1
|
Brumm S, Gavrin A, Macleod M, Chesneau G, Usländer A, Schornack S. Functional divergence of plant SCAR/WAVE proteins is determined by intrinsically disordered regions. SCIENCE ADVANCES 2025; 11:eadt6107. [PMID: 40397725 DOI: 10.1126/sciadv.adt6107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 04/18/2025] [Indexed: 05/23/2025]
Abstract
Dynamic actin cytoskeleton reorganization enables plant developmental processes requiring polarized transport such as root hair and leaf trichome formation. The SCAR/WAVE complex plays a crucial role in regulating these dynamics through ARP2/3-mediated actin branching. SCAR/WAVE genes occur as small families across a wide range of plant species, but whether and how they fulfill different functions remains unclear. We use a systematic chimera approach to define the differential functionality of two closely related Medicago truncatula SCAR proteins in plant development. We show that SCAR/WAVE contribution to M. truncatula root hair or Arabidopsis thaliana trichome formation is dependent on two central intrinsically disordered regions (IDRs). Differential functionalities of M. truncatula SCAR proteins were furthermore associated with the presence/absence of a 42-amino acid sequence within the IDR that affected protein stability. Through uncovering a molecular basis for functional differences, we advance our understanding of plant SCAR/WAVE complexes.
Collapse
Affiliation(s)
- Sabine Brumm
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Aleksandr Gavrin
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Matthew Macleod
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Guillaume Chesneau
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Annika Usländer
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Sebastian Schornack
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| |
Collapse
|
2
|
Xiao TT, Müller S, Shen D, Liu J, Adema K, van Seters A, Franssen H, Bisseling T, Kulikova O, Kohlen W. Nodule organogenesis in Medicago truncatula requires local stage-specific auxin biosynthesis and transport. PLANT PHYSIOLOGY 2025; 197:kiaf133. [PMID: 40181792 PMCID: PMC12002018 DOI: 10.1093/plphys/kiaf133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 04/05/2025]
Abstract
The importance of auxin in plant organ development, including root nodule formation, is well known. The spatiotemporal distribution pattern of auxin during nodule development has been illustrated using auxin reporter constructs. However, our understanding of how this pattern is established and maintained remains elusive. Here, we studied how the auxin gradient is associated with the spatiotemporal expression patterns of known auxin biosynthesis and transport genes at different stages of nodule development in Medicago (Medicago truncatula). In addition, we examined the Medicago PIN-FORMED10 (MtPIN10) expression pattern and polar positioning on the cell membrane during nodule primordium development to investigate auxin flux. RNA interference and the application of auxin biosynthesis inhibitors were used to demonstrate the importance of auxin biosynthesis and transport at the initial stages of nodulation. Our results show that upon rhizobium inoculation before the first cell divisions, a specific subset of Medicago YUCCA (MtYUC) and MtPIN genes, as well as Medicago LIKE AUXIN RESISTANT2 (MtLAX2), are expressed in the pericycle and contribute to the creation of an auxin maximum. Overall, we demonstrate that the dynamic spatiotemporal expression of both MtYUC and MtPIN genes results in specific auxin outputs during the different stages of nodule primordia and nodule meristem formation.
Collapse
Affiliation(s)
- Ting Ting Xiao
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Sophia Müller
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Defeng Shen
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Jieyu Liu
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Kelvin Adema
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Amber van Seters
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Henk Franssen
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Ton Bisseling
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Olga Kulikova
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Wouter Kohlen
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| |
Collapse
|
3
|
Zhang G, Ott T. Cellular morphodynamics and signaling around the transcellular passage cleft during rhizobial infections of legume roots. Curr Opin Cell Biol 2024; 91:102436. [PMID: 39366145 DOI: 10.1016/j.ceb.2024.102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 10/06/2024]
Abstract
Legume roots allow intracellular infections of rhizobia to establish the mutualistic root nodule symbiosis. During this colonization event, specialized and membrane-defined infection threads provide the host-controlled path for the bacteria through the multilayered root tissue to reach a newly developing organ, the root nodule. On this way, bacteria have to propagate transcellularly and thus overcome cell wall barriers. This process not only requires continuous molecular surveillance of the invading microbe but also structural adaptations of the extracellular matrix components in a spatially confined manner leading to the formation of a novel compartment that we term the "transcellular passage cleft" (TPC). Here, we review the molecular mechanisms and signaling events around the TPC and propose a step-wise model for TPC formation.
Collapse
Affiliation(s)
- Guofeng Zhang
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Ott
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
4
|
Betz R, Heidt S, Figueira-Galán D, Hartmann M, Langner T, Requena N. Alternative splicing regulation in plants by SP7-like effectors from symbiotic arbuscular mycorrhizal fungi. Nat Commun 2024; 15:7107. [PMID: 39160162 PMCID: PMC11333574 DOI: 10.1038/s41467-024-51512-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 08/08/2024] [Indexed: 08/21/2024] Open
Abstract
Most plants in natural ecosystems associate with arbuscular mycorrhizal (AM) fungi to survive soil nutrient limitations. To engage in symbiosis, AM fungi secrete effector molecules that, similar to pathogenic effectors, reprogram plant cells. Here we show that the Glomeromycotina-specific SP7 effector family impacts on the alternative splicing program of their hosts. SP7-like effectors localize at nuclear condensates and interact with the plant mRNA processing machinery, most prominently with the splicing factor SR45 and the core splicing proteins U1-70K and U2AF35. Ectopic expression of these effectors in the crop plant potato and in Arabidopsis induced developmental changes that paralleled to the alternative splicing modulation of a specific subset of genes. We propose that SP7-like proteins act as negative regulators of SR45 to modulate the fate of specific mRNAs in arbuscule-containing cells. Unraveling the communication mechanisms between symbiotic fungi and their host plants will help to identify targets to improve plant nutrition.
Collapse
Affiliation(s)
- Ruben Betz
- Joseph Kölreuter Institute for Plant Sciences. Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - Sven Heidt
- Joseph Kölreuter Institute for Plant Sciences. Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - David Figueira-Galán
- Joseph Kölreuter Institute for Plant Sciences. Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - Meike Hartmann
- Joseph Kölreuter Institute for Plant Sciences. Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - Thorsten Langner
- Max Planck Institute for Biology Tübingen - Max-Planck-Ring 5, Tübingen, Germany
| | - Natalia Requena
- Joseph Kölreuter Institute for Plant Sciences. Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, Germany.
| |
Collapse
|
5
|
Ivanov S, Harrison MJ. Receptor-associated kinases control the lipid provisioning program in plant-fungal symbiosis. Science 2024; 383:443-448. [PMID: 38271524 DOI: 10.1126/science.ade1124] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/19/2023] [Indexed: 01/27/2024]
Abstract
The mutualistic association between plants and arbuscular mycorrhizal (AM) fungi requires intracellular accommodation of the fungal symbiont and maintenance by means of lipid provisioning. Symbiosis signaling through lysin motif (LysM) receptor-like kinases and a leucine-rich repeat receptor-like kinase DOES NOT MAKE INFECTIONS 2 (DMI2) activates transcriptional programs that underlie fungal passage through the epidermis and accommodation in cortical cells. We show that two Medicago truncatula cortical cell-specific, membrane-bound proteins of a CYCLIN-DEPENDENT KINASE-LIKE (CKL) family associate with, and are phosphorylation substrates of, DMI2 and a subset of the LysM receptor kinases. CKL1 and CKL2 are required for AM symbiosis and control expression of transcription factors that regulate part of the lipid provisioning program. Onset of lipid provisioning is coupled with arbuscule branching and with the REDUCED ARBUSCULAR MYCORRHIZA 1 (RAM1) regulon for complete endosymbiont accommodation.
Collapse
|
6
|
Alhusayni S, Roswanjaya YP, Rutten L, Huisman R, Bertram S, Sharma T, Schon M, Kohlen W, Klein J, Geurts R. A rare non-canonical splice site in Trema orientalis SYMRK does not affect its dual symbiotic functioning in endomycorrhiza and rhizobium nodulation. BMC PLANT BIOLOGY 2023; 23:587. [PMID: 37996841 PMCID: PMC10668435 DOI: 10.1186/s12870-023-04594-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Nitrogen-fixing nodules occur in ten related taxonomic lineages interspersed with lineages of non-nodulating plant species. Nodules result from an endosymbiosis between plants and diazotrophic bacteria; rhizobia in the case of legumes and Parasponia and Frankia in the case of actinorhizal species. Nodulating plants share a conserved set of symbiosis genes, whereas related non-nodulating sister species show pseudogenization of several key nodulation-specific genes. Signalling and cellular mechanisms critical for nodulation have been co-opted from the more ancient plant-fungal arbuscular endomycorrhizal symbiosis. Studies in legumes and actinorhizal plants uncovered a key component in symbiotic signalling, the LRR-type SYMBIOSIS RECEPTOR KINASE (SYMRK). SYMRK is essential for nodulation and arbuscular endomycorrhizal symbiosis. To our surprise, however, despite its arbuscular endomycorrhizal symbiosis capacities, we observed a seemingly critical mutation in a donor splice site in the SYMRK gene of Trema orientalis, the non-nodulating sister species of Parasponia. This led us to investigate the symbiotic functioning of SYMRK in the Trema-Parasponia lineage and to address the question of to what extent a single nucleotide polymorphism in a donor splice site affects the symbiotic functioning of SYMRK. RESULTS We show that SYMRK is essential for nodulation and endomycorrhization in Parasponia andersonii. Subsequently, it is revealed that the 5'-intron donor splice site of SYMRK intron 12 is variable and, in most dicotyledon species, doesn't contain the canonical dinucleotide 'GT' signature but the much less common motif 'GC'. Strikingly, in T. orientalis, this motif is converted into a rare non-canonical 5'-intron donor splice site 'GA'. This SYMRK allele, however, is fully functional and spreads in the T. orientalis population of Malaysian Borneo. A further investigation into the occurrence of the non-canonical GA-AG splice sites confirmed that these are extremely rare. CONCLUSION SYMRK functioning is highly conserved in legumes, actinorhizal plants, and Parasponia. The gene possesses a non-common 5'-intron GC donor splice site in intron 12, which is converted into a GA in T. orientalis accessions of Malaysian Borneo. The discovery of this functional GA-AG splice site in SYMRK highlights a gap in our understanding of splice donor sites.
Collapse
Affiliation(s)
- Sultan Alhusayni
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Biological Sciences Department, College of Science, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
| | - Yuda Purwana Roswanjaya
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Research Centre for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Luuk Rutten
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Rik Huisman
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Simon Bertram
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Trupti Sharma
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Michael Schon
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Wouter Kohlen
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Joël Klein
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Rene Geurts
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
7
|
Ovchinnikova E, Chiasson D, Wen Z, Wu Y, Tahaei H, Smith PMC, Perrine-Walker F, Kaiser BN. Arbuscular-Mycorrhizal Symbiosis in Medicago Regulated by the Transcription Factor MtbHLHm1;1 and the Ammonium Facilitator Protein MtAMF1;3. Int J Mol Sci 2023; 24:14263. [PMID: 37762569 PMCID: PMC10532333 DOI: 10.3390/ijms241814263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Root systems of most land plants are colonised by arbuscular mycorrhiza fungi. The symbiosis supports nutrient acquisition strategies predominantly associated with plant access to inorganic phosphate. The nutrient acquisition is enhanced through an extensive network of external fungal hyphae that extends out into the soil, together with the development of fungal structures forming specialised interfaces with root cortical cells. Orthologs of the bHLHm1;1 transcription factor, previously described in soybean nodules (GmbHLHm1) and linked to the ammonium facilitator protein GmAMF1;3, have been identified in Medicago (Medicago truncatula) roots colonised by AM fungi. Expression studies indicate that transcripts of both genes are also present in arbuscular containing root cortical cells and that the MtbHLHm1;1 shows affinity to the promoter of MtAMF1;3. Both genes are induced by AM colonisation. Loss of Mtbhlhm1;1 expression disrupts AM arbuscule abundance and the expression of the ammonium transporter MtAMF1;3. Disruption of Mtamf1;3 expression reduces both AM colonisation and arbuscule development. The respective activities of MtbHLHm1;1 and MtAMF1;3 highlight the conservation of putative ammonium regulators supporting both the rhizobial and AM fungal symbiosis in legumes.
Collapse
Affiliation(s)
- Evgenia Ovchinnikova
- School of Life and Environmental Sciences, The University of Sydney, 380 Werombi Road, Brownlow Hill, NSW 2570, Australia
| | - David Chiasson
- Department of Biology, Saint Mary’s University, Halifax, NS B3H 3C3, Canada
| | - Zhengyu Wen
- School of Life and Environmental Sciences, The University of Sydney, 380 Werombi Road, Brownlow Hill, NSW 2570, Australia
| | - Yue Wu
- School of Agriculture, Food and Wine, Waite Campus, University of Adelaide, Urrbrae, SA 5005, Australia
| | - Hero Tahaei
- School of Life and Environmental Sciences, The University of Sydney, 380 Werombi Road, Brownlow Hill, NSW 2570, Australia
| | - Penelope M. C. Smith
- Agribio, Centre for AgriBiosciences, La Trobe University, 5 Ring Road, Bundoora, VIC 3083, Australia
| | - Francine Perrine-Walker
- School of Life and Environmental Sciences, The University of Sydney, 380 Werombi Road, Brownlow Hill, NSW 2570, Australia
| | - Brent N. Kaiser
- Sydney Institute of Agriculture, The University of Sydney, 380 Werombi Road, Brownlow Hill, NSW 2570, Australia
| |
Collapse
|
8
|
Dávila-Delgado R, Flores-Canúl K, Juárez-Verdayes MA, Sánchez-López R. Rhizobia induce SYMRK endocytosis in Phaseolus vulgaris root hair cells. PLANTA 2023; 257:83. [PMID: 36928335 PMCID: PMC10020325 DOI: 10.1007/s00425-023-04116-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
PvSYMRK-EGFP undergoes constitutive and rhizobia-induced endocytosis, which rely on the phosphorylation status of T589, the endocytic YXXØ motif and the kinase activity of the receptor. Legume-rhizobia nodulation is a complex developmental process. It initiates when the rhizobia-produced Nod factors are perceived by specific LysM receptors present in the root hair apical membrane. Consequently, SYMRK (Symbiosis Receptor-like Kinase) becomes active in the root hair and triggers an extensive signaling network essential for the infection process and nodule organogenesis. Despite its relevant functions, the underlying cellular mechanisms involved in SYMRK signaling activity remain poorly characterized. In this study, we demonstrated that PvSYMRK-EGFP undergoes constitutive and rhizobia-induced endocytosis. We found that in uninoculated roots, PvSYMRK-EGFP is mainly associated with the plasma membrane, although intracellular puncta labelled with PvSymRK-EGFP were also observed in root hair and nonhair-epidermal cells. Inoculation with Rhizobium etli producing Nod factors induces in the root hair a redistribution of PvSYMRK-EGFP from the plasma membrane to intracellular puncta. In accordance, deletion of the endocytic motif YXXØ (YKTL) and treatment with the endocytosis inhibitors ikarugamycin (IKA) and tyrphostin A23 (TyrA23), as well as brefeldin A (BFA), drastically reduced the density of intracellular PvSYMRK-EGFP puncta. A similar effect was observed in the phosphorylation-deficient (T589A) and kinase-dead (K618E) mutants of PvSYMRK-EGFP, implying these structural features are positive regulators of PvSYMRK-EGFP endocytosis. Our findings lead us to postulate that rhizobia-induced endocytosis of SYMRK modulates the duration and amplitude of the SYMRK-dependent signaling pathway.
Collapse
Affiliation(s)
- Raúl Dávila-Delgado
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Karen Flores-Canúl
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Marco Adán Juárez-Verdayes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Rosana Sánchez-López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210 Cuernavaca, Morelos Mexico
| |
Collapse
|
9
|
Singh J, Verma PK. Role of Nod factor receptors and its allies involved in nitrogen fixation. PLANTA 2023; 257:54. [PMID: 36780015 DOI: 10.1007/s00425-023-04090-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Lysin motif (LysM)-receptor-like kinase (RLK) and leucine-rich repeat (LRR)-RLK mediated signaling play important roles in the development and regulation of root nodule symbiosis in legumes. The availability of water and nutrients in the soil is a major limiting factor affecting crop productivity. Plants of the Leguminosae family form a symbiotic association with nitrogen-fixing Gram-negative soil bacteria, rhizobia for nitrogen fixation. This symbiotic relationship between legumes and rhizobia depends on the signal exchange between them. Plant receptor-like kinases (RLKs) containing lysin motif (LysM) and/or leucine-rich repeat (LRR) play an important role in the perception of chemical signals from rhizobia for initiation and establishment of root nodule symbiosis (RNS) that results in nitrogen fixation. This review highlights the diverse aspects of LysM-RLK and LRR receptors including their specificity, functions, interacting partners, regulation, and associated signaling in RNS. The activation of LysM-RLKs and LRR-RLKs is important for ensuring the successful interaction between legume roots and rhizobia. The intracellular regions of the receptors enable additional layers of signaling that help in the transduction of signals intracellularly. Additionally, symbiosis receptor-like kinase (SYMRK) containing the LRR motif acts as a co-receptor with Nod factors receptors (LysM-RLK). Cleavage of the malectin-like domain from the SYMRK ectodomain is a mechanism for controlling SYMRK stability. Overall, this review has discussed different aspects of legume receptors that are critical to the perception of signals from rhizobia and their subsequent role in creating the mutualistic relationship necessary for nitrogen fixation. Additionally, it has been discussed how crucial it is to extrapolate the knowledge gained from model legumes to crop legumes such as chickpea and common bean to better understand the mechanism underlying nodule formation in crop legumes. Future directions have also been proposed in this regard.
Collapse
Affiliation(s)
- Jawahar Singh
- Plant-Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), 54090, Tlalnepantla, State of Mexico, Mexico.
| | - Praveen Kumar Verma
- Plant-Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Plant-Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 10067, India.
| |
Collapse
|
10
|
Zhang Y, Cheng Q, Liao C, Li L, Gou C, Chen Z, Wang Y, Liu B, Kong F, Chen L. GmTOC1b inhibits nodulation by repressing GmNIN2a and GmENOD40-1 in soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:1052017. [PMID: 36438085 PMCID: PMC9691777 DOI: 10.3389/fpls.2022.1052017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Symbiotic nitrogen fixation is an important factor affecting the yield and quality of leguminous crops. Nodulation is regulated by a complex network comprising several transcription factors. Here, we functionally characterized the role of a TOC1 family member, GmTOC1b, in soybean (Glycine max) nodulation. RT-qPCR assays showed that GmTOC1b is constitutively expressed in soybean. However, GmTOC1b was also highly expressed in nodules, and GmTOC1 localized to the cell nucleus, based on transient transformation in Nicotiana benthamiana leaves. Homozygous Gmtoc1b mutant plants exhibited increased root hair curling and produced more infection threads, resulting in more nodules and greater nodule fresh weight. By contrast, GmTOC1b overexpression inhibited nodulation. Furthermore, we also showed that GmTOC1b represses the expression of nodulation-related genes including GmNIN2a and GmENOD40-1 by binding to their promoters. We conclude that GmTOC1b functions as a transcriptional repressor to inhibit nodulation by repressing the expression of key nodulation-related genes including GmNIN2a, GmNIN2b, and GmENOD40-1 in soybean.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Liyu Chen
- *Correspondence: Liyu Chen, ; Fanjiang Kong,
| |
Collapse
|
11
|
Zhang X, Wang Q, Wu J, Qi M, Zhang C, Huang Y, Wang G, Wang H, Tian J, Yu Y, Chen D, Li Y, Wang D, Zhang Y, Xue Y, Kong Z. A legume kinesin controls vacuole morphogenesis for rhizobia endosymbiosis. NATURE PLANTS 2022; 8:1275-1288. [PMID: 36316454 DOI: 10.1038/s41477-022-01261-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Symbioses between legumes and rhizobia require establishment of the plant-derived symbiosome membrane, which surrounds the rhizobia and accommodates the symbionts by providing an interface for nutrient and signal exchange. The host cytoskeleton and endomembrane trafficking systems play central roles in the formation of a functional symbiotic interface for rhizobia endosymbiosis; however, the underlying mechanisms remain largely unknown. Here we demonstrate that the nodulation-specific kinesin-like calmodulin-binding protein (nKCBP), a plant-specific microtubule-based kinesin motor, controls central vacuole morphogenesis in symbiotic cells in Medicago truncatula. Phylogenetic analysis further indicated that nKCBP duplication occurs solely in legumes of the clade that form symbiosomes. Knockout of nKCBP results in central vacuole deficiency, defective symbiosomes and abolished nitrogen fixation. nKCBP decorates linear particles along microtubules, and crosslinks microtubules with the actin cytoskeleton, to control central vacuole formation by modulating vacuolar vesicle fusion in symbiotic cells. Together, our findings reveal that rhizobia co-opted nKCBP to achieve symbiotic interface formation by regulating cytoskeletal assembly and central vacuole morphogenesis during nodule development.
Collapse
Affiliation(s)
- Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Qi Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jingxia Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Meifang Qi
- State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
| | - Chen Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yige Huang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Huan Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Dasong Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Dong Wang
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Yijing Zhang
- State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
| | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- Houji Laboratory in Shanxi Province, Academy of Agronomy, Shanxi Agricultural University, Taiyuan, China.
| |
Collapse
|
12
|
Quilbé J, Nouwen N, Pervent M, Guyonnet R, Cullimore J, Gressent F, Araújo NH, Gully D, Klopp C, Giraud E, Arrighi JF. A mutant-based analysis of the establishment of Nod-independent symbiosis in the legume Aeschynomene evenia. PLANT PHYSIOLOGY 2022; 190:1400-1417. [PMID: 35876558 PMCID: PMC9516736 DOI: 10.1093/plphys/kiac325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Intensive research on nitrogen-fixing symbiosis in two model legumes has uncovered the molecular mechanisms, whereby rhizobial Nod factors activate a plant symbiotic signaling pathway that controls infection and nodule organogenesis. In contrast, the so-called Nod-independent symbiosis found between Aeschynomene evenia and photosynthetic bradyrhizobia, which does not involve Nod factor recognition nor infection thread formation, is less well known. To gain knowledge on how Nod-independent symbiosis is established, we conducted a phenotypic and molecular characterization of A. evenia lines carrying mutations in different nodulation genes. Besides investigating the effect of the mutations on rhizobial symbiosis, we examined their consequences on mycorrhizal symbiosis and in nonsymbiotic conditions. Analyzing allelic mutant series for AePOLLUX, Ca2+/calmodulin dependent kinase, AeCYCLOPS, nodulation signaling pathway 2 (AeNSP2), and nodule inception demonstrated that these genes intervene at several stages of intercellular infection and during bacterial accommodation. We provide evidence that AeNSP2 has an additional nitrogen-dependent regulatory function in the formation of axillary root hairs at lateral root bases, which are rhizobia-colonized infection sites. Our investigation of the recently discovered symbiotic actor cysteine-rich receptor-like kinase specified that it is not involved in mycorrhization; however, it is essential for both symbiotic signaling and early infection during nodulation. These findings provide important insights on the modus operandi of Nod-independent symbiosis and contribute to the general understanding of how rhizobial-legume symbioses are established by complementing the information acquired in model legumes.
Collapse
Affiliation(s)
| | | | | | - Rémi Guyonnet
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J-Campus de Baillarguet, Montpellier 34398, France
| | - Julie Cullimore
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, Castanet-Tolosan, France
| | - Frédéric Gressent
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J-Campus de Baillarguet, Montpellier 34398, France
- IRD, Plant Health Institute of Montpellier (PHIM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J – Campus de Baillarguet, Montpellier 34398, France
| | - Natasha Horta Araújo
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J-Campus de Baillarguet, Montpellier 34398, France
- IRD, Plant Health Institute of Montpellier (PHIM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J – Campus de Baillarguet, Montpellier 34398, France
| | - Djamel Gully
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J-Campus de Baillarguet, Montpellier 34398, France
- IRD, Plant Health Institute of Montpellier (PHIM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J – Campus de Baillarguet, Montpellier 34398, France
| | - Christophe Klopp
- Plateforme Bioinformatique Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, Castanet-Tolosan, France
| | - Eric Giraud
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J-Campus de Baillarguet, Montpellier 34398, France
- IRD, Plant Health Institute of Montpellier (PHIM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J – Campus de Baillarguet, Montpellier 34398, France
| | | |
Collapse
|
13
|
Kumar J, Kumar A, Sen Gupta D, Kumar S, DePauw RM. Reverse genetic approaches for breeding nutrient-rich and climate-resilient cereal and food legume crops. Heredity (Edinb) 2022; 128:473-496. [PMID: 35249099 PMCID: PMC9178024 DOI: 10.1038/s41437-022-00513-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022] Open
Abstract
In the last decade, advancements in genomics tools and techniques have led to the discovery of many genes. Most of these genes still need to be characterized for their associated function and therefore, such genes remain underutilized for breeding the next generation of improved crop varieties. The recent developments in different reverse genetic approaches have made it possible to identify the function of genes controlling nutritional, biochemical, and metabolic traits imparting drought, heat, cold, salinity tolerance as well as diseases and insect-pests. This article focuses on reviewing the current status and prospects of using reverse genetic approaches to breed nutrient-rich and climate resilient cereal and food legume crops.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India.
| | - Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sachin Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250 004, India
| | - Ron M DePauw
- Advancing Wheat Technologies, 118 Strathcona Rd SW, Calgary, AB, T3H 1P3, Canada
| |
Collapse
|
14
|
Khatri R, Pant SR, Sharma K, Niraula PM, Lawaju BR, Lawrence KS, Alkharouf NW, Klink VP. Glycine max Homologs of DOESN'T MAKE INFECTIONS 1, 2, and 3 Function to Impair Heterodera glycines Parasitism While Also Regulating Mitogen Activated Protein Kinase Expression. FRONTIERS IN PLANT SCIENCE 2022; 13:842597. [PMID: 35599880 PMCID: PMC9114929 DOI: 10.3389/fpls.2022.842597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Glycine max root cells developing into syncytia through the parasitic activities of the pathogenic nematode Heterodera glycines underwent isolation by laser microdissection (LM). Microarray analyses have identified the expression of a G. max DOESN'T MAKE INFECTIONS3 (DMI3) homolog in syncytia undergoing parasitism but during a defense response. DMI3 encodes part of the common symbiosis pathway (CSP) involving DMI1, DMI2, and other CSP genes. The identified DMI gene expression, and symbiosis role, suggests the possible existence of commonalities between symbiosis and defense. G. max has 3 DMI1, 12 DMI2, and 2 DMI3 paralogs. LM-assisted gene expression experiments of isolated syncytia under further examination here show G. max DMI1-3, DMI2-7, and DMI3-2 expression occurring during the defense response in the H. glycines-resistant genotypes G.max [Peking/PI548402] and G.max [PI88788] indicating a broad and consistent level of expression of the genes. Transgenic overexpression (OE) of G. max DMI1-3, DMI2-7, and DMI3-2 impairs H. glycines parasitism. RNA interference (RNAi) of G. max DMI1-3, DMI2-7, and DMI3-2 increases H. glycines parasitism. The combined opposite outcomes reveal a defense function for these genes. Prior functional transgenic analyses of the 32-member G. max mitogen activated protein kinase (MAPK) gene family has determined that 9 of them act in the defense response to H. glycines parasitism, referred to as defense MAPKs. RNA-seq analyses of root RNA isolated from the 9 G. max defense MAPKs undergoing OE or RNAi reveal they alter the relative transcript abundances (RTAs) of specific DMI1, DMI2, and DMI3 paralogs. In contrast, transgenically-manipulated DMI1-3, DMI2-7, and DMI3-2 expression influences MAPK3-1 and MAPK3-2 RTAs under certain circumstances. The results show G. max homologs of the CSP, and defense pathway are linked, apparently involving co-regulated gene expression.
Collapse
Affiliation(s)
- Rishi Khatri
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Shankar R. Pant
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Prakash M. Niraula
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Bisho R. Lawaju
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Kathy S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Nadim W. Alkharouf
- Department of Computer and Information Sciences, Towson University, Towson, MD, United States
| | - Vincent P. Klink
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
- USDA ARS NEA BARC Molecular Plant Pathology Laboratory, Beltsville, MD, United States
- Center for Computational Sciences High Performance Computing Collaboratory, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
15
|
Kovács S, Kiss E, Jenei S, Fehér-Juhász E, Kereszt A, Endre G. The Medicago truncatula IEF Gene Is Crucial for the Progression of Bacterial Infection During Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:401-415. [PMID: 35171648 DOI: 10.1094/mpmi-11-21-0279-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Legumes are able to meet their nitrogen need by establishing nitrogen-fixing symbiosis with rhizobia. Nitrogen fixation is performed by rhizobia, which has been converted to bacteroids, in newly formed organs, the root nodules. In the model legume Medicago truncatula, nodule cells are invaded by rhizobia through transcellular tubular structures called infection threads (ITs) that are initiated at the root hairs. Here, we describe a novel M. truncatula early symbiotic mutant identified as infection-related epidermal factor (ief), in which the formation of ITs is blocked in the root hair cells and only nodule primordia are formed. We show that the function of MtIEF is crucial for the bacterial infection in the root epidermis but not required for the nodule organogenesis. The IEF gene that appears to have been recruited for a symbiotic function after the duplication of a flower-specific gene is activated by the ERN1-branch of the Nod factor signal transduction pathway and independent of the NIN activity. The expression of MtIEF is induced transiently in the root epidermal cells by the rhizobium partner or Nod factors. Although its expression was not detectable at later stages of symbiosis, complementation experiments indicate that MtIEF is also required for the proper invasion of the nodule cells by rhizobia. The gene encodes an intracellular protein of unknown function possessing a coiled-coil motif and a plant-specific DUF761 domain. The IEF protein interacts with RPG, another symbiotic protein essential for normal IT development, suggesting that combined action of these proteins plays a role in nodule infection.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Szilárd Kovács
- Biological Research Centre, Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Ernő Kiss
- Biological Research Centre, Institute of Genetics, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Sándor Jenei
- Biological Research Centre, Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Erzsébet Fehér-Juhász
- Biological Research Centre, Institute of Genetics, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Attila Kereszt
- Biological Research Centre, Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Gabriella Endre
- Biological Research Centre, Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| |
Collapse
|
16
|
Kiryushkin AS, Ilina EL, Guseva ED, Pawlowski K, Demchenko KN. Hairy CRISPR: Genome Editing in Plants Using Hairy Root Transformation. PLANTS (BASEL, SWITZERLAND) 2021; 11:51. [PMID: 35009056 PMCID: PMC8747350 DOI: 10.3390/plants11010051] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 05/27/2023]
Abstract
CRISPR/Cas-mediated genome editing is a powerful tool of plant functional genomics. Hairy root transformation is a rapid and convenient approach for obtaining transgenic roots. When combined, these techniques represent a fast and effective means of studying gene function. In this review, we outline the current state of the art reached by the combination of these approaches over seven years. Additionally, we discuss the origins of different Agrobacterium rhizogenes strains that are widely used for hairy root transformation; the components of CRISPR/Cas vectors, such as the promoters that drive Cas or gRNA expression, the types of Cas nuclease, and selectable and screenable markers; and the application of CRISPR/Cas genome editing in hairy roots. The modification of the already known vector pKSE401 with the addition of the rice translational enhancer OsMac3 and the gene encoding the fluorescent protein DsRed1 is also described.
Collapse
Affiliation(s)
- Alexey S. Kiryushkin
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| | - Elena L. Ilina
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| | - Elizaveta D. Guseva
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Kirill N. Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| |
Collapse
|
17
|
Kovacs S, Fodor L, Domonkos A, Ayaydin F, Laczi K, Rákhely G, Kalo P. Amino Acid Polymorphisms in the VHIID Conserved Motif of Nodulation Signaling Pathways 2 Distinctly Modulate Symbiotic Signaling and Nodule Morphogenesis in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2021; 12:709857. [PMID: 34966395 PMCID: PMC8711286 DOI: 10.3389/fpls.2021.709857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/11/2021] [Indexed: 06/14/2023]
Abstract
Legumes establish an endosymbiotic association with nitrogen-fixing soil bacteria. Following the mutual recognition of the symbiotic partner, the infection process is controlled by the induction of the signaling pathway and subsequent activation of symbiosis-related host genes. One of the protein complexes regulating nitrogen-fixing root nodule symbiosis is formed by GRAS domain regulatory proteins Nodulation Signaling Pathways 1 and 2 (NSP1 and NSP2) that control the expression of several early nodulation genes. Here, we report on a novel point mutant allele (nsp2-6) affecting the function of the NSP2 gene and compared the mutant with the formerly identified nsp2-3 mutant. Both mutants carry a single amino acid substitution in the VHIID motif of the NSP2 protein. We found that the two mutant alleles show dissimilar root hair response to bacterial infection. Although the nsp2-3 mutant developed aberrant infection threads, rhizobia were able to colonize nodule cells in this mutant. The encoded NSP2 proteins of the nsp2-3 and the novel nsp2 mutants interact with NSP1 diversely and, as a consequence, the activation of early nodulin genes and nodule organogenesis are arrested in the new nsp2 allele. The novel mutant with amino acid substitution D244H in NSP2 shows similar defects in symbiotic responses as a formerly identified nsp2-2 mutant carrying a deletion in the NSP2 gene. Additionally, we found that rhizobial strains induce delayed nodule formation on the roots of the ns2-3 weak allele. Our study highlights the importance of a conserved Asp residue in the VHIID motif of NSP2 that is required for the formation of a functional NSP1-NSP2 signaling module. Furthermore, our results imply the involvement of NSP2 during differentiation of symbiotic nodule cells.
Collapse
Affiliation(s)
- Szilárd Kovacs
- Institute of Plant Biology, Biological Research Center, Eötvös Lóránd Research Network, Szeged, Hungary
| | - Lili Fodor
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllö, Hungary
| | - Agota Domonkos
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllö, Hungary
| | - Ferhan Ayaydin
- Hungarian Centre of Excellence for Molecular Medicine (HCEMM) Nonprofit Ltd., Szeged, Hungary
- Cellular Imaging Laboratory, Biological Research Center, Eötvös Lóránd Research Network, Szeged, Hungary
| | - Krisztián Laczi
- Institute of Plant Biology, Biological Research Center, Eötvös Lóránd Research Network, Szeged, Hungary
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- Institute of Biophysics, Biological Research Center, Eötvös Lóránd Research Network, Szeged, Hungary
| | - Péter Kalo
- Institute of Plant Biology, Biological Research Center, Eötvös Lóránd Research Network, Szeged, Hungary
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllö, Hungary
| |
Collapse
|
18
|
Gao JP, Xu P, Wang M, Zhang X, Yang J, Zhou Y, Murray JD, Song CP, Wang E. Nod factor receptor complex phosphorylates GmGEF2 to stimulate ROP signaling during nodulation. Curr Biol 2021; 31:3538-3550.e5. [PMID: 34216556 DOI: 10.1016/j.cub.2021.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/09/2021] [Accepted: 06/03/2021] [Indexed: 11/20/2022]
Abstract
The establishment of the symbiotic interaction between rhizobia and legumes involves the Nod factor signaling pathway. Nod factor recognition occurs through two plant receptors, NFR1 and NFR5. However, the signal transduction mechanisms downstream of NFR1-NFR5-mediated Nod factor perception remain largely unknown. Here, we report that a small guanosine triphosphatase (GTPase), GmROP9, and a guanine nucleotide exchange factor, GmGEF2, are involved in the soybean-rhizobium symbiosis. We show that GmNFR1α phosphorylates GmGEF2a at its N-terminal S86, which stimulates guanosine diphosphate (GDP)-to-GTP exchange to activate GmROP9 and that the active form of GmROP9 can associate with both GmNFR1α and GmNFR5α. We further show that a scaffold protein, GmRACK1, interacts with active GmROP9 and contributes to root nodule symbiosis. Collectively, our results highlight the symbiotic role of GmROP9-GmRACK1 and support the hypothesis that rhizobial signals promote the formation of a protein complex comprising GmNFR1, GmNFR5, GmROP9, and GmRACK1 for symbiotic signal transduction in soybean.
Collapse
Affiliation(s)
- Jin-Peng Gao
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Peng Xu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Mingxing Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yun Zhou
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Jeremy D Murray
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Chun-Peng Song
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
19
|
Li H, Schilderink S, Cao Q, Kulikova O, Bisseling T. Plant-specific histone deacetylases are essential for early and late stages of Medicago nodule development. PLANT PHYSIOLOGY 2021; 186:1591-1605. [PMID: 33744928 PMCID: PMC8260124 DOI: 10.1093/plphys/kiab140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/18/2021] [Indexed: 05/22/2023]
Abstract
Legume and rhizobium species can establish a nitrogen-fixing nodule symbiosis. Previous studies have shown that several transcription factors that play a role in (lateral) root development are also involved in nodule development. Chromatin remodeling factors, like transcription factors, are key players in regulating gene expression. However, studies have not investigated whether chromatin remodeling genes that are essential for root development are also involved in nodule development. Here, we studied the role of Medicago (Medicago truncatula) histone deacetylases (MtHDTs) in nodule development. Arabidopsis (Arabidopsis thaliana) orthologs of HDTs have been shown to play a role in root development. MtHDT expression is induced in nodule primordia and is maintained in the nodule meristem and infection zone. Conditional, nodule-specific knockdown of MtHDT expression by RNAi blocks nodule primordium development. A few nodules may still form, but their nodule meristems are smaller, and rhizobial colonization of the cells derived from the meristem is markedly reduced. Although the HDTs are expressed during nodule and root development, transcriptome analyses indicate that HDTs control the development of each organ in a different manner. During nodule development, the MtHDTs positively regulate 3-hydroxy-3-methylglutaryl coenzyme a reductase 1 (MtHMGR1). Decreased expression of MtHMGR1 is sufficient to explain the inhibition of primordium formation.
Collapse
Affiliation(s)
- Huchen Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing 102206, China
| | - Stefan Schilderink
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Present address: St. Bonifatius College, Burgemeester Fockema Andreaelaan 7–9, 3582 KA Utrecht, The Netherlands
| | - Qingqin Cao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing 102206, China
| | - Olga Kulikova
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ton Bisseling
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Author for communication:
| |
Collapse
|
20
|
Jarzyniak K, Banasiak J, Jamruszka T, Pawela A, Di Donato M, Novák O, Geisler M, Jasiński M. Early stages of legume-rhizobia symbiosis are controlled by ABCG-mediated transport of active cytokinins. NATURE PLANTS 2021; 7:428-436. [PMID: 33753904 DOI: 10.1038/s41477-021-00873-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/05/2021] [Indexed: 05/04/2023]
Abstract
Growing evidence has highlighted the essential role of plant hormones, notably, cytokinins (CKs), in nitrogen-fixing symbiosis, both at early and late nodulation stages1,2. Despite numerous studies showing the central role of CK in nodulation, the importance of CK transport in the symbiosis is unknown. Here, we show the role of ABCG56, a full-size ATP-binding cassette (ABC) transporter in the early stages of the nodulation. MtABCG56 is expressed in roots and nodules and its messenger RNA levels increase upon treatment with symbiotic bacteria, isolated Nod factor and CKs, accumulating within the epidermis and root cortex. MtABCG56 exports bioactive CKs in an ATP-dependent manner over the plasma membrane and its disruption results in an impairment of nodulation. Our data indicate that ABCG-mediated cytokinin transport is important for proper establishment of N-fixing nodules.
Collapse
Affiliation(s)
- Karolina Jarzyniak
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Joanna Banasiak
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Tomasz Jamruszka
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Aleksandra Pawela
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Martin Di Donato
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czech Republic
| | - Markus Geisler
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Michał Jasiński
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland.
| |
Collapse
|
21
|
Ma Y, Chen R. Nitrogen and Phosphorus Signaling and Transport During Legume-Rhizobium Symbiosis. FRONTIERS IN PLANT SCIENCE 2021; 12:683601. [PMID: 34239527 PMCID: PMC8258413 DOI: 10.3389/fpls.2021.683601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/25/2021] [Indexed: 05/11/2023]
Abstract
Nitrogen (N) and phosphorus (P) are the two predominant mineral elements, which are not only essential for plant growth and development in general but also play a key role in symbiotic N fixation in legumes. Legume plants have evolved complex signaling networks to respond to both external and internal levels of these macronutrients to optimize symbiotic N fixation in nodules. Inorganic phosphate (Pi) and nitrate (NO3 -) are the two major forms of P and N elements utilized by plants, respectively. Pi starvation and NO3 - application both reduce symbiotic N fixation via similar changes in the nodule gene expression and invoke local and long-distance, systemic responses, of which N-compound feedback regulation of rhizobial nitrogenase activity appears to operate under both conditions. Most of the N and P signaling and transport processes have been investigated in model organisms, such as Medicago truncatula, Lotus japonicus, Glycine max, Phaseolus vulgaris, Arabidopsis thaliana, Oryza sativa, etc. We attempted to discuss some of these processes wherever appropriate, to serve as references for a better understanding of the N and P signaling and transport during symbiosis.
Collapse
Affiliation(s)
- Yanlin Ma
- MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, China
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Rujin Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, China
- School of Life Sciences, Lanzhou University, Lanzhou, China
- *Correspondence: Rujin Chen,
| |
Collapse
|
22
|
Gavrin A, Rey T, Torode TA, Toulotte J, Chatterjee A, Kaplan JL, Evangelisti E, Takagi H, Charoensawan V, Rengel D, Journet EP, Debellé F, de Carvalho-Niebel F, Terauchi R, Braybrook S, Schornack S. Developmental Modulation of Root Cell Wall Architecture Confers Resistance to an Oomycete Pathogen. Curr Biol 2020; 30:4165-4176.e5. [PMID: 32888486 PMCID: PMC7658807 DOI: 10.1016/j.cub.2020.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 08/04/2020] [Indexed: 11/26/2022]
Abstract
The cell wall is the primary interface between plant cells and their immediate environment and must balance multiple functionalities, including the regulation of growth, the entry of beneficial microbes, and protection against pathogens. Here, we demonstrate how API, a SCAR2 protein component of the SCAR/WAVE complex, controls the root cell wall architecture important for pathogenic oomycete and symbiotic bacterial interactions in legumes. A mutation in API results in root resistance to the pathogen Phytophthora palmivora and colonization defects by symbiotic rhizobia. Although api mutant plants do not exhibit significant overall growth and development defects, their root cells display delayed actin and endomembrane trafficking dynamics and selectively secrete less of the cell wall polysaccharide xyloglucan. Changes associated with a loss of API establish a cell wall architecture with altered biochemical properties that hinder P. palmivora infection progress. Thus, developmental stage-dependent modifications of the cell wall, driven by SCAR/WAVE, are important in balancing cell wall developmental functions and microbial invasion. The SCAR protein API controls actin and endomembrane trafficking dynamics SCAR proteins of several plant species can support symbiosis and pathogen infection A mutation in API affects specific biochemical properties of plant cell walls An altered wall architecture results in root resistance to Phytophthora palmivora
Collapse
Affiliation(s)
- Aleksandr Gavrin
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Thomas Rey
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Thomas A Torode
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Justine Toulotte
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Abhishek Chatterjee
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Jonathan Louis Kaplan
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Edouard Evangelisti
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Hiroki Takagi
- Iwate Biotechnology Institute, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Varodom Charoensawan
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Department of Biochemistry, Faculty of Science, and Integrative Computational BioScience (ICBS) Center, Mahidol University, Bangkok 10400, Thailand
| | - David Rengel
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan 31326, France; GeT-PlaGe, Genotoul, INRA US1426, Castanet-Tolosan Cedex, France
| | - Etienne-Pascal Journet
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan 31326, France; AGIR, Université de Toulouse, INRA, ENSFEA, Castanet-Tolosan 31326, France
| | - Frédéric Debellé
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan 31326, France
| | | | - Ryohei Terauchi
- Iwate Biotechnology Institute, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Siobhan Braybrook
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Department of Molecular, Cell, and Developmental Biology, 610 Charles E Young Drive South, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sebastian Schornack
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK.
| |
Collapse
|
23
|
Ding N, Qin Q, Wu X, Miller R, Zaitlin D, Li D, Yang S. Antagonistic regulation of axillary bud outgrowth by the BRANCHED genes in tobacco. PLANT MOLECULAR BIOLOGY 2020; 103:185-196. [PMID: 32124178 DOI: 10.1007/s11103-020-00983-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
As a key integrator of shoot branching, BRANCHED 1 (BRC1) coordinates and is orchestrated by endogenous and environmental signals involved in the regulation of axillary bud outgrowth. In the present study, we characterized the regulatory roles of five BRC gene members in tobacco (Nicotiana tabacum L.) using CRISPR site-directed mutagenesis and overexpression assays. It was shown that lateral branching was negatively regulated by NtBRC1A-1, 1B-1, and 1B-2, but was unexpectedly promoted by NtBRC2A. Suppression of bud growth may be attained by direct binding of NtBRCs to the Tassels Replace Upper Ears 1 (TRU1) genes. It was speculated that NtBRC2A probably confers a dominant negative effect by interfering with the branching-inhibitory BRC1 genes. Our results suggested that highly homologous gene family members may function antagonistically in the same signaling pathway. However, the molecular mechanism underlying NtBRC2A-mediated outgrowth of axillary buds needs to be further addressed. KEY MESSAGE: Axillary bud outgrowth in general is negatively regulated by the BRANCHED gene. Here we show that the BRANCHED genes play opposing regulatory roles in tobacco lateral branching.
Collapse
Affiliation(s)
- Na Ding
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Qiulin Qin
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Xia Wu
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Robert Miller
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - David Zaitlin
- Kentucky Tobacco Research & Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Dandan Li
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Shengming Yang
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA.
- USDA-ARS Cereals Research Unit, Edward T. Schafer Agriculture Research Center, Fargo, ND, 58102, USA.
| |
Collapse
|
24
|
Mergaert P, Kereszt A, Kondorosi E. Gene Expression in Nitrogen-Fixing Symbiotic Nodule Cells in Medicago truncatula and Other Nodulating Plants. THE PLANT CELL 2020; 32:42-68. [PMID: 31712407 PMCID: PMC6961632 DOI: 10.1105/tpc.19.00494] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/08/2019] [Indexed: 05/06/2023]
Abstract
Root nodules formed by plants of the nitrogen-fixing clade (NFC) are symbiotic organs that function in the maintenance and metabolic integration of large populations of nitrogen-fixing bacteria. These organs feature unique characteristics and processes, including their tissue organization, the presence of specific infection structures called infection threads, endocytotic uptake of bacteria, symbiotic cells carrying thousands of intracellular bacteria without signs of immune responses, and the integration of symbiont and host metabolism. The early stages of nodulation are governed by a few well-defined functions, which together constitute the common symbiosis-signaling pathway (CSSP). The CSSP activates a set of transcription factors (TFs) that orchestrate nodule organogenesis and infection. The later stages of nodule development require the activation of hundreds to thousands of genes, mostly expressed in symbiotic cells. Many of these genes are only active in symbiotic cells, reflecting the unique nature of nodules as plant structures. Although how the nodule-specific transcriptome is activated and connected to early CSSP-signaling is poorly understood, candidate TFs have been identified using transcriptomic approaches, and the importance of epigenetic and chromatin-based regulation has been demonstrated. We discuss how gene regulation analyses have advanced our understanding of nodule organogenesis, the functioning of symbiotic cells, and the evolution of symbiosis in the NFC.
Collapse
Affiliation(s)
- Peter Mergaert
- Institute for Integrative Biology of the Cell, UMR 9198, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Attila Kereszt
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| | - Eva Kondorosi
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| |
Collapse
|
25
|
Wang X, Huo H, Luo Y, Liu D, Zhao L, Zong L, Chou M, Chen J, Wei G. Type III secretion systems impact Mesorhizobium amorphae CCNWGS0123 compatibility with Robinia pseudoacacia. TREE PHYSIOLOGY 2019; 39:1533-1550. [PMID: 31274160 DOI: 10.1093/treephys/tpz077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/26/2018] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
Rhizobia and legume plants are famous mutualistic symbiosis partners who provide nitrogen nutrition to the natural environment. Rhizobial type III secretion systems (T3SSs) deliver effectors that manipulate the metabolism of eukaryotic host cells. Mesorhizobium amorphae CCNWGS0123 (GS0123) contains two T3SS gene clusters, T3SS-I and T3SS-II. T3SS-I contains all the basal components for an integrated T3SS, and the expression of T3SS-I genes is up-regulated in the presence of flavonoids. In contrast, T3SS-II lacks the primary extracellular elements of T3SSs, and the expression of T3SS-II genes is down-regulated in the presence of flavonoids. Inoculation tests on Robinia pseudoacacia displayed considerable differences in gene expression patterns and levels among roots inoculated with GS0123 and T3SS-deficient mutant (GS0123ΔrhcN1 (GS0123ΔT1), GS0123ΔrhcN2 (GS0123ΔT2) and GS0123ΔrhcN1ΔrhcN2 (GS0123ΔS)). Compared with the GS0123-inoculated plants, GS0123ΔT1-inoculated roots formed very few infection threads and effective nodules, while GS0123ΔT2-inoculated roots formed a little fewer infection threads and effective nodules with increased numbers of bacteroids enclosed in one symbiosome. Moreover, almost no infection threads or effective nodules were observed in GS0123ΔS-inoculated roots. In addition to evaluations of plant immunity signals, we observed that the coexistence of T3SS-I and T3SS-II promoted infection by suppressing host defense response in the reactive oxygen species defense response pathway. Future studies should focus on identifying rhizobial T3SS effectors and their host target proteins.
Collapse
Affiliation(s)
- Xinye Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Haibo Huo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yantao Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Dongying Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Liang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Le Zong
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Minxia Chou
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Juan Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
26
|
Zhang S, Kondorosi É, Kereszt A. An anthocyanin marker for direct visualization of plant transformation and its use to study nitrogen-fixing nodule development. JOURNAL OF PLANT RESEARCH 2019; 132:695-703. [PMID: 31325057 PMCID: PMC6713694 DOI: 10.1007/s10265-019-01126-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/16/2019] [Indexed: 05/22/2023]
Abstract
The development and functioning of the nitrogen fixing symbiosis between legume plants and soil bacteria collectively called rhizobia requires continuous chemical dialogue between the partners using different molecules such as flavonoids, lipo-chitooligosaccharides, polysaccharides and peptides. Agrobacterium rhizogenes mediated hairy root transformation of legumes is widely used to study the function of plant genes involved in the process. The identification of transgenic plant tissues is based on antibiotics/herbicide selection and/or the detection of different reporter genes that usually require special equipment such as fluorescent microscopes or destructive techniques and chemicals to visualize enzymatic activity. Here, we developed and efficiently used in hairy root experiments binary vectors containing the MtLAP1 gene driven by constitutive and tissue-specific promoters that facilitate the production of purple colored anthocyanins in transgenic tissues and thus allowing the identification of transformed roots by naked eye. Anthocyanin producing roots were able to establish effective symbiosis with rhizobia. Moreover, it was shown that species-specific allelic variations and a mutation preventing posttranslational acetyl modification of an essential nodule-specific cysteine-rich peptide, NCR169, do not affect the symbiotic interaction of Medicago truncatula cv. Jemalong with Sinorhizobium medicae strain WSM419. Based on the experiments, it could be concluded that it is preferable to use the vectors with tissue-specific promoters that restrict anthocyanin production to the root vasculature for studying biotic interactions of the roots such as symbiotic nitrogen fixation or mycorrhizal symbiosis.
Collapse
Affiliation(s)
- Senlei Zhang
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári körút 62, 6726, Szeged, Hungary
| | - Éva Kondorosi
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári körút 62, 6726, Szeged, Hungary
| | - Attila Kereszt
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári körút 62, 6726, Szeged, Hungary.
| |
Collapse
|
27
|
Tao K, Waletich JR, Arredondo F, Tyler BM. Manipulating Endoplasmic Reticulum-Plasma Membrane Tethering in Plants Through Fluorescent Protein Complementation. FRONTIERS IN PLANT SCIENCE 2019; 10:635. [PMID: 31191568 PMCID: PMC6547045 DOI: 10.3389/fpls.2019.00635] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/26/2019] [Indexed: 05/21/2023]
Abstract
The bimolecular fluorescence complementation (BiFC) assay has been widely used to examine interactions between integral and peripheral proteins within putative plasma membrane (PM) microdomains. In the course of using BiFC assays to examine the co-localization of plasma membrane (PM) targeted receptor-like kinases (RLKs), such as FLS2, with PM micro-domain proteins such as remorins, we unexpectedly observed heterogeneous distribution patterns of fluorescence on the PM of Nicotiana benthamiana leaf cortical cells. These patterns appeared to co-localize with the endoplasmic reticulum (ER) and with ER-PM contact sites, and closely resembled patterns caused by over-expression of the ER-PM tether protein Synaptotagmin1 (SYT1). Using domain swap experiments with SYT1, we inferred that non-specific dimerization between FLS2-VenusN and VenusC-StRem1.3 could create artificial ER-PM tether proteins analogous to SYT1. The same patterns of ER-PM tethering were produced when a representative set of integral membrane proteins were partnered in BiFC complexes with PM-targeted peripheral membrane proteins, including PtdIns(4)P-binding proteins. We inferred that spontaneous formation of mature fluorescent proteins caused the BiFC complexes to trap the integral membrane proteins in the ER during delivery to the PM, producing a PM-ER tether. This phenomenon could be a useful tool to deliberately manipulate ER-PM tethering or to test protein membrane localization. However, this study also highlights the risk of using the BiFC assay to study membrane protein interactions in plants, due to the possibility of alterations in cellular structures and membrane organization, or misinterpretation of protein-protein interactions. A number of published studies using this approach may therefore need to be revisited.
Collapse
Affiliation(s)
- Kai Tao
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, United States
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Justin R. Waletich
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Felipe Arredondo
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Brett M. Tyler
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, United States
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
28
|
Hartmann RM, Schaepe S, Nübel D, Petersen AC, Bertolini M, Vasilev J, Küster H, Hohnjec N. Insights into the complex role of GRAS transcription factors in the arbuscular mycorrhiza symbiosis. Sci Rep 2019; 9:3360. [PMID: 30833646 PMCID: PMC6399340 DOI: 10.1038/s41598-019-40214-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/12/2019] [Indexed: 12/19/2022] Open
Abstract
To improve access to limiting nutrients, the vast majority of land plants forms arbuscular mycorrhizal (AM) symbioses with Glomeromycota fungi. We show here that AM-related GRAS transcription factors from different subgroups are upregulated during a time course of mycorrhization. Based on expression studies in mutants defective in arbuscule branching (ram1-1, with a deleted MtRam1 GRAS transcription factor gene) or in the formation of functional arbuscules (pt4-2, mutated in the phosphate transporter gene MtPt4), we demonstrate that the five AM-related GRAS transcription factor genes MtGras1, MtGras4, MtGras6, MtGras7, and MtRad1 can be differentiated by their dependency on MtRAM1 and MtPT4, indicating that the network of AM-related GRAS transcription factors consists of at least two regulatory modules. One module involves the MtRAM1- and MtPT4-independent transcription factor MtGRAS4 that activates MtGras7. Another module is controlled by the MtRAM1- and MtPT4-dependent transcription factor MtGRAS1. Genome-wide expression profiles of mycorrhized MtGras1 knockdown and ram1-1 roots differ substantially, indicating different targets. Although an MtGras1 knockdown reduces transcription of AM-related GRAS transcription factor genes including MtRam1 and MtGras7, MtGras1 overexpression alone is not sufficient to activate MtGras genes. MtGras1 knockdown roots display normal fungal colonization, with a trend towards the formation of smaller arbuscules.
Collapse
Affiliation(s)
- Rico M Hartmann
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Sieke Schaepe
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Daniel Nübel
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Arne C Petersen
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Martina Bertolini
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany.,Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy
| | - Jana Vasilev
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Helge Küster
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany.
| | - Natalija Hohnjec
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| |
Collapse
|
29
|
Russo G, Carotenuto G, Fiorilli V, Volpe V, Chiapello M, Van Damme D, Genre A. Ectopic activation of cortical cell division during the accommodation of arbuscular mycorrhizal fungi. THE NEW PHYTOLOGIST 2019; 221:1036-1048. [PMID: 15558330 DOI: 10.1111/nph.15398] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/17/2018] [Indexed: 05/12/2023]
Abstract
Arbuscular mycorrhizas (AMs) between plants and soil fungi are widespread symbioses with a major role in soil nutrient uptake. In this study we investigated the induction of root cortical cell division during AM colonization by combining morphometric and gene expression analyses with promoter activation and protein localization studies of the cell-plate-associated exocytic marker TPLATE. Our results show that TPLATE promoter is activated in colonized cells of the root cortex where we also observed the appearance of cells that are half the size of the surrounding cells. Furthermore, TPLATE-green fluorescent protein recruitment to developing cell plates highlighted ectopic cell division events in the inner root cortex during early AM colonization. Lastly, transcripts of TPLATE, KNOLLE and Cyclinlike 1 (CYC1) are all upregulated in the same context, alongside endocytic markers Adaptor-Related Protein complex 2 alpha 1 subunit (AP2A1) and Clathrin Heavy Chain 2 (CHC2), known to be active during cell plate formation. This pattern of gene expression was recorded in wild-type Medicago truncatula roots, but not in a common symbiotic signalling pathway mutant where fungal colonization is blocked at the epidermal level. Altogether, these results suggest the activation of cell-division-related mechanisms by AM hosts during the accommodation of the symbiotic fungus.
Collapse
Affiliation(s)
- Giulia Russo
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torin, Italy
| | - Gennaro Carotenuto
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torin, Italy
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torin, Italy
| | - Veronica Volpe
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torin, Italy
| | - Marco Chiapello
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torin, Italy
| | - Daniel Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torin, Italy
| |
Collapse
|
30
|
Voß S, Betz R, Heidt S, Corradi N, Requena N. RiCRN1, a Crinkler Effector From the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis, Functions in Arbuscule Development. Front Microbiol 2018; 9:2068. [PMID: 30233541 PMCID: PMC6131194 DOI: 10.3389/fmicb.2018.02068] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/13/2018] [Indexed: 01/10/2023] Open
Abstract
Arbuscular mycorrhizal (AM) symbiosis is one of the most prominent and beneficial plant–microbe interactions that facilitates mineral nutrition and confers tolerance to biotic and abiotic stresses. AM fungi colonize the root cortex and develop specialized structures called arbuscules where the nutrient exchange takes place. Arbuscule development is a highly controlled and coordinated process requiring the involvement of many plant proteins recruited at that interface. In contrast, much less is known about the fungal proteins involved in this process. Here, we have identified an AM fungal effector that participates in this developmental step of the symbiosis. RiCRN1 is a crinkler (CRN) effector that belongs to a subfamily of secreted CRN proteins from R. irregularis. CRNs have been so far only functionally characterized in pathogenic microbes and shown to participate in processes controlling plant cell death and immunity. RiCRN1 accumulates during symbiosis establishment parallel to MtPT4, the gene coding for an arbuscule-specific phosphate transporter. Expression in Nicotiana benthamiana leaves and in Medicago truncatula roots suggest that RiCRN1 is not involved in cell death processes. RiCRN1 dimerizes and localizes to nuclear bodies, suggesting that, similar to other CRNs, it functions in the plant nucleus. Downregulation of RiCRN1 using host-induced gene silencing led to an impairment of the symbiosis in M. truncatula and to a reduction of MtPT4, while ectopic expression of RiCRN1, surprisingly, led to a drastic reduction in arbuscule size that correlated with a decrease not only in MtPT4 but also in MtBCP1, a marker for initial stages of arbuscule development. Altogether, our results suggest that a tightly regulated expression in time and space of RiCRN1 is critical for symbiosis progression and for the proper initiation of arbuscule development.
Collapse
Affiliation(s)
- Stefanie Voß
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ruben Betz
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Sven Heidt
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Nicolas Corradi
- Department of Biology, Canadian Institute for Advanced Research, University of Ottawa, Ottawa, ON, Canada
| | - Natalia Requena
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
31
|
Cai K, Yin J, Chao H, Ren Y, Jin L, Cao Y, Duanmu D, Zhang Z. A C3HC4-type RING finger protein regulates rhizobial infection and nodule organogenesis in Lotus japonicus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:878-896. [PMID: 30047576 DOI: 10.1111/jipb.12703] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/22/2018] [Indexed: 05/16/2023]
Abstract
During the establishment of rhizobia-legume symbiosis, the cytokinin receptor LHK1 (Lotus Histidine Kinase 1) is essential for nodule formation. However, the mechanism by which cytokinin signaling regulates symbiosis remains largely unknown. In this study, an LHK1-interacting protein, LjCZF1, was identified and further characterized. LjCZF1 is a C3HC4-type RING finger protein that is highly conserved in plants. LjCZF1 specifically interacted with LHK1 in yeast two-hybrid, in vitro pull-down and co-immunoprecipitation assays conducted in tobacco. Phosphomimetic mutation of the potential threonine (T167D) phosphorylation site enhanced the interaction between LjCZF1 and LHK1, whereas phosphorylation mutation (T167A) eliminated this interaction. Transcript abundance of LjCZF1 was up-regulated significantly after inoculation with rhizobia. The LORE1 insertion mutant and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated knockout mutant Lotus japonicus plants demonstrated significantly reduced number of infection threads and nodules. In contrast, plants over-expressing LjCZF1 exhibited increased numbers of infection threads and nodules. Collectively, these data support the notion that LjCZF1 is a positive regulator of symbiotic nodulation, possibly through interaction with LHK1.
Collapse
Affiliation(s)
- Kai Cai
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongmin Chao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaping Ren
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liping Jin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yangrong Cao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhongming Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
32
|
Liu J, Deng J, Zhu F, Li Y, Lu Z, Qin P, Wang T, Dong J. The MtDMI2-MtPUB2 Negative Feedback Loop Plays a Role in Nodulation Homeostasis. PLANT PHYSIOLOGY 2018; 176:3003-3026. [PMID: 29440269 PMCID: PMC5884597 DOI: 10.1104/pp.17.01587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/06/2018] [Indexed: 05/19/2023]
Abstract
DOES NOT MAKE INFECTION 2 (MtDMI2) is a Leu rich repeat-type receptor kinase required for signal transduction in the Medicago truncatula/Sinorhizobium meliloti symbiosis pathway. However, the mechanisms through which MtDMI2 participates in nodulation homeostasis are poorly understood. In this study, we identified MtPUB2-a novel plant U-box (PUB)-type E3 ligase-and showed that it interacts with MtDMI2. MtDMI2 and MtPUB2 accumulation were shown to be similar in various tissues. Roots of plants in which MtPUB2 was silenced by RNAi (MtPUB2-RNAi plants) exhibited impaired infection threads, fewer nodules, and shorter primary root lengths compared to those of control plants transformed with empty vector. Using liquid chromatography-tandem mass spectrometry, we showed that MtDMI2 phosphorylates MtPUB2 at Ser-316, Ser-421, and Thr-488 residues. When MtPUB2-RNAi plants were transformed with MtPUB2S421D , which mimics the phosphorylated state, MtDMI2 was persistently ubiquitinated and degraded by MtPUB2S421D, resulting in fewer nodules than observed in MtPUB2/MtPUB2-RNAi-complemented plants. However, MtPUB2S421A /MtPUB2-RNAi-complemented plants showed no MtPUB2 ubiquitination activity, and their nodulation phenotype was similar to that of MtPUB2-RNAi plants transformed with empty vector. Further studies demonstrated that these proteins form a negative feedback loop of the prey (MtDMI2)-predator (MtPUB2) type. Our results suggest that the MtDMI2-MtPUB2 negative feedback loop, which displays crosstalk with the long-distance autoregulation of nodulation via MtNIN, plays an important role in nodulation homeostasis.
Collapse
Affiliation(s)
- Jiaxing Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jie Deng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fugui Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zheng Lu
- University of Wyoming, Department of Atmospheric Science, Laramie, Wyoming
| | - Peibin Qin
- Shanghai AB Sciex Analytical Instrument Trading Co., Ltd., Chaoyang District, Beijing, 100015, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
33
|
Clúa J, Roda C, Zanetti ME, Blanco FA. Compatibility between Legumes and Rhizobia for the Establishment of a Successful Nitrogen-Fixing Symbiosis. Genes (Basel) 2018; 9:E125. [PMID: 29495432 PMCID: PMC5867846 DOI: 10.3390/genes9030125] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/24/2018] [Accepted: 02/08/2018] [Indexed: 12/14/2022] Open
Abstract
The root nodule symbiosis established between legumes and rhizobia is an exquisite biological interaction responsible for fixing a significant amount of nitrogen in terrestrial ecosystems. The success of this interaction depends on the recognition of the right partner by the plant within the richest microbial ecosystems on Earth, the soil. Recent metagenomic studies of the soil biome have revealed its complexity, which includes microorganisms that affect plant fitness and growth in a beneficial, harmful, or neutral manner. In this complex scenario, understanding the molecular mechanisms by which legumes recognize and discriminate rhizobia from pathogens, but also between distinct rhizobia species and strains that differ in their symbiotic performance, is a considerable challenge. In this work, we will review how plants are able to recognize and select symbiotic partners from a vast diversity of surrounding bacteria. We will also analyze recent advances that contribute to understand changes in plant gene expression associated with the outcome of the symbiotic interaction. These aspects of nitrogen-fixing symbiosis should contribute to translate the knowledge generated in basic laboratory research into biotechnological advances to improve the efficiency of the nitrogen-fixing symbiosis in agronomic systems.
Collapse
Affiliation(s)
- Joaquín Clúa
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900-La Plata, Argentina.
| | - Carla Roda
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900-La Plata, Argentina.
| | - María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900-La Plata, Argentina.
| | - Flavio A Blanco
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900-La Plata, Argentina.
| |
Collapse
|
34
|
Cai J, Zhang LY, Liu W, Tian Y, Xiong JS, Wang YH, Li RJ, Li HM, Wen J, Mysore KS, Boller T, Xie ZP, Staehelin C. Role of the Nod Factor Hydrolase MtNFH1 in Regulating Nod Factor Levels during Rhizobial Infection and in Mature Nodules of Medicago truncatula. THE PLANT CELL 2018; 30:397-414. [PMID: 29367305 PMCID: PMC5868697 DOI: 10.1105/tpc.17.00420] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/17/2017] [Accepted: 01/22/2018] [Indexed: 05/22/2023]
Abstract
Establishment of symbiosis between legumes and nitrogen-fixing rhizobia depends on bacterial Nod factors (NFs) that trigger symbiosis-related NF signaling in host plants. NFs are modified oligosaccharides of chitin with a fatty acid moiety. NFs can be cleaved and inactivated by host enzymes, such as MtNFH1 (MEDICAGO TRUNCATULA NOD FACTOR HYDROLASE1). In contrast to related chitinases, MtNFH1 hydrolyzes neither chitin nor chitin fragments, indicating a high cleavage preference for NFs. Here, we provide evidence for a role of MtNFH1 in the symbiosis with Sinorhizobium meliloti Upon rhizobial inoculation, MtNFH1 accumulated at the curled tip of root hairs, in the so-called infection chamber. Mutant analysis revealed that lack of MtNFH1 delayed rhizobial root hair infection, suggesting that excess amounts of NFs negatively affect the initiation of infection threads. MtNFH1 deficiency resulted in nodule hypertrophy and abnormal nodule branching of young nodules. Nodule branching was also stimulated in plants expressing MtNFH1 driven by a tandem CaMV 35S promoter and plants inoculated by a NF-overproducing S. meliloti strain. We suggest that fine-tuning of NF levels by MtNFH1 is necessary for optimal root hair infection as well as for NF-regulated growth of mature nodules.
Collapse
Affiliation(s)
- Jie Cai
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, China
| | - Lan-Yue Zhang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, China
| | - Wei Liu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, China
| | - Ye Tian
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, China
| | - Jin-Song Xiong
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, China
| | - Yi-Han Wang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, China
| | - Ru-Jie Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, China
| | - Hao-Ming Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, China
| | - Jiangqi Wen
- Noble Research Institute, Ardmore, Oklahoma 73401
| | | | - Thomas Boller
- Botanisches Institut der Universität Basel, Zurich-Basel Plant Science Center, 4056 Basel, Switzerland
| | - Zhi-Ping Xie
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, China
- Shenzhen Research and Development Center of State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Baoan, Shenzhen 518057, China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, China
- Shenzhen Research and Development Center of State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Baoan, Shenzhen 518057, China
| |
Collapse
|
35
|
Uhe M, Hogekamp C, Hartmann RM, Hohnjec N, Küster H. The mycorrhiza-dependent defensin MtDefMd1 of Medicago truncatula acts during the late restructuring stages of arbuscule-containing cells. PLoS One 2018; 13:e0191841. [PMID: 29370287 PMCID: PMC5784984 DOI: 10.1371/journal.pone.0191841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/11/2018] [Indexed: 12/23/2022] Open
Abstract
Different symbiotic and pathogenic plant-microbe interactions involve the production of cysteine-rich antimicrobial defensins. In Medicago truncatula, the expression of four MtDefMd genes, encoding arbuscular mycorrhiza-dependent defensins containing an N-terminal signal peptide and exhibiting some differences to non-symbiotic defensins, raised over the time of fungal colonization. Whereas the MtDefMd1 and MtDefMd2 promoters were inactive in cells containing young arbuscules, cells with fully developed arbuscules displayed different levels of promoter activities, indicating an up-regulation towards later stages of arbuscule formation. MtDefMd1 and MtDefMd2 expression was absent or strongly down-regulated in mycorrhized ram1-1 and pt4-2 mutants, known for defects in arbuscule branching or premature arbuscule degeneration, respectively. A ~97% knock-down of MtDefMd1/MtDefMd2 expression did not significantly affect arbuscule size. Although overexpression of MtDefMd1 in arbuscule-containing cells led to an up-regulation of MtRam1, encoding a key transcriptional regulator of arbuscule formation, no morphological changes were evident. Co-localization of an MtDefMd1-mGFP6 fusion with additional, subcellular markers revealed that this defensin is associated with arbuscules in later stages of their life-cycle. MtDefMd1-mGFP6 was detected in cells with older arbuscules about to collapse, and ultimately in vacuolar compartments. Comparisons with mycorrhized roots expressing a tonoplast marker indicated that MtDefMd1 acts during late restructuring processes of arbuscule-containing cells, upon their transition into a post-symbiotic state.
Collapse
Affiliation(s)
- Marian Uhe
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| | - Claudia Hogekamp
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| | - Rico M. Hartmann
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| | - Natalija Hohnjec
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| | - Helge Küster
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
36
|
Coba de la Peña T, Fedorova E, Pueyo JJ, Lucas MM. The Symbiosome: Legume and Rhizobia Co-evolution toward a Nitrogen-Fixing Organelle? FRONTIERS IN PLANT SCIENCE 2018; 8:2229. [PMID: 29403508 PMCID: PMC5786577 DOI: 10.3389/fpls.2017.02229] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/19/2017] [Indexed: 05/21/2023]
Abstract
In legume nodules, symbiosomes containing endosymbiotic rhizobial bacteria act as temporary plant organelles that are responsible for nitrogen fixation, these bacteria develop mutual metabolic dependence with the host legume. In most legumes, the rhizobia infect post-mitotic cells that have lost their ability to divide, although in some nodules cells do maintain their mitotic capacity after infection. Here, we review what is currently known about legume symbiosomes from an evolutionary and developmental perspective, and in the context of the different interactions between diazotroph bacteria and eukaryotes. As a result, it can be concluded that the symbiosome possesses organelle-like characteristics due to its metabolic behavior, the composite origin and differentiation of its membrane, the retargeting of host cell proteins, the control of microsymbiont proliferation and differentiation by the host legume, and the cytoskeletal dynamics and symbiosome segregation during the division of rhizobia-infected cells. Different degrees of symbiosome evolution can be defined, specifically in relation to rhizobial infection and to the different types of nodule. Thus, our current understanding of the symbiosome suggests that it might be considered a nitrogen-fixing link in organelle evolution and that the distinct types of legume symbiosomes could represent different evolutionary stages toward the generation of a nitrogen-fixing organelle.
Collapse
Affiliation(s)
- Teodoro Coba de la Peña
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
| | - Elena Fedorova
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Moscow, Russia
| | - José J Pueyo
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
| | | |
Collapse
|
37
|
Abstract
Many researchers have sought along the last two decades a legume species that could serve as a model system for genetic studies to resolve specific developmental or metabolic processes that cannot be studied in other model plants. Nitrogen fixation, nodulation, compound leaf, inflorescence and plant architecture, floral development, pod formation, secondary metabolite biosynthesis, and other developmental and metabolic aspects are legume-specific or show important differences with those described in Arabidopsis thaliana, the most studied model plant. Mainly Medicago truncatula and Lotus japonicus were proposed in the 1990s as model systems due to their key attributes, diploid genome, autogamous nature, short generation times, small genome sizes, and both species can be readily transformed. After more than decade-long, the genome sequences of both species are essentially complete, and a series of functional genomics tools have been successfully developed and applied. Mutagens that cause insertions or deletions are being used in these model systems because these kinds of DNA rearrangements are expected to assist in the isolation of the corresponding genes by Target-Induced Local Lesions IN Genomes (TILLING) approaches. Different M. truncatula mutants have been obtained following γ-irradiation or fast neutron bombardment (FNB), ethyl-nitrosourea (ENU) or ethyl-methanesulfonate (EMS) treatments, T-DNA and activation tagging, use of the tobacco retrotransposon Tnt1 to produce insertional mutants, gene silencing by RNAi, and transient post-transcriptional gene silencing by virus-induced gene silencing (VIGS). Emerging technologies of targeted mutagenesis and gene editing, such as the CRISPR-Cas9 system, could open a new era in this field. Functional genomics tools and phenotypic analyses of several mutants generated in M. truncatula have been essential to better understand differential aspects of legumes development and metabolism.
Collapse
Affiliation(s)
- Luis A Cañas
- CSIC-UPV, Institute for Plant Cell and Molecular Biology (IBMCP), Valencia, Spain.
| | - José Pío Beltrán
- CSIC-UPV, Institute for Plant Cell and Molecular Biology (IBMCP), Valencia, Spain
| |
Collapse
|
38
|
Development of a GAL4-VP16/UAS trans-activation system for tissue specific expression in Medicago truncatula. PLoS One 2017; 12:e0188923. [PMID: 29186192 PMCID: PMC5706680 DOI: 10.1371/journal.pone.0188923] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/15/2017] [Indexed: 11/19/2022] Open
Abstract
Promoters with tissue-specific activity are very useful to address cell-autonomous and non cell autonomous functions of candidate genes. Although this strategy is widely used in Arabidopsis thaliana, its use to study tissue-specific regulation of root symbiotic interactions in legumes has only started recently. Moreover, using tissue specific promoter activity to drive a GAL4-VP16 chimeric transcription factor that can bind short upstream activation sequences (UAS) is an efficient way to target and enhance the expression of any gene of interest. Here, we developed a collection of promoters with different root cell layers specific activities in Medicago truncatula and tested their abilities to drive the expression of a chimeric GAL4-VP16 transcription factor in a trans-activation UAS: β-Glucuronidase (GUS) reporter gene system. By developing a binary vector devoted to modular Golden Gate cloning together with a collection of adapted tissue specific promoters and coding sequences we could test the activity of four of these promoters in trans-activation GAL4/UAS systems and compare them to “classical” promoter GUS fusions. Roots showing high levels of tissue specific expression of the GUS activity could be obtained with this trans-activation system. We therefore provide the legume community with new tools for efficient modular Golden Gate cloning, tissue specific expression and a trans-activation system. This study provides the ground work for future development of stable transgenic lines in Medicago truncatula.
Collapse
|
39
|
Li H, Torres-Garcia J, Latrasse D, Benhamed M, Schilderink S, Zhou W, Kulikova O, Hirt H, Bisseling T. Plant-Specific Histone Deacetylases HDT1/2 Regulate GIBBERELLIN 2-OXIDASE2 Expression to Control Arabidopsis Root Meristem Cell Number. THE PLANT CELL 2017; 29:2183-2196. [PMID: 28855334 PMCID: PMC5635991 DOI: 10.1105/tpc.17.00366] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/20/2017] [Accepted: 08/29/2017] [Indexed: 05/02/2023]
Abstract
Root growth is modulated by environmental factors and depends on cell production in the root meristem (RM). New cells in the meristem are generated by stem cells and transit-amplifying cells, which together determine RM cell number. Transcription factors and chromatin-remodeling factors have been implicated in regulating the switch from stem cells to transit-amplifying cells. Here, we show that two Arabidopsis thaliana paralogs encoding plant-specific histone deacetylases, HDT1 and HDT2, regulate a second switch from transit-amplifying cells to expanding cells. Knockdown of HDT1/2 (hdt1,2i) results in an earlier switch and causes a reduced RM cell number. Our data show that HDT1/2 negatively regulate the acetylation level of the C19-GIBBERELLIN 2-OXIDASE2 (GA2ox2) locus and repress the expression of GA2ox2 in the RM and elongation zone. Overexpression of GA2ox2 in the RM phenocopies the hdt1,2i phenotype. Conversely, knockout of GA2ox2 partially rescues the root growth defect of hdt1,2i These results suggest that by repressing the expression of GA2ox2, HDT1/2 likely fine-tune gibberellin metabolism and they are crucial for regulating the switch from cell division to expansion to determine RM cell number. We propose that HDT1/2 function as part of a mechanism that modulates root growth in response to environmental factors.
Collapse
Affiliation(s)
- Huchen Li
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Jesus Torres-Garcia
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - David Latrasse
- Unité de Recherche en Génomique Végétale, UMR INRA 1165, Université d'Evry Val d'Essonne, ERL CNRS 8196, Saclay Plant Sciences, 91057 Evry, France
- Institut de Biologie des Plantes, CNRS-Université Paris-Sud 11, UMR 8618, 91405 Orsay cedex, France
| | - Moussa Benhamed
- Institut de Biologie des Plantes, CNRS-Université Paris-Sud 11, UMR 8618, 91405 Orsay cedex, France
- King Abdullah University of Sciences and Technology, Thuwal 23955, Saudi Arabia
| | - Stefan Schilderink
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Wenkun Zhou
- Department of Plant Sciences, Plant Developmental Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Olga Kulikova
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Heribert Hirt
- Unité de Recherche en Génomique Végétale, UMR INRA 1165, Université d'Evry Val d'Essonne, ERL CNRS 8196, Saclay Plant Sciences, 91057 Evry, France
- King Abdullah University of Sciences and Technology, Thuwal 23955, Saudi Arabia
| | - Ton Bisseling
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
40
|
Gavrin A, Kulikova O, Bisseling T, Fedorova EE. Interface Symbiotic Membrane Formation in Root Nodules of Medicago truncatula: the Role of Synaptotagmins MtSyt1, MtSyt2 and MtSyt3. FRONTIERS IN PLANT SCIENCE 2017; 8:201. [PMID: 28265280 PMCID: PMC5316549 DOI: 10.3389/fpls.2017.00201] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/02/2017] [Indexed: 05/23/2023]
Abstract
UNLABELLED Symbiotic bacteria (rhizobia) are maintained and conditioned to fix atmospheric nitrogen in infected cells of legume root nodules. Rhizobia are confined to the asymmetrical protrusions of plasma membrane (PM): infection threads (IT), cell wall-free unwalled droplets and symbiosomes. These compartments rapidly increase in surface and volume due to the microsymbiont expansion, and remarkably, the membrane resources of the host cells are targeted to interface membrane quite precisely. We hypothesized that the change in the membrane tension around the expanding microsymbionts creates a vector for membrane traffic toward the symbiotic interface. To test this hypothesis, we selected calcium sensors from the group of synaptotagmins: MtSyt1, Medicago truncatula homolog of AtSYT1 from Arabidopsis thaliana known to be involved in membrane repair, and two other homologs expressed in root nodules: MtSyt2 and MtSyt3. Here we show that MtSyt1, MtSyt2, and MtSyt3 are expressed in the expanding cells of the meristem, zone of infection and proximal cell layers of zone of nitrogen fixation (MtSyt1, MtSyt3). All three GFP-tagged proteins delineate the interface membrane of IT and unwalled droplets and create a subcompartments of PM surrounding these structures. The localization of MtSyt1 by EM immunogold labeling has shown the signal on symbiosome membrane and endoplasmic reticulum (ER). To specify the role of synaptotagmins in interface membrane formation, we compared the localization of MtSyt1, MtSyt3 and exocyst subunit EXO70i, involved in the tethering of post-Golgi secretory vesicles and operational in tip growth. The localization of EXO70i in root nodules and arbusculated roots was strictly associated with the tips of IT and the tips of arbuscular fine branches, but the distribution of synaptotagmins on membrane subcompartments was broader and includes lateral parts of IT, the membrane of unwalled droplets as well as the symbiosomes. The double silencing of synaptotagmins caused a delay in rhizobia release and blocks symbiosome maturation confirming the functional role of synaptotagmins. IN CONCLUSION synaptotagmin-dependent membrane fusion along with tip-targeted exocytosis is operational in the formation of symbiotic interface.
Collapse
Affiliation(s)
- Aleksandr Gavrin
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen UniversityWageningen, Netherlands
- Sainsbury Laboratory, University of CambridgeCambridge, UK
| | - Olga Kulikova
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen UniversityWageningen, Netherlands
| | - Ton Bisseling
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen UniversityWageningen, Netherlands
| | - Elena E. Fedorova
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen UniversityWageningen, Netherlands
| |
Collapse
|
41
|
Liu S, Yoder JI. Chemical induction of hairpin RNAi molecules to silence vital genes in plant roots. Sci Rep 2016; 6:37711. [PMID: 27898105 PMCID: PMC5127191 DOI: 10.1038/srep37711] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/02/2016] [Indexed: 11/29/2022] Open
Abstract
Understanding the functions encoded by plant genes can be facilitated by reducing transcript levels by hairpin RNA (hpRNA) mediated silencing. A bottleneck to this technology occurs when a gene encodes a phenotype that is necessary for cell viability and silencing the gene inhibits transformation. Here we compared the use of two chemically inducible plant promoter systems to drive hpRNA mediated gene silencing in transgenic, hairy roots. We cloned the gene encoding the Yellow Fluorescence Protein (YFP) into the dexamethasone inducible vector pOpOff2 and into the estradiol induced vector pER8. We then cloned a hpRNA targeting YFP under the regulation of the inducible promoters, transformed Medicago truncatula roots, and quantified YFP fluorescence and mRNA levels. YFP fluorescence was normal in pOpOff2 transformed roots without dexamethasone but was reduced with dexamethasone treatment. Interestingly, dexamethasone removal did not reverse YFP inhibition. YFP expression in roots transformed with pER8 was low even in the absence of inducer. We used the dexamethasone system to silence acetyl-CoA carboxylase gene and observed prolific root growth when this construct was transformed into Medicago until dexamethasone was applied. Our study shows that dexamethasone inducibility can be useful to silence vital genes in transgenic roots.
Collapse
Affiliation(s)
- Siming Liu
- Plant Sciences Department, University of California, Davis, CA 95616, USA
| | - John I. Yoder
- Plant Sciences Department, University of California, Davis, CA 95616, USA
| |
Collapse
|
42
|
Tworak A, Urbanowicz A, Podkowinski J, Kurzynska-Kokorniak A, Koralewska N, Figlerowicz M. Six Medicago truncatula Dicer-like protein genes are expressed in plant cells and upregulated in nodules. PLANT CELL REPORTS 2016; 35:1043-1052. [PMID: 26825594 PMCID: PMC4833791 DOI: 10.1007/s00299-016-1936-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/14/2016] [Indexed: 06/05/2023]
Abstract
Here we report the existence of six putative Dicer-like genes in the Medicago truncatula genome. They are ubiquitously expressed throughout the plant and significantly induced in root nodules. Over the past decade, small noncoding RNAs (sncRNA) have emerged as widespread and important regulatory molecules influencing both the structure and expression of plant genomes. One of the key factors involved in sncRNA biogenesis in plants is a group of RNase III-type nucleases known as Dicer-like (DCL) proteins. Based on functional analysis of DCL proteins identified in Arabidopsis thaliana, four types of DCLs were distinguished (DCL1-4). DCL1 mainly produces 21 nt miRNAs. The products generated by DCL2, DCL3, and DCL4 belong to various classes of siRNAs that are 22, 24 and 21 nt in length, respectively. M. truncatula is a model legume plant closely related to many economically important cultivable species. By screening the recent M. truncatula genome assembly, we were able to identify three new DCL genes in addition to the MtDCL1-3 genes that had been earlier characterized. The newly found genes include MtDCL4 and two MtDCL2 homologs. We showed that all six M. truncatula DCL genes are expressed in plant cells. The first of the identified MtDCL2 paralogs encodes a truncated version of the DCL2 protein, while the second undergoes substantial and specific upregulation in the root nodules. Additionally, we identified an alternative splicing variant of MtDCL1 mRNA, similar to the one found in Arabidopsis. Our results indicate that DCL genes are differently activated during Medicago symbiosis with nitrogen fixing bacteria and upon pathogen infection. In addition, we hypothesize that the alternative splicing variant of MtDCL1 mRNA may be involved in tissue-specific regulation of the DCL1 level.
Collapse
Affiliation(s)
- Aleksander Tworak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Anna Urbanowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Jan Podkowinski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Anna Kurzynska-Kokorniak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Natalia Koralewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland.
| |
Collapse
|
43
|
Vernié T, Camut S, Camps C, Rembliere C, de Carvalho-Niebel F, Mbengue M, Timmers T, Gasciolli V, Thompson R, le Signor C, Lefebvre B, Cullimore J, Hervé C. PUB1 Interacts with the Receptor Kinase DMI2 and Negatively Regulates Rhizobial and Arbuscular Mycorrhizal Symbioses through Its Ubiquitination Activity in Medicago truncatula. PLANT PHYSIOLOGY 2016; 170:2312-24. [PMID: 26839127 PMCID: PMC4825150 DOI: 10.1104/pp.15.01694] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/30/2016] [Indexed: 05/21/2023]
Abstract
PUB1, an E3 ubiquitin ligase, which interacts with and is phosphorylated by the LYK3 symbiotic receptor kinase, negatively regulates rhizobial infection and nodulation during the nitrogen-fixing root nodule symbiosis in Medicago truncatula In this study, we show that PUB1 also interacts with and is phosphorylated by DOES NOT MAKE INFECTIONS 2, the key symbiotic receptor kinase of the common symbiosis signaling pathway, required for both the rhizobial and the arbuscular mycorrhizal (AM) endosymbioses. We also show here that PUB1 expression is activated during successive stages of root colonization by Rhizophagus irregularis that is compatible with its interaction with DOES NOT MAKE INFECTIONS 2. Through characterization of a mutant, pub1-1, affected by the E3 ubiquitin ligase activity of PUB1, we have shown that the ubiquitination activity of PUB1 is required to negatively modulate successive stages of infection and development of rhizobial and AM symbioses. In conclusion, PUB1 represents, to our knowledge, a novel common component of symbiotic signaling integrating signal perception through interaction with and phosphorylation by two key symbiotic receptor kinases, and downstream signaling via its ubiquitination activity to fine-tune both rhizobial and AM root endosymbioses.
Collapse
Affiliation(s)
- Tatiana Vernié
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Sylvie Camut
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Céline Camps
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Céline Rembliere
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Fernanda de Carvalho-Niebel
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Malick Mbengue
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Ton Timmers
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Virginie Gasciolli
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Richard Thompson
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Christine le Signor
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Benoit Lefebvre
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Julie Cullimore
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Christine Hervé
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| |
Collapse
|
44
|
Volpe V, Giovannetti M, Sun XG, Fiorilli V, Bonfante P. The phosphate transporters LjPT4 and MtPT4 mediate early root responses to phosphate status in non mycorrhizal roots. PLANT, CELL & ENVIRONMENT 2016; 39:660-71. [PMID: 26476189 DOI: 10.1111/pce.12659] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 05/23/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis improves host plant phosphorous (P) status and elicits the expression of AM-inducible phosphate transporters (PTs) in arbuscule-containing cells, where they control arbuscule morphogenesis and P release. We confirmed such functions for LjPT4 in mycorrhizal Lotus japonicus. Promoter-GUS experiments showed LjPT4 transcription not only in arbusculated cells but also in root tips, in the absence of the fungus: here LjPT4 transcription profile depended on the phosphate level. In addition, quantitative RT-PCR confirmed the expression of Lotus and Medicago truncatula PT4 in the tips of non-mycorrhizal roots. Starting from these observations, we hypothesized that AM-inducible PTs may have a regulatory role in plant development, irrespective of the fungal presence. Firstly, we focused on root development responses to different phosphate treatments in both plants demonstrating that phosphate starvation induced a higher number of lateral roots. By contrast, Lotus PT4i plants and Medicago mtpt4 mutants did not show any differential response to phosphate levels, suggesting that PT4 genes affect early root branching. Phosphate starvation-induced genes and a key auxin receptor, MtTIR1, showed an impaired expression in mtpt4 plants. We suggest PT4 genes as novel components of the P-sensing machinery at the root tip level, independently of AM fungi.
Collapse
Affiliation(s)
- Veronica Volpe
- Department of Life Science and Systems Biology, University of Turin, Viale Mattioli 25, I-10125, Torino, Italy
| | - Marco Giovannetti
- Department of Life Science and Systems Biology, University of Turin, Viale Mattioli 25, I-10125, Torino, Italy
| | - Xue-Guang Sun
- Department of Life Science and Systems Biology, University of Turin, Viale Mattioli 25, I-10125, Torino, Italy
| | - Valentina Fiorilli
- Department of Life Science and Systems Biology, University of Turin, Viale Mattioli 25, I-10125, Torino, Italy
| | - Paola Bonfante
- Department of Life Science and Systems Biology, University of Turin, Viale Mattioli 25, I-10125, Torino, Italy
| |
Collapse
|
45
|
Geddes BA, Oresnik IJ. The Mechanism of Symbiotic Nitrogen Fixation. ADVANCES IN ENVIRONMENTAL MICROBIOLOGY 2016. [DOI: 10.1007/978-3-319-28068-4_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Park HJ, Floss DS, Levesque-Tremblay V, Bravo A, Harrison MJ. Hyphal Branching during Arbuscule Development Requires Reduced Arbuscular Mycorrhiza1. PLANT PHYSIOLOGY 2015; 169:2774-88. [PMID: 26511916 PMCID: PMC4677905 DOI: 10.1104/pp.15.01155] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/28/2015] [Indexed: 05/04/2023]
Abstract
During arbuscular mycorrhizal symbiosis, arbuscule development in the root cortical cell and simultaneous deposition of the plant periarbuscular membrane generate the interface for symbiotic nutrient exchange. The transcriptional changes that accompany arbuscule development are extensive and well documented. By contrast, the transcriptional regulators that control these programs are largely unknown. Here, we provide a detailed characterization of an insertion allele of Medicago truncatula Reduced Arbuscular Mycorrhiza1 (RAM1), ram1-3, which reveals that RAM1 is not necessary to enable hyphopodium formation or hyphal entry into the root but is essential to support arbuscule branching. In ram1-3, arbuscules consist only of the arbuscule trunk and in some cases, a few initial thick hyphal branches. ram1-3 is also insensitive to phosphate-mediated regulation of the symbiosis. Transcript analysis of ram1-3 and ectopic expression of RAM1 indicate that RAM1 regulates expression of EXO70I and Stunted Arbuscule, two genes whose loss of function impacts arbuscule branching. Furthermore, RAM1 regulates expression of a transcription factor Required for Arbuscule Development (RAD1). RAD1 is also required for arbuscular mycorrhizal symbiosis, and rad1 mutants show reduced colonization. RAM1 itself is induced in colonized root cortical cells, and expression of RAM1 and RAD1 is modulated by DELLAs. Thus, the data suggest that DELLAs regulate arbuscule development through modulation of RAM1 and RAD1 and that the precise transcriptional control essential to place proteins in the periarbuscular membrane is controlled, at least in part, by RAM1.
Collapse
Affiliation(s)
- Hee-Jin Park
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Daniela S Floss
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | | | - Armando Bravo
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Maria J Harrison
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| |
Collapse
|
47
|
Cui G, Duan L, Jin B, Qian J, Xue Z, Shen G, Snyder JH, Song J, Chen S, Huang L, Peters RJ, Qi X. Functional Divergence of Diterpene Syntheses in the Medicinal Plant Salvia miltiorrhiza. PLANT PHYSIOLOGY 2015; 169:1607-18. [PMID: 26077765 PMCID: PMC4634056 DOI: 10.1104/pp.15.00695] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/10/2015] [Indexed: 05/18/2023]
Abstract
The medicinal plant Salvia miltiorrhiza produces various tanshinone diterpenoids that have pharmacological activities such as vasorelaxation against ischemia reperfusion injury and antiarrhythmic effects. Their biosynthesis is initiated from the general diterpenoid precursor (E,E,E)-geranylgeranyl diphosphate by sequential reactions catalyzed by copalyl diphosphate synthase (CPS) and kaurene synthase-like cyclases. Here, we report characterization of these enzymatic families from S. miltiorrhiza, which has led to the identification of unique pathways, including roles for separate CPSs in tanshinone production in roots versus aerial tissues (SmCPS1 and SmCPS2, respectively) as well as the unique production of ent-13-epi-manoyl oxide by SmCPS4 and S. miltiorrhiza kaurene synthase-like2 in floral sepals. The conserved SmCPS5 is involved in gibberellin plant hormone biosynthesis. Down-regulation of SmCPS1 by RNA interference resulted in substantial reduction of tanshinones, and metabolomics analysis revealed 21 potential intermediates, indicating a complex network for tanshinone metabolism defined by certain key biosynthetic steps. Notably, the correlation between conservation pattern and stereochemical product outcome of the CPSs observed here suggests a degree of correlation that, especially when combined with the identity of certain key residues, may be predictive. Accordingly, this study provides molecular insights into the evolutionary diversification of functional diterpenoids in plants.
Collapse
Affiliation(s)
- Guanghong Cui
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (G.C., L.D., Z.X., G.S., J.H.S., X.Q.);State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (G.C., B.J., L.H.);Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China (J.Q., J.S., S.C.); andDepartment of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011 (R.J.P.)
| | - Lixin Duan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (G.C., L.D., Z.X., G.S., J.H.S., X.Q.);State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (G.C., B.J., L.H.);Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China (J.Q., J.S., S.C.); andDepartment of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011 (R.J.P.)
| | - Baolong Jin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (G.C., L.D., Z.X., G.S., J.H.S., X.Q.);State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (G.C., B.J., L.H.);Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China (J.Q., J.S., S.C.); andDepartment of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011 (R.J.P.)
| | - Jun Qian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (G.C., L.D., Z.X., G.S., J.H.S., X.Q.);State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (G.C., B.J., L.H.);Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China (J.Q., J.S., S.C.); andDepartment of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011 (R.J.P.)
| | - Zheyong Xue
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (G.C., L.D., Z.X., G.S., J.H.S., X.Q.);State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (G.C., B.J., L.H.);Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China (J.Q., J.S., S.C.); andDepartment of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011 (R.J.P.)
| | - Guoan Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (G.C., L.D., Z.X., G.S., J.H.S., X.Q.);State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (G.C., B.J., L.H.);Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China (J.Q., J.S., S.C.); andDepartment of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011 (R.J.P.)
| | - John Hugh Snyder
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (G.C., L.D., Z.X., G.S., J.H.S., X.Q.);State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (G.C., B.J., L.H.);Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China (J.Q., J.S., S.C.); andDepartment of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011 (R.J.P.)
| | - Jingyuan Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (G.C., L.D., Z.X., G.S., J.H.S., X.Q.);State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (G.C., B.J., L.H.);Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China (J.Q., J.S., S.C.); andDepartment of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011 (R.J.P.)
| | - Shilin Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (G.C., L.D., Z.X., G.S., J.H.S., X.Q.);State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (G.C., B.J., L.H.);Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China (J.Q., J.S., S.C.); andDepartment of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011 (R.J.P.)
| | - Luqi Huang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (G.C., L.D., Z.X., G.S., J.H.S., X.Q.);State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (G.C., B.J., L.H.);Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China (J.Q., J.S., S.C.); andDepartment of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011 (R.J.P.)
| | - Reuben J Peters
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (G.C., L.D., Z.X., G.S., J.H.S., X.Q.);State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (G.C., B.J., L.H.);Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China (J.Q., J.S., S.C.); andDepartment of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011 (R.J.P.)
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (G.C., L.D., Z.X., G.S., J.H.S., X.Q.);State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (G.C., B.J., L.H.);Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China (J.Q., J.S., S.C.); andDepartment of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011 (R.J.P.)
| |
Collapse
|
48
|
van Zeijl A, Liu W, Xiao TT, Kohlen W, Yang WC, Bisseling T, Geurts R. The strigolactone biosynthesis gene DWARF27 is co-opted in rhizobium symbiosis. BMC PLANT BIOLOGY 2015; 15:260. [PMID: 26503135 PMCID: PMC4624177 DOI: 10.1186/s12870-015-0651-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 10/21/2015] [Indexed: 05/06/2023]
Abstract
BACKGROUND Strigolactones are a class of plant hormones whose biosynthesis is activated in response to phosphate starvation. This involves several enzymes, including the carotenoid cleavage dioxygenases 7 (CCD7) and CCD8 and the carotenoid isomerase DWARF27 (D27). D27 expression is known to be responsive to phosphate starvation. In Medicago truncatula and rice (Oryza sativa) this transcriptional response requires the GRAS-type proteins NSP1 and NSP2; both proteins are essential for rhizobium induced root nodule formation in legumes. In line with this, we questioned whether MtNSP1-MtNSP2 dependent MtD27 regulation is co-opted in rhizobium symbiosis. RESULTS We provide evidence that MtD27 is involved in strigolactone biosynthesis in M. truncatula roots upon phosphate stress. Spatiotemporal expression studies revealed that this gene is also highly expressed in nodule primordia and subsequently becomes restricted to the meristem and distal infection zone of a mature nodules. A similar expression pattern was found for MtCCD7 and MtCCD8. Rhizobium lipo-chitooligosaccharide (LCO) application experiments revealed that of these genes MtD27 is most responsive in an MtNSP1 and MtNSP2 dependent manner. Symbiotic expression of MtD27 requires components of the symbiosis signaling pathway; including MtDMI1, MtDMI2, MtDMI3/MtCCaMK and in part MtERN1. This in contrast to MtD27 expression upon phosphate starvation, which only requires MtNSP1 and MtNSP2. CONCLUSION Our data show that the phosphate-starvation responsive strigolactone biosynthesis gene MtD27 is also rapidly induced by rhizobium LCO signals in an MtNSP1 and MtNSP2-dependent manner. Additionally, we show that MtD27 is co-expressed with MtCCD7 and MtCCD8 in nodule primordia and in the infection zone of mature nodules.
Collapse
Affiliation(s)
- Arjan van Zeijl
- Department of Plant Science, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Wei Liu
- Department of Plant Science, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ting Ting Xiao
- Department of Plant Science, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Wouter Kohlen
- Department of Plant Science, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Wei-Cai Yang
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ton Bisseling
- Department of Plant Science, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - René Geurts
- Department of Plant Science, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
49
|
Gobbato E. Recent developments in arbuscular mycorrhizal signaling. CURRENT OPINION IN PLANT BIOLOGY 2015; 26:1-7. [PMID: 26043435 DOI: 10.1016/j.pbi.2015.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/28/2015] [Accepted: 05/11/2015] [Indexed: 05/03/2023]
Abstract
Plants can establish root endosymbioses with both arbuscular mycorrhizal fungi and rhizobial bacteria to improve their nutrition. Our understanding of the molecular events underlying the establishment of these symbioses has significantly advanced in the last few years. Here I highlight major recent findings in the field of endosymbiosis signaling. Despite the identification of new signaling components and the definition, or in some cases better re-definition of the molecular functions of previously known players, major questions still remain that need to be addressed. Most notably the mechanisms defining signaling specificities within either symbiosis remain unclear.
Collapse
Affiliation(s)
- Enrico Gobbato
- Department of Plant Science, University of Cambridge, CB2 3EA Cambridge, United Kingdom.
| |
Collapse
|
50
|
van Zeijl A, Op den Camp RHM, Deinum EE, Charnikhova T, Franssen H, Op den Camp HJM, Bouwmeester H, Kohlen W, Bisseling T, Geurts R. Rhizobium Lipo-chitooligosaccharide Signaling Triggers Accumulation of Cytokinins in Medicago truncatula Roots. MOLECULAR PLANT 2015; 8:1213-26. [PMID: 25804975 DOI: 10.1016/j.molp.2015.03.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/12/2015] [Accepted: 03/15/2015] [Indexed: 05/20/2023]
Abstract
Legume rhizobium symbiosis is initiated upon perception of bacterial secreted lipo-chitooligosaccharides (LCOs). Perception of these signals by the plant initiates a signaling cascade that leads to nodule formation. Several studies have implicated a function for cytokinin in this process. However, whether cytokinin accumulation and subsequent signaling are an integral part of rhizobium LCO signaling remains elusive. Here, we show that cytokinin signaling is required for the majority of transcriptional changes induced by rhizobium LCOs. In addition, we demonstrate that several cytokinins accumulate in the root susceptible zone 3 h after rhizobium LCO application, including the biologically most active cytokinins, trans-zeatin and isopentenyl adenine. These responses are dependent on calcium- and calmodulin-dependent protein kinase (CCaMK), a key protein in rhizobial LCO-induced signaling. Analysis of the ethylene-insensitive Mtein2/Mtsickle mutant showed that LCO-induced cytokinin accumulation is negatively regulated by ethylene. Together with transcriptional induction of ethylene biosynthesis genes, it suggests a feedback loop negatively regulating LCO signaling and subsequent cytokinin accumulation. We argue that cytokinin accumulation is a key step in the pathway leading to nodule organogenesis and that this is tightly controlled by feedback loops.
Collapse
Affiliation(s)
- Arjan van Zeijl
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Rik H M Op den Camp
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Eva E Deinum
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Department of Systems Biophysics, FOM institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Tatsiana Charnikhova
- Department of Plant Sciences, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Henk Franssen
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Harro Bouwmeester
- Department of Plant Sciences, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Wouter Kohlen
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ton Bisseling
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; College of Science, King Saud University, Post Office Box 2455, Riyadh 11451, Saudi Arabia
| | - René Geurts
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|