics Group, VIB-Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Elena Cellini
- Neurology Unit and Neurogenetics Laboratories, Meyer Children Hospital, Florence, Italy
| | - Arvid Suls
- Neurogenetics Group, VIB-Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Davide Mei
- Neurology Unit and Neurogenetics Laboratories, Meyer Children Hospital, Florence, Italy
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
| | - Peter D Jonghe
- Neurogenetics Group, VIB-Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Division of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Ingo Helbig
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts University, Kiel, Germany.,Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Domenico Garozzo
- CNR, Institute of Chemistry and Technology of Polymers, Section of Catania, Catania, Italy
| | | | - Renzo Guerrini
- Neurology Unit and Neurogenetics Laboratories, Meyer Children Hospital, Florence, Italy.,University of Florence, Florence, Italy
| |
Collapse
|
3
|
Muroyama Y, Baba A, Kitagawa M, Saito T. Olfactory Sensory Neurons Control Dendritic Complexity of Mitral Cells via Notch Signaling. PLoS Genet 2016; 12:e1006514. [PMID: 28027303 PMCID: PMC5189955 DOI: 10.1371/journal.pgen.1006514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/29/2016] [Indexed: 11/29/2022] Open
Abstract
Mitral cells (MCs) of the mammalian olfactory bulb have a single primary dendrite extending into a single glomerulus, where they receive odor information from olfactory sensory neurons (OSNs). Molecular mechanisms for controlling dendritic arbors of MCs, which dynamically change during development, are largely unknown. Here we found that MCs displayed more complex dendritic morphologies in mouse mutants of Maml1, a crucial gene in Notch signaling. Similar phenotypes were observed by conditionally misexpressing a dominant negative form of MAML1 (dnMAML1) in MCs after their migration. Conversely, conditional misexpression of a constitutively active form of Notch reduced their dendritic complexity. Furthermore, the intracellular domain of Notch1 (NICD1) was localized to nuclei of MCs. These findings suggest that Notch signaling at embryonic stages is involved in the dendritic complexity of MCs. After the embryonic misexpression of dnMAML1, many MCs aberrantly extended dendrites to more than one glomerulus at postnatal stages, suggesting that Notch signaling is essential for proper formation of olfactory circuits. Moreover, dendrites in cultured MCs were shortened by Jag1-expressing cells. Finally, blocking the activity of Notch ligands in OSNs led to an increase in dendritic complexity as well as a decrease in NICD1 signals in MCs. These results demonstrate that the dendritic complexity of MCs is controlled by their presynaptic partners, OSNs. Olfactory circuits are critical for the survival of many animals. Odor information is transmitted from olfactory sensory neurons (OSNs) to relay neurons, the morphology of which is crucial for processing of the information and similar among species. The major relay neurons, mitral cells (MCs) in mammals and projection neurons in flies, have a single primary dendrite at the mature stage. Molecular mechanisms to control the formation of the dendrite are largely unknown. MCs dynamically change their dendrites during development. In this study, we show that the dendritic morphologies of MCs are controlled by Notch signaling, many factors of which are well conserved among species. Moreover, we have found that Notch signaling in MCs is activated by OSNs, and that Notch operates in the relay neurons in the mouse olfactory system, in contrast to the fly system, where Notch functions in OSNs. Therefore, our study has revealed a novel step for shaping the dendritic morphologies of MCs.
Collapse
Affiliation(s)
- Yuko Muroyama
- Department of Developmental Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Baba
- Department of Developmental Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Motoo Kitagawa
- Department of Molecular and Tumor Pathology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tetsuichiro Saito
- Department of Developmental Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
- * E-mail:
| |
Collapse
|
4
|
Moulton MJ, Letsou A. Modeling congenital disease and inborn errors of development in Drosophila melanogaster. Dis Model Mech 2016; 9:253-69. [PMID: 26935104 PMCID: PMC4826979 DOI: 10.1242/dmm.023564] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fly models that faithfully recapitulate various aspects of human disease and human health-related biology are being used for research into disease diagnosis and prevention. Established and new genetic strategies in Drosophila have yielded numerous substantial successes in modeling congenital disorders or inborn errors of human development, as well as neurodegenerative disease and cancer. Moreover, although our ability to generate sequence datasets continues to outpace our ability to analyze these datasets, the development of high-throughput analysis platforms in Drosophila has provided access through the bottleneck in the identification of disease gene candidates. In this Review, we describe both the traditional and newer methods that are facilitating the incorporation of Drosophila into the human disease discovery process, with a focus on the models that have enhanced our understanding of human developmental disorders and congenital disease. Enviable features of the Drosophila experimental system, which make it particularly useful in facilitating the much anticipated move from genotype to phenotype (understanding and predicting phenotypes directly from the primary DNA sequence), include its genetic tractability, the low cost for high-throughput discovery, and a genome and underlying biology that are highly evolutionarily conserved. In embracing the fly in the human disease-gene discovery process, we can expect to speed up and reduce the cost of this process, allowing experimental scales that are not feasible and/or would be too costly in higher eukaryotes.
Collapse
Affiliation(s)
- Matthew J Moulton
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 5100, Salt Lake City, UT 84112-5330, USA
| | - Anthea Letsou
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 5100, Salt Lake City, UT 84112-5330, USA
| |
Collapse
|
5
|
Orellana A, Moraga C, Araya M, Moreno A. Overview of Nucleotide Sugar Transporter Gene Family Functions Across Multiple Species. J Mol Biol 2016; 428:3150-3165. [PMID: 27261257 DOI: 10.1016/j.jmb.2016.05.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 11/16/2022]
Abstract
Glycoproteins and glycolipids are crucial in a number of cellular processes, such as growth, development, and responses to external cues, among others. Polysaccharides, another class of sugar-containing molecules, also play important structural and signaling roles in the extracellular matrix. The additions of glycans to proteins and lipids, as well as polysaccharide synthesis, are processes that primarily occur in the Golgi apparatus, and the substrates used in this biosynthetic process are nucleotide sugars. These proteins, lipids, and polysaccharides are also modified by the addition of sulfate groups in the Golgi apparatus in a series of reactions where nucleotide sulfate is needed. The required nucleotide sugar substrates are mainly synthesized in the cytosol and transported into the Golgi apparatus by nucleotide sugar transporters (NSTs), which can additionally transport nucleotide sulfate. Due to the critical role of NSTs in eukaryotic organisms, any malfunction of these could change glycan and polysaccharide structures, thus affecting function and altering organism physiology. For example, mutations or deletion on NST genes lead to pathological conditions in humans or alter cell walls in plants. In recent years, many NSTs have been identified and functionally characterized, but several remain unanalyzed. This study examined existing information on functionally characterized NSTs and conducted a phylogenetic analysis of 257 NSTs predicted from nine animal and plant model species, as well as from protists and fungi. From this analysis, relationships between substrate specificity and the primary NST structure can be inferred, thereby advancing understandings of nucleotide sugar gene family functions across multiple species.
Collapse
Affiliation(s)
- Ariel Orellana
- Centro de Biotecnología Vegetal, Universidad Andres Bello, Av. República 217, Santiago, RM 837-0146, Chile; FONDAP Center for Genome Regulation, Santiago, RM,Chile.
| | - Carol Moraga
- Centro de Biotecnología Vegetal, Universidad Andres Bello, Av. República 217, Santiago, RM 837-0146, Chile.
| | - Macarena Araya
- Centro de Biotecnología Vegetal, Universidad Andres Bello, Av. República 217, Santiago, RM 837-0146, Chile.
| | - Adrian Moreno
- Centro de Biotecnología Vegetal, Universidad Andres Bello, Av. República 217, Santiago, RM 837-0146, Chile; FONDAP Center for Genome Regulation, Santiago, RM,Chile.
| |
Collapse
|
6
|
Zacchi LF, Schulz BL. N-glycoprotein macroheterogeneity: biological implications and proteomic characterization. Glycoconj J 2015; 33:359-76. [DOI: 10.1007/s10719-015-9641-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/04/2015] [Accepted: 11/20/2015] [Indexed: 10/22/2022]
|
7
|
Yamamoto-Hino M, Yoshida H, Ichimiya T, Sakamura S, Maeda M, Kimura Y, Sasaki N, Aoki-Kinoshita KF, Kinoshita-Toyoda A, Toyoda H, Ueda R, Nishihara S, Goto S. Phenotype-based clustering of glycosylation-related genes by RNAi-mediated gene silencing. Genes Cells 2015; 20:521-42. [PMID: 25940448 PMCID: PMC4682476 DOI: 10.1111/gtc.12246] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/24/2015] [Indexed: 01/16/2023]
Abstract
Glycan structures are synthesized by a series of reactions conducted by glycosylation-related (GR) proteins such as glycosyltransferases, glycan-modifying enzymes, and nucleotide-sugar transporters. For example, the common core region of glycosaminoglycans (GAGs) is sequentially synthesized by peptide-O-xylosyltransferase, β1,4-galactosyltransferase I, β1,3-galactosyltransferase II, and β1,3-glucuronyltransferase. This raises the possibility that functional impairment of GR proteins involved in synthesis of the same glycan might result in the same phenotypic abnormality. To examine this possibility, comprehensive silencing of genes encoding GR and proteoglycan core proteins was conducted in Drosophila. Drosophila GR candidate genes (125) were classified into five functional groups for synthesis of GAGs, N-linked, O-linked, Notch-related, and unknown glycans. Spatiotemporally regulated silencing caused a range of malformed phenotypes that fell into three types: extra veins, thick veins, and depigmentation. The clustered phenotypes reflected the biosynthetic pathways of GAGs, Fringe-dependent glycan on Notch, and glycans placed at or near nonreducing ends (herein termed terminal domains of glycans). Based on the phenotypic clustering, CG33145 was predicted to be involved in formation of terminal domains. Our further analysis showed that CG33145 exhibited galactosyltransferase activity in synthesis of terminal N-linked glycans. Phenotypic clustering, therefore, has potential for the functional prediction of novel GR genes.
Collapse
Affiliation(s)
- Miki Yamamoto-Hino
- Department of Life Science, Rikkyo University, Toshima-ku, Tokyo, Japan.,Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Hideki Yoshida
- Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan.,Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan.,Department of Applied Biology, Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Japan
| | - Tomomi Ichimiya
- Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Sho Sakamura
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Megumi Maeda
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yoshinobu Kimura
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Norihiko Sasaki
- Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan.,Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan
| | - Kiyoko F Aoki-Kinoshita
- Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Akiko Kinoshita-Toyoda
- Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan.,College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Hidenao Toyoda
- Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan.,College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Ryu Ueda
- Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan.,Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Shoko Nishihara
- Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan.,Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Satoshi Goto
- Department of Life Science, Rikkyo University, Toshima-ku, Tokyo, Japan.,Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| |
Collapse
|
8
|
Dynamic regulation of innate immune responses in Drosophila by Senju-mediated glycosylation. Proc Natl Acad Sci U S A 2015; 112:5809-14. [PMID: 25901322 DOI: 10.1073/pnas.1424514112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The innate immune system is the first line of defense encountered by invading pathogens. Delayed and/or inadequate innate immune responses can result in failure to combat pathogens, whereas excessive and/or inappropriate responses cause runaway inflammation. Therefore, immune responses are tightly regulated from initiation to resolution and are repressed during the steady state. It is well known that glycans presented on pathogens play important roles in pathogen recognition and the interactions between host molecules and microbes; however, the function of glycans of host organisms in innate immune responses is less well known. Here, we show that innate immune quiescence and strength of the immune response are controlled by host glycosylation involving a novel UDP-galactose transporter called Senju. In senju mutants, reduced expression of galactose-containing glycans resulted in hyperactivation of the Toll signaling pathway in the absence of immune challenges. Genetic epistasis and biochemical analyses revealed that Senju regulates the Toll signaling pathway at a step that converts Toll ligand Spatzle to its active form. Interestingly, Toll activation in immune-challenged wild type (WT) flies reduced the expression of galactose-containing glycans. Suppression of the degalactosylation by senju overexpression resulted in reduced induction of Toll-dependent expression of an antimicrobial peptide, Drosomycin, and increased susceptibility to infection with Gram-positive bacteria. These data suggest that Senju-mediated galactosylation suppresses undesirable Toll signaling activation during the steady state; however, Toll activation in response to infection leads to degalactosylation, which raises the immune response to an adequate level and contributes to the prompt elimination of pathogens.
Collapse
|
9
|
Postprandial hyperglycemia changed fucosylated pattern of the oesophageal epithelial barrier activity through the nitrogen oxide. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2015. [DOI: 10.12923/j.2084-980x/26.1/a.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The present study was designed to evaluate the role of postprandial hyperglycemia (PHG) on oesophageal epithelial barrier (OEB) integrity via evaluation expression of fucosylated glycans by PFA and LABA labeling and mechanism in formation PHG induced pre-ulcer lesions through the NO/NOS activity in OEB and therapeutic potential and mechamism of L-Tryptophan influence on OEB lesions. Fucosaylated glycans are contributed in OEB integrity. NO/NOS activity seem to play a critical role in OEB ulcerogenesis because blocking its activity aggravates experimental OEB lesions, most likely through the inflammation, vascular and perivascular changes.
Collapse
|
10
|
Ishio A, Sasamura T, Ayukawa T, Kuroda J, Ishikawa HO, Aoyama N, Matsumoto K, Gushiken T, Okajima T, Yamakawa T, Matsuno K. O-fucose monosaccharide of Drosophila Notch has a temperature-sensitive function and cooperates with O-glucose glycan in Notch transport and Notch signaling activation. J Biol Chem 2014; 290:505-19. [PMID: 25378397 DOI: 10.1074/jbc.m114.616847] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Notch (N) is a transmembrane receptor that mediates the cell-cell interactions necessary for many cell fate decisions. N has many epidermal growth factor-like repeats that are O-fucosylated by the protein O-fucosyltransferase 1 (O-Fut1), and the O-fut1 gene is essential for N signaling. However, the role of the monosaccharide O-fucose on N is unclear, because O-Fut1 also appears to have O-fucosyltransferase activity-independent functions, including as an N-specific chaperon. Such an enzymatic activity-independent function could account for the essential role of O-fut1 in N signaling. To evaluate the role of the monosaccharide O-fucose modification in N signaling, here we generated a knock-in mutant of O-fut1 (O-fut1(R245A knock-in)), which expresses a mutant protein that lacks O-fucosyltransferase activity but maintains the N-specific chaperon activity. Using O-fut1(R245A knock-in) and other gene mutations that abolish the O-fucosylation of N, we found that the monosaccharide O-fucose modification of N has a temperature-sensitive function that is essential for N signaling. The O-fucose monosaccharide and O-glucose glycan modification, catalyzed by Rumi, function redundantly in the activation of N signaling. We also showed that the redundant function of these two modifications is responsible for the presence of N at the cell surface. Our findings elucidate how different forms of glycosylation on a protein can influence the protein's functions.
Collapse
Affiliation(s)
- Akira Ishio
- From the Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-1500, the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043
| | - Takeshi Sasamura
- the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043
| | - Tomonori Ayukawa
- From the Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-1500
| | - Junpei Kuroda
- the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043
| | - Hiroyuki O Ishikawa
- Genome and Drug Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, the Graduate School of Science,Chiba University, 1-33 Yayoi, Inage, Chiba, and
| | - Naoki Aoyama
- From the Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-1500
| | - Kenjiroo Matsumoto
- the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043
| | - Takuma Gushiken
- From the Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-1500, the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043
| | - Tetsuya Okajima
- the Department of Biochemistry II, Nagoya University Graduate School of Medicine, Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Tomoko Yamakawa
- the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043
| | - Kenji Matsuno
- the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043,
| |
Collapse
|
11
|
Xu YX, Ma A, Liu L. Transforming growth factor β signaling upregulates the expression of human GDP-fucose transporter by activating transcription factor Sp1. PLoS One 2013; 8:e74424. [PMID: 24069312 PMCID: PMC3771962 DOI: 10.1371/journal.pone.0074424] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/01/2013] [Indexed: 11/18/2022] Open
Abstract
GDP-fucose transporter plays a crucial role in fucosylation of glycoproteins by providing activated fucose donor, GDP-fucose, for fucosyltransferases in the lumen of the Golgi apparatus. Fucose-containing glycans are involved in many biological processes, which are essential for growth and development. Mutations in the GDP-fucose transporter gene cause leukocyte adhesion deficiency syndrome II, a disease characterized by slow growth, mental retardation and immunodeficiency. However, no information is available regarding its transcriptional regulation. Here, by using human cells, we show that TGF-β1 specifically induces the GDP-fucose transporter expression, but not other transporters tested such as CMP-sialic acid transporter, suggesting a diversity of regulatory pathways for the expression of these transporters. The regulatory elements that are responsive to the TGF-β1 stimulation are present in the region between bp -330 and -268 in the GDP-fucose transporter promoter. We found that this region contains two identical octamer GC-rich motifs (GGGGCGTG) that were demonstrated to be essential for the transporter expression. We also show that the transcription factor Sp1 specifically binds to the GC-rich motifs in vitro and Sp1 coupled with phospho-Smad2 is associated with the promoter region covering the Sp1-binding motifs in vivo using chromatin immunoprecipitation (ChIP) assays. In addition, we further confirmed that Sp1 is essential for the GDP-fucose transporter expression stimulated by TGF-β1 using a luciferase reporter system. These results highlight the role of TGF-β signaling in regulation of the GDP-fucose transporter expression via activating Sp1. This is the first transcriptional study for any nucleotide sugar transporters that have been identified so far. Notably, TGF-β1 receptor itself is known to be modified by fucosylation. Given the essential role of GDP-fucose transporter in fucosylation, the finding that TGF-β1 stimulates the expression of this transporter, suggests a possible intracellular link between the function of nucleotide sugar transporter and the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Yu-Xin Xu
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- Center for Human Genetic Research and Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Anna Ma
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Li Liu
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
12
|
Peterson NA, Anderson TK, Wu XJ, Yoshino TP. In silico analysis of the fucosylation-associated genome of the human blood fluke Schistosoma mansoni: cloning and characterization of the enzymes involved in GDP-L-fucose synthesis and Golgi import. Parasit Vectors 2013; 6:201. [PMID: 23835114 PMCID: PMC3718619 DOI: 10.1186/1756-3305-6-201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 06/15/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Carbohydrate structures of surface-expressed and secreted/excreted glycoconjugates of the human blood fluke Schistosoma mansoni are key determinants that mediate host-parasite interactions in both snail and mammalian hosts. Fucose is a major constituent of these immunologically important glycans, and recent studies have sought to characterize fucosylation-associated enzymes, including the Golgi-localized fucosyltransferases that catalyze the transfer of L-fucose from a GDP-L-fucose donor to an oligosaccharide acceptor. Importantly, GDP-L-fucose is the only nucleotide-sugar donor used by fucosyltransferases and its availability represents a bottleneck in fucosyl-glycotope expression. METHODS A homology-based genome-wide bioinformatics approach was used to identify and molecularly characterize the enzymes that contribute to GDP-L-fucose synthesis and Golgi import in S. mansoni. Putative functions were further investigated through molecular phylogenetic and immunocytochemical analyses. RESULTS We identified homologs of GDP-D-mannose-4,6-dehydratase (GMD) and GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase (GMER), which constitute a de novo pathway for GDP-L-fucose synthesis, in addition to a GDP-L-fucose transporter (GFT) that putatively imports cytosolic GDP-L-fucose into the Golgi. In silico primary sequence analyses identified characteristic Rossman loop and short-chain dehydrogenase/reductase motifs in GMD and GMER as well as 10 transmembrane domains in GFT. All genes are alternatively spliced, generating variants of unknown function. Observed quantitative differences in steady-state transcript levels between miracidia and primary sporocysts may contribute to differential glycotope expression in early larval development. Additionally, analyses of protein expression suggest the occurrence of cytosolic GMD and GMER in the ciliated epidermal plates and tegument of miracidia and primary sporocysts, respectively, which is consistent with previous localization of highly fucosylated glycotopes. CONCLUSIONS This study is the first to identify and characterize three key genes that are putatively involved in the synthesis and Golgi import of GDP-L-fucose in S. mansoni and provides fundamental information regarding their genomic organization, genetic variation, molecular phylogenetics, and developmental expression in intramolluscan larval stages.
Collapse
Affiliation(s)
- Nathan A Peterson
- Current address: Department of Entomology, College of Agricultural and Life Sciences, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA
| | - Tavis K Anderson
- Current address: Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Ave, Ames, IA 50010, USA
| | - Xiao-Jun Wu
- Current address: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, 2115 Observatory Drive, Madison, WI 53706, USA
| | - Timothy P Yoshino
- Current address: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, 2115 Observatory Drive, Madison, WI 53706, USA
| |
Collapse
|
13
|
Therapies and therapeutic approaches in Congenital Disorders of Glycosylation. Glycoconj J 2012; 30:77-84. [DOI: 10.1007/s10719-012-9447-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 09/03/2012] [Indexed: 01/05/2023]
|
14
|
Rescue of Notch signaling in cells incapable of GDP-L-fucose synthesis by gap junction transfer of GDP-L-fucose in Drosophila. Proc Natl Acad Sci U S A 2012; 109:15318-23. [PMID: 22949680 DOI: 10.1073/pnas.1202369109] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Notch (N) is a transmembrane receptor that mediates cell-cell interactions to determine many cell-fate decisions. N contains EGF-like repeats, many of which have an O-fucose glycan modification that regulates N-ligand binding. This modification requires GDP-L-fucose as a donor of fucose. The GDP-L-fucose biosynthetic pathways are well understood, including the de novo pathway, which depends on GDP-mannose 4,6 dehydratase (Gmd) and GDP-4-keto-6-deoxy-D-mannose 3,5-epimerase/4-reductase (Gmer). However, the potential for intercellularly supplied GDP-L-fucose and the molecular basis of such transportation have not been explored in depth. To address these points, we studied the genetic effects of mutating Gmd and Gmer on fucose modifications in Drosophila. We found that these mutants functioned cell-nonautonomously, and that GDP-L-fucose was supplied intercellularly through gap junctions composed of Innexin-2. GDP-L-fucose was not supplied through body fluids from different isolated organs, indicating that the intercellular distribution of GDP-L-fucose is restricted within a given organ. Moreover, the gap junction-mediated supply of GDP-L-fucose was sufficient to support the fucosylation of N-glycans and the O-fucosylation of the N EGF-like repeats. Our results indicate that intercellular delivery is a metabolic pathway for nucleotide sugars in live animals under certain circumstances.
Collapse
|
15
|
Katoh T, Tiemeyer M. The N's and O's of Drosophila glycoprotein glycobiology. Glycoconj J 2012; 30:57-66. [PMID: 22936173 DOI: 10.1007/s10719-012-9442-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 08/13/2012] [Indexed: 11/28/2022]
Abstract
The past 25 years have seen significant advances in understanding the diversity and functions of glycoprotein glycans in Drosophila melanogaster. Genetic screens have captured mutations that reveal important biological activities modulated by glycans, including protein folding and trafficking, as well as cell signaling, tissue morphogenesis, fertility, and viability. Many of these glycan functions have parallels in vertebrate development and disease, providing increasing opportunities to dissect pathologic mechanisms using Drosophila genetics. Advances in the sensitivity of structural analytic techniques have allowed the glycan profiles of wild-type and mutant tissues to be assessed, revealing novel glycan structures that may be functionally analogous to vertebrate glycans. This review describes a selected set of recent advances in understanding the functions of N-linked and O-linked (non-glycosaminoglycan) glycoprotein glycans in Drosophila with emphasis on their relatedness to vertebrate organisms.
Collapse
Affiliation(s)
- Toshihiko Katoh
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
16
|
Geisler C, Kotu V, Sharrow M, Rendić D, Pöltl G, Tiemeyer M, Wilson IBH, Jarvis DL. The Drosophila neurally altered carbohydrate mutant has a defective Golgi GDP-fucose transporter. J Biol Chem 2012; 287:29599-609. [PMID: 22745127 DOI: 10.1074/jbc.m112.379313] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Studying genetic disorders in model organisms can provide insights into heritable human diseases. The Drosophila neurally altered carbohydrate (nac) mutant is deficient for neural expression of the HRP epitope, which consists of N-glycans with core α1,3-linked fucose residues. Here, we show that a conserved serine residue in the Golgi GDP-fucose transporter (GFR) is substituted by leucine in nac(1) flies, which abolishes GDP-fucose transport in vivo and in vitro. This loss of function is due to a biochemical defect, not to destabilization or mistargeting of the mutant GFR protein. Mass spectrometry and HPLC analysis showed that nac(1) mutants lack not only core α1,3-linked, but also core α1,6-linked fucose residues on their N-glycans. Thus, the nac(1) Gfr mutation produces a previously unrecognized general defect in N-glycan core fucosylation. Transgenic expression of a wild-type Gfr gene restored the HRP epitope in neural tissues, directly demonstrating that the Gfr mutation is solely responsible for the neural HRP epitope deficiency in the nac(1) mutant. These results validate the Drosophila nac(1) mutant as a model for the human congenital disorder of glycosylation, CDG-IIc (also known as LAD-II), which is also the result of a GFR deficiency.
Collapse
Affiliation(s)
- Christoph Geisler
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Human deficiencies of fucosylation and sialylation affecting selectin ligands. Semin Immunopathol 2012; 34:383-99. [PMID: 22461019 DOI: 10.1007/s00281-012-0304-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 02/27/2012] [Indexed: 10/28/2022]
Abstract
Selectins are carbohydrate-binding adhesion molecules that are required for leukocyte trafficking to secondary lymphoid organs and to sites of infection. They interact with fucosylated and sialylated ligands bearing sialyl-Lewis X as a minimal carbohydrate structure. With this in mind, it should be expected that individuals with deficient fucosylation or sialylation show immunodeficiency. However, as this review shows, the picture appears to be more complex and more interesting. Although there are only few patients with such glycosylation defects, they have turned out to be very instructive for our understanding of the functions of fucosylation and sialylation in immunity, development and hemostasis.
Collapse
|
18
|
Abstract
Leukocyte trafficking from the blood stream to tissues is essential for continuous surveillance of foreign antigens. This dynamic process, designated as the leukocyte adhesion cascade, involves distinct steps. In leukocyte adhesion deficiency (LAD) I the firm adhesion of leukocyte to the endothelium is defective, due to mutations in the beta 2 integrin gene. LAD II is caused by mutations in the fucose transporter specific to the Golgi apparatus, leading to the absence of Sialyl Lewis X-the fucosylated ligand for the selectins-thus affecting the rolling phase, the first phase of the cascade. In LAD III, a primary activation defect occurs in beta integrins 1, 2, and 3. Recently, the genetic basis for LAD III has been revealed to involve mutations in kindlin-3, a newly recognized essential component of integrin activation-the second phase of the adhesion cascade. Until now, no human or animal models of defect in transmigration-the fourth and last phase of the cascade-has been described.
Collapse
Affiliation(s)
- Suhair Hanna
- Meyer Children's Hospital, Rambam Campus, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | |
Collapse
|
19
|
Yamamoto-Hino M, Abe M, Shibano T, Setoguchi Y, Awano W, Ueda R, Okano H, Goto S. Cisterna-specific localization of glycosylation-related proteins to the Golgi apparatus. Cell Struct Funct 2012; 37:55-63. [PMID: 22251795 DOI: 10.1247/csf.11037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Golgi apparatus is an intracellular organelle playing central roles in post-translational modification and in the secretion of membrane and secretory proteins. These proteins are synthesized in the endoplasmic reticulum (ER) and transported to the cis-, medial-and trans-cisternae of the Golgi. While trafficking through the Golgi, proteins are sequentially modified with glycan moieties by different glycosyltransferases. Therefore, it is important to analyze the glycosylation function of the Golgi at the level of cisternae. Markers widely used for cis-, medial- and trans-cisternae/trans Golgi network (TGN) in Drosophila are GM130, 120 kDa and Syntaxin16 (Syx16); however the anti-120 kDa antibody is no longer available. In the present study, Drosophila Golgi complex-localized glycoprotein-1 (dGLG1) was identified as an antigen recognized by the anti-120 kDa antibody. A monoclonal anti-dGLG1 antibody suitable for immunohistochemistry was raised in rat. Using these markers, the localization of glycosyltransferases and nucleotide-sugar transporters (NSTs) was studied at the cisternal level. Results showed that glycosyltransferases and NSTs involved in the same sugar modification are localized to the same cisternae. Furthermore, valuable functional information was obtained on the localization of novel NSTs with as yet incompletely characterized biochemical properties.
Collapse
Affiliation(s)
- Miki Yamamoto-Hino
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Metabolism and transportation pathways of GDP-fucose that are required for the O-fucosylation of Notch. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 727:37-46. [PMID: 22399337 DOI: 10.1007/978-1-4614-0899-4_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Notch is a single-pass transmembrane receptor that mediates the local cell-cell interactions necessary for many cell-fate decisions. The extra cellular domain of Notch contains a tandem array of epidermal growth factor-like (EGF-like) repeats. Some of these EGF-like repeats are O-fucosylated by protein O-fucosyltransferase 1 (O-fut1), which is essential for Notch signaling in Drosophila and mouse. This O-fucose is further modified by Fringe, a GlcNAc transferase and other glycosyltransferases (O-fut1 in Drosophila and Pofut1 in mouse), to form an O-linked tetrasaccharide, which modulates Notch's selective binding to its ligands.
Collapse
|
21
|
Dehnert KW, Beahm BJ, Huynh TT, Baskin JM, Laughlin ST, Wang W, Wu P, Amacher SL, Bertozzi CR. Metabolic labeling of fucosylated glycans in developing zebrafish. ACS Chem Biol 2011; 6:547-52. [PMID: 21425872 PMCID: PMC3117394 DOI: 10.1021/cb100284d] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Many developmental processes depend on proper fucosylation, but this post-translational modification is difficult to monitor in vivo. Here we applied a chemical reporter strategy to visualize fucosylated glycans in developing zebrafish. Using azide-derivatized analogues of fucose, we metabolically labeled cell-surface glycans and then detected the incorporated azides via copper-free click chemistry with a difluorinated cyclooctyne probe. We found that the fucose salvage pathway enzymes are expressed during zebrafish embryogenesis but that they process the azide-modified substrates inefficiently. We were able to bypass the salvage pathway by using an azide-functionalized analogue of GDP-fucose. This nucleotide sugar was readily accepted by fucosyltransferases and provided robust cell-surface labeling of fucosylated glycans, as determined by flow cytometry and confocal microscopy analysis. We used this technique to image fucosylated glycans in the enveloping layer of zebrafish embryos during the first 5 days of development. This work provides a method to study the biosynthesis of fucosylated glycans in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Wang
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461, United States
| | - Peng Wu
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461, United States
| | | | | |
Collapse
|
22
|
Yamamoto-Hino M, Kanie Y, Awano W, Aoki-Kinoshita KF, Yano H, Nishihara S, Okano H, Ueda R, Kanie O, Goto S. Identification of genes required for neural-specific glycosylation using functional genomics. PLoS Genet 2010; 6:e1001254. [PMID: 21203496 PMCID: PMC3009669 DOI: 10.1371/journal.pgen.1001254] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 11/19/2010] [Indexed: 11/18/2022] Open
Abstract
Glycosylation plays crucial regulatory roles in various biological processes such as development, immunity, and neural functions. For example, α1,3-fucosylation, the addition of a fucose moiety abundant in Drosophila neural cells, is essential for neural development, function, and behavior. However, it remains largely unknown how neural-specific α1,3-fucosylation is regulated. In the present study, we searched for genes involved in the glycosylation of a neural-specific protein using a Drosophila RNAi library. We obtained 109 genes affecting glycosylation that clustered into nine functional groups. Among them, members of the RNA regulation group were enriched by a secondary screen that identified genes specifically regulating α1,3-fucosylation. Further analyses revealed that an RNA-binding protein, second mitotic wave missing (Swm), upregulates expression of the neural-specific glycosyltransferase FucTA and facilitates its mRNA export from the nucleus. This first large-scale genetic screen for glycosylation-related genes has revealed novel regulation of fucTA mRNA in neural cells.
Collapse
Affiliation(s)
- Miki Yamamoto-Hino
- Research Group of Glycobiology and Glycotechnology, Mitsubishi-kagaku Institute of Life Sciences, Tokyo, Japan
- Department of Physiology, Keio University, Tokyo, Japan
| | - Yoshimi Kanie
- Research Group of Glycobiology and Glycotechnology, Mitsubishi-kagaku Institute of Life Sciences, Tokyo, Japan
| | - Wakae Awano
- Mutant Flies Laboratory, Mitsubishi-kagaku Institute of Life Sciences, Tokyo, Japan
| | | | - Hiroyuki Yano
- Research Group of Glycobiology and Glycotechnology, Mitsubishi-kagaku Institute of Life Sciences, Tokyo, Japan
| | - Shoko Nishihara
- Department of Bioinformatics, Faculty of Engineering, Soka University, Tokyo, Japan
| | | | - Ryu Ueda
- Genetic Strains Research Center, National Institute of Genetics, Shizuoka, Japan
| | - Osamu Kanie
- Research Group of Glycobiology and Glycotechnology, Mitsubishi-kagaku Institute of Life Sciences, Tokyo, Japan
| | - Satoshi Goto
- Research Group of Glycobiology and Glycotechnology, Mitsubishi-kagaku Institute of Life Sciences, Tokyo, Japan
- Department of Physiology, Keio University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
23
|
Song Y, Willer JR, Scherer PC, Panzer JA, Kugath A, Skordalakes E, Gregg RG, Willer GB, Balice-Gordon RJ. Neural and synaptic defects in slytherin, a zebrafish model for human congenital disorders of glycosylation. PLoS One 2010; 5:e13743. [PMID: 21060795 PMCID: PMC2966427 DOI: 10.1371/journal.pone.0013743] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 08/22/2010] [Indexed: 12/28/2022] Open
Abstract
Congenital disorder of glycosylation type IIc (CDG IIc) is characterized by mental retardation, slowed growth and severe immunodeficiency, attributed to the lack of fucosylated glycoproteins. While impaired Notch signaling has been implicated in some aspects of CDG IIc pathogenesis, the molecular and cellular mechanisms remain poorly understood. We have identified a zebrafish mutant slytherin (srn), which harbors a missense point mutation in GDP-mannose 4,6 dehydratase (GMDS), the rate-limiting enzyme in protein fucosylation, including that of Notch. Here we report that some of the mechanisms underlying the neural phenotypes in srn and in CGD IIc are Notch-dependent, while others are Notch-independent. We show, for the first time in a vertebrate in vivo, that defects in protein fucosylation leads to defects in neuronal differentiation, maintenance, axon branching, and synapse formation. Srn is thus a useful and important vertebrate model for human CDG IIc that has provided new insights into the neural phenotypes that are hallmarks of the human disorder and has also highlighted the role of protein fucosylation in neural development.
Collapse
Affiliation(s)
- Yuanquan Song
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jason R. Willer
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Paul C. Scherer
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jessica A. Panzer
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Amy Kugath
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | | | - Ronald G. Gregg
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Gregory B. Willer
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Rita J. Balice-Gordon
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
24
|
Lu L, Hou X, Shi S, Körner C, Stanley P. Slc35c2 promotes Notch1 fucosylation and is required for optimal Notch signaling in mammalian cells. J Biol Chem 2010; 285:36245-54. [PMID: 20837470 DOI: 10.1074/jbc.m110.126003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mammalian Notch receptors require modification by fucose on epidermal growth factor-like (EGF) repeats of their extracellular domain to respond optimally to signal induction by canonical Notch ligands. Inactivation of the Golgi GDP-fucose transporter Slc35c1 in mouse or human does not cause marked defects in Notch signaling during development, and shows milder fucosylation defects than those observed in mice unable to synthesize GDP-fucose, indicating the existence of another mechanism for GDP-fucose transport into the secretory pathway. We show here that fibroblasts from mice or humans lacking Slc35c1 exhibit robust Notch signaling in co-culture signaling assays. A potential candidate for a second GDP-fucose transporter is the related gene Slc35c2. Overexpression of Slc35c2 reduces expression of the fucosylated epitopes Lewis X and sialylated Lewis X in CHO cells, indicating competition with Slc35c1. The fucosylation of a Notch1 EGF repeat fragment that occurs in the endoplasmic reticulum was increased in CHO transfectants overexpressing Slc35c2. In CHO cells with low levels of Slc35c2, both Delta1- and Jagged1-induced Notch signaling were reduced, and the fucosylation of a Notch1 fragment was also decreased. Immunofluorescence microscopy of rat intestinal epithelial cells and HeLa cells, and analysis of rat liver membrane fractions showed that Slc35c2 is primarily colocalized with markers of the cis-Golgi network and endoplasmic reticulum-Golgi intermediate compartment (ERGIC). The combined results suggest that Slc35c2 is either a GDP-fucose transporter that competes with Slc35c1 for GDP-fucose, or a factor that otherwise enhances the fucosylation of Notch and is required for optimal Notch signaling in mammalian cells.
Collapse
Affiliation(s)
- Linchao Lu
- Department of Cell Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
25
|
Rendić D, Sharrow M, Katoh T, Overcarsh B, Nguyen K, Kapurch J, Aoki K, Wilson IBH, Tiemeyer M. Neural-specific α3-fucosylation of N-linked glycans in the Drosophila embryo requires fucosyltransferase A and influences developmental signaling associated with O-glycosylation. Glycobiology 2010; 20:1353-65. [PMID: 20688784 DOI: 10.1093/glycob/cwq119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Addition of fucose (Fuc) to glycoprotein N-linked glycans or in O-linkage directly to Ser/Thr residues modulates specific cell-cell interactions and cell signaling events. Vertebrates and invertebrates add Fuc in α6-linkage to the reducing terminal N-acetylglucosamine residue of N-glycans. In Drosophila and other invertebrates, Fuc can also be added in α3-linkage to the same residue. These difucosylated N-glycans are recognized by anti-horseradish peroxidase (anti-HRP) antisera, providing a well-established marker for insect neural tissue. To understand the mechanisms and consequences of tissue-specific glycan expression, we identified a single α3-fucosyltransferase (FucTA) that produces the anti-HRP epitope in Drosophila embryos. FucTA transcripts are temporally and spatially restricted to cells that express the anti-HRP epitope and are missing in a mutant that lacks neural α3-fucosylation. Transgenic expression of FucTA, but not of any other candidate α3-fucosyltransferase, rescues the anti-HRP epitope in the embryonic nervous system of this mutant. Mass spectrometric characterization of the N-glycans of Drosophila embryos overexpressing FucTA confirms that this enzyme is indeed responsible for the biosynthesis of difucosylated glycans in vivo. Whereas ectopic expression of FucTA in the larval wing disc produces mild wing notching, the heterochronic, pan-neural expression of FucTA in early differentiating neurons generates neurogenic and cell migration phenotypes; this latter effect is associated with reduced GDP-Fuc levels in the embryo and indicates that the diversion of fucosylation resources towards fucosylation of N-glycans has an impact on developmental signaling associated with O-fucosylation.
Collapse
Affiliation(s)
- Dubravko Rendić
- Department für Chemie, Universität für Bodenkultur, A-1190 Wien, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jafar-Nejad H, Leonardi J, Fernandez-Valdivia R. Role of glycans and glycosyltransferases in the regulation of Notch signaling. Glycobiology 2010; 20:931-49. [PMID: 20368670 DOI: 10.1093/glycob/cwq053] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The evolutionarily conserved Notch signaling pathway plays broad and important roles during embryonic development and in adult tissue homeostasis. Unlike most other pathways used during animal development, Notch signaling does not rely on second messengers and intracellular signaling cascades. Instead, pathway activation results in the cleavage of the Notch intracellular domain and its translocation into the nucleus, where it functions as a transcriptional co-activator of the Notch target genes. To ensure tight spatial and temporal regulation of a pathway with such an unusually direct signaling transduction, animal cells have devised a variety of specialized modulatory mechanisms. One such mechanism takes advantage of decorating the Notch extracellular domain with rare types of O-linked glycans. In this review, we will discuss the genetic and biochemical data supporting the notion that carbohydrate modification is essential for Notch signaling and attempt to provide a brief historical overview of how we have learned what we know about the glycobiology of Notch. We will also summarize what is known about the contribution of specific nucleotide-sugar transporters to Notch biology and the roles-enzymatic and non-enzymatic-played by specific glycosyltransferases in the regulation of this pathway. Mutations in the Notch pathway components cause a variety of human diseases, and manipulation of Notch signaling is emerging as a powerful tool in regenerative medicine. Therefore, studying how sugar modification modulates Notch signaling provides a framework for better understanding the role of glycosylation in animal development and might offer new tools to manipulate Notch signaling for therapeutic purposes.
Collapse
|
27
|
Freeze HH, Sharma V. Metabolic manipulation of glycosylation disorders in humans and animal models. Semin Cell Dev Biol 2010; 21:655-62. [PMID: 20363348 DOI: 10.1016/j.semcdb.2010.03.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/24/2010] [Accepted: 03/26/2010] [Indexed: 12/11/2022]
Abstract
In the last decade, over 40 inherited human glycosylation disorders were identified. Most patients have hypomorphic, rather than null alleles. The phenotypic spectrum is broad and most of the disorders affect embryonic and early post-natal development; a few appear in adult life. Some deficiencies can be treated with simple dietary sugar (monosaccharide) supplements. Here we focus on four glycosylation disorders that have been treated with supplements in patients or in model systems, primarily the mouse. Surprisingly, small differences in the amount of exogenous sugar have a major impact on the diseases in specific cells or organs while others are unaffected. The underlying mechanisms are mostly unknown, but changes in the contributions of the de novo, salvage and dietary pathways may contribute to the beneficial outcome. Clearly, the metabolic chart is not flat; all arrows are not equally robust at all points of time and space. This metabolic perspective may help explain some of these observations and guide the development of other vertebrate models of glycosylation disorders that can respond to dietary manipulation.
Collapse
Affiliation(s)
- Hudson H Freeze
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
28
|
Waterhouse CCM, Johnson S, Phillipson M, Zbytnuik L, Petri B, Kelly M, Lowe JB, Kubes P. Secretory cell hyperplasia and defects in Notch activity in a mouse model of leukocyte adhesion deficiency type II. Gastroenterology 2010; 138:1079-90.e1-5. [PMID: 19900444 DOI: 10.1053/j.gastro.2009.10.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 10/23/2009] [Accepted: 10/28/2009] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Leukocyte adhesion deficiency II (LAD II) is a rare condition caused by defective protein fucosylation, causing decreased leukocyte rolling, psychomotor retardation, and poor growth. The ligand-binding activity of Notch, a gastrointestinal signaling protein, depends on O-fucosylation. We investigated Notch signaling and intestinal epithelial architecture in a mouse model of LAD II. METHODS Mice lacking 3,5-epimerase/4-reductase (FX) or FX(-/-) bone marrow chimeras (with either wild-type or FX(-/-) bone marrow) were maintained on a fucose-free diet. Intestinal secretory epithelial cells were quantified by histology and immunohistochemistry. Reverse transcription-polymerase chain reaction and immunoblot analyses were used to detect Notch-regulated genes in isolated crypt epithelium. Intestinal leukocyte-endothelial interaction was quantified by intravital microscopy. The intestinal epithelium of 2-week-old FX(-/-) mice was transfected with an adenoviral vector expressing a constitutively active form of Notch. RESULTS FX(-/-) mice rapidly exhibited secretory epithelial cell hyperplasia, reduced cell proliferation, and altered epithelial gene expression patterns consistent with reduced Notch signaling. These effects were reversed when mice were given dietary fucose or by adenoviral transfection of the intestinal epithelium with the Notch intracellular domain. CONCLUSIONS In a mouse model of LAD II, secretory cell hyperplasia occurs in the small intestine and colon; these effects depend on Notch signaling. Defects in Notch signaling might therefore be involved in the pathogenesis of this rare pediatric condition.
Collapse
Affiliation(s)
- Christopher C M Waterhouse
- Department of Paediatrics, Division of Paediatric Gastroenterology, Gastrointestinal Research Group, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
The role of nucleotide sugar transporters in development of eukaryotes. Semin Cell Dev Biol 2010; 21:600-8. [PMID: 20144721 DOI: 10.1016/j.semcdb.2010.02.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/25/2010] [Accepted: 02/01/2010] [Indexed: 01/23/2023]
Abstract
The Golgi apparatus membrane of all eukaryotes has nucleotide sugar transporters which play essential roles in the glycosylation of glycoproteins, proteoglycans and glycolipids. Mutations of these transporters have broad developmental phenotypes across many species including diseases in humans and cattle.
Collapse
|
30
|
Abstract
Notch and the DSL Notch ligands Delta and Serrate/Jagged are glycoproteins with a single transmembrane domain. The extracellular domain (ECD) of both Notch receptors and Notch ligands contains numerous epidermal growth factor (EGF)-like repeats which are post-translationally modified by a variety of glycans. Inactivation of a subset of genes that encode glycosyltransferases which initiate and elongate these glycans inhibits Notch signaling. In the formation of developmental boundaries in Drosophila and mammals, in mouse T-cell and marginal zone B-cell development, and in co-culture Notch signaling assays, the regulation of Notch signaling by glycans is to date a cell-autonomous effect of the Notch-expressing cell. The regulation of Notch signaling by glycans represents a new paradigm of signal transduction. O-fucose glycans modulate the strength of Notch binding to DSL Notch ligands, while O-glucose glycans facilitate juxta-membrane cleavage of Notch, generating the substrate for intramembrane cleavage and Notch activation. Identifying precisely how the addition of particular sugars at specific locations on Notch modifies Notch signaling is a challenge for the future.
Collapse
Affiliation(s)
- Pamela Stanley
- Department of Cell Biology, Albert Einstein College Medicine, New York, USA
| | | |
Collapse
|
31
|
Nishihara S. Glycosyltransferases and Transporters that Contribute to Proteoglycan Synthesis in Drosophila. Methods Enzymol 2010; 480:323-51. [DOI: 10.1016/s0076-6879(10)80015-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Ishikawa HO, Ayukawa T, Nakayama M, Higashi S, Kamiyama S, Nishihara S, Aoki K, Ishida N, Sanai Y, Matsuno K. Two pathways for importing GDP-fucose into the endoplasmic reticulum lumen function redundantly in the O-fucosylation of Notch in Drosophila. J Biol Chem 2009; 285:4122-4129. [PMID: 19948734 DOI: 10.1074/jbc.m109.016964] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Notch is a transmembrane receptor that shares homology with proteins containing epidermal growth factor-like repeats and mediates the cell-cell interactions necessary for many cell fate decisions. In Drosophila, O-fucosyltransferase 1 catalyzes the O-fucosylation of these epidermal growth factor-like repeats. This O-fucose elongates, resulting in an O-linked tetrasaccharide that regulates the signaling activities of Notch. Fucosyltransferases utilize GDP-fucose, which is synthesized in the cytosol, but fucosylation occurs in the lumen of the endoplasmic reticulum (ER) and Golgi. Therefore, GDP-fucose uptake into the ER and Golgi is essential for fucosylation. However, although GDP-fucose biosynthesis is well understood, the mechanisms and intracellular routes of GDP-fucose transportation remain unclear. Our previous study on the Drosophila Golgi GDP-fucose transporter (Gfr), which specifically localizes to the Golgi, suggested that another GDP-fucose transporter(s) exists in Drosophila. Here, we identified Efr (ER GDP-fucose transporter), a GDP-fucose transporter that localizes specifically to the ER. Efr is a multifunctional nucleotide sugar transporter involved in the biosynthesis of heparan sulfate-glycosaminoglycan chains and the O-fucosylation of Notch. Comparison of the fucosylation defects in the N-glycans in Gfr and Efr mutants revealed that Gfr and Efr made distinct contributions to this modification; Gfr but not Efr was crucial for the fucosylation of N-glycans. We also found that Gfr and Efr function redundantly in the O-fucosylation of Notch, although they had different localizations and nucleotide sugar transportation specificities. These results indicate that two pathways for the nucleotide sugar supply, involving two nucleotide sugar transporters with distinct characteristics and distributions, contribute to the O-fucosylation of Notch.
Collapse
Affiliation(s)
- Hiroyuki O Ishikawa
- From the Genome and Drug Research Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | - Tomonori Ayukawa
- the Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | - Minoru Nakayama
- From the Genome and Drug Research Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | - Shunsuke Higashi
- the Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | - Shin Kamiyama
- the Department of Bioinformatics, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, and
| | - Shoko Nishihara
- the Department of Bioinformatics, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, and
| | - Kazuhisa Aoki
- the Department of Biochemical Cell Research, Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | - Nobuhiro Ishida
- the Department of Biochemical Cell Research, Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | - Yutaka Sanai
- the Department of Biochemical Cell Research, Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | - Kenji Matsuno
- From the Genome and Drug Research Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510; the Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510.
| |
Collapse
|
33
|
Etzioni A. Genetic etiologies of leukocyte adhesion defects. Curr Opin Immunol 2009; 21:481-6. [PMID: 19647987 DOI: 10.1016/j.coi.2009.07.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 07/06/2009] [Accepted: 07/06/2009] [Indexed: 12/29/2022]
Abstract
Up to now three distinct syndromes affecting several steps in the leukocyte adhesion cascade have been described. In LAD I the firm adhesion of leukocyte to the endothelium is defective, because of mutations in the gene encoding the beta(2)-integrin. Recent works both in human and animal models shed light on various mutations and their physiological importance. Furthermore, the beneficial effect of gene therapy is also becoming clear. LAD II which involved the first phase of the cascade, the rolling phase, is caused by mutations in the specific fucose transporter to the Golgi apparatus. Gene targeted mice were able to demonstrate indeed the role of this transporter in the adhesion process and long-term follow-up of patients showed that while in childhood immunodeficiency is the prominent feature, later on in life the metabolic consequences govern the clinical pictures. LAD III is the last syndrome to be described and a primary activation defect in all three beta-integrins 1, 2, and 3 is detected. Just recently mutations in Kindlin 3, a newly recognized component, which binds the cytoplasmic tail of integrin, and is important in integrin activation, the second phase of the adhesion cascade, were found.
Collapse
Affiliation(s)
- Amos Etzioni
- Meyer's Children Hospital, Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
34
|
Ohata S, Kinoshita S, Aoki R, Tanaka H, Wada H, Tsuruoka-Kinoshita S, Tsuboi T, Watabe S, Okamoto H. Neuroepithelial cells require fucosylated glycans to guide the migration of vagus motor neuron progenitors in the developing zebrafish hindbrain. Development 2009; 136:1653-63. [PMID: 19369395 DOI: 10.1242/dev.033290] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The molecular mechanisms by which neurons migrate and accumulate to form the neural layers and nuclei remain unclear. The formation of vagus motor nuclei in zebrafish embryos is an ideal model system in which to address this issue because of the transparency of the embryos and the availability of established genetic and molecular biological techniques. To determine the genes required for the formation of the vagus motor nuclei, we performed N-ethyl-N-nitrosourea-based mutant screening using a zebrafish line that expresses green fluorescent protein in the motor neurons. In wild-type embryos, the vagus motor neuron progenitors are born in the ventral ventricular zone, then migrate tangentially in the dorsolateral direction, forming the nuclei. However, in towhead (twd(rw685)) mutant embryos, the vagus motor neuron progenitors stray medially away from the normal migratory pathway and fail to stop in the right location. The twd(rw685) mutant has a defect in the GDP-mannose 4,6 dehydratase (gmds) gene, which encodes a key enzyme in the fucosylation pathway. Levels of fucosylated glycans were markedly and specifically reduced in twd(rw685) mutant embryos. Cell transplantation analysis revealed that GMDS is not essential in the vagus motor neuron progenitors for correct formation of the vagus motor nuclei, but is required in the neuroepithelial cells that surround the progenitors. Together, these findings suggest that fucosylated glycans expressed in neuroepithelial cells are required to guide the migration of vagus motor neuron progenitors.
Collapse
Affiliation(s)
- Shinya Ohata
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Saitama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
ten Hagen KG, Zhang L, Tian E, Zhang Y. Glycobiology on the fly: developmental and mechanistic insights from Drosophila. Glycobiology 2008; 19:102-11. [PMID: 18824561 DOI: 10.1093/glycob/cwn096] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Drosophila melanogaster offers many unique advantages for deciphering the complexities of glycan biosynthesis and function. The completion of the Drosophila genome sequencing project as well as the comprehensive catalogue of existing mutations and phenotypes have lead to a prolific database where many of the genes involved in glycan synthesis, assembly, modification, and recognition have been identified and characterized. Recent biochemical and molecular studies have elucidated the structure of the glycans present in Drosophila. Powerful genetic approaches have uncovered a number of critical biological roles for glycans during development that impact on our understanding of their function during mammalian development. Here, we summarize key recent findings and provide evidence for the usefulness of this model organism in unraveling the complexities of glycobiology across many species.
Collapse
Affiliation(s)
- Kelly G ten Hagen
- Developmental Glycobiology Unit, NIDCR, National Institutes of Health, Building 30, 30 Convent Drive, MSC 4370, Bethesda, MD 20892-4370, USA.
| | | | | | | |
Collapse
|
36
|
Stahl M, Uemura K, Ge C, Shi S, Tashima Y, Stanley P. Roles of Pofut1 and O-fucose in mammalian Notch signaling. J Biol Chem 2008; 283:13638-51. [PMID: 18347015 PMCID: PMC2376238 DOI: 10.1074/jbc.m802027200] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2007] [Revised: 03/13/2008] [Indexed: 01/08/2023] Open
Abstract
Mammalian Notch receptors contain 29-36 epidermal growth factor (EGF)-like repeats that may be modified by protein O-fucosyltransferase 1 (Pofut1), an essential component of the canonical Notch signaling pathway. The Drosophila orthologue Ofut1 is proposed to function as both a chaperone required for stable cell surface expression of Notch and a protein O-fucosyltransferase. Here we investigate these dual roles of Pofut1 in relation to endogenous Notch receptors of Chinese hamster ovary and murine embryonic stem (ES) cells. We show that fucosylation-deficient Lec13 Chinese hamster ovary cells have wild type levels of Pofut1 and cell surface Notch receptors. Nevertheless, they have reduced binding of Notch ligands and low levels of Delta1- and Jagged1-induced Notch signaling. Exogenous fucose but not galactose rescues both ligand binding and Notch signaling. Murine ES cells lacking Pofut1 also have wild type levels of cell surface Notch receptors. However, Pofut1-/- ES cells do not bind Notch ligands or exhibit Notch signaling. Although overexpression of fucosyltransferase-defective Pofut1 R245A in Pofut1-/- cells partially rescues ligand binding and Notch signaling, this effect is not specific. The same rescue is achieved by an unrelated, inactive, endoplasmic reticulum glucosidase. Therefore, mammalian Notch receptors require Pofut1 for the generation of optimally functional Notch receptors, but, in contrast to Drosophila, Pofut1 is not required for stable cell surface expression of Notch. Importantly, we also show that, under certain circumstances, mammalian Notch receptors are capable of signaling in the absence of Pofut1 and O-fucose.
Collapse
Affiliation(s)
- Mark Stahl
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
37
|
Coman D, Irving M, Kannu P, Jaeken J, Savarirayan R. The skeletal manifestations of the congenital disorders of glycosylation. Clin Genet 2008; 73:507-15. [PMID: 18462449 DOI: 10.1111/j.1399-0004.2008.01015.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The congenital disorders of glycosylation (CDG) are a rapidly expanding disease group with protean presentations. Specific end-organ involvement leads to significant morbidity and mortality, and the skeletal manifestations are often not appreciated, apart from the common association of osteopaenia with CDG-Ia. We performed a literature review of all documented skeletal manifestations in reported CDG patients, revealing a diverse range of skeletal phenotypes. We discuss the possible underlying mechanisms of these skeletal manifestations observed in CDG that are important and frequently under-recognized.
Collapse
Affiliation(s)
- D Coman
- Genetic Health Services Victoria, Melbourne, Australia
| | | | | | | | | |
Collapse
|
38
|
Abstract
Notch signaling regulates cell fate during the development of many tissues. A new Drosophila mutant, rumi, is defective in Notch signaling because it cannot add glucose to serine in epidermal growth factor repeats of Notch extracellular domain. This is the first biological role for glucose covalently attached to a cell surface signaling receptor.
Collapse
Affiliation(s)
- Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York 10461
| |
Collapse
|
39
|
Rendić D, Wilson IBH, Lubec G, Gutternigg M, Altmann F, Léonard R. Adaptation of the "in-gel release method" to N-glycome analysis of low-milligram amounts of material. Electrophoresis 2007; 28:4484-92. [PMID: 18041037 DOI: 10.1002/elps.200700098] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Protein N-glycosylation is a post-translational modification which plays numerous crucial physiological roles. The N-glycan pattern varies depending on the species organs, tissues and even cell types and their respective physiological states. Obtaining enough starting material from a particular cell type or tissue for N-glycan purification by conventional methods can, in certain cases, be very difficult. Previously, a sensitive technique, the "in-gel release method" that allows the determination of N-glycans attached to a protein isolated by SDS-PAGE, has been developed in this and other laboratories. Here, we describe the adaptation of this method to obtain information on the N-glycome from minute amounts of tissue. The starting material, ranging from less than a milligram to a few milligrams of fresh tissue, is directly ground in Laemmli sample buffer and subject briefly to discontinuous Tris-glycine-SDS-PAGE. The Coomassie-stained band containing the majority of the proteins is subject to the "in-gel release method". The developed technique was used to analyze N-glycan patterns of different samples from Caenorhabditis elegans, Drosophila melanogaster, Spodoptera frugiperda, Trichoplusia ni, Nicotiana benthamiana, Arabidopsis thaliana, and Mus musculus. Furthermore, the technique was used to determine the effects of transient small-scale RNAi-mediated knock-down of a glycosylation-related gene in Drosophila Schneider 2 cell line.
Collapse
Affiliation(s)
- Dubravko Rendić
- Department für Chemie der Universität für Bodenkultur, Wien, Austria.
| | | | | | | | | | | |
Collapse
|
40
|
Stanley P. Regulation of Notch signaling by glycosylation. Curr Opin Struct Biol 2007; 17:530-5. [PMID: 17964136 DOI: 10.1016/j.sbi.2007.09.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/17/2007] [Accepted: 09/18/2007] [Indexed: 12/21/2022]
Abstract
Notch receptors are approximately 300 kDa cell surface glycoproteins whose activation by Notch ligands regulates cell fate decisions in the metazoa. The extracellular domain of Notch receptors has many epidermal growth factor like repeats that are glycosylated with O-fucose and O-glucose glycans as well as N-glycans. Disruption of O-fucose glycan synthesis leads to severe Notch signaling defects in Drosophila and mammals. Removal or addition of O-fucose glycan consensus sites on Notch receptors also leads to Notch signaling defects. Ligand binding and ligand-induced Notch signaling assays have provided insights into how changes in the O-fucose glycans of Notch receptors alter Notch signaling.
Collapse
Affiliation(s)
- Pamela Stanley
- Department Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., New York, NY 10461, United States.
| |
Collapse
|
41
|
Affiliation(s)
- Thomas C Hart
- Clinical Research Core, Section on Dental and Craniofacial Genetics, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | | |
Collapse
|
42
|
Abstract
Fucosylated carbohydrate structures are involved in a variety of biological and pathological processes in eukaryotic organisms including tissue development, angiogenesis, fertilization, cell adhesion, inflammation, and tumor metastasis. In contrast, fucosylation appears less common in prokaryotic organisms and has been suggested to be involved in molecular mimicry, adhesion, colonization, and modulating the host immune response. Fucosyltransferases (FucTs), present in both eukaryotic and prokaryotic organisms, are the enzymes responsible for the catalysis of fucose transfer from donor guanosine-diphosphate fucose to various acceptor molecules including oligosaccharides, glycoproteins, and glycolipids. To date, several subfamilies of mammalian FucTs have been well characterized; these enzymes are therefore delineated and used as models. Non-mammalian FucTs that possess different domain construction or display distinctive acceptor substrate specificity are highlighted. It is noteworthy that the glycoconjugates from plants and schistosomes contain some unusual fucose linkages, suggesting the presence of novel FucT subfamilies as yet to be characterized. Despite the very low sequence homology, striking functional similarity is exhibited between mammalian and Helicobacter pylori alpha1,3/4 FucTs, implying that these enzymes likely share a conserved mechanistic and structural basis for fucose transfer; such conserved functional features might also exist when comparing other FucT subfamilies from different origins. Fucosyltranferases are promising tools used in synthesis of fucosylated oligosaccharides and glycoconjugates, which show great potential in the treatment of infectious and inflammatory diseases and tumor metastasis.
Collapse
Affiliation(s)
- Bing Ma
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | |
Collapse
|
43
|
Abstract
Leukocyte adhesion deficiency II (LAD II) belongs to a group of human congenital diseases in which the interactions of leukocytes with the vascular endothelium are strongly impaired. LAD II is based on a defect in the synthesis of fucosylated glycostructures. This leads to an immunodeficiency owing to the absence of functional selectin ligands and to strong psychomotor defects, as a result of as-yet unknown reasons. In this review we focused on the current controversies, and open questions that have arisen from recent studies on the genetic defect, therapy and the basis of psychomotor defects in LAD II.
Collapse
Affiliation(s)
- Sviatlana Yakubenia
- Max Planck Institute for Molecular Biomedicine and Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany
| | | |
Collapse
|
44
|
Zakataeva NP, Kutukova EA, Gronskiy SV, Troshin PV, Livshits VA, Aleshin VV. Export of metabolites by the proteins of the DMT and RhtB families and its possible role in intercellular communication. Microbiology (Reading) 2006. [DOI: 10.1134/s0026261706040126] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
45
|
Luo Y, Koles K, Vorndam W, Haltiwanger RS, Panin VM. Protein O-fucosyltransferase 2 adds O-fucose to thrombospondin type 1 repeats. J Biol Chem 2006; 281:9393-9. [PMID: 16464857 DOI: 10.1074/jbc.m511975200] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
O-Fucose is an unusual form of glycosylation found on epidermal growth factor-like (EGF) repeats and thrombospondin type 1 repeats (TSRs) in many secreted and transmembrane proteins. Recently O-fucose on EGF repeats was shown to play important roles in Notch signaling. In contrast, physiological roles for O-fucose on TSRs are unknown. In the accompanying paper (Luo, Y., Nita-Lazar, A., and Haltiwanger, R. S. (2006) J. Biol. Chem. 281, 9385-9392), we demonstrated that an enzyme distinct from protein O-fucosyltransferase 1 adds O-fucose to TSRs. A known homologue of O-fucosyltransferase 1 is putative protein O-fucosyltransferase 2. The cDNA sequence encoding O-fucosyltransferase 2 was originally identified during a data base search for fucosyltransferases in Drosophila. Like O-fucosyltransferase 1, O-fucosyltransferase 2 is conserved from Caenorhabditis elegans to humans. Although O-fucosyltransferase 2 was assumed to be another protein O-fucosyltransferase, no biochemical characterization existed supporting this contention. Here we show that RNAi-mediated reduction of the O-fucosyltransferase 2 message significantly decreased TSR-specific O-fucosyltransferase activity in Drosophila S2 cells. We also found that O-fucosyltransferase 2 is predominantly localized in the endoplasmic reticulum compartment of these cells. Furthermore, we expressed recombinant Drosophila O-fucosyltransferase 2 and showed that it O-fucosylates TSRs but not EGF repeats in vitro. These results demonstrate that O-fucosyltransferase 2 is in fact a TSR-specific O-fucosyltransferase.
Collapse
Affiliation(s)
- Yi Luo
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, Stony Brook University, Stony Brook, New York 11794-5215, USA
| | | | | | | | | |
Collapse
|