1
|
Ciaunica A, Levin M, Rosas FE, Friston K. Nested Selves: Self-Organization and Shared Markov Blankets in Prenatal Development in Humans. Top Cogn Sci 2023. [PMID: 38158882 DOI: 10.1111/tops.12717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
The immune system is a central component of organismic function in humans. This paper addresses self-organization of biological systems in relation to-and nested within-other biological systems in pregnancy. Pregnancy constitutes a fundamental state for human embodiment and a key step in the evolution and conservation of our species. While not all humans can be pregnant, our initial state of emerging and growing within another person's body is universal. Hence, the pregnant state does not concern some individuals but all individuals. Indeed, the hierarchical relationship in pregnancy reflects an even earlier autopoietic process in the embryo by which the number of individuals in a single blastoderm is dynamically determined by cell- interactions. The relationship and the interactions between the two self-organizing systems during pregnancy may play a pivotal role in understanding the nature of biological self-organization per se in humans. Specifically, we consider the role of the immune system in biological self-organization in addition to neural/brain systems that furnish us with a sense of self. We examine the complex case of pregnancy, whereby two immune systems need to negotiate the exchange of resources and information in order to maintain viable self-regulation of nested systems. We conclude with a proposal for the mechanisms-that scaffold the complex relationship between two self-organising systems in pregnancy-through the lens of the Active Inference, with a focus on shared Markov blankets.
Collapse
Affiliation(s)
- Anna Ciaunica
- Centre for Philosophy of Science (CFCUL), University of Lisbon
- Institute of Cognitive Neuroscience, University College London
| | - Michael Levin
- Department of Biology and Allen Discovery Center, Tufts University
| | - Fernando E Rosas
- Department of Informatics, University of Sussex
- Centre for Complexity Science, Imperial College London
- Department of Brain Sciences, Imperial College London
- Centre for Eudaimonia and Human Flourishing, University of Oxford
| | - Karl Friston
- Welcome Centre for Human Neuroimaging, University College London
- VERSES AI Research Lab
| |
Collapse
|
2
|
Qu Z, Liu MB, Olcese R, Karagueuzian H, Garfinkel A, Chen PS, Weiss JN. R-on-T and the initiation of reentry revisited: Integrating old and new concepts. Heart Rhythm 2022; 19:1369-1383. [PMID: 35364332 PMCID: PMC11334931 DOI: 10.1016/j.hrthm.2022.03.1224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 12/29/2022]
Abstract
Initiation of reentry requires 2 factors: (1) a triggering event, most commonly focal excitations such as premature ventricular complexes (PVCs); and (2) a vulnerable substrate with regional dispersion of refractoriness and/or excitability, such as occurs during the T wave of the electrocardiogram when some areas of the ventricle have repolarized and recovered excitability but others have not. When the R wave of a PVC coincides in time with the T wave of the previous beat, this timing can lead to unidirectional block and initiation of reentry, known as the R-on-T phenomenon. Classically, the PVC triggering reentry has been viewed as arising focally from 1 region and propagating into another region whose recovery is delayed, resulting in unidirectional conduction block and reentry initiation. However, more recent evidence indicates that PVCs also can arise from the T wave itself. In the latter case, the PVC initiating reentry is not a separate event from the T wave but rather is causally generated from the repolarization gradient that manifests as the T wave. We call the former an "R-to-T" mechanism and the latter an "R-from-T" mechanism, which are initiation mechanisms distinct from each other. Both are important components of the R-on-T phenomenon and need to be taken into account when designing antiarrhythmic strategies. Strategies targeting suppression of triggers alone or vulnerable substrate alone may be appropriate in some instances but not in others. Preventing R-from-T arrhythmias requires suppressing the underlying dynamic tissue instabilities responsible for producing both triggers and substrate vulnerability simultaneously. The same principles are likely to apply to supraventricular arrhythmias.
Collapse
Affiliation(s)
- Zhilin Qu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, California.
| | - Michael B Liu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Riccardo Olcese
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Hrayr Karagueuzian
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Alan Garfinkel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Integrative Biology and Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Peng-Sheng Chen
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - James N Weiss
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
3
|
Zhang Z, Qu Z. Life and death saddles in the heart. Phys Rev E 2021; 103:062406. [PMID: 34271754 PMCID: PMC10066710 DOI: 10.1103/physreve.103.062406] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/25/2021] [Indexed: 11/07/2022]
Abstract
Saddle points are responsible for threshold phenomena of many biological systems. In the heart, saddle points determine the normal excitability and conduction, but are also responsible for certain abnormal action potential behaviors associated with lethal arrhythmias. We investigate the dynamical mechanisms for the genesis of lethal extra heartbeats in heterogeneous cardiac tissue under two diseased conditions. For both conditions, the lethal events occur when the system is close to the saddle point, implying the pivotal role of the saddle point in cardiac arrhythmogenesis.
Collapse
Affiliation(s)
- Zhaoyang Zhang
- Department of Medicine, University of California, Los Angeles, California 90095, USA
| | - Zhilin Qu
- Department of Medicine, University of California, Los Angeles, California 90095, USA.,Department of Computational Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
4
|
Stochastic initiation and termination of calcium-mediated triggered activity in cardiac myocytes. Proc Natl Acad Sci U S A 2017; 114:E270-E279. [PMID: 28049836 DOI: 10.1073/pnas.1614051114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cardiac myocytes normally initiate action potentials in response to a current stimulus that depolarizes the membrane above an excitation threshold. Aberrant excitation can also occur due to spontaneous calcium (Ca2+) release (SCR) from intracellular stores after the end of a preceding action potential. SCR drives the Na+/Ca2+ exchange current inducing a "delayed afterdepolarization" that can in turn trigger an action potential if the excitation threshold is reached. This "triggered activity" is known to cause arrhythmias, but how it is initiated and terminated is not understood. Using computer simulations of a ventricular myocyte model, we show that initiation and termination are inherently random events. We determine the probability of those events from statistical measurements of the number of beats before initiation and before termination, respectively, which follow geometric distributions. Moreover, we elucidate the origin of randomness by a statistical analysis of SCR events, which do not follow a Poisson process observed in other eukaryotic cells. Due to synchronization of Ca2+ releases during the action potential upstroke, waiting times of SCR events after the upstroke are narrowly distributed, whereas SCR amplitudes follow a broad normal distribution with a width determined by fluctuations in the number of independent Ca2+ wave foci. This distribution enables us to compute the probabilities of initiation and termination of bursts of triggered activity that are maintained by a positive feedback between the action potential upstroke and SCR. Our results establish a theoretical framework for interpreting complex and varied manifestations of triggered activity relevant to cardiac arrhythmias.
Collapse
|
5
|
Sevilla-Escoboza R, Pisarchik AN, Jaimes-Reátegui R, Huerta-Cuellar G. Selective monostability in multi-stable systems. Proc Math Phys Eng Sci 2015. [DOI: 10.1098/rspa.2015.0005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We propose a robust method that allows a periodic or a chaotic multi-stable system to be transformed to a monostable system at an orbit with dominant frequency of any of the coexisting attractors. Our approach implies the selection of a particular attractor by periodic external modulation with frequency close to the dominant frequency in the power spectrum of a desired orbit and simultaneous annihilation of all other coexisting states by positive feedback, both applied to one of the system parameters. The method does not require any preliminary knowledge of the system dynamics and the phase space structure. The efficiency of the method is demonstrated in both a non-autonomous multi-stable laser with coexisting periodic orbits and an autonomous Rössler-like oscillator with coexisting chaotic attractors. The experiments with an erbium-doped fibre laser provide evidence for the robustness of the proposed method in making the system monostable at an orbit with dominant frequency of any preselected attractor.
Collapse
Affiliation(s)
- R. Sevilla-Escoboza
- Centro Universitario de Los Lagos, Universidad de Guadalajara, Lagos de Moreno, Jalisco 47460, Mexico
| | - A. N. Pisarchik
- Centro de Investigaciones en Optica, Loma del Bosque 115, Lomas del Campestre, 37150 Leon, Guanajuato, Mexico
- Center for Biomedical Technology, Technical University of Madrid, Campus Montegancedo, 28223 Pozuelo de Alarcon, Madrid, Spain
| | - R. Jaimes-Reátegui
- Centro Universitario de Los Lagos, Universidad de Guadalajara, Lagos de Moreno, Jalisco 47460, Mexico
| | - G. Huerta-Cuellar
- Centro Universitario de Los Lagos, Universidad de Guadalajara, Lagos de Moreno, Jalisco 47460, Mexico
| |
Collapse
|
6
|
Bates ORJ, Suki B, Spector PS, Bates JHT. Structural defects lead to dynamic entrapment in cardiac electrophysiology. PLoS One 2015; 10:e0119535. [PMID: 25756656 PMCID: PMC4354910 DOI: 10.1371/journal.pone.0119535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/24/2015] [Indexed: 11/18/2022] Open
Abstract
Biological networks are typically comprised of many parts whose interactions are governed by nonlinear dynamics. This potentially imbues them with the ability to support multiple attractors, and therefore to exhibit correspondingly distinct patterns of behavior. In particular, multiple attractors have been demonstrated for the electrical activity of the diseased heart in situations where cardioversion is able to convert a reentrant arrhythmia to a stable normal rhythm. Healthy hearts, however, are typically resilient to abnormal rhythms. This raises the question as to how a healthy cardiac cell network must be altered so that it can support multiple distinct behaviors. Here we demonstrate how anatomic defects can give rise to multi-stability in the heart as a function of the electrophysiological properties of the cardiac tissue and the timing of activation of ectopic foci. This leads to a form of hysteretic behavior, which we call dynamic entrapment, whereby the heart can become trapped in aberrant attractor as a result of a transient change in tissue properties. We show that this can lead to a highly inconsistent relationship between clinical symptoms and underlying pathophysiology, which raises the possibility that dynamic entrapment may underlie other forms of chronic idiopathic illness.
Collapse
Affiliation(s)
- Oliver R. J. Bates
- Boston University College of Engineering, 44 Cummington Mall, Boston, Massachusetts, 02215, United States of America
| | - Bela Suki
- Boston University College of Engineering, 44 Cummington Mall, Boston, Massachusetts, 02215, United States of America
| | - Peter S. Spector
- University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont, 05405, United States of America
| | - Jason H. T. Bates
- University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont, 05405, United States of America
- * E-mail:
| |
Collapse
|
7
|
Abstract
In a normal human life span, the heart beats about 2 to 3 billion times. Under diseased conditions, a heart may lose its normal rhythm and degenerate suddenly into much faster and irregular rhythms, called arrhythmias, which may lead to sudden death. The transition from a normal rhythm to an arrhythmia is a transition from regular electrical wave conduction to irregular or turbulent wave conduction in the heart, and thus this medical problem is also a problem of physics and mathematics. In the last century, clinical, experimental, and theoretical studies have shown that dynamical theories play fundamental roles in understanding the mechanisms of the genesis of the normal heart rhythm as well as lethal arrhythmias. In this article, we summarize in detail the nonlinear and stochastic dynamics occurring in the heart and their links to normal cardiac functions and arrhythmias, providing a holistic view through integrating dynamics from the molecular (microscopic) scale, to the organelle (mesoscopic) scale, to the cellular, tissue, and organ (macroscopic) scales. We discuss what existing problems and challenges are waiting to be solved and how multi-scale mathematical modeling and nonlinear dynamics may be helpful for solving these problems.
Collapse
Affiliation(s)
- Zhilin Qu
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
- Correspondence to: Zhilin Qu, PhD, Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, A2-237 CHS, 650 Charles E. Young Drive South, Los Angeles, CA 90095, Tel: 310-794-6050, Fax: 310-206-9133,
| | - Gang Hu
- Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Alan Garfinkel
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California 90095, USA
| | - James N. Weiss
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
8
|
Kotolupov VA, Isaeva VV. Cells in the system of multicelular organism from positions of non-linear dynamics. J EVOL BIOCHEM PHYS+ 2013. [DOI: 10.1134/s0022093013020175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
de Lange E, Xie Y, Qu Z. Synchronization of early afterdepolarizations and arrhythmogenesis in heterogeneous cardiac tissue models. Biophys J 2012; 103:365-73. [PMID: 22853915 DOI: 10.1016/j.bpj.2012.06.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 02/05/2023] Open
Abstract
Early afterdepolarizations (EADs) are linked to both triggered arrhythmias and reentrant arrhythmias by causing premature ventricular complexes (PVCs), focal excitations, or heterogeneous tissue substrates for reentry formation. However, a critical number of cells that synchronously exhibit EADs are needed to result in arrhythmia triggers and substrates in tissue. In this study, we use mathematical modeling and computer simulations to investigate EAD synchronization and arrhythmia induction in tissue models with random cell-to-cell variations. Our major observations are as follows. Random cell-to-cell variations in action potential duration without EAD presence do not cause large dispersion of refractoriness in well-coupled tissue. In the presence of phase-2 EADs, the cells may synchronously exhibit the same number of EADs or no EADs with a very small dispersion of refractoriness, or synchronize regionally to result in large dispersion of refractoriness. In the presence of phase-3 EADs, regional synchronization leads to propagating EADs, forming PVCs in tissue. Interestingly, even though the uncoupled cells exhibit either no EAD or only a single EAD, when these cells are coupled to form a tissue, more than one PVC can occur. When the PVCs occur at different locations and time, multifocal arrhythmias are triggered, with the foci shifting in space and time in an irregular manner. The focal arrhythmias either spontaneously terminate or degenerate into reentrant arrhythmias due to heterogeneities and spatiotemporal chaotic dynamics of the foci.
Collapse
Affiliation(s)
- Enno de Lange
- Cardiovascular Research Laboratory, Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California, USA.
| | | | | |
Collapse
|
10
|
|
11
|
Buchner T, Pietkun J, Kuklik P. Complex activity patterns in arterial wall: results from a model of calcium dynamics. Comput Biol Med 2011; 42:267-75. [PMID: 22204868 DOI: 10.1016/j.compbiomed.2011.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 11/24/2011] [Accepted: 12/01/2011] [Indexed: 11/17/2022]
Abstract
Using a dynamical model of smooth muscle cells in an arterial wall, defined as a system of coupled five-dimensional nonlinear oscillators, on a grid with cylindrical symmetry, we compare the admissible activity patterns with those known from the heart tissue. We postulate on numerical basis the possibility to induce a stable spiral wave in the arterial wall. Such a spiral wave can inhibit the propagation of the axial calcium wave and effectively stop the vasomotion. We also discuss the dynamics of the circumferential calcium wave in comparison to rotors in venous ostia that are a common source of supraventricular ectopy. We show that the velocity and in consequence the frequency range of the circumferential calcium wave is by orders of magnitude too small compared to that of the rotors. The mechanism of the rotor is not likely to involve the calcium-related dynamics of the smooth muscle cells. The calcium-related dynamics which is voltage-independent and hard to be reset seems to actually protect the blood vessels against the electric activity of the atria. We also discuss the microreentry phenomenon, which was found in numerical experiments in the studied model.
Collapse
Affiliation(s)
- Teodor Buchner
- Physics of Complex Systems Division, Faculty of Physics, Warsaw University of Technology, ul Koszykowa 75, 00-662 Warsaw, Poland.
| | | | | |
Collapse
|
12
|
Qu Z. Chaos in the genesis and maintenance of cardiac arrhythmias. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 105:247-57. [PMID: 21078337 DOI: 10.1016/j.pbiomolbio.2010.11.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 07/04/2010] [Accepted: 11/05/2010] [Indexed: 11/18/2022]
Abstract
Dynamical chaos, an irregular behavior of deterministic systems, has been widely shown in nature. It also has been demonstrated in cardiac myocytes in many studies, including rapid pacing-induced irregular beat-to-beat action potential alterations and slow pacing-induced irregular early afterdepolarizations, etc. Here we review the roles of chaos in the genesis of cardiac arrhythmias, the transition to ventricular fibrillation, and the spontaneous termination of fibrillation, based on evidence from computer simulation of mathematical models and experiments of animal models.
Collapse
Affiliation(s)
- Zhilin Qu
- Department of Medicine (Cardiology), David Geffen School of Medicine at University of California, 650 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
| |
Collapse
|
13
|
Surovyatkina E, Noble D, Gavaghan D, Sher A. Multistability property in cardiac ionic models of mammalian and human ventricular cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 103:131-41. [PMID: 20153355 DOI: 10.1016/j.pbiomolbio.2010.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 01/15/2010] [Indexed: 11/16/2022]
Abstract
The underlying mechanisms of irregular cardiac rhythms are still poorly understood. Many experimental and modeling studies are aimed at identifying factors which cause cardiac arrhythmias. However, a lack of understanding of heart rhythm dynamical properties makes it difficult to uncover precise mechanisms of electrical instabilities, and hence to predict the onset of heart rhythm disorders. We review and compare the existing methods of studying cardiac dynamics, including restitution protocol (S1-S2), dynamic restitution protocol and multistability test protocol (S1-CI-S2). We focus on cardiac cell dynamics to elucidate regularities of heart rhythm. We demonstrate the advantages of our newly proposed systematic approach of analysis of cardiac cell dynamics using mammalian Luo Rudy 1991 and human ventricular Ten Tusscher 2006 single cell models under healthy and diseased conditions such as altered K(+) or Ca(2+) related currents. We investigate the role of ionic properties and the shape of an action potential on the nonlinear dynamics of electrical processes in periodically stimulated cardiac cells. We show the existence of multistability property for human ventricular cells. Moreover, the multistability is proposed to be an intrinsic property of cardiac cells, and is also suggested to be one of the mechanisms which could underlie the sudden triggering of life-threatening ventricular arrhythmias in the human heart.
Collapse
Affiliation(s)
- Elena Surovyatkina
- Space Dynamics and Data Analysis Department, Space Research Institute, Russian Academy of Sciences, Moscow 117997, Russia.
| | | | | | | |
Collapse
|
14
|
Synchronization of chaotic early afterdepolarizations in the genesis of cardiac arrhythmias. Proc Natl Acad Sci U S A 2009; 106:2983-8. [PMID: 19218447 DOI: 10.1073/pnas.0809148106] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The synchronization of coupled oscillators plays an important role in many biological systems, including the heart. In heart diseases, cardiac myocytes can exhibit abnormal electrical oscillations, such as early afterdepolarizations (EADs), which are associated with lethal arrhythmias. A key unanswered question is how cellular EADs partially synchronize in tissue, as is required for them to propagate. Here, we present evidence, from computational simulations and experiments in isolated myocytes, that irregular EAD behavior is dynamical chaos. We then show in electrically homogeneous tissue models that chaotic EADs synchronize globally when the tissue is smaller than a critical size. However, when the tissue exceeds the critical size, electrotonic coupling can no longer globally synchronize EADs, resulting in regions of partial synchronization that shift in time and space. These regional partially synchronized EADs then form premature ventricular complexes that propagate into recovered tissue without EADs. This process creates multiple premature ventricular complexes that propagate as [corrected] "shifting" foci resembling polymorphic ventricular tachycardia. Shifting foci encountering shifting repolarization gradients can also develop localized wave breaks leading to reentry and fibrillation. As predicted by the theory, rabbit hearts exposed to oxidative stress (H(2)O(2)) exhibited multiple shifting foci causing polymorphic tachycardia and fibrillation. This mechanism explains how collective cellular behavior integrates at the tissue scale to generate lethal cardiac arrhythmias over a wide range of heart rates.
Collapse
|
15
|
Shilnikov A, Gordon R, Belykh I. Polyrhythmic synchronization in bursting networking motifs. CHAOS (WOODBURY, N.Y.) 2008; 18:037120. [PMID: 19045494 DOI: 10.1063/1.2959850] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We study the emergence of polyrhythmic dynamics of motifs which are the building block for small inhibitory-excitatory networks, such as central pattern generators controlling various locomotive behaviors of animals. We discover that the pacemaker determining the specific rhythm of such a network composed of realistic Hodgkin-Huxley-type neurons is identified through the order parameter, which is the ratio of the neurons' burst durations or of duty cycles. We analyze different configurations of the motifs and describe the universal mechanisms for synergetics of the bursting patterns. We discuss also the multistability of inhibitory networks that results in polyrhythmicity of its emergent synchronous behaviors.
Collapse
Affiliation(s)
- Andrey Shilnikov
- Department of Mathematics and Statistics and The Neuroscience Institute, Georgia State University, 30 Pryor Street, Atlanta, Georgia 30303, USA.
| | | | | |
Collapse
|