1
|
Comas-Garcia M. How structural biology has changed our understanding of icosahedral viruses. J Virol 2024; 98:e0111123. [PMID: 39291975 PMCID: PMC11495149 DOI: 10.1128/jvi.01111-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Cryo-electron microscopy and tomography have allowed us to unveil the remarkable structure of icosahedral viruses. However, in the past few years, the idea that these viruses must have perfectly symmetric virions, but in some cases, it might not be true. This has opened the door to challenging paradigms in structural virology and raised new questions about the biological implications of "unusual" or "defective" symmetries and structures. Also, the continual improvement of these technologies, coupled with more rigorous sample purification protocols, improvements in data processing, and the use of artificial intelligence, has allowed solving the structure of sub-viral particles in highly heterogeneous samples and finding novel symmetries or structural defects. In this review, I initially analyzed the case of the symmetry and composition of hepatitis B virus-produced spherical sub-viral particles. Then, I focused on Alphaviruses as an example of "imperfect" icosahedrons and analyzed how structural biology has changed our understanding of the Alphavirus assembly and some biological implications arising from these discoveries.
Collapse
Affiliation(s)
- Mauricio Comas-Garcia
- Science Department, Autonomous University of San Luis Potosi, San Luis Potosí, Mexico
- High-Resolution Microscopy Section, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi, San Luis Potosi, Mexico
- Translational and Molecular Medicine Section, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi, San Luis Potosí, Mexico
| |
Collapse
|
2
|
Alom SE, Swaminathan K, Nuzelu V, Singh A, de Rocquigny H, Swaminathan R. Label-Free Tracking of Hepatitis B Virus Core Protein Capsid Assembly in Real-Time Using Protein Charge Transfer Spectra. Biomacromolecules 2024; 25:6425-6438. [PMID: 38900297 DOI: 10.1021/acs.biomac.4c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Hepatitis B virions are double-shelled particles, with a diameter of 40-42 nm, consisting of a nucleocapsid called the HBV core protein (HBV Cp). It is an ordered assembly of 90-120 homodimers arranged in an icosahedral symmetry. Both the full-length HBV Cp and the first-149 residue domain, HBV Cp149, can spontaneously assemble in vitro into capsids with 120 Cp dimers (T = 4) or 90 Cp dimers (T = 3), triggered by high ionic strength of 0.25-0.5 M NaCl. The assembly disassembly of HBV Cp149 capsids are generally studied by light scattering, size-exclusion chromatography, atomic force microscopy, transmission electron microscopy, and other high-end expensive techniques. Here, we report a simple, yet robust, label-free technique exploiting protein charge transfer spectra (ProCharTS) to monitor the capsid assembly in real-time. ProCharTS absorption in the near UV-visible region (250-800 nm) arises when photoinduced electron transfer occurs from HOMO of COO- in glutamate (donor) to LUMO of NH3+ in lysine or polypeptide backbone (acceptor) of the protein. Alternatively, it can also occur from polypeptide backbone (donor) to acceptor in arginine, histidine, or lysine cation. ProCharTS is observed profusely among proximal charge clusters in folded proteins. Here, we show that, ProCharTS absorption among growing HBV capsids is amplified when HBV Cp homodimers assemble, generating new contacts among charged residues in the dimer-dimer interface. We notice a time-dependent sigmoidal increase in ProCharTS absorbance and luminescence during capsid formation in comparison to pure dimers. Additionally, a combined approach of anisotropy-based fluorescence assay is reported, where an increased fluorescence anisotropy was observed in capsids as compared to native and unfolded dimers. We conclude that ProCharTS can serve as a sensitive label-free tool for rapid tracking of capsid assembly in real-time and characterize the assembled capsids from dimers.
Collapse
Affiliation(s)
- Shah Ekramul Alom
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Karthik Swaminathan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - V Nuzelu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Alka Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Hugues de Rocquigny
- Morphogenesis and Antigenicity of HIV, Hepatitis and Emerging Viruses MAVIVIHe, Inserm─U1259 MAVIVH, Tours 37032, France
| | - Rajaram Swaminathan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
3
|
Xie C, Lu D. Evolution and diversity of the hepatitis B virus genome: Clinical implications. Virology 2024; 598:110197. [PMID: 39098184 DOI: 10.1016/j.virol.2024.110197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Hepatitis B virus (HBV) infection remains a significant global health burden. The genetic variation of HBV is complex. HBV can be divided into nine genotypes, which show significant differences in geographical distribution, clinical manifestations, transmission routes and treatment response. In recent years, substantial progress has been made through various research methods in understanding the development, pathogenesis, and antiviral treatment response of clinical disease associated with HBV genetic variants. This progress provides important theoretical support for a deeper understanding of the natural history of HBV infection, virus detection, drug treatment, vaccine development, mother-to-child transmission, and surveillance management. This review summarizes the mechanisms of HBV diversity, discusses methods used to detect viral diversity in current studies, and the impact of viral genome variation during infection on the development of clinical disease.
Collapse
Affiliation(s)
- Chengzuo Xie
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Daiqiang Lu
- Institute of Molecular and Medical Virology, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, Guangdong Province, 510632, China.
| |
Collapse
|
4
|
Pfister S, Rabl J, Wiegand T, Mattei S, Malär AA, Lecoq L, Seitz S, Bartenschlager R, Böckmann A, Nassal M, Boehringer D, Meier BH. Structural conservation of HBV-like capsid proteins over hundreds of millions of years despite the shift from non-enveloped to enveloped life-style. Nat Commun 2023; 14:1574. [PMID: 36949039 PMCID: PMC10033635 DOI: 10.1038/s41467-023-37068-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/02/2023] [Indexed: 03/24/2023] Open
Abstract
The discovery of nackednaviruses provided new insight into the evolutionary history of the hepatitis B virus (HBV): The common ancestor of HBV and nackednaviruses was non-enveloped and while HBV acquired an envelope during evolution, nackednaviruses remained non-enveloped. We report the capsid structure of the African cichlid nackednavirus (ACNDV), determined by cryo-EM at 3.7 Å resolution. This enables direct comparison with the known capsid structures of HBV and duck HBV, prototypic representatives of the mammalian and avian lineages of the enveloped Hepadnaviridae, respectively. The sequence identity with HBV is 24% and both the ACNDV capsid protein fold and the capsid architecture are very similar to those of the Hepadnaviridae and HBV in particular. Acquisition of the hepadnaviral envelope was thus not accompanied by a major change in capsid structure. Dynamic residues at the spike tip are tentatively assigned by solid-state NMR, while the C-terminal domain is invisible due to dynamics. Solid-state NMR characterization of the capsid structure reveals few conformational differences between the quasi-equivalent subunits of the ACNDV capsid and an overall higher capsid structural disorder compared to HBV. Despite these differences, the capsids of ACNDV and HBV are structurally highly similar despite the 400 million years since their separation.
Collapse
Affiliation(s)
- Sara Pfister
- Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Julius Rabl
- Cryo-EM Knowledge hub, ETH Zurich, 8093, Zurich, Switzerland
| | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Simone Mattei
- EMBL Imaging Centre, European Molecular Biology Laboratory, EMBL Heidelberg, 69117, Heidelberg, Germany
| | | | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS, Université de Lyon, 69367, Lyon, France
| | - Stefan Seitz
- Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Ralf Bartenschlager
- Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS, Université de Lyon, 69367, Lyon, France.
| | - Michael Nassal
- Department of Medicine II / Molecular Biology, University of Freiburg, Freiburg im Breisgau, Germany.
| | | | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
5
|
Depta PN, Dosta M, Wenzel W, Kozlowska M, Heinrich S. Hierarchical Coarse-Grained Strategy for Macromolecular Self-Assembly: Application to Hepatitis B Virus-Like Particles. Int J Mol Sci 2022; 23:ijms232314699. [PMID: 36499027 PMCID: PMC9740473 DOI: 10.3390/ijms232314699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Macromolecular self-assembly is at the basis of many phenomena in material and life sciences that find diverse applications in technology. One example is the formation of virus-like particles (VLPs) that act as stable empty capsids used for drug delivery or vaccine fabrication. Similarly to the capsid of a virus, VLPs are protein assemblies, but their structural formation, stability, and properties are not fully understood, especially as a function of the protein modifications. In this work, we present a data-driven modeling approach for capturing macromolecular self-assembly on scales beyond traditional molecular dynamics (MD), while preserving the chemical specificity. Each macromolecule is abstracted as an anisotropic object and high-dimensional models are formulated to describe interactions between molecules and with the solvent. For this, data-driven protein-protein interaction potentials are derived using a Kriging-based strategy, built on high-throughput MD simulations. Semi-automatic supervised learning is employed in a high performance computing environment and the resulting specialized force-fields enable a significant speed-up to the micrometer and millisecond scale, while maintaining high intermolecular detail. The reported generic framework is applied for the first time to capture the formation of hepatitis B VLPs from the smallest building unit, i.e., the dimer of the core protein HBcAg. Assembly pathways and kinetics are analyzed and compared to the available experimental observations. We demonstrate that VLP self-assembly phenomena and dependencies are now possible to be simulated. The method developed can be used for the parameterization of other macromolecules, enabling a molecular understanding of processes impossible to be attained with other theoretical models.
Collapse
Affiliation(s)
- Philipp Nicolas Depta
- Institute of Solids Process Engineering and Particle Technology (SPE), Hamburg University of Technology, 21073 Hamburg, Germany
- Correspondence:
| | - Maksym Dosta
- Institute of Solids Process Engineering and Particle Technology (SPE), Hamburg University of Technology, 21073 Hamburg, Germany
- Boehringer Ingelheim Pharma GmbH & Co Kg., 88400 Biberach an der Riss, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Mariana Kozlowska
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Heinrich
- Institute of Solids Process Engineering and Particle Technology (SPE), Hamburg University of Technology, 21073 Hamburg, Germany
| |
Collapse
|
6
|
Prange R. Hepatitis B virus movement through the hepatocyte: An update. Biol Cell 2022; 114:325-348. [PMID: 35984727 DOI: 10.1111/boc.202200060] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/26/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022]
Abstract
Viruses are obligate intracellular pathogens that utilize cellular machinery for many aspects of their propagation and effective egress of virus particles from host cells is one important determinant of virus infectivity. Hijacking host cell processes applies in particular to the hepatitis B virus (HBV), as its DNA genome with about 3 kb in size is one of the smallest viral genomes known. HBV is a leading cause of liver disease and still displays one of the most successful pathogens in human populations worldwide. The extremely successful spread of this virus is explained by its efficient transmission strategies and its versatile particle types, including virions, empty envelopes, naked capsids and others. HBV exploits distinct host trafficking machineries to assemble and release its particle types including nucleocytoplasmic shuttling transport, secretory and exocytic pathways, the Endosomal Sorting Complexes Required for Transport pathway, and the autophagy pathway. Understanding how HBV uses and subverts host membrane trafficking systems offers the chance of obtaining new mechanistic insights into the regulation and function of this essential cellular processes. It can also help to identify potential targets for antiviral interventions. Here, I will provide an overview of HBV maturation, assembly, and budding, with a focus on recent advances, and will point out areas where questions remain that can benefit from future studies. Unless otherwise indicated, almost all presented knowledge was gained from cell culture-based, HBV in vitro -replication and in vitro -infection systems. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Reinhild Prange
- Department of Virology, University Medical Center of the Johannes Gutenberg University Mainz, Augustusplatz, Mainz, D-55131, Germany
| |
Collapse
|
7
|
Su PY, Yen SCB, Yang CC, Chang CH, Lin WC, Shih C. Hepatitis B virus virion secretion is a CRM1-spike-mediated late event. J Biomed Sci 2022; 29:44. [PMID: 35729569 PMCID: PMC9210616 DOI: 10.1186/s12929-022-00827-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hepatitis B virus (HBV) is a major human pathogen worldwide. To date, there is no curative treatment for chronic hepatitis B. The mechanism of virion secretion remains to be investigated. Previously, we found that nuclear export of HBc particles can be facilitated via two CRM1-specific nuclear export signals (NES) at the spike tip. Methods In this study, we used site-directed mutagenesis at the CRM1 NES, as well as treatment with CRM1 inhibitors at a low concentration, or CRM1-specific shRNA knockdown, in HBV-producing cell culture, and measured the secretion of various HBV viral and subviral particles via a native agarose gel electrophoresis assay. Separated HBV particles were characterized by Western blot analysis, and their genomic DNA contents were measured by Southern blot analysis. Secreted extracellular particles were compared with intracellular HBc capsids for DNA synthesis and capsid formation. Virion secretion and the in vivo interactions among HBc capsids, CRM1 and microtubules, were examined by proximity ligation assay, immunofluorescence microscopy, and nocodazole treatment. Results We report here that the tip of spike of HBV core (HBc) particles (capsids) contains a complex sensor for secretion of both HBV virions and naked capsids. HBV virion secretion is closely associated with HBc nuclear export in a CRM1-dependent manner. At the conformationally flexible spike tips of HBc particles, NES motifs overlap extensively with motifs important for secretion of HBV virions and naked capsids. Conclusions We provided experimental evidence that virions and naked capsids can egress via two distinct, yet overlapping, pathways. Unlike the secretion of naked capsids, HBV virion secretion is highly CRM1- and microtubule-dependent. CRM1 is well known for its involvement in nuclear transport in literature. To our knowledge, this is the first report that CRM1 is required for virion secretion. CRM1 inhibitors could be a promising therapeutic candidate for chronic HBV patients in clinical medicine. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00827-w.
Collapse
Affiliation(s)
- Pei-Yi Su
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Sanmin, 80708, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shin-Chwen Bruce Yen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Sanmin, 80708, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Chun Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chih-Hsu Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Chang Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chiaho Shih
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Sanmin, 80708, Kaohsiung, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
8
|
Harati Taji Z, Bielytskyi P, Shein M, Sani MA, Seitz S, Schütz AK. Transient RNA Interactions Leave a Covalent Imprint on a Viral Capsid Protein. J Am Chem Soc 2022; 144:8536-8550. [PMID: 35512333 PMCID: PMC9121876 DOI: 10.1021/jacs.1c12439] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The hepatitis B virus (HBV) is the leading cause of persistent liver infections. Its DNA-based genome is synthesized through reverse transcription of an RNA template inside the assembled capsid shell. In addition to the structured assembly domain, the capsid protein harbors a C-terminal extension that mediates both the enclosure of RNA during capsid assembly and the nuclear entry of the capsid during infection. The arginine-rich motifs within this extension, though common to many viruses, have largely escaped atomic-scale investigation. Here, we leverage solution and solid-state nuclear magnetic resonance spectroscopy at ambient and cryogenic temperatures, under dynamic nuclear polarization signal enhancement, to investigate the organization of the genome within the capsid. Transient interactions with phosphate groups of the RNA backbone confine the arginine-rich motifs to the interior capsid space. While no secondary structure is induced in the C-terminal extension, interactions with RNA counteract the formation of a disulfide bond, which covalently tethers this peptide arm onto the inner capsid surface. Electrostatic and covalent contributions thus compete in the spatial regulation of capsid architecture. This disulfide switch represents a coupling mechanism between the structured assembly domain of the capsid and the enclosed nucleic acids. In particular, it enables the redox-dependent regulation of the exposure of the C-terminal extension on the capsid surface, which is required for nuclear uptake of the capsid. Phylogenetic analysis of capsid proteins from hepadnaviruses points toward a function of this switch in the persistence of HBV infections.
Collapse
Affiliation(s)
- Zahra Harati Taji
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching 85748, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Pavlo Bielytskyi
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching 85748, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Mikhail Shein
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching 85748, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Stefan Seitz
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg 69120, Germany.,Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Anne K Schütz
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching 85748, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| |
Collapse
|
9
|
CRM1-spike-mediated nuclear export of hepatitis B virus encapsidated viral RNA. Cell Rep 2022; 38:110472. [PMID: 35263598 DOI: 10.1016/j.celrep.2022.110472] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 01/23/2022] [Accepted: 02/10/2022] [Indexed: 11/20/2022] Open
Abstract
Hepatitis B virus (HBV) is a global pathogen. We report here that the cellular CRM1 machinery can mediate nuclear export of entire HBV core (HBc) particles containing encapsidated viral RNAs. Two CRM1-mediated nuclear export signals (NESCRM1) cluster at the conformationally flexible spike tips of HBc particles. Mutant NESCRM1 capsids exhibit strongly reduced associations with CRM1 and nucleoporin358 in vivo. CRM1 and NXF1 machineries mediate nuclear export of HBc particles independently. Inhibition of nuclear export has pleiotropic consequences, including nuclear accumulation of HBc particles, a significant reduction of encapsidated viral RNAs in the cytoplasm but not in the nucleus, and barely detectable viral DNA. We hypothesize an HBV life cycle where encapsidation of the RNA pregenome can initiate early in the nucleus, whereas DNA genome maturation occurs mainly in the cytoplasm. We identified a druggable target for HBV by blocking its intracellular trafficking.
Collapse
|
10
|
Niklasch M, Zimmermann P, Nassal M. The Hepatitis B Virus Nucleocapsid-Dynamic Compartment for Infectious Virus Production and New Antiviral Target. Biomedicines 2021; 9:1577. [PMID: 34829806 PMCID: PMC8615760 DOI: 10.3390/biomedicines9111577] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) is a small enveloped DNA virus which replicates its tiny 3.2 kb genome by reverse transcription inside an icosahedral nucleocapsid, formed by a single ~180 amino acid capsid, or core, protein (Cp). HBV causes chronic hepatitis B (CHB), a severe liver disease responsible for nearly a million deaths each year. Most of HBV's only seven primary gene products are multifunctional. Though less obvious than for the multi-domain polymerase, P protein, this is equally crucial for Cp with its multiple roles in the viral life-cycle. Cp provides a stable genome container during extracellular phases, allows for directed intracellular genome transport and timely release from the capsid, and subsequent assembly of new nucleocapsids around P protein and the pregenomic (pg) RNA, forming a distinct compartment for reverse transcription. These opposing features are enabled by dynamic post-transcriptional modifications of Cp which result in dynamic structural alterations. Their perturbation by capsid assembly modulators (CAMs) is a promising new antiviral concept. CAMs inappropriately accelerate assembly and/or distort the capsid shell. We summarize the functional, biochemical, and structural dynamics of Cp, and discuss the therapeutic potential of CAMs based on clinical data. Presently, CAMs appear as a valuable addition but not a substitute for existing therapies. However, as part of rational combination therapies CAMs may bring the ambitious goal of a cure for CHB closer to reality.
Collapse
Affiliation(s)
| | | | - Michael Nassal
- Internal Medicine II/Molecular Biology, University Hospital Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany; (M.N.); (P.Z.)
| |
Collapse
|
11
|
Binding of a Pocket Factor to Hepatitis B Virus Capsids Changes the Rotamer Conformation of Phenylalanine 97. Viruses 2021; 13:v13112115. [PMID: 34834922 PMCID: PMC8618838 DOI: 10.3390/v13112115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/26/2022] Open
Abstract
(1) Background: During maturation of the Hepatitis B virus, a viral polymerase inside the capsid transcribes a pre-genomic RNA into a partly double stranded DNA-genome. This is followed by envelopment with surface proteins inserted into a membrane. Envelopment is hypothetically regulated by a structural signal that reports the maturation state of the genome. NMR data suggest that such a signal can be mimicked by the binding of the detergent Triton X 100 to hydrophobic pockets in the capsid spikes. (2) Methods: We have used electron cryo-microscopy and image processing to elucidate the structural changes that are concomitant with the binding of Triton X 100. (3) Results: Our maps show that Triton X 100 binds with its hydrophobic head group inside the pocket. The hydrophilic tail delineates the outside of the spike and is coordinated via Lys-96. The binding of Triton X 100 changes the rotamer conformation of Phe-97 in helix 4, which enables a π-stacking interaction with Trp-62 in helix 3. Similar changes occur in mutants with low secretion phenotypes (P5T and L60V) and in a mutant with a pre-mature secretion phenotype (F97L). (4) Conclusion: Binding of Triton X 100 is unlikely to mimic structural maturation because mutants with different secretion phenotypes show similar structural responses.
Collapse
|
12
|
Honda T, Yamada N, Murayama A, Shiina M, Aly HH, Kato A, Ito T, Ishizu Y, Kuzuya T, Ishigami M, Murakami Y, Tanaka T, Moriishi K, Nishitsuji H, Shimotohno K, Ishikawa T, Fujishiro M, Muramatsu M, Wakita T, Kato T. Amino Acid Polymorphism in Hepatitis B Virus Associated With Functional Cure. Cell Mol Gastroenterol Hepatol 2021; 12:1583-1598. [PMID: 34352407 PMCID: PMC8536788 DOI: 10.1016/j.jcmgh.2021.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS To provide an adequate treatment strategy for chronic hepatitis B, it is essential to know which patients are expected to have a good prognosis and which patients do not require therapeutic intervention. Previously, we identified the substitution of isoleucine to leucine at amino acid 97 (I97L) in the hepatitis B core region as a key predictor among patients with stable hepatitis. In this study, we attempted to identify the point at which I97L affects the hepatitis B virus (HBV) life cycle and to elucidate the underlying mechanisms governing the stabilization of hepatitis. METHODS To confirm the clinical features of I97L, we used a cohort of hepatitis B e antigen-negative patients with chronic hepatitis B infected with HBV-I97 wild-type (wt) or HBV-I97L. The effects of I97L on viral characteristics were evaluated by in vitro HBV production and infection systems with the HBV reporter virus and cell culture-generated HBV. RESULTS The ratios of reduction in hepatitis B surface antigen and HBV DNA were higher in patients with HBV-I97L than in those with HBV-I97wt. HBV-I97L exhibited lower infectivity than HBV-I97wt in both infection systems with reporter HBV and cell culture-generated HBV. HBV-I97L virions exhibiting low infectivity primarily contained a single-stranded HBV genome. The lower efficiency of cccDNA synthesis was demonstrated after infection of HBV-I97L or transfection of the molecular clone of HBV-I97L. CONCLUSIONS The I97L substitution reduces the level of cccDNA through the generation of immature virions with single-stranded genomes. This I97L-associated low efficiency of cccDNA synthesis may be involved in the stabilization of hepatitis.
Collapse
Affiliation(s)
- Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya
| | - Norie Yamada
- Department of Virology II, National Institute of Infectious Diseases, Tokyo
| | - Asako Murayama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo
| | - Masaaki Shiina
- Department of Virology II, National Institute of Infectious Diseases, Tokyo
| | - Hussein Hassan Aly
- Department of Virology II, National Institute of Infectious Diseases, Tokyo
| | - Asuka Kato
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya
| | - Takanori Ito
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya
| | - Yoji Ishizu
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya
| | - Teiji Kuzuya
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya
| | - Masatoshi Ishigami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya
| | - Yoshiki Murakami
- Department of Molecular Pathology, Tokyo Medical University, Tokyo
| | - Tomohisa Tanaka
- Department of Microbiology, Graduate School of Medicine, University of Yamanashi, Yamanashi
| | - Kohji Moriishi
- Department of Microbiology, Graduate School of Medicine, University of Yamanashi, Yamanashi
| | - Hironori Nishitsuji
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Kunitada Shimotohno
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Tetsuya Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya
| | | | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo
| | - Takanobu Kato
- Department of Virology II, National Institute of Infectious Diseases, Tokyo,Correspondence Address correspondence to: Takanobu Kato, MD, PhD, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan. fax: +81-3-5285-1161.
| |
Collapse
|
13
|
Conformational Plasticity of Hepatitis B Core Protein Spikes Promotes Peptide Binding Independent of the Secretion Phenotype. Microorganisms 2021; 9:microorganisms9050956. [PMID: 33946808 PMCID: PMC8145704 DOI: 10.3390/microorganisms9050956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
Hepatitis B virus is a major human pathogen, which forms enveloped virus particles. During viral maturation, membrane-bound hepatitis B surface proteins package hepatitis B core protein capsids. This process is intercepted by certain peptides with an “LLGRMKG” motif that binds to the capsids at the tips of dimeric spikes. With microcalorimetry, electron cryo microscopy and peptide microarray-based screens, we have characterized the structural and thermodynamic properties of peptide binding to hepatitis B core protein capsids with different secretion phenotypes. The peptide “GSLLGRMKGA” binds weakly to hepatitis B core protein capsids and mutant capsids with a premature (F97L) or low-secretion phenotype (L60V and P5T). With electron cryo microscopy, we provide novel structures for L60V and P5T and demonstrate that binding occurs at the tips of the spikes at the dimer interface, splaying the helices apart independent of the secretion phenotype. Peptide array screening identifies “SLLGRM” as the core binding motif. This shortened motif binds only to one of the two spikes in the asymmetric unit of the capsid and induces a much smaller conformational change. Altogether, these comprehensive studies suggest that the tips of the spikes act as an autonomous binding platform that is unaffected by mutations that affect secretion phenotypes.
Collapse
|
14
|
Abstract
Viral hepatitis causes more deaths than tuberculosis and HIV-1 infection. Most cases are due to chronic infection with hepatitis B virus (HBV), which afflicts >250 million people. Current therapies are rarely curative, and new approaches are needed. Here, we report the discovery (by nuclear magnetic resonance) of a small molecule binder in the hydrophobic pocket in the HBV capsid. This structural element is, in an unknown manner, central in capsid envelopment. Binding of the pocket factor induces a distinct, stable conformation in the capsid, as expected for a signaling switch. This brings not only a new molecular view on the mechanism underlying capsid envelopment, but it also opens a rationale for its inhibition. Viral hepatitis is growing into an epidemic illness, and it is urgent to neutralize the main culprit, hepatitis B virus (HBV), a small-enveloped retrotranscribing DNA virus. An intriguing observation in HB virion morphogenesis is that capsids with immature genomes are rarely enveloped and secreted. This prompted, in 1982, the postulate that a regulated conformation switch in the capsid triggers envelopment. Using solid-state NMR, we identified a stable alternative conformation of the capsid. The structural variations focus on the hydrophobic pocket of the core protein, a hot spot in capsid–envelope interactions. This structural switch is triggered by specific, high-affinity binding of a pocket factor. The conformational change induced by the binding is reminiscent of a maturation signal. This leads us to formulate the “synergistic double interaction” hypothesis, which explains the regulation of capsid envelopment and indicates a concept for therapeutic interference with HBV envelopment.
Collapse
|
15
|
Production of the HBc Protein from Different HBV Genotypes in E. coli. Use of Reassociated HBc VLPs for Packaging of ss- and dsRNA. Microorganisms 2021; 9:microorganisms9020283. [PMID: 33573151 PMCID: PMC7912224 DOI: 10.3390/microorganisms9020283] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 01/04/2023] Open
Abstract
The core proteins (HBc) of the hepatitis B virus (HBV) genotypes A, B, C, D, E, F, and G were cloned and expressed in Escherichia coli (E. coli), and HBc-formed virus-like particles (VLPs) were purified with ammonium sulfate precipitation, gel filtration, and ion exchange chromatography (IEX). The best VLP yield was found for the HBc of the HBV genotypes D and G. For the HBc of the HBV genotypes D, F, and G, the possibility of dissociation and reassociation maintaining the native HBc structure was demonstrated. Single-stranded (ss) and double-stranded (ds) ribonucleic acid (RNA) was successfully packed into HBc VLPs for the HBV genotypes D and G.
Collapse
|
16
|
Rahman MA, Ueda K, Honda T. A Traditional Chinese Medicine, Maoto, Suppresses Hepatitis B Virus Production. Front Cell Infect Microbiol 2021; 10:581345. [PMID: 33553000 PMCID: PMC7862555 DOI: 10.3389/fcimb.2020.581345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
Worldwide, millions of people suffer from hepatitis B virus (HBV) infection, putting them at a high risk of death from liver cirrhosis and cancer. Although effective anti-HBV drugs have been developed, current drugs have some limitations, as most of them have a risk of significant side effects. Therefore, the discovery of safe and effective anti-HBV drugs is still needed. Natural compounds are considered sources of novel, safe and effective therapeutics. In this study, we screened a library of Kampos, traditional herbal medicines, for suppression of HBV production. Among them, we found that maoto reduced extracellular HBV DNA but not extracellular HBsAg during HBV infection, suggesting that it suppressed HBV production by interfering with HBV nucleocapsid incorporation into viral particles. Furthermore, we revealed that maoto reduced the expression of a host gene, Tropomyosin β chain (TPM2), whose downregulation also suppressed HBV production, similarly to maoto. Since the safety of maoto has been already confirmed, maoto can be considered a candidate anti-HBV agent if the effect is confirmed in vivo. In addition, our findings also suggest TPM2 as a novel molecular target for the development of anti-HBV agents.
Collapse
Affiliation(s)
- Md Arifur Rahman
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Keiji Ueda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoyuki Honda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
17
|
Shih C, Wu SY, Chou SF, Yuan TTT. Virion Secretion of Hepatitis B Virus Naturally Occurring Core Antigen Variants. Cells 2020; 10:cells10010043. [PMID: 33396864 PMCID: PMC7823318 DOI: 10.3390/cells10010043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
In natural infection, hepatitis B virus (HBV) core protein (HBc) accumulates frequent mutations. The most frequent HBc variant in chronic hepatitis B patients is mutant 97L, changing from an isoleucine or phenylalanine to a leucine (L) at HBc amino acid 97. One dogma in the HBV research field is that wild type HBV secretes predominantly virions containing mature double-stranded DNA genomes. Immature genomes, containing single-stranded RNA or DNA, do not get efficiently secreted until reaching genome maturity. Interestingly, HBc variant 97L does not follow this dogma in virion secretion. Instead, it exhibits an immature secretion phenotype, which preferentially secretes virions containing immature genomes. Other aberrant behaviors in virion secretion were also observed in different naturally occurring HBc variants. A hydrophobic pocket around amino acid 97 was identified by bioinformatics, genetic analysis, and cryo-EM. We postulated that this hydrophobic pocket could mediate the transduction of the genome maturation signal for envelopment from the capsid interior to its surface. Virion morphogenesis must involve interactions between HBc, envelope proteins (HBsAg) and host factors, such as components of ESCRT (endosomal sorting complex required for transport). Immature secretion can be offset by compensatory mutations, occurring at other positions in HBc or HBsAg. Recently, we demonstrated in mice that the persistence of intrahepatic HBV DNA is related to virion secretion regulated by HBV genome maturity. HBV virion secretion could be an antiviral drug target.
Collapse
Affiliation(s)
- Chiaho Shih
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Correspondence: (C.S.); (T.-T.T.Y.)
| | - Szu-Yao Wu
- Chimera Bioscience Inc., No. 18 Siyuan St., Zhongzheng Dist., Taipei 10087, Taiwan;
| | - Shu-Fan Chou
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA;
| | - Ta-Tung Thomas Yuan
- TFBS Bioscience, Inc. 3F, No. 103, Ln 169, Kangning St., Xizhi Dist., New Taipei City 221, Taiwan
- Correspondence: (C.S.); (T.-T.T.Y.)
| |
Collapse
|
18
|
Intracellular Trafficking of HBV Particles. Cells 2020; 9:cells9092023. [PMID: 32887393 PMCID: PMC7563130 DOI: 10.3390/cells9092023] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
The human hepatitis B virus (HBV), that is causative for more than 240 million cases of chronic liver inflammation (hepatitis), is an enveloped virus with a partially double-stranded DNA genome. After virion uptake by receptor-mediated endocytosis, the viral nucleocapsid is transported towards the nuclear pore complex. In the nuclear basket, the nucleocapsid disassembles. The viral genome that is covalently linked to the viral polymerase, which harbors a bipartite NLS, is imported into the nucleus. Here, the partially double-stranded DNA genome is converted in a minichromosome-like structure, the covalently closed circular DNA (cccDNA). The DNA virus HBV replicates via a pregenomic RNA (pgRNA)-intermediate that is reverse transcribed into DNA. HBV-infected cells release apart from the infectious viral parrticle two forms of non-infectious subviral particles (spheres and filaments), which are assembled by the surface proteins but lack any capsid and nucleic acid. In addition, naked capsids are released by HBV replicating cells. Infectious viral particles and filaments are released via multivesicular bodies; spheres are secreted by the classic constitutive secretory pathway. The release of naked capsids is still not fully understood, autophagosomal processes are discussed. This review describes intracellular trafficking pathways involved in virus entry, morphogenesis and release of (sub)viral particles.
Collapse
|
19
|
Makbul C, Nassal M, Böttcher B. Slowly folding surface extension in the prototypic avian hepatitis B virus capsid governs stability. eLife 2020; 9:e57277. [PMID: 32795390 PMCID: PMC7455244 DOI: 10.7554/elife.57277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) is an important but difficult to study human pathogen. Most basics of the hepadnaviral life-cycle were unraveled using duck HBV (DHBV) as a model although DHBV has a capsid protein (CP) comprising ~260 rather than ~180 amino acids. Here we present high-resolution structures of several DHBV capsid-like particles (CLPs) determined by electron cryo-microscopy. As for HBV, DHBV CLPs consist of a dimeric α-helical frame-work with protruding spikes at the dimer interface. A fundamental new feature is a ~ 45 amino acid proline-rich extension in each monomer replacing the tip of the spikes in HBV CP. In vitro, folding of the extension takes months, implying a catalyzed process in vivo. DHBc variants lacking a folding-proficient extension produced regular CLPs in bacteria but failed to form stable nucleocapsids in hepatoma cells. We propose that the extension domain acts as a conformational switch with differential response options during viral infection.
Collapse
Affiliation(s)
- Cihan Makbul
- Julius Maximilian University of Würzburg, Department of Biochemistry and Rudolf Virchow CentreWürzburgGermany
| | - Michael Nassal
- University Hospital Freiburg, Internal Medicine 2/Molecular BiologyFreiburgGermany
| | - Bettina Böttcher
- Julius Maximilian University of Würzburg, Department of Biochemistry and Rudolf Virchow CentreWürzburgGermany
| |
Collapse
|
20
|
Expression of quasi-equivalence and capsid dimorphism in the Hepadnaviridae. PLoS Comput Biol 2020; 16:e1007782. [PMID: 32310951 PMCID: PMC7192502 DOI: 10.1371/journal.pcbi.1007782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 04/30/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) is a leading cause of liver disease. The capsid is an essential component of the virion and it is therefore of interest how it assembles and disassembles. The capsid protein is unusual both for its rare fold and that it polymerizes according to two different icosahedral symmetries, causing the polypeptide chain to exist in seven quasi-equivalent environments: A, B, and C in AB and CC dimers in T = 3 capsids, and A, B, C, and D in AB and CD dimers in T = 4 capsids. We have compared the two capsids by cryo-EM at 3.5 Å resolution. To ensure a valid comparison, the two capsids were prepared and imaged under identical conditions. We find that the chains have different conformations and potential energies, with the T = 3 C chain having the lowest. Three of the four quasi-equivalent dimers are asymmetric with respect to conformation and potential energy; however, the T = 3 CC dimer is symmetrical and has the lowest potential energy although its intra-dimer interface has the least free energy of formation. Of all the inter-dimer interfaces, the CB interface has the least area and free energy, in both capsids. From the calculated energies of higher-order groupings of dimers discernible in the lattices we predict early assembly intermediates, and indeed we observe such structures by negative stain EM of in vitro assembly reactions. By sequence analysis and computational alanine scanning we identify key residues and motifs involved in capsid assembly. Our results explain several previously reported observations on capsid assembly, disassembly, and dimorphism. Hepatitis B virus has infected approximately one third of the human population and causes almost 1 million deaths from liver disease annually. The capsid is a defining feature of a virus, distinct from host components, and therefore a target for intervention. Unusually for a virus, Hepatitis B assembles two capsids, with different geometries, from the same dimeric protein. Geometric principles dictate that the subunits in this system occupy seven different environments. From comparing the two capsids by cryo-electron microscopy at high resolution under the exact same conditions we find that the polypeptide chains adopt seven different conformations. We use these structures to calculate potential energies (analogous to elastic deformation or strain) for the individual chains, dimers, and several higher-order groupings discernible in the two lattices. We also calculate the binding energies between chains. We find that some groupings have substantially lower energy and are therefore potentially more stable, allowing us to predict likely intermediates on the two assembly pathways. We also observe such intermediates by electron microscopy of in vitro capsid assembly reactions. This is the first structural characterization of the early assembly intermediates of this important human pathogen.
Collapse
|
21
|
Aston-Deaville S, Carlsson E, Saleem M, Thistlethwaite A, Chan H, Maharjan S, Facchetti A, Feavers IM, Alistair Siebert C, Collins RF, Roseman A, Derrick JP. An assessment of the use of Hepatitis B Virus core protein virus-like particles to display heterologous antigens from Neisseria meningitidis. Vaccine 2020; 38:3201-3209. [PMID: 32178907 PMCID: PMC7113836 DOI: 10.1016/j.vaccine.2020.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 12/15/2022]
Abstract
Neisseria meningitidis is the causative agent of meningococcal meningitis and sepsis and remains a significant public health problem in many countries. Efforts to develop a comprehensive vaccine against serogroup B meningococci have focused on the use of surface-exposed outer membrane proteins. Here we report the use of virus-like particles derived from the core protein of Hepatitis B Virus, HBc, to incorporate antigen domains derived from Factor H binding protein (FHbp) and the adhesin NadA. The extracellular domain of NadA was inserted into the major immunodominant region of HBc, and the C-terminal domain of FHbp at the C-terminus (CFHbp), creating a single polypeptide chain 3.7-fold larger than native HBc. Remarkably, cryoelectron microscopy revealed that the construct formed assemblies that were able to incorporate both antigens with minimal structural changes to native HBc. Electron density was weak for NadA and absent for CFHbp, partly attributable to domain flexibility. Following immunization of mice, three HBc fusions (CFHbp or NadA alone, NadA + CFHbp) were able to induce production of IgG1, IgG2a and IgG2b antibodies reactive against their respective antigens at dilutions in excess of 1:18,000. However, only HBc fusions containing NadA elicited the production of antibodies with serum bactericidal activity. It is hypothesized that this improved immune response is attributable to the adoption of a more native-like folding of crucial conformational epitopes of NadA within the chimeric VLP. This work demonstrates that HBc can incorporate insertions of large antigen domains but that maintenance of their three-dimensional structure is likely to be critical in obtaining a protective response.
Collapse
Affiliation(s)
- Sebastian Aston-Deaville
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
| | - Emil Carlsson
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
| | - Muhammad Saleem
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
| | - Angela Thistlethwaite
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
| | - Hannah Chan
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Hertfordshire EN6 3QG, UK
| | - Sunil Maharjan
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Hertfordshire EN6 3QG, UK
| | - Alessandra Facchetti
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Hertfordshire EN6 3QG, UK
| | - Ian M Feavers
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Hertfordshire EN6 3QG, UK
| | - C Alistair Siebert
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire, UK
| | - Richard F Collins
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
| | - Alan Roseman
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
| | - Jeremy P Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
22
|
Virus-Like Particles and Nanoparticles for Vaccine Development against HCMV. Viruses 2019; 12:v12010035. [PMID: 31905677 PMCID: PMC7019358 DOI: 10.3390/v12010035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/21/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) infects more than 70% of the human population worldwide. HCMV is responsible for high morbidity and mortality in immunocompromised patients and remains the leading viral cause of congenital birth defects. Despite considerable efforts in vaccine and therapeutic development, HCMV infection still represents an unmet clinical need and a life-threatening disease in immunocompromised individuals and newborns. Immune repertoire interrogation of HCMV seropositive patients allowed the identification of several potential antigens for vaccine design. However, recent HCMV vaccine clinical trials did not lead to a satisfactory outcome in term of efficacy. Therefore, combining antigens with orthogonal technologies to further increase the induction of neutralizing antibodies could improve the likelihood of a vaccine to reach protective efficacy in humans. Indeed, presentation of multiple copies of an antigen in a repetitive array is known to drive a more robust humoral immune response than its soluble counterpart. Virus-like particles (VLPs) and nanoparticles (NPs) are powerful platforms for multivalent antigen presentation. Several self-assembling proteins have been successfully used as scaffolds to present complex glycoprotein antigens on their surface. In this review, we describe some key aspects of the immune response to HCMV and discuss the scaffolds that were successfully used to increase vaccine efficacy against viruses with unmet medical need.
Collapse
|
23
|
Pastor F, Herrscher C, Patient R, Eymieux S, Moreau A, Burlaud-Gaillard J, Seigneuret F, de Rocquigny H, Roingeard P, Hourioux C. Direct interaction between the hepatitis B virus core and envelope proteins analyzed in a cellular context. Sci Rep 2019; 9:16178. [PMID: 31700077 PMCID: PMC6838148 DOI: 10.1038/s41598-019-52824-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/23/2019] [Indexed: 01/01/2023] Open
Abstract
Hepatitis B virus (HBV) production requires intricate interactions between the envelope and core proteins. Analyses of mutants of these proteins have made it possible to map regions involved in the formation and secretion of virions. Tests of binding between core and envelope peptides have also been performed in cell-free conditions, to study the interactions potentially underlying these mechanisms. We investigated the residues essential for core-envelope interaction in a cellular context in more detail, by transiently producing mutant or wild-type L, S, or core proteins separately or in combination, in Huh7 cells. The colocalization and interaction of these proteins were studied by confocal microscopy and co-immunoprecipitation, respectively. The L protein was shown to constitute a molecular platform for the recruitment of S and core proteins in a perinuclear environment. Several core amino acids were found to be essential for direct interaction with L, including residue Y132, known to be crucial for capsid formation, and residues L60, L95, K96 and I126. Our results confirm the key role of L in the tripartite core-S-L interaction and identify the residues involved in direct core-L interaction. This model may be valuable for studies of the potential of drugs to inhibit HBV core-envelope interaction.
Collapse
Affiliation(s)
- Florentin Pastor
- INSERM U1259 MAVIVH - University of Tours and CHRU of Tours, Tours, France
| | - Charline Herrscher
- INSERM U1259 MAVIVH - University of Tours and CHRU of Tours, Tours, France
| | - Romuald Patient
- INSERM U1259 MAVIVH - University of Tours and CHRU of Tours, Tours, France
| | - Sebastien Eymieux
- INSERM U1259 MAVIVH - University of Tours and CHRU of Tours, Tours, France
| | - Alain Moreau
- INSERM U1259 MAVIVH - University of Tours and CHRU of Tours, Tours, France
| | - Julien Burlaud-Gaillard
- Plate-Forme IBiSA des Microscopies, PPF ASB - University of Tours and CHRU of Tours, Tours, France
| | - Florian Seigneuret
- INSERM U1259 MAVIVH - University of Tours and CHRU of Tours, Tours, France
| | | | - Philippe Roingeard
- INSERM U1259 MAVIVH - University of Tours and CHRU of Tours, Tours, France. .,Plate-Forme IBiSA des Microscopies, PPF ASB - University of Tours and CHRU of Tours, Tours, France.
| | - Christophe Hourioux
- INSERM U1259 MAVIVH - University of Tours and CHRU of Tours, Tours, France. .,Plate-Forme IBiSA des Microscopies, PPF ASB - University of Tours and CHRU of Tours, Tours, France.
| |
Collapse
|
24
|
Persistence of Hepatitis B Virus DNA and the Tempos between Virion Secretion and Genome Maturation in a Mouse Model. J Virol 2019; 93:JVI.01001-19. [PMID: 31462567 PMCID: PMC6819939 DOI: 10.1128/jvi.01001-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic infection with human hepatitis B virus (HBV) could lead to cirrhosis and hepatoma. At present, there is no effective treatment to eradicate the virus from patients. HBV in chronic carriers does not exist as a single homogeneous population. The most frequent naturally occurring mutation in HBV core protein occurs at amino acid 97, changing an isoleucine to leucine (I97L). One dogma in the field is that only virions containing a mature genome are preferentially secreted into the medium. Here, we demonstrated that mutant I97L can secrete immature genome in mice. Although viral DNA of mutant I97L with immature genome is less persistent than wild-type HBV in time course experiments, viral DNA of mutant P130T with genome hypermaturation, surprisingly, is more persistent. Therefore, virion secretion regulated by genome maturity could influence viral persistence. It remains an open issue whether virion secretion could be a drug target for HBV therapy. Hepatitis B virus (HBV) core protein (HBc) accumulates frequent mutations in natural infection. Wild-type HBV is known to secrete predominantly virions containing mature DNA genome. However, a frequent naturally occurring HBc variant, I97L, changing from an isoleucine to a leucine at amino acid 97, exhibited an immature secretion phenotype in culture, which preferentially secretes virions containing immature genomes. In contrast, mutant P130T, changing from a proline to a threonine at amino acid 130, exhibited a hypermaturation phenotype by accumulating an excessive amount of intracellular fully mature DNA genome. Using a hydrodynamic delivery mouse model, we studied the in vivo behaviors of these two mutants, I97L and P130T. We detected no naked core particles in all hydrodynamically injected mice. Mutant I97L in mice exhibited pleiotropic phenotypes: (i) excessive numbers of serum HBV virions containing immature genomes, (ii) significantly reduced numbers of intracellular relaxed-circle and single-stranded DNAs, and (iii) less persistent intrahepatic and secreted HBV DNAs than wild-type HBV. These pleiotropic phenotypes were observed in both immunocompetent and immunodeficient mice. Although mutant P130T also displayed a hypermaturation phenotype in vivo, it cannot efficiently rescue the immature virion secretion of mutant I97L. Unexpectedly, the single mutant P130T exhibited in vivo a novel phenotype in prolonging the persistence of HBV genome in hepatocytes. Taken together, our studies provide a plausible rationale for HBV to regulate envelopment morphogenesis and virion secretion via genome maturity, which is likely to play an important role in the persistence of viral DNA in this mouse model. IMPORTANCE Chronic infection with human hepatitis B virus (HBV) could lead to cirrhosis and hepatoma. At present, there is no effective treatment to eradicate the virus from patients. HBV in chronic carriers does not exist as a single homogeneous population. The most frequent naturally occurring mutation in HBV core protein occurs at amino acid 97, changing an isoleucine to leucine (I97L). One dogma in the field is that only virions containing a mature genome are preferentially secreted into the medium. Here, we demonstrated that mutant I97L can secrete immature genome in mice. Although viral DNA of mutant I97L with immature genome is less persistent than wild-type HBV in time course experiments, viral DNA of mutant P130T with genome hypermaturation, surprisingly, is more persistent. Therefore, virion secretion regulated by genome maturity could influence viral persistence. It remains an open issue whether virion secretion could be a drug target for HBV therapy.
Collapse
|
25
|
Wang S, Fogeron ML, Schledorn M, Dujardin M, Penzel S, Burdette D, Berke JM, Nassal M, Lecoq L, Meier BH, Böckmann A. Combining Cell-Free Protein Synthesis and NMR Into a Tool to Study Capsid Assembly Modulation. Front Mol Biosci 2019; 6:67. [PMID: 31440516 PMCID: PMC6694763 DOI: 10.3389/fmolb.2019.00067] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/24/2019] [Indexed: 12/22/2022] Open
Abstract
Modulation of capsid assembly by small molecules has become a central concept in the fight against viral infection. Proper capsid assembly is crucial to form the high molecular weight structures that protect the viral genome and that, often in concert with the envelope, allow for cell entry and fusion. Atomic details underlying assembly modulation are generally studied using preassembled protein complexes, while the activity of assembly modulators during assembly remains largely open and poorly understood, as necessary tools are lacking. We here use the full-length hepatitis B virus (HBV) capsid protein (Cp183) as a model to present a combination of cell-free protein synthesis and solid-state NMR as an approach which shall open the possibility to produce and analyze the formation of higher-order complexes directly on exit from the ribosome. We demonstrate that assembled capsids can be synthesized in amounts sufficient for structural studies, and show that addition of assembly modulators to the cell-free reaction produces objects similar to those obtained by addition of the compounds to preformed Cp183 capsids. These results establish the cell-free system as a tool for the study of capsid assembly modulation directly after synthesis by the ribosome, and they open the perspective of assessing the impact of natural or synthetic compounds, or even enzymes that perform post-translational modifications, on capsids structures.
Collapse
Affiliation(s)
- Shishan Wang
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Marie-Laure Fogeron
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | | | - Marie Dujardin
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | | | | | | | - Michael Nassal
- Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | - Lauriane Lecoq
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| |
Collapse
|
26
|
Zou X, Wu J, Gu J, Shen L, Mao L. Application of Aptamers in Virus Detection and Antiviral Therapy. Front Microbiol 2019; 10:1462. [PMID: 31333603 PMCID: PMC6618307 DOI: 10.3389/fmicb.2019.01462] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Viral infections can cause serious diseases for humans and animals. Accurate and early detection of viruses is often crucial for clinical diagnosis and therapy. Aptamers are mostly single-stranded nucleotide sequences that are artificially synthesized by an in vitro technology known as the Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Similar to antibodies, aptamers bind specifically to their targets. However, compared with antibody, aptamers are easy to synthesize and modify and can bind to a broad range of targets. Thus, aptamers are promising for detecting viruses and treating viral infections. In this review, we briefly introduce aptamer-based biosensors (aptasensors) and describe their applications in rapid detection of viruses and as antiviral agents in treating infections. We summarize available data about the use of aptamers to detect and inhibit viruses. Furthermore, for the first time, we list aptamers specific to different viruses that have been screened out but have not yet been used for detecting viruses or treating viral infections. Finally, we analyze barriers and developing perspectives in the application of aptamer-based virus detection and therapeutics.
Collapse
Affiliation(s)
- Xinran Zou
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jing Wu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiaqi Gu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Shen
- Zhenjiang Center for Disease Control and Prevention, Jiangsu, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
27
|
Hu J, Cheng J, Tang L, Hu Z, Luo Y, Li Y, Zhou T, Chang J, Guo JT. Virological Basis for the Cure of Chronic Hepatitis B. ACS Infect Dis 2019; 5:659-674. [PMID: 29893548 DOI: 10.1021/acsinfecdis.8b00081] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis B virus (HBV) has infected one-third of world population, and 240 million people are chronic carriers, to whom a curative therapy is still not available. Similar to other viruses, persistent HBV infection relies on the virus to exploit host cell functions to support its replication and efficiently evade host innate and adaptive antiviral immunity. Understanding HBV replication and concomitant host cell interactions is thus instrumental for development of therapeutics to disrupt the virus-host interactions critical for its persistence and cure chronic hepatitis B. Although the currently available cell culture systems of HBV infection are refractory to genome-wide high throughput screening of key host cellular factors essential for and/or regulating HBV replication, classic one-gene (or pathway)-at-a-time studies in the last several decades have already revealed many aspects of HBV-host interactions. An overview of the landscape of HBV-hepatocyte interaction indicates that, in addition to more tightly suppressing viral replication by directly targeting viral proteins, disruption of key viral-host cell interactions to eliminate or inactivate the covalently closed circular (ccc) DNA, the most stable HBV replication intermediate that exists as an episomal minichromosome in the nucleus of infected hepatocyte, is essential to achieve a functional cure of chronic hepatitis B. Moreover, therapeutic targeting of integrated HBV DNA and their transcripts may also be required to induce hepatitis B virus surface antigen (HBsAg) seroclearance and prevent liver carcinogenesis.
Collapse
Affiliation(s)
- Jin Hu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, 1 Tian-tan Xi-li, Beijing, 100050, China
| | - Junjun Cheng
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Liudi Tang
- Microbiology and Immunology Graduate Program, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, Pennsylvania 19129, United States
| | - Zhanying Hu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Yue Luo
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
- Institute of Hepatology, Second Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Yuhuan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, 1 Tian-tan Xi-li, Beijing, 100050, China
| | - Tianlun Zhou
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Jinhong Chang
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| |
Collapse
|
28
|
Liu K, Hu J. Secretion of empty or complete hepatitis B virions: envelopment of empty capsids versus mature nucleocapsids. Future Virol 2019. [DOI: 10.2217/fvl-2018-0128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
HBV replicates its DNA genome, a partially double-stranded, relaxed circular DNA, via reverse transcription of an RNA intermediate called pre-genomic RNA by its reverse transcriptase. A major characteristic of HBV replication is the selective envelopment and secretion of relaxed circular DNA-containing mature capsids and empty capsids with no DNA or RNA, but not those containing pre-genomic RNA or the single-stranded DNA replication intermediate. In this review, the potential mechanisms of HBV virion morphogenesis will be discussed, with a focus on key determinants of both the capsid and envelope proteins for the selective secretion of complete and empty virions.
Collapse
Affiliation(s)
- Kuancheng Liu
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 China
| | - Jianming Hu
- Department of Microbiology & Immunology, Penn State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
29
|
Heger-Stevic J, Zimmermann P, Lecoq L, Böttcher B, Nassal M. Hepatitis B virus core protein phosphorylation: Identification of the SRPK1 target sites and impact of their occupancy on RNA binding and capsid structure. PLoS Pathog 2018; 14:e1007488. [PMID: 30566530 PMCID: PMC6317823 DOI: 10.1371/journal.ppat.1007488] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/03/2019] [Accepted: 11/27/2018] [Indexed: 12/19/2022] Open
Abstract
Hepatitis B virus (HBV) replicates its 3 kb DNA genome through capsid-internal reverse transcription, initiated by assembly of 120 core protein (HBc) dimers around a complex of viral pregenomic (pg) RNA and polymerase. Following synthesis of relaxed circular (RC) DNA capsids can be enveloped and secreted as stable virions. Upon infection of a new cell, however, the capsid disintegrates to release the RC-DNA into the nucleus for conversion into covalently closed circular (ccc) DNA. HBc´s interactions with nucleic acids are mediated by an arginine-rich C terminal domain (CTD) with intrinsically strong non-specific RNA binding activity. Adaptation to the changing demands for nucleic acid binding during the viral life cycle is thought to involve dynamic phosphorylation / dephosphorylation events. However, neither the relevant enzymes nor their target sites in HBc are firmly established. Here we developed a bacterial coexpression system enabling access to definably phosphorylated HBc. Combining Phos-tag gel electrophoresis, mass spectrometry and mutagenesis we identified seven of the eight hydroxy amino acids in the CTD as target sites for serine-arginine rich protein kinase 1 (SRPK1); fewer sites were phosphorylated by PKA and PKC. Phosphorylation of all seven sites reduced nonspecific RNA encapsidation as drastically as deletion of the entire CTD and altered CTD surface accessibility, without major structure changes in the capsid shell. The bulk of capsids from human hepatoma cells was similarly highly, yet non-identically, phosphorylated as by SRPK1. While not proving SRPK1 as the infection-relevant HBc kinase the data suggest a mechanism whereby high-level HBc phosphorylation principally suppresses RNA binding whereas one or few strategic dephosphorylation events enable selective packaging of the pgRNA/polymerase complex. The tools developed in this study should greatly facilitate the further deciphering of the role of HBc phosphorylation in HBV infection and its evaluation as a potential new therapeutic target.
Collapse
Affiliation(s)
- Julia Heger-Stevic
- University Hospital Freiburg, Department of Medicine II / Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Biological Faculty, University of Freiburg, Freiburg, Germany
| | - Peter Zimmermann
- University Hospital Freiburg, Department of Medicine II / Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Biological Faculty, University of Freiburg, Freiburg, Germany
| | - Lauriane Lecoq
- Institut de Biologie et Chimie des Protéines, University of Lyon1, Lyon, France
| | - Bettina Böttcher
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Michael Nassal
- University Hospital Freiburg, Department of Medicine II / Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
30
|
Structure of Mutant Hepatitis B Core Protein Capsids with Premature Secretion Phenotype. J Mol Biol 2018; 430:4941-4954. [PMID: 30539760 DOI: 10.1016/j.jmb.2018.10.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/09/2018] [Accepted: 10/23/2018] [Indexed: 01/24/2023]
Abstract
Hepatitis B virus is a major human pathogen that consists of a viral genome surrounded by an icosahedrally ordered core protein and a polymorphic, lipidic envelope that is densely packed with surface proteins. A point mutation in the core protein in which a phenylalanine at position 97 is exchanged for a smaller leucine leads to premature envelopment of the capsid before the genome maturation is fully completed. We have used electron cryo-microscopy and image processing to investigate how the point mutation affects the structure of the capsid at 2.6- to 2.8 Å-resolution. We found that in the mutant the smaller side chain at position 97 is displaced, increasing the size of an adjacent pocket in the center of the spikes of the capsid. In the mutant, this pocket is filled with an unknown density. Phosphorylation of serine residues in the unresolved C-terminal domain of the mutant leaves the structure of the ordered capsid largely unchanged. However, we were able to resolve several previously unresolved residues downstream of proline 144 that precede the phosphorylation-sites. These residues pack against the neighboring subunits and increase the inter-dimer contact suggesting that the C-termini play an important role in capsid stabilization and provide a much larger interaction interface than previously observed.
Collapse
|
31
|
Caballero A, Tabernero D, Buti M, Rodriguez-Frias F. Hepatitis B virus: The challenge of an ancient virus with multiple faces and a remarkable replication strategy. Antiviral Res 2018; 158:34-44. [PMID: 30059722 DOI: 10.1016/j.antiviral.2018.07.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023]
Abstract
The hepatitis B virus (HBV) is the prototype member of the Hepadnaviridae, an ancient family of hepatotropic DNA viruses, which may have originated from 360 to 430 million years ago and with evidence of endogenization in reptilian genomes >200 million years ago. The virus is currently estimated to infect more than 250 million humans. The extremely successful spread of this pathogen among the human population is explained by its multiple particulate forms, effective transmission strategies (particularly perinatal transmission), long induction period and low associated mortality. These characteristics confer selective advantages, enabling the virus to persist in small, disperse populations and spread worldwide, with high prevalence rates in many countries. The HBV replication strategy is remarkably complex and includes a multiplicity of particulate structures. In addition to the common virions containing DNA in a relaxed circular (rcDNA) or double-stranded linear (dslDNA) forms, the viral population includes virion-like particles containing RNA or "empty" (viral envelopes and capsids without genomes), subviral particles (only an envelope) and even naked capsids. Consequently, several forms of the genome coexist in a single infection: (i) the "traveler" forms found in serum, including rcDNA and dslDNA, which originate from retrotranscription of a messenger RNA (the pregenomic RNA, another form of the viral genome itself) and (ii) forms confined to the host cell nucleus, including covalently closed circular DNA (cccDNA), which leads to a minichromosome form associated with histones and viral proteins, and double-stranded DNA integrated into the host genome. This complex composition lends HBV a kind of "multiple personality". Are these additional particles and genomic forms simple intermediaries/artifacts or do they play a role in the viral life cycle?
Collapse
Affiliation(s)
- Andrea Caballero
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron and Universitat Autònoma de Barcelona (UAB), 119-129 Passeig Vall d'Hebron, Clinical Laboratories, 08035 Barcelona, Spain.
| | - David Tabernero
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron and Universitat Autònoma de Barcelona (UAB), 119-129 Passeig Vall d'Hebron, Clinical Laboratories, 08035 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 3-5 Avenida Monforte de Lemos, pavilion 11, 28029 Madrid, Spain.
| | - Maria Buti
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 3-5 Avenida Monforte de Lemos, pavilion 11, 28029 Madrid, Spain; Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron and Universitat Autònoma de Barcelona (UAB), 119-129 Passeig Vall d'Hebron, General Hospital, Internal Medicine 2, 08035 Barcelona, Spain.
| | - Francisco Rodriguez-Frias
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron and Universitat Autònoma de Barcelona (UAB), 119-129 Passeig Vall d'Hebron, Clinical Laboratories, 08035 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 3-5 Avenida Monforte de Lemos, pavilion 11, 28029 Madrid, Spain.
| |
Collapse
|
32
|
Common and Distinct Capsid and Surface Protein Requirements for Secretion of Complete and Genome-Free Hepatitis B Virions. J Virol 2018; 92:JVI.00272-18. [PMID: 29743374 DOI: 10.1128/jvi.00272-18] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/04/2018] [Indexed: 02/06/2023] Open
Abstract
During the morphogenesis of hepatitis B virus (HBV), an enveloped virus, two types of virions are secreted: (i) a minor population of complete virions containing a mature nucleocapsid with the characteristic, partially double-stranded, relaxed circular DNA genome and (ii) a major population containing an empty capsid with no DNA or RNA (empty virions). Secretion of both types of virions requires interactions between the HBV capsid or core protein (HBc) and the viral surface or envelope proteins. We have studied the requirements from both HBc and envelope proteins for empty virion secretion in comparison with those for secretion of complete virions. Substitutions within the N-terminal domain of HBc that block secretion of DNA-containing virions reduced but did not prevent secretion of empty virions. The HBc C-terminal domain was not essential for empty virion secretion. Among the three viral envelope proteins, the smallest, S, alone was sufficient for empty virion secretion at a basal level. The largest protein, L, essential for complete virion secretion, was not required but could stimulate empty virion secretion. Also, substitutions in L that eliminated secretion of complete virions reduced but did not eliminate empty virion secretion. S mutations that blocked secretion of the hepatitis D virus (HDV), an HBV satellite, did not block secretion of either empty or complete HBV virions. Together, these results indicate that both common and distinct signals on empty capsids and mature nucleocapsids interact with the S and L proteins during the formation of complete and empty virions.IMPORTANCE Hepatitis B virus (HBV) is a major cause of severe liver diseases, including cirrhosis and cancer. In addition to the complete infectious virion particle, which contains an outer envelope layer and an interior capsid that, in turn, encloses a DNA genome, HBV-infected cells also secrete noninfectious, incomplete viral particles in large excess over the number of complete virions. In particular, the empty (or genome-free) virion shares with the complete virion the outer envelope and interior capsid but contains no genome. We have carried out a comparative study on the capsid and envelope requirements for the secretion of these two types of virion particles and uncovered both shared and distinct determinants on the capsid and envelope for their secretion. These results provide new information on HBV morphogenesis and have implications for efforts to develop empty HBV virions as novel biomarkers and a new generation of HBV vaccine.
Collapse
|
33
|
Valaydon ZS, Locarnini SA. The virological aspects of hepatitis B. Best Pract Res Clin Gastroenterol 2017; 31:257-264. [PMID: 28774407 DOI: 10.1016/j.bpg.2017.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/28/2017] [Indexed: 01/31/2023]
Abstract
Human hepatitis B virus (HBV) is a hepatotropic virus that is responsible for a significant burden of disease, causing liver disease and hepatocellular carcinoma. It is a small DNA virus with a replication strategy that is similar to that of a retrovirus. HBV is prone to mutagenesis and under the influence of diverse selection pressures, has evolved into a pool of quasispecies, genotypes and mutants, which confers a significant survival advantage. The genome is small, circular, and compact but has a complex replication strategy. The viral life cycle involves the formation of a covalently closed circular DNA (cccDNA), which is organized into a minichromosome that is the template for the synthesis of viral mRNA. HBV DNA (double-stranded linear form) can also integrate into the host genome, ensuring lifelong persistence of the virus. To date, despite great advances in therapeutics, once HBV is chronically established, it is incurable. This is by virtue of many aspects of its virological structure and viral life cycle. In this review, we aim to discuss important aspects of the virology of HBV with a focus on clinical implications.
Collapse
Affiliation(s)
- Zina S Valaydon
- Division of Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute, Parkville, Victoria, Australia; Department of Gastroenterology, St. Vincent's Hospital, Fitzroy, Victoria, Australia; Department of Medicine, Eastern Hill Academic Centre, The University of Melbourne, Parkville, Victoria, Australia.
| | - Stephen A Locarnini
- Division of Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute, Parkville, Victoria, Australia
| |
Collapse
|
34
|
Liu C, Fan G, Wang Z, Chen HS, Yin CC. Allosteric conformational changes of human HBV core protein transform its assembly. Sci Rep 2017; 7:1404. [PMID: 28469174 PMCID: PMC5431180 DOI: 10.1038/s41598-017-01568-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/31/2017] [Indexed: 12/22/2022] Open
Abstract
Hepatitis B Virus core protein (HBc) has multiple roles in the viral lifecycle: viral assembly, compartment for reverse transcription, intracellular trafficking, and nuclear functions. HBc displays assembly polymorphism - it can assemble into icosahedral capsid and aberrant non-capsid structures. It has been hypothesized that the assembly polymorphism is due to allosteric conformational changes of HBc dimer, the smallest assembly unit, however, the mechanism governing the polymorphic assembly of the HBc dimer is still elusive. By using the experimental antiviral drug BAY 41-4109, we successfully transformed the HBc assembly from icosahedral capsid to helical tube. Structural analyses of HBc dimers from helical tubes, T = 4 icosahedral capsid, and sheet-like HBc ensemble revealed differences within the inter-dimer interface. Disruption of the HBc inter-dimer interface may likely promote the various assembly forms of HBc. Our work provides new structural insights into the HBV assembly mechanism and strategic guide for anti-HBV drug design.
Collapse
Affiliation(s)
- Chuang Liu
- Department of Biophysics, Peking University Health Science Centre, Peking University, Beijing, 100191, China
| | - Guizhen Fan
- Department of Biophysics, Peking University Health Science Centre, Peking University, Beijing, 100191, China
| | - Zhao Wang
- Department of Biophysics, Peking University Health Science Centre, Peking University, Beijing, 100191, China
| | - Hong-Song Chen
- Institute of Hepatology, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Chang-Cheng Yin
- Department of Biophysics, Peking University Health Science Centre, Peking University, Beijing, 100191, China.
| |
Collapse
|
35
|
Hosseini SY, Baesi K, Azarpira N, Pakneiat A, Hosseini SA. The evaluation of fibrotic effects of the hepatitis B virus pre-core in hepatic stellate cells. Biomed Rep 2017; 6:671-674. [PMID: 28584639 DOI: 10.3892/br.2017.894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/15/2017] [Indexed: 12/18/2022] Open
Abstract
The role of the hepatitis B virus (HBV) endogenous pre-core protein in liver fibrosis is controversial. Whether the expression of the pre-core induces the activation of human stellate cells (HSCs) has not yet been reported. Plasmids expressing HBx, or pre-core protein were transfected into LX-2 cells. Subsequently, total RNA extracted and reverse transcription-quantitative polymerase chain reaction was performed to measure the fold change of collagen type I, α1 chain, α-smooth muscle actin and TIMP metalloproteinase inhibitor-1. Moreover, transforming growth factor (TGF)-β in the supernatant of HSCs was evaluated by ELISA assay. In addition, a MTT assay was performed to test the cytotoxicity of the endogenous expression in LX-2 cells. None of the plasmids exhibited cytotoxic nor significant proliferative effects on LX-2 cells by MTT assessment. The gene expression analysis of fibrotic genes in LX-2 cells demonstrated that the pre-core protein presented no significant (P>0.05) fibrotic impact when compared to the empty control plasmid and HBx. The data from the TGF-β ELISA was consistent with the mRNA expression as detected with the control plasmid (P>0.05). The endogenous expression of the HBV pre-core exhibited no fibrotic impression in HSCs when compared to HBx.
Collapse
Affiliation(s)
- Seyed Younes Hosseini
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran.,Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Kazem Baesi
- Hepatitis and AIDS Department, Pasteur institute of Iran, Tehran 13169-43551, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz 14336-71348, Iran
| | - Ameneh Pakneiat
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Seyedeh Akram Hosseini
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| |
Collapse
|
36
|
Capsid Phosphorylation State and Hepadnavirus Virion Secretion. J Virol 2017; 91:JVI.00092-17. [PMID: 28228589 DOI: 10.1128/jvi.00092-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/13/2017] [Indexed: 12/16/2022] Open
Abstract
The C-terminal domain (CTD) of hepadnavirus core protein is involved in multiple steps of viral replication. In particular, the CTD is initially phosphorylated at multiple sites to facilitate viral RNA packaging into immature nucleocapsids (NCs) and the early stage of viral DNA synthesis. For the avian hepadnavirus duck hepatitis B virus (DHBV), CTD is dephosphorylated subsequently to facilitate the late stage of viral DNA synthesis and to stabilize NCs containing mature viral DNA. The role of CTD phosphorylation in virion secretion, if any, has remained unclear. Here, the CTD from the human hepatitis B virus (HBV) was found to be dephosphorylated in association with NC maturation and secretion of DNA-containing virions, as in DHBV. In contrast, the CTD in empty HBV virions (i.e., enveloped capsids with no RNA or DNA) was found to be phosphorylated. The potential role of CTD dephosphorylation in virion secretion was analyzed through mutagenesis. For secretion of empty HBV virions, which is independent of either viral RNA packaging or DNA synthesis, multiple substitutions in the CTD to mimic either phosphorylation or dephosphorylation showed little detrimental effect. Similarly, phospho-mimetic substitutions in the DHBV CTD did not block the secretion of DNA-containing virions. These results indicate that CTD dephosphorylation, though associated with NC maturation in both HBV and DHBV, is not essential for the subsequent NC-envelope interaction to secrete DNA-containing virions, and the CTD state of phosphorylation also does not play an essential role in the interaction between empty capsids and the envelope for secretion of empty virions.IMPORTANCE The phosphorylation state of the C-terminal domain (CTD) of hepatitis B virus (HBV) core or capsid protein is highly dynamic and plays multiple roles in the viral life cycle. To study the potential role of the state of phosphorylation of CTD in virion secretion, we have analyzed the CTD phosphorylation state in complete (containing the genomic DNA) versus empty (genome-free) HBV virions. Whereas CTD is unphosphorylated in complete virions, it is phosphorylated in empty virions. Mutational analyses indicate that neither phosphorylation nor dephosphorylation of CTD is required for virion secretion. These results demonstrate that while CTD dephosphorylation is associated with HBV DNA synthesis, the CTD state of phosphorylation may not regulate virion secretion.
Collapse
|
37
|
Complete and Incomplete Hepatitis B Virus Particles: Formation, Function, and Application. Viruses 2017; 9:v9030056. [PMID: 28335554 PMCID: PMC5371811 DOI: 10.3390/v9030056] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/11/2017] [Accepted: 03/17/2017] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) is a para-retrovirus or retroid virus that contains a double-stranded DNA genome and replicates this DNA via reverse transcription of a RNA pregenome. Viral reverse transcription takes place within a capsid upon packaging of the RNA and the viral reverse transcriptase. A major characteristic of HBV replication is the selection of capsids containing the double-stranded DNA, but not those containing the RNA or the single-stranded DNA replication intermediate, for envelopment during virion secretion. The complete HBV virion particles thus contain an outer envelope, studded with viral envelope proteins, that encloses the capsid, which, in turn, encapsidates the double-stranded DNA genome. Furthermore, HBV morphogenesis is characterized by the release of subviral particles that are several orders of magnitude more abundant than the complete virions. One class of subviral particles are the classical surface antigen particles (Australian antigen) that contain only the viral envelope proteins, whereas the more recently discovered genome-free (empty) virions contain both the envelope and capsid but no genome. In addition, recent evidence suggests that low levels of RNA-containing particles may be released, after all. We will summarize what is currently known about how the complete and incomplete HBV particles are assembled. We will discuss briefly the functions of the subviral particles, which remain largely unknown. Finally, we will explore the utility of the subviral particles, particularly, the potential of empty virions and putative RNA virions as diagnostic markers and the potential of empty virons as a vaccine candidate.
Collapse
|
38
|
Nuclear Import of Hepatitis B Virus Capsids and Genome. Viruses 2017; 9:v9010021. [PMID: 28117723 PMCID: PMC5294990 DOI: 10.3390/v9010021] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) is an enveloped pararetrovirus with a DNA genome, which is found in an up to 36 nm-measuring capsid. Replication of the genome occurs via an RNA intermediate, which is synthesized in the nucleus. The virus must have thus ways of transporting its DNA genome into this compartment. This review summarizes the data on hepatitis B virus genome transport and correlates the finding to those from other viruses.
Collapse
|
39
|
Guyader CPE, Lamarre B, De Santis E, Noble JE, Slater NK, Ryadnov MG. Autonomously folded α-helical lockers promote RNAi. Sci Rep 2016; 6:35012. [PMID: 27721465 PMCID: PMC5056365 DOI: 10.1038/srep35012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/22/2016] [Indexed: 12/23/2022] Open
Abstract
RNAi is an indispensable research tool with a substantial therapeutic potential. However, the complete transition of the approach to an applied capability remains hampered due to poorly understood relationships between siRNA delivery and gene suppression. Here we propose that interfacial tertiary contacts between α-helices can regulate siRNA cytoplasmic delivery and RNAi. We introduce a rationale of helical amphipathic lockers that differentiates autonomously folded helices, which promote gene silencing, from helices folded with siRNA, which do not. Each of the helical designs can deliver siRNA into cells via energy-dependent endocytosis, while only autonomously folded helices with pre-locked hydrophobic interfaces were able to promote statistically appreciable gene silencing. We propose that it is the amphipathic locking of interfacing helices prior to binding to siRNA that enables RNAi. The rationale offers structurally balanced amphipathic scaffolds to advance the exploitation of functional RNAi.
Collapse
Affiliation(s)
- Christian P. E. Guyader
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB2 3RA, UK
- National Physical Laboratory, Teddington, Middlesex, TW11 0WL, UK
| | - Baptiste Lamarre
- National Physical Laboratory, Teddington, Middlesex, TW11 0WL, UK
| | | | - James E. Noble
- National Physical Laboratory, Teddington, Middlesex, TW11 0WL, UK
| | - Nigel K. Slater
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB2 3RA, UK
| | - Maxim G. Ryadnov
- National Physical Laboratory, Teddington, Middlesex, TW11 0WL, UK
| |
Collapse
|
40
|
Wang J, Shen T, Huang X, Kumar GR, Chen X, Zeng Z, Zhang R, Chen R, Li T, Zhang T, Yuan Q, Li PC, Huang Q, Colonno R, Jia J, Hou J, McCrae MA, Gao Z, Ren H, Xia N, Zhuang H, Lu F. Serum hepatitis B virus RNA is encapsidated pregenome RNA that may be associated with persistence of viral infection and rebound. J Hepatol 2016; 65:700-710. [PMID: 27245431 DOI: 10.1016/j.jhep.2016.05.029] [Citation(s) in RCA: 307] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Hepatitis B virus (HBV) RNA in serum has recently been linked to efficacy and prognosis of chronic hepatitis B (CHB) treatment. This study explored the nature, origin, underlying mechanisms, and potential clinical significance of serum HBV RNA. METHODS The levels of HBV DNA and RNA were determined in the supernatant of induced HepAD38, HBV-expressing HepG2.2.15 cells and primary human hepatocytes (PHH), and in the serum of transgenic mice and CHB patients. NP-40 and proteinase K treatment, sucrose density gradient centrifugation, electron microscopy, northern blot, multiple identification PCRs and 5' rapid-amplification of cDNA ends were performed to identify the nature of serum HBV RNA. RESULTS Although significantly lower than HBV DNA levels, abundant HBV RNA was present in the serum of CHB patients. A series of experiments demonstrated that serum HBV RNA was pregenome RNA (pgRNA) and present in virus-like particles. HBV pgRNA virion levels increased after blocking the reverse transcription activity of HBV DNA polymerase, and decreased after blocking the encapsidation of pgRNA. Furthermore, the presence of HBV pgRNA virion was associated with risk of viral rebound after discontinuation of nucleot(s)ide analogues (NAs) therapy in CHB patients. CONCLUSIONS Serum HBV RNA was confirmed to be pgRNA present in virus-like particles. HBV pgRNA virions were produced from encapsidated particles in which the pgRNA was non- or partially reverse transcribed. Clinically, HBV pgRNA virion might be a potential biomarker for monitoring safe discontinuation of NA-therapy. LAY SUMMARY HBV may have another virion form in which the nucleic acid is composed of RNA, not DNA. The level of HBV RNA virion in serum may be associated with risk of HBV viral rebound after withdrawal of treatment, and therefore, a potential predictive biomarker to monitor the safe discontinuation of nucleot(s)ide analogues-therapy.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tao Shen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiangbo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | | | - Xiangmei Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhenzhen Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ruiyang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ran Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tong Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tianying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Pao-Chen Li
- Assembly Biosciences, Inc., San Francisco, CA, USA
| | - Qi Huang
- Assembly Biosciences, Inc., San Francisco, CA, USA
| | | | - Jidong Jia
- Clinical Epidemiology and EBM Unit, Being Friendship Hospital, Capital Medical University, China
| | - Jinlin Hou
- Hepatology Unit and Key Laboratory for Organ Failure Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | - Zhiliang Gao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China.
| | - Hong Ren
- Department of Infectious Diseases, Institute of Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.
| | - Hui Zhuang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Fengmin Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
41
|
Pumpens P, Grens E. The true story and advantages of the famous Hepatitis B virus core particles: Outlook 2016. Mol Biol 2016. [DOI: 10.1134/s0026893316040099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Abstract
Hepatitis B virus is one of the smallest human pathogens, encoded by a 3,200-bp genome with only four open reading frames. Yet the virus shows a remarkable diversity in structural features, often with the same proteins adopting several conformations. In part, this is the parsimony of viruses, where a minimal number of proteins perform a wide variety of functions. However, a more important theme is that weak interactions between components as well as components with multiple conformations that have similar stabilities lead to a highly dynamic system. In hepatitis B virus, this is manifested as a virion where the envelope proteins have multiple structures, the envelope-capsid interaction is irregular, and the capsid is a dynamic compartment that actively participates in metabolism of the encapsidated genome and carries regulated signals for intracellular trafficking.
Collapse
Affiliation(s)
| | - Adam Zlotnick
- Department of Molecular and Cellular Biology, Indiana University, Bloomington, Indiana 47405;
| |
Collapse
|
43
|
Chen C, Wang JCY, Pierson EE, Keifer DZ, Delaleau M, Gallucci L, Cazenave C, Kann M, Jarrold MF, Zlotnick A. Importin β Can Bind Hepatitis B Virus Core Protein and Empty Core-Like Particles and Induce Structural Changes. PLoS Pathog 2016; 12:e1005802. [PMID: 27518410 PMCID: PMC4982637 DOI: 10.1371/journal.ppat.1005802] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 07/11/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) capsids are found in many forms: immature single-stranded RNA-filled cores, single-stranded DNA-filled replication intermediates, mature cores with relaxed circular double-stranded DNA, and empty capsids. A capsid, the protein shell of the core, is a complex of 240 copies of core protein. Mature cores are transported to the nucleus by a complex that includes both importin α and importin β (Impα and Impβ), which bind to the core protein's C-terminal domains (CTDs). Here we have investigated the interactions of HBV core protein with importins in vitro. Strikingly, empty capsids and free core protein can bind Impβ without Impα. Cryo-EM image reconstructions show that the CTDs, which are located inside the capsid, can extrude through the capsid to be bound by Impβ. Impβ density localized on the capsid exterior near the quasi-sixfold vertices, suggested a maximum of 30 Impβ per capsid. However, examination of complexes using single molecule charge-detection mass spectrometry indicate that some complexes include over 90 Impβ molecules. Cryo-EM of capsids incubated with excess Impβ shows a population of damaged particles and a population of "dark" particles with internal density, suggesting that Impβ is effectively swallowed by the capsids, which implies that the capsids transiently open and close and can be destabilized by Impβ. Though the in vitro complexes with great excess of Impβ are not biological, these results have implications for trafficking of empty capsids and free core protein; activities that affect the basis of chronic HBV infection.
Collapse
Affiliation(s)
- Chao Chen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Joseph Che-Yen Wang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Elizabeth E. Pierson
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - David Z. Keifer
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Mildred Delaleau
- Universite de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Lara Gallucci
- Universite de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Christian Cazenave
- Universite de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Michael Kann
- Universite de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CHU de Bordeaux, Bordeaux, France
| | - Martin F. Jarrold
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
44
|
Moerman P, van der Schoot P, Kegel W. Kinetics versus Thermodynamics in Virus Capsid Polymorphism. J Phys Chem B 2016; 120:6003-9. [PMID: 27027925 DOI: 10.1021/acs.jpcb.6b01953] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Virus coat proteins spontaneously self-assemble into empty shells in aqueous solution under the appropriate physicochemical conditions, driven by an interaction free energy per bond on the order of 2-5 times the thermal energy kBT. For this seemingly modest interaction strength, each protein building block nonetheless gains a very large binding free energy, between 10 and 20 kBT. Because of this, there is debate about whether the assembly process is reversible or irreversible. Here we discuss capsid polymorphism observed in in vitro experiments from the perspective of nucleation theory and of the thermodynamics of mass action. We specifically consider the potential contribution of a curvature free energy term to the effective interaction potential between the proteins. From these models, we propose experiments that may conclusively reveal whether virus capsid assembly into a mixture of polymorphs is a reversible or an irreversible process.
Collapse
Affiliation(s)
| | - Paul van der Schoot
- Department of Applied Physics, Eindhoven University of Technology , 612 AZ Eindhoven, The Netherlands
| | | |
Collapse
|
45
|
Blondot ML, Bruss V, Kann M. Intracellular transport and egress of hepatitis B virus. J Hepatol 2016; 64:S49-S59. [PMID: 27084037 DOI: 10.1016/j.jhep.2016.02.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/27/2016] [Accepted: 02/03/2016] [Indexed: 12/23/2022]
Abstract
Hepatitis B virus (HBV) replicates its genomic information in the nucleus via transcription and therefore has to deliver its partially double stranded DNA genome into the nucleus. Like other viruses with a nuclear replication phase, HBV genomes are transported inside the viral capsids first through the cytoplasm towards the nuclear envelope. Following the arrival at the nuclear pore, the capsids are transported through, using classical cellular nuclear import pathways. The arrest of nuclear import at the nucleoplasmic side of the nuclear pore is unique, however, and is where the capsids efficiently disassemble leading to genome release. In the latter phase of the infection, newly formed nucleocapsids in the cytosol have to move to budding sites at intracellular membranes carrying the three viral envelope proteins. Capsids containing single stranded nucleic acid are not enveloped, in contrast to empty and double stranded DNA containing capsids. A small linear domain in the large envelope protein and two areas on the capsid surface have been mapped, where point mutations strongly block nucleocapsid envelopment. It is possible that these domains are involved in the envelope--with capsid interactions driving the budding process. Like other enveloped viruses, HBV also uses the cellular endosomal sorting complexes required for transport (ESCRT) machinery for catalyzing budding through the membrane and away from the cytosol.
Collapse
Affiliation(s)
- Marie-Lise Blondot
- Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Volker Bruss
- Institute for Virology, Helmholtz Zentrum München, Technische Universität Muenchen, Neuherberg, Germany
| | - Michael Kann
- Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France; CHU de Bordeaux, Bordeaux, France.
| |
Collapse
|
46
|
Hepatitis B Virus Capsids Have Diverse Structural Responses to Small-Molecule Ligands Bound to the Heteroaryldihydropyrimidine Pocket. J Virol 2016; 90:3994-4004. [PMID: 26842475 PMCID: PMC4810570 DOI: 10.1128/jvi.03058-15] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/27/2016] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Though the hepatitis B virus (HBV) core protein is an important participant in many aspects of the viral life cycle, its best-characterized activity is self-assembly into 240-monomer capsids. Small molecules that target core protein (core protein allosteric modulators [CpAMs]) represent a promising antiviral strategy. To better understand the structural basis of the CpAM mechanism, we determined the crystal structure of the HBV capsid in complex with HAP18. HAP18 accelerates assembly, increases protein-protein association more than 100-fold, and induces assembly of nonicosahedral macrostructures. In a preformed capsid, HAP18 is found at quasiequivalent subunit-subunit interfaces. In a detailed comparison to the two other extant CpAM structures, we find that the HAP18-capsid structure presents a paradox. Whereas the two other structures expanded the capsid diameter by up to 10 Å, HAP18 caused only minor changes in quaternary structure and actually decreased the capsid diameter by ∼3 Å. These results indicate that CpAMs do not have a single allosteric effect on capsid structure. We suggest that HBV capsids present an ensemble of states that can be trapped by CpAMs, indicating a more complex basis for antiviral drug design. IMPORTANCE Hepatitis B virus core protein has multiple roles in the viral life cycle-assembly, compartment for reverse transcription, intracellular trafficking, and nuclear functions-making it an attractive antiviral target. Core protein allosteric modulators (CpAMs) are an experimental class of antivirals that bind core protein. The most recognized CpAM activity is that they accelerate core protein assembly and strengthen interactions between subunits. In this study, we observe that the CpAM-binding pocket has multiple conformations. We compare structures of capsids cocrystallized with different CpAMs and find that they also affect quaternary structure in different ways. These results suggest that the capsid "breathes" and is trapped in different states by the drug and crystallization. Understanding that the capsid is a moving target will aid drug design and improve our understanding of HBV interaction with its environment.
Collapse
|
47
|
Jansen L, Kootstra NA, van Dort KA, Takkenberg RB, Reesink HW, Zaaijer HL. Hepatitis B Virus Pregenomic RNA Is Present in Virions in Plasma and Is Associated With a Response to Pegylated Interferon Alfa-2a and Nucleos(t)ide Analogues. J Infect Dis 2015. [PMID: 26216905 DOI: 10.1093/infdis/jiv397] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Treatment of patients with chronic hepatitis B (CHB) with nucleos(t)ide analogues (NAs) suppresses hepatitis B virus (HBV) DNA production but does not affect the synthesis of the RNA pregenome or HBV messenger RNA. Whether HBV RNA-containing particles continue to be secreted into the bloodstream remains controversial. METHODS We developed a sensitive polymerase chain reaction (PCR) assay to quantify the HBV RNA load in a supernatant of NA-treated HepG2-2.2.15 cells and in plasma specimens from 20 patients with CHB who were receiving NA therapy and 86 patients treated with pegylated interferon alfa (Peg-IFN) and adefovir. RESULTS Treatment of HepG2-2.2.15 cells with NAs for 9 days reduced HBV DNA levels (by 1.98 log10 copies/mL), whereas HBV RNA levels increased (by 0.47 log10 copies/mL; P < .05). During long-term NA treatment of patients with CHB, HBV RNA levels remained higher than HBV DNA levels. Peg-IFN-based treatment induced a stronger decrease in the HBV RNA load than NA monotherapy, and this decline was more pronounced in responders than in nonresponders. In HBV e antigen-negative patients, a lower baseline plasma HBV RNA level was independently associated with response to Peg-IFN and adefovir (odds ratio, 0.44; P = .019). Immunoprecipitation with HBV core antigen-specific antibodies after removal of the HBV surface antigen envelope demonstrated the association of plasma HBV RNA with virions. CONCLUSIONS HBV RNA is present in virions in plasma specimens from patients with CHB. HBV RNA levels vary significantly from those of established viral markers during antiviral treatment, which highlights its potential as an independent marker in the evaluation of patients with CHB.
Collapse
Affiliation(s)
- L Jansen
- Department of Gastroenterology and Hepatology Department of Experimental Immunology
| | | | | | | | - Hendrik W Reesink
- Department of Gastroenterology and Hepatology Department of Experimental Immunology
| | - Hans L Zaaijer
- Department of Clinical Virology, Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|
48
|
An Aptamer against the Matrix Binding Domain on the Hepatitis B Virus Capsid Impairs Virion Formation. J Virol 2015; 89:9281-7. [PMID: 26136564 DOI: 10.1128/jvi.00466-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/18/2015] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED The hepatitis B virus (HBV) particle is an icosahedral nucleocapsid surrounded by a lipid envelope containing viral surface proteins. A small domain (matrix domain [MD]) in the large surface protein L and a narrow region (matrix binding domain [MBD]) including isoleucine 126 on the capsid surface have been mapped, in which point mutations such as core I126A specifically blocked nucleocapsid envelopment. It is possible that the two domains interact with each other during virion morphogenesis. By the systematic evolution of ligands by exponential enrichment (SELEX) method, we evolved DNA aptamers from an oligonucleotide library binding to purified recombinant capsids but not binding to the corresponding I126A mutant capsids. Aptamers bound to capsids were separated from unbound molecules by filtration. After 13 rounds of selections and amplifications, 16 different aptamers were found among 73 clones. The four most frequent aptamers represented more than 50% of the clones. The main aptamer, AO-01 (13 clones, 18%), showed the lowest dissociation constant (Kd) of 180 ± 82 nM for capsid binding among the four molecules. Its Kd for I126A capsids was 1,306 ± 503 nM. Cotransfection of Huh7 cells with AO-01 and an HBV genomic construct resulted in 47% inhibition of virion production at 3 days posttransfection, but there was no inhibition by cotransfection of an aptamer with a random sequence. The half-life of AO-01 in cells was 2 h, which might explain the incomplete inhibition. The results support the importance of the MBD for nucleocapsid envelopment. Inhibiting the MD-MBD interaction with a low-molecular-weight substance might represent a new approach for an antiviral therapy. IMPORTANCE Approximately 240 million people are persistently infected with HBV. To date, antiviral therapies depend on a single target, the viral reverse transcriptase. Future additional targets could be viral protein-protein interactions. We selected a 55-base-long single-stranded DNA molecule (aptamer) which binds with relatively high affinity to a region on the HBV capsid interacting with viral envelope proteins during budding. This aptamer inhibits virion formation in cell culture. The results substantiate the current model for HBV morphogenesis and show that the capsid envelope interaction is a potential antiviral target.
Collapse
|
49
|
Hao R, Xiang K, Peng Y, Hou J, Sun J, Li Y, Su M, Yan L, Zhuang H, Li T. Naturally occurring deletion/insertion mutations within HBV whole genome sequences in HBeAg-positive chronic hepatitis B patients are correlated with baseline serum HBsAg and HBeAg levels and might predict a shorter interval to HBeAg loss and seroconversion during antiviral treatment. INFECTION GENETICS AND EVOLUTION 2015; 33:261-8. [DOI: 10.1016/j.meegid.2015.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/10/2015] [Accepted: 05/11/2015] [Indexed: 12/26/2022]
|
50
|
Zlotnick A, Venkatakrishnan B, Tan Z, Lewellyn E, Turner W, Francis S. Core protein: A pleiotropic keystone in the HBV lifecycle. Antiviral Res 2015; 121:82-93. [PMID: 26129969 DOI: 10.1016/j.antiviral.2015.06.020] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/22/2015] [Accepted: 06/26/2015] [Indexed: 12/21/2022]
Abstract
Hepatitis B Virus (HBV) is a small virus whose genome has only four open reading frames. We argue that the simplicity of the virion correlates with a complexity of functions for viral proteins. We focus on the HBV core protein (Cp), a small (183 residue) protein that self-assembles to form the viral capsid. However, its functions are a little more complicated than that. In an infected cell Cp modulates almost every step of the viral lifecycle. Cp is bound to nuclear viral DNA and affects its epigenetics. Cp correlates with RNA specificity. Cp assembles specifically on a reverse transcriptase-viral RNA complex or, apparently, nothing at all. Indeed Cp has been one of the model systems for investigation of virus self-assembly. Cp participates in regulation of reverse transcription. Cp signals completion of reverse transcription to support virus secretion. Cp carries both nuclear localization signals and HBV surface antigen (HBsAg) binding sites; both of these functions appear to be regulated by contents of the capsid. Cp can be targeted by antivirals - while self-assembly is the most accessible of Cp activities, we argue that it makes sense to engage the broader spectrum of Cp function. This article forms part of a symposium in Antiviral Research on "From the discovery of the Australia antigen to the development of new curative therapies for hepatitis B: an unfinished story."
Collapse
Affiliation(s)
- Adam Zlotnick
- Molecular & Cellular Biology, Indiana University, Bloomington, IN, United States.
| | | | - Zhenning Tan
- Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| | - Eric Lewellyn
- Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| | - William Turner
- Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| | - Samson Francis
- Molecular & Cellular Biology, Indiana University, Bloomington, IN, United States; Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| |
Collapse
|