1
|
Pintscher S, Pietras R, Mielecki B, Szwalec M, Wójcik-Augustyn A, Indyka P, Rawski M, Koziej Ł, Jaciuk M, Ważny G, Glatt S, Osyczka A. Molecular basis of plastoquinone reduction in plant cytochrome b 6f. NATURE PLANTS 2024; 10:1814-1825. [PMID: 39362993 PMCID: PMC11570496 DOI: 10.1038/s41477-024-01804-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024]
Abstract
A multi-subunit enzyme, cytochrome b6f (cytb6f), provides the crucial link between photosystems I and II in the photosynthetic membranes of higher plants, transferring electrons between plastoquinone (PQ) and plastocyanin. The atomic structure of cytb6f is known, but its detailed catalytic mechanism remains elusive. Here we present cryogenic electron microscopy structures of spinach cytb6f at 1.9 Å and 2.2 Å resolution, revealing an unexpected orientation of the substrate PQ in the haem ligand niche that forms the PQ reduction site (Qn). PQ, unlike Qn inhibitors, is not in direct contact with the haem. Instead, a water molecule is coordinated by one of the carbonyl groups of PQ and can act as the immediate proton donor for PQ. In addition, we identify water channels that connect Qn with the aqueous exterior of the enzyme, suggesting that the binding of PQ in Qn displaces water through these channels. The structures confirm large movements of the head domain of the iron-sulfur protein (ISP-HD) towards and away from the plastoquinol oxidation site (Qp) and define the unique position of ISP-HD when a Qp inhibitor (2,5-dibromo-3-methyl-6-isopropylbenzoquinone) is bound. This work identifies key conformational states of cytb6f, highlights fundamental differences between substrates and inhibitors and proposes a quinone-water exchange mechanism.
Collapse
Affiliation(s)
- Sebastian Pintscher
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Kraków, Poland
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Biotechnology, Jagiellonian University, Kraków, Poland
| | - Rafał Pietras
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Molecular Biophysics, Jagiellonian University, Kraków, Poland
| | - Bohun Mielecki
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Molecular Biophysics, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Mateusz Szwalec
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Molecular Biophysics, Jagiellonian University, Kraków, Poland
| | - Anna Wójcik-Augustyn
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Molecular Biophysics, Jagiellonian University, Kraków, Poland
| | - Paulina Indyka
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Kraków, Poland
| | - Michał Rawski
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Kraków, Poland
| | - Łukasz Koziej
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Kraków, Poland
| | - Marcin Jaciuk
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Kraków, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Kraków, Poland
| | - Grzegorz Ważny
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Kraków, Poland
| | - Sebastian Glatt
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Kraków, Poland.
- Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.
| | - Artur Osyczka
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Molecular Biophysics, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
2
|
Vilyanen D, Pavlov I, Naydov I, Ivanov B, Kozuleva M. Peculiarities of DNP-INT and DBMIB as inhibitors of the photosynthetic electron transport. PHOTOSYNTHESIS RESEARCH 2024; 161:79-92. [PMID: 38108927 DOI: 10.1007/s11120-023-01063-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023]
Abstract
Inhibitory analysis is a useful tool for studying cytochrome b6f complex in the photosynthetic electron transport chain. Here, we examine the inhibitory efficiency of two widely used inhibitors of the plastoquinol oxidation in the cytochrome b6f complex, namely 2,4-dinitrophenyl ether of 2-iodo-4-nitrothymol (DNP-INT) and 2,5-dibromo-3-methyl-6-isopropylbenzoquinone (DBMIB). Using isolated thylakoids from pea and arabidopsis, we demonstrate that inhibitory activity of DNP-INT and DBMIB is enhanced by increasing irradiance, and this effect is due to the increase in the rate of electron transport. However, the accumulation of protons in the thylakoid lumen at low light intensity has opposite effects on the inhibitory activity of DNP-INT and DBMIB, namely increasing the activity of DNP-INT and restricting the activity of DBMIB. These results allow for the refinement of the conditions under which the use of these inhibitors leads to the complete inhibition of plastoquinol oxidation in the cytochrome b6f complex, thereby broadening our understanding of the operation of the cytochrome b6f complex under conditions of steady-state electron transport.
Collapse
Affiliation(s)
- Daria Vilyanen
- Federal Research Center, Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| | - Ilya Pavlov
- Saint Petersburg State University, Saint Petersburg, Russia
| | - Ilya Naydov
- Federal Research Center, Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| | - Boris Ivanov
- Federal Research Center, Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| | - Marina Kozuleva
- Federal Research Center, Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia.
| |
Collapse
|
3
|
Zhang Z, Li D, Xie R, Guo R, Nair S, Han H, Zhang G, Zhao Q, Zhang L, Jiao N, Zhang Y. Plastoquinone synthesis inhibition by tetrabromo biphenyldiol as a widespread algicidal mechanism of marine bacteria. THE ISME JOURNAL 2023; 17:1979-1992. [PMID: 37679430 PMCID: PMC10579414 DOI: 10.1038/s41396-023-01510-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
Algae and bacteria have complex and intimate interactions in the ocean. Besides mutualism, bacteria have evolved a variety of molecular-based anti-algal strategies. However, limited by the unknown mechanism of synthesis and action of these molecules, these strategies and their global prevalence remain unknown. Here we identify a novel strategy through which a marine representative of the Gammaproteobacteria produced 3,3',5,5'-tetrabromo-2,2'-biphenyldiol (4-BP), that kills or inhibits diverse phytoplankton by inhibiting plastoquinone synthesis and its effect cascades to many other key metabolic processes of the algae. Through comparative genomic analysis between the 4-BP-producing bacterium and its algicidally inactive mutant, combined with gene function verification, we identified the gene cluster responsible for 4-BP synthesis, which contains genes encoding chorismate lyase, flavin-dependent halogenase and cytochrome P450. We demonstrated that in near in situ simulated algal blooming seawater, even low concentrations of 4-BP can cause changes in overall phytoplankton community structure with a decline in dinoflagellates and diatoms. Further analyses of the gene sequences from the Tara Oceans expeditions and 2750 whole genome sequences confirmed the ubiquitous presence of 4-BP synthetic genes in diverse bacterial members in the global ocean, suggesting that it is a bacterial tool potentially widely used in global oceans to mediate bacteria-algae antagonistic relationships.
Collapse
Affiliation(s)
- Zenghu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dehai Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Ruize Xie
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Ruoyu Guo
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Shailesh Nair
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Huan Han
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Guojian Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. &A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. &A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361101, China
| | - Yongyu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Sarewicz M, Szwalec M, Pintscher S, Indyka P, Rawski M, Pietras R, Mielecki B, Koziej Ł, Jaciuk M, Glatt S, Osyczka A. High-resolution cryo-EM structures of plant cytochrome b 6f at work. SCIENCE ADVANCES 2023; 9:eadd9688. [PMID: 36638176 PMCID: PMC9839326 DOI: 10.1126/sciadv.add9688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Plants use solar energy to power cellular metabolism. The oxidation of plastoquinol and reduction of plastocyanin by cytochrome b6f (Cyt b6f) is known as one of the key steps of photosynthesis, but the catalytic mechanism in the plastoquinone oxidation site (Qp) remains elusive. Here, we describe two high-resolution cryo-EM structures of the spinach Cyt b6f homodimer with endogenous plastoquinones and in complex with plastocyanin. Three plastoquinones are visible and line up one after another head to tail near Qp in both monomers, indicating the existence of a channel in each monomer. Therefore, quinones appear to flow through Cyt b6f in one direction, transiently exposing the redox-active ring of quinone during catalysis. Our work proposes an unprecedented one-way traffic model that explains efficient quinol oxidation during photosynthesis and respiration.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mateusz Szwalec
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Sebastian Pintscher
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Kraków, Poland
| | - Paulina Indyka
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Kraków, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Kraków, Poland
| | - Michał Rawski
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Kraków, Poland
| | - Rafał Pietras
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Bohun Mielecki
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Łukasz Koziej
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Kraków, Poland
| | - Marcin Jaciuk
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Kraków, Poland
| | - Sebastian Glatt
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Kraków, Poland
| | - Artur Osyczka
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
5
|
Schneider H, Lai B, Krömer J. Utilizing Cyanobacteria in Biophotovoltaics: An Emerging Field in Bioelectrochemistry. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:281-302. [PMID: 36441187 DOI: 10.1007/10_2022_212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Anthropogenic global warming is driven by the increasing energy demand and the still dominant use of fossil energy carriers to meet these needs. New carbon-neutral energy sources are urgently needed to solve this problem. Biophotovoltaics, a member of the so-called bioelectrochemical systems family, will provide an important piece of the energy puzzle. It aims to harvest the electrons from sunlight-driven water splitting using the natural oxygenic photosystem (e.g., of cyanobacteria) and utilize them in the form of, e.g., electricity or hydrogen. Several key aspects of biophotovoltaics have been intensively studied in recent years like physicochemical properties of electrodes or efficient wiring of microorganisms to electrodes. Yet, the exact mechanisms of electron transfer between the biocatalyst and the electrode remain unresolved today. Most research is conducted on microscale reactors generating small currents over short time-scales, but multiple experiments have shown biophotovoltaics great potential with lab-scale reactors producing currents over weeks to months. Although biophotovoltaics is still in its infancy with many open research questions to be addressed, new promising results from various labs around the world suggest an important opportunity for biophotovoltaics in the decades to come. In this chapter, we will introduce the concept of biophotovoltaics, summarize its recent key progress, and finally critically discuss the potentials and challenges for future rational development of biophotovoltaics.
Collapse
Affiliation(s)
- Hans Schneider
- Department of Solar Materials, Helmholtz Center for Environmental Research, Leipzig, Germany.
| | - Bin Lai
- Department of Solar Materials, Helmholtz Center for Environmental Research, Leipzig, Germany
| | - Jens Krömer
- Department of Solar Materials, Helmholtz Center for Environmental Research, Leipzig, Germany
| |
Collapse
|
6
|
Sandoval-Ibáñez O, Rolo D, Ghandour R, Hertle AP, Armarego-Marriott T, Sampathkumar A, Zoschke R, Bock R. De-etiolation-induced protein 1 (DEIP1) mediates assembly of the cytochrome b 6f complex in Arabidopsis. Nat Commun 2022; 13:4045. [PMID: 35831297 PMCID: PMC9279372 DOI: 10.1038/s41467-022-31758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022] Open
Abstract
The conversion of light energy to chemical energy by photosynthesis requires the concerted action of large protein complexes in the thylakoid membrane. Recent work has provided fundamental insights into the three-dimensional structure of these complexes, but how they are assembled from hundreds of parts remains poorly understood. Particularly little is known about the biogenesis of the cytochrome b6f complex (Cytb6f), the redox-coupling complex that interconnects the two photosystems. Here we report the identification of a factor that guides the assembly of Cytb6f in thylakoids of chloroplasts. The protein, DE-ETIOLATION-INDUCED PROTEIN 1 (DEIP1), resides in the thylakoid membrane and is essential for photoautotrophic growth. Knock-out mutants show a specific loss of Cytb6f, and are defective in complex assembly. We demonstrate that DEIP1 interacts with the two cytochrome subunits of the complex, PetA and PetB, and mediates the assembly of intermediates in Cytb6f biogenesis. The identification of DEIP1 provides an entry point into the study of the assembly pathway of a crucial complex in photosynthetic electron transfer. The Cytb6f complex is a multi-subunit enzyme that couples the two photosystems during the light reactions of photosynthesis. Here the authors show that the thylakoid-localized DEIP1 protein interacts with the PetA and PetB subunits, and is essential for Cytb6f complex assembly in Arabidopsis.
Collapse
Affiliation(s)
- Omar Sandoval-Ibáñez
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - David Rolo
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Rabea Ghandour
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Alexander P Hertle
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Tegan Armarego-Marriott
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
7
|
Cryo-EM structures of the Synechocystis sp. PCC 6803 cytochrome b6f complex with and without the regulatory PetP subunit. Biochem J 2022; 479:1487-1503. [PMID: 35726684 PMCID: PMC9342900 DOI: 10.1042/bcj20220124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/01/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
Abstract
In oxygenic photosynthesis, the cytochrome b6f (cytb6f) complex links the linear electron transfer (LET) reactions occurring at photosystems I and II and generates a transmembrane proton gradient via the Q-cycle. In addition to this central role in LET, cytb6f also participates in a range of processes including cyclic electron transfer (CET), state transitions and photosynthetic control. Many of the regulatory roles of cytb6f are facilitated by auxiliary proteins that differ depending upon the species, yet because of their weak and transient nature the structural details of these interactions remain unknown. An apparent key player in the regulatory balance between LET and CET in cyanobacteria is PetP, a ∼10 kDa protein that is also found in red algae but not in green algae and plants. Here, we used cryogenic electron microscopy to determine the structure of the Synechocystis sp. PCC 6803 cytb6f complex in the presence and absence of PetP. Our structures show that PetP interacts with the cytoplasmic side of cytb6f, displacing the C-terminus of the PetG subunit and shielding the C-terminus of cytochrome b6, which binds the heme cn cofactor that is suggested to mediate CET. The structures also highlight key differences in the mode of plastoquinone binding between cyanobacterial and plant cytb6f complexes, which we suggest may reflect the unique combination of photosynthetic and respiratory electron transfer in cyanobacterial thylakoid membranes. The structure of cytb6f from a model cyanobacterial species amenable to genetic engineering will enhance future site-directed mutagenesis studies of structure-function relationships in this crucial ET complex.
Collapse
|
8
|
Sarewicz M, Pintscher S, Pietras R, Borek A, Bujnowicz Ł, Hanke G, Cramer WA, Finazzi G, Osyczka A. Catalytic Reactions and Energy Conservation in the Cytochrome bc1 and b6f Complexes of Energy-Transducing Membranes. Chem Rev 2021; 121:2020-2108. [PMID: 33464892 PMCID: PMC7908018 DOI: 10.1021/acs.chemrev.0c00712] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/16/2022]
Abstract
This review focuses on key components of respiratory and photosynthetic energy-transduction systems: the cytochrome bc1 and b6f (Cytbc1/b6f) membranous multisubunit homodimeric complexes. These remarkable molecular machines catalyze electron transfer from membranous quinones to water-soluble electron carriers (such as cytochromes c or plastocyanin), coupling electron flow to proton translocation across the energy-transducing membrane and contributing to the generation of a transmembrane electrochemical potential gradient, which powers cellular metabolism in the majority of living organisms. Cytsbc1/b6f share many similarities but also have significant differences. While decades of research have provided extensive knowledge on these enzymes, several important aspects of their molecular mechanisms remain to be elucidated. We summarize a broad range of structural, mechanistic, and physiological aspects required for function of Cytbc1/b6f, combining textbook fundamentals with new intriguing concepts that have emerged from more recent studies. The discussion covers but is not limited to (i) mechanisms of energy-conserving bifurcation of electron pathway and energy-wasting superoxide generation at the quinol oxidation site, (ii) the mechanism by which semiquinone is stabilized at the quinone reduction site, (iii) interactions with substrates and specific inhibitors, (iv) intermonomer electron transfer and the role of a dimeric complex, and (v) higher levels of organization and regulation that involve Cytsbc1/b6f. In addressing these topics, we point out existing uncertainties and controversies, which, as suggested, will drive further research in this field.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Sebastian Pintscher
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Rafał Pietras
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Arkadiusz Borek
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Łukasz Bujnowicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Guy Hanke
- School
of Biological and Chemical Sciences, Queen
Mary University of London, London E1 4NS, U.K.
| | - William A. Cramer
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 United States
| | - Giovanni Finazzi
- Laboratoire
de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National Recherche Scientifique,
Commissariat Energie Atomique et Energies Alternatives, Institut National
Recherche l’agriculture, l’alimentation et l’environnement, 38054 Grenoble Cedex 9, France
| | - Artur Osyczka
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
9
|
Malone LA, Proctor MS, Hitchcock A, Hunter CN, Johnson MP. Cytochrome b 6f - Orchestrator of photosynthetic electron transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148380. [PMID: 33460588 DOI: 10.1016/j.bbabio.2021.148380] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 11/18/2022]
Abstract
Cytochrome b6f (cytb6f) lies at the heart of the light-dependent reactions of oxygenic photosynthesis, where it serves as a link between photosystem II (PSII) and photosystem I (PSI) through the oxidation and reduction of the electron carriers plastoquinol (PQH2) and plastocyanin (Pc). A mechanism of electron bifurcation, known as the Q-cycle, couples electron transfer to the generation of a transmembrane proton gradient for ATP synthesis. Cytb6f catalyses the rate-limiting step in linear electron transfer (LET), is pivotal for cyclic electron transfer (CET) and plays a key role as a redox-sensing hub involved in the regulation of light-harvesting, electron transfer and photosynthetic gene expression. Together, these characteristics make cytb6f a judicious target for genetic manipulation to enhance photosynthetic yield, a strategy which already shows promise. In this review we will outline the structure and function of cytb6f with a particular focus on new insights provided by the recent high-resolution map of the complex from Spinach.
Collapse
Affiliation(s)
- Lorna A Malone
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Matthew S Proctor
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Matthew P Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
10
|
Grattieri M, Beaver K, Gaffney EM, Dong F, Minteer SD. Advancing the fundamental understanding and practical applications of photo-bioelectrocatalysis. Chem Commun (Camb) 2020; 56:8553-8568. [PMID: 32578607 DOI: 10.1039/d0cc02672g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Photo-bioelectrocatalysis combines the natural and highly sophisticated process of photosynthesis in biological entities with an abiotic electrode surface, to perform semi-artificial photosynthesis. However, challenges must be overcome, from the establishment and understanding of the photoexcited electron harvesting process at the electrode to the electrochemical characterization of these biotic/abiotic systems, and their subsequent tuning for enhancing energy generation (chemical and/or electrical). This Feature Article discusses the various approaches utilized to tackle these challenges, particularly focusing on powerful multi-disciplinary approaches for understanding and improving photo-bioelectrocatalysis. Among them is the combination of experimental evidence and quantum mechanical calculations, the use of bioinformatics to understand photo-bioelectrocatalysis at a metabolic level, or bioengineering to improve and facilitate photo-bioelectrocatalysis. Key aspects for the future development of photo-bioelectrocatalysis are presented alongside future research needs and promising applications of semi-artificial photosynthesis.
Collapse
Affiliation(s)
- Matteo Grattieri
- Department of Chemistry, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, UT 84112, USA.
| | | | | | | | | |
Collapse
|
11
|
Kłodawska K, Kovács L, Vladkova R, Rzaska A, Gombos Z, Laczkó-Dobos H, Malec P. Trimeric organization of photosystem I is required to maintain the balanced photosynthetic electron flow in cyanobacterium Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2020; 143:251-262. [PMID: 31848802 DOI: 10.1007/s11120-019-00696-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
In Synechocystis sp. PCC 6803 and some other cyanobacteria photosystem I reaction centres exist predominantly as trimers, with minor contribution of monomeric form, when cultivated at standard optimized conditions. In contrast, in plant chloroplasts photosystem I complex is exclusively monomeric. The functional significance of trimeric organization of cyanobacterial photosystem I remains not fully understood. In this study, we compared the photosynthetic characteristics of PSI in wild type and psaL knockout mutant. The results show that relative to photosystem I trimer in wild-type cells, photosystem I monomer in psaL- mutant has a smaller P700+ pool size under low and moderate light, slower P700 oxidation upon dark-to-light transition, and slower P700+ reduction upon light-to-dark transition. The mutant also shows strongly diminished photosystem I donor side limitations [quantum yield Y(ND)] at low, moderate and high light, but enhanced photosystem I acceptor side limitations [quantum yield Y(NA)], especially at low light (22 µmol photons m-2 s-1). In line with these functional characteristics are the determined differences in the relative expression genes encoding of selected electron transporters. The psaL- mutant showed significant (ca fivefold) upregulation of the photosystem I donor cytochrome c6, and downregulation of photosystem I acceptors (ferredoxin, flavodoxin) and proteins of alternative electron flows originating in photosystem I acceptor side. Taken together, our results suggest that photosystem I trimerization in wild-type Synechocystis cells plays a role in the protection of photosystem I from photoinhibition via maintaining enhanced donor side electron transport limitations and minimal acceptor side electron transport limitations at various light intensities.
Collapse
Affiliation(s)
- Kinga Kłodawska
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Kraków, Poland.
| | - László Kovács
- Biological Research Centre, Hungarian Academy of Sciences, Szeged, 6726, Hungary
| | - Radka Vladkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Agnieszka Rzaska
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | - Zoltán Gombos
- Biological Research Centre, Hungarian Academy of Sciences, Szeged, 6726, Hungary
| | | | - Przemysław Malec
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| |
Collapse
|
12
|
Calzadilla PI, Kirilovsky D. Revisiting cyanobacterial state transitions. Photochem Photobiol Sci 2020; 19:585-603. [DOI: 10.1039/c9pp00451c] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Critical evaluation of “new” and “old” models of cyanobacterial state transitions. Phycobilisome and membrane contributions to this mechanism are addressed. The signaling transduction pathway is discussed.
Collapse
Affiliation(s)
- Pablo I. Calzadilla
- Université Paris-Saclay
- CNRS
- CEA
- Institute for Integrative Biology of the Cell (I2BC)
- 91198 Gif sur Yvette
| | - Diana Kirilovsky
- Université Paris-Saclay
- CNRS
- CEA
- Institute for Integrative Biology of the Cell (I2BC)
- 91198 Gif sur Yvette
| |
Collapse
|
13
|
Malone LA, Qian P, Mayneord GE, Hitchcock A, Farmer DA, Thompson RF, Swainsbury DJK, Ranson NA, Hunter CN, Johnson MP. Cryo-EM structure of the spinach cytochrome b6 f complex at 3.6 Å resolution. Nature 2019; 575:535-539. [DOI: 10.1038/s41586-019-1746-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/08/2019] [Indexed: 12/29/2022]
|
14
|
Santana-Sanchez A, Solymosi D, Mustila H, Bersanini L, Aro EM, Allahverdiyeva Y. Flavodiiron proteins 1-to-4 function in versatile combinations in O 2 photoreduction in cyanobacteria. eLife 2019; 8:e45766. [PMID: 31294693 PMCID: PMC6658166 DOI: 10.7554/elife.45766] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
Flavodiiron proteins (FDPs) constitute a group of modular enzymes widespread in Bacteria, Archaea and Eukarya. Synechocystis sp. PCC 6803 has four FDPs (Flv1-4), which are essential for the photoprotection of photosynthesis. A direct comparison of light-induced O2 reduction (Mehler-like reaction) under high (3% CO2, HC) and low (air level CO2, LC) inorganic carbon conditions demonstrated that the Flv1/Flv3 heterodimer is solely responsible for an efficient steady-state O2 photoreduction under HC, with flv2 and flv4 expression strongly down-regulated. Conversely, under LC conditions, Flv1/Flv3 acts only as a transient electron sink, due to the competing withdrawal of electrons by the highly induced NDH-1 complex. Further, in vivo evidence is provided indicating that Flv2/Flv4 contributes to the Mehler-like reaction when naturally expressed under LC conditions, or, when artificially overexpressed under HC. The O2 photoreduction driven by Flv2/Flv4 occurs down-stream of PSI in a coordinated manner with Flv1/Flv3 and supports slow and steady-state O2 photoreduction.
Collapse
Affiliation(s)
| | - Daniel Solymosi
- Molecular Plant Biology, Department of BiochemistryUniversity of TurkuTurkuFinland
| | - Henna Mustila
- Molecular Plant Biology, Department of BiochemistryUniversity of TurkuTurkuFinland
| | - Luca Bersanini
- Molecular Plant Biology, Department of BiochemistryUniversity of TurkuTurkuFinland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of BiochemistryUniversity of TurkuTurkuFinland
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of BiochemistryUniversity of TurkuTurkuFinland
| |
Collapse
|
15
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
16
|
Maksimov EG, Mironov KS, Trofimova MS, Nechaeva NL, Todorenko DA, Klementiev KE, Tsoraev GV, Tyutyaev EV, Zorina AA, Feduraev PV, Allakhverdiev SI, Paschenko VZ, Los DA. Membrane fluidity controls redox-regulated cold stress responses in cyanobacteria. PHOTOSYNTHESIS RESEARCH 2017; 133:215-223. [PMID: 28110449 DOI: 10.1007/s11120-017-0337-333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 01/08/2017] [Indexed: 05/19/2023]
Abstract
Membrane fluidity is the important regulator of cellular responses to changing ambient temperature. Bacteria perceive cold by the transmembrane histidine kinases that sense changes in thickness of the cytoplasmic membrane due to its rigidification. In the cyanobacterium Synechocystis, about a half of cold-responsive genes is controlled by the light-dependent transmembrane histidine kinase Hik33, which also partially controls the responses to osmotic, salt, and oxidative stress. This implies the existence of some universal, but yet unknown signal that triggers adaptive gene expression in response to various stressors. Here we selectively probed the components of photosynthetic machinery and functionally characterized the thermodynamics of cyanobacterial photosynthetic membranes with genetically altered fluidity. We show that the rate of oxidation of the quinone pool (PQ), which interacts with both photosynthetic and respiratory electron transport chains, depends on membrane fluidity. Inhibitor-induced stimulation of redox changes in PQ triggers cold-induced gene expression. Thus, the fluidity-dependent changes in the redox state of PQ may universally trigger cellular responses to stressors that affect membrane properties.
Collapse
Affiliation(s)
- Eugene G Maksimov
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia, 119992
| | - Kirill S Mironov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia, 127276
| | - Marina S Trofimova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia, 127276
| | - Natalya L Nechaeva
- Chemical Enzymology Department, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia, 119992
| | - Daria A Todorenko
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia, 119992
| | - Konstantin E Klementiev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia, 119992
| | - Georgy V Tsoraev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia, 119992
| | - Eugene V Tyutyaev
- Department of Biotechnology, Bioengineering and Biochemistry, Faculty Biotechnology and Biology, Ogarev Mordovia State University, Saransk, Republic of Mordovia, Russia, 430032
| | - Anna A Zorina
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia, 127276
| | - Pavel V Feduraev
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia, 127276
- Chemical-Biological Institute, Immanuel Kant Federal Baltic University, Kaliningrad, Russia, 236041
| | | | - Vladimir Z Paschenko
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia, 119992
| | - Dmitry A Los
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia, 127276.
| |
Collapse
|
17
|
Maksimov EG, Mironov KS, Trofimova MS, Nechaeva NL, Todorenko DA, Klementiev KE, Tsoraev GV, Tyutyaev EV, Zorina AA, Feduraev PV, Allakhverdiev SI, Paschenko VZ, Los DA. Membrane fluidity controls redox-regulated cold stress responses in cyanobacteria. PHOTOSYNTHESIS RESEARCH 2017; 133:215-223. [PMID: 28110449 DOI: 10.1007/s11120-017-0337-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 01/08/2017] [Indexed: 06/06/2023]
Abstract
Membrane fluidity is the important regulator of cellular responses to changing ambient temperature. Bacteria perceive cold by the transmembrane histidine kinases that sense changes in thickness of the cytoplasmic membrane due to its rigidification. In the cyanobacterium Synechocystis, about a half of cold-responsive genes is controlled by the light-dependent transmembrane histidine kinase Hik33, which also partially controls the responses to osmotic, salt, and oxidative stress. This implies the existence of some universal, but yet unknown signal that triggers adaptive gene expression in response to various stressors. Here we selectively probed the components of photosynthetic machinery and functionally characterized the thermodynamics of cyanobacterial photosynthetic membranes with genetically altered fluidity. We show that the rate of oxidation of the quinone pool (PQ), which interacts with both photosynthetic and respiratory electron transport chains, depends on membrane fluidity. Inhibitor-induced stimulation of redox changes in PQ triggers cold-induced gene expression. Thus, the fluidity-dependent changes in the redox state of PQ may universally trigger cellular responses to stressors that affect membrane properties.
Collapse
Affiliation(s)
- Eugene G Maksimov
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia, 119992
| | - Kirill S Mironov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia, 127276
| | - Marina S Trofimova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia, 127276
| | - Natalya L Nechaeva
- Chemical Enzymology Department, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia, 119992
| | - Daria A Todorenko
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia, 119992
| | - Konstantin E Klementiev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia, 119992
| | - Georgy V Tsoraev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia, 119992
| | - Eugene V Tyutyaev
- Department of Biotechnology, Bioengineering and Biochemistry, Faculty Biotechnology and Biology, Ogarev Mordovia State University, Saransk, Republic of Mordovia, Russia, 430032
| | - Anna A Zorina
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia, 127276
| | - Pavel V Feduraev
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia, 127276
- Chemical-Biological Institute, Immanuel Kant Federal Baltic University, Kaliningrad, Russia, 236041
| | | | - Vladimir Z Paschenko
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia, 119992
| | - Dmitry A Los
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia, 127276.
| |
Collapse
|
18
|
Ermakova M, Huokko T, Richaud P, Bersanini L, Howe CJ, Lea-Smith DJ, Peltier G, Allahverdiyeva Y. Distinguishing the Roles of Thylakoid Respiratory Terminal Oxidases in the Cyanobacterium Synechocystis sp. PCC 6803. PLANT PHYSIOLOGY 2016; 171:1307-19. [PMID: 27208274 PMCID: PMC4902628 DOI: 10.1104/pp.16.00479] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 04/11/2016] [Indexed: 05/03/2023]
Abstract
Various oxygen-utilizing electron sinks, including the soluble flavodiiron proteins (Flv1/3), and the membrane-localized respiratory terminal oxidases (RTOs), cytochrome c oxidase (Cox) and cytochrome bd quinol oxidase (Cyd), are present in the photosynthetic electron transfer chain of Synechocystis sp. PCC 6803. However, the role of individual RTOs and their relative importance compared with other electron sinks are poorly understood, particularly under light. Via membrane inlet mass spectrometry gas exchange, chlorophyll a fluorescence, P700 analysis, and inhibitor treatment of the wild type and various mutants deficient in RTOs, Flv1/3, and photosystem I, we investigated the contribution of these complexes to the alleviation of excess electrons in the photosynthetic chain. To our knowledge, for the first time, we demonstrated the activity of Cyd in oxygen uptake under light, although it was detected only upon inhibition of electron transfer at the cytochrome b6f site and in ∆flv1/3 under fluctuating light conditions, where linear electron transfer was drastically inhibited due to impaired photosystem I activity. Cox is mostly responsible for dark respiration and competes with P700 for electrons under high light. Only the ∆cox/cyd double mutant, but not single mutants, demonstrated a highly reduced plastoquinone pool in darkness and impaired gross oxygen evolution under light, indicating that thylakoid-based RTOs are able to compensate partially for each other. Thus, both electron sinks contribute to the alleviation of excess electrons under illumination: RTOs continue to function under light, operating on slower time ranges and on a limited scale, whereas Flv1/3 responds rapidly as a light-induced component and has greater capacity.
Collapse
Affiliation(s)
- Maria Ermakova
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku FI-20014, Finland (M.E., T.H., L.B., Y.A.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Cadarache, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Centre National de la Recherche Scientifique, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Aix Marseille Université, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13284 Marseille, France (P.R., G.P.); andDepartment of Biochemistry, University of Cambridge, Cambridge, CB2 1QW United Kingdom (C.J.H., D.J.L.-S.)
| | - Tuomas Huokko
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku FI-20014, Finland (M.E., T.H., L.B., Y.A.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Cadarache, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Centre National de la Recherche Scientifique, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Aix Marseille Université, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13284 Marseille, France (P.R., G.P.); andDepartment of Biochemistry, University of Cambridge, Cambridge, CB2 1QW United Kingdom (C.J.H., D.J.L.-S.)
| | - Pierre Richaud
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku FI-20014, Finland (M.E., T.H., L.B., Y.A.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Cadarache, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Centre National de la Recherche Scientifique, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Aix Marseille Université, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13284 Marseille, France (P.R., G.P.); andDepartment of Biochemistry, University of Cambridge, Cambridge, CB2 1QW United Kingdom (C.J.H., D.J.L.-S.)
| | - Luca Bersanini
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku FI-20014, Finland (M.E., T.H., L.B., Y.A.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Cadarache, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Centre National de la Recherche Scientifique, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Aix Marseille Université, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13284 Marseille, France (P.R., G.P.); andDepartment of Biochemistry, University of Cambridge, Cambridge, CB2 1QW United Kingdom (C.J.H., D.J.L.-S.)
| | - Christopher J Howe
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku FI-20014, Finland (M.E., T.H., L.B., Y.A.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Cadarache, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Centre National de la Recherche Scientifique, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Aix Marseille Université, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13284 Marseille, France (P.R., G.P.); andDepartment of Biochemistry, University of Cambridge, Cambridge, CB2 1QW United Kingdom (C.J.H., D.J.L.-S.)
| | - David J Lea-Smith
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku FI-20014, Finland (M.E., T.H., L.B., Y.A.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Cadarache, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Centre National de la Recherche Scientifique, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Aix Marseille Université, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13284 Marseille, France (P.R., G.P.); andDepartment of Biochemistry, University of Cambridge, Cambridge, CB2 1QW United Kingdom (C.J.H., D.J.L.-S.)
| | - Gilles Peltier
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku FI-20014, Finland (M.E., T.H., L.B., Y.A.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Cadarache, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Centre National de la Recherche Scientifique, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Aix Marseille Université, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13284 Marseille, France (P.R., G.P.); andDepartment of Biochemistry, University of Cambridge, Cambridge, CB2 1QW United Kingdom (C.J.H., D.J.L.-S.)
| | - Yagut Allahverdiyeva
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku FI-20014, Finland (M.E., T.H., L.B., Y.A.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Cadarache, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Centre National de la Recherche Scientifique, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Aix Marseille Université, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13284 Marseille, France (P.R., G.P.); andDepartment of Biochemistry, University of Cambridge, Cambridge, CB2 1QW United Kingdom (C.J.H., D.J.L.-S.)
| |
Collapse
|
19
|
Wang WH, He EM, Chen J, Guo Y, Chen J, Liu X, Zheng HL. The reduced state of the plastoquinone pool is required for chloroplast-mediated stomatal closure in response to calcium stimulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:132-44. [PMID: 26945669 DOI: 10.1111/tpj.13154] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 05/12/2023]
Abstract
Besides their participation in photosynthesis, leaf chloroplasts function in plant responses to stimuli, yet how they direct stimulus-induced stomatal movement remains elusive. Here, we showed that over-reduction of the plastoquinone (PQ) pool by dibromothymoquinone (DBMIB) was closely associated with stomatal closure in plants which required chloroplastic H2O2 generation in the mesophyll. External application of H2 O2 reduced the PQ pool, whereas the cell-permeable reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) reversed the DBMIB-induced over-reduction of the PQ pool and stomatal closure. Mesophyll chloroplasts are key players of extracellular Ca(2+) (Ca(2+)o)-induced stomatal closure, but when treated with either 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU) or NAC they failed to facilitate Ca(2+)o-induced stomatal closure due to the inhibition of chloroplastic H2 O2 synthesis in mesophyll. Similarly, the Arabidopsis electron transfer chain-related mutants npq4-1, stn7 and cas-1 exhibited diverse responses to Ca(2+)o or DBMIB. Transcriptome analysis also demonstrated that the PQ pool signaling pathway shared common responsive genes with the H2 O2 signaling pathway. These results implicated a mechanism for chloroplast-mediated stomatal closure involving the generation of mesophyll chloroplastic H2O2 based on the reduced state of the PQ pool, which is calcium-sensing receptor (CAS) and LHCII phosphorylation dependent.
Collapse
Affiliation(s)
- Wen-Hua Wang
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, Fujian, 361006, China
| | - En-Ming He
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, Fujian, 361006, China
| | - Juan Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ying Guo
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, Fujian, 361006, China
| | - Juan Chen
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiang Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
20
|
The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part III. {[Fe2S2](Cys)3(X)} (X=Asp, Arg, His) and {[Fe2S2](Cys)2(His)2} proteins. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Structure-Function of the Cytochrome b 6 f Lipoprotein Complex. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2016. [DOI: 10.1007/978-94-017-7481-9_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
Vladkova R. Chlorophyllais the crucial redox sensor and transmembrane signal transmitter in the cytochromeb6fcomplex. Components and mechanisms of state transitions from the hydrophobic mismatch viewpoint. J Biomol Struct Dyn 2015; 34:824-54. [DOI: 10.1080/07391102.2015.1056551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Hasan SS, Proctor EA, Yamashita E, Dokholyan NV, Cramer WA. Traffic within the cytochrome b6f lipoprotein complex: gating of the quinone portal. Biophys J 2015; 107:1620-8. [PMID: 25296314 DOI: 10.1016/j.bpj.2014.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/29/2014] [Accepted: 08/05/2014] [Indexed: 12/24/2022] Open
Abstract
The cytochrome bc complexes b6f and bc1 catalyze proton-coupled quinol/quinone redox reactions to generate a transmembrane proton electrochemical gradient. Quinol oxidation on the electrochemically positive (p) interface of the complex occurs at the end of a narrow quinol/quinone entry/exit Qp portal, 11 Å long in bc complexes. Superoxide, which has multiple signaling functions, is a by-product of the p-side quinol oxidation. Although the transmembrane core and the chemistry of quinone redox reactions are conserved in bc complexes, the rate of superoxide generation is an order of magnitude greater in the b6f complex, implying that functionally significant differences in structure exist between the b6f and bc1 complexes on the p-side. A unique structure feature of the b6f p-side quinol oxidation site is the presence of a single chlorophyll-a molecule whose function is unrelated to light harvesting. This study describes a cocrystal structure of the cytochrome b6f complex with the quinol analog stigmatellin, which partitions in the Qp portal of the bc1 complex, but not effectively in b6f. It is inferred that the Qp portal is partially occluded in the b6f complex relative to bc1. Based on a discrete molecular-dynamics analysis, occlusion of the Qp portal is attributed to the presence of the chlorophyll phytyl tail, which increases the quinone residence time within the Qp portal and is inferred to be a cause of enhanced superoxide production. This study attributes a novel (to our knowledge), structure-linked function to the otherwise enigmatic chlorophyll-a in the b6f complex, which may also be relevant to intracellular redox signaling.
Collapse
Affiliation(s)
- S Saif Hasan
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, West Lafayette, Indiana
| | - Elizabeth A Proctor
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, North Carolina
| | - Eiki Yamashita
- Osaka University, Institute for Protein Research, Suita, Osaka, Japan
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| | - William A Cramer
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
24
|
Agarwal R, Hasan SS, Jones LM, Stofleth JT, Ryan CM, Whitelegge JP, Kehoe DM, Cramer WA. Role of domain swapping in the hetero-oligomeric cytochrome b6f lipoprotein complex. Biochemistry 2015; 54:3151-63. [PMID: 25928281 DOI: 10.1021/acs.biochem.5b00279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Domain swapping that contributes to the stability of biologically crucial multisubunit complexes has been implicated in protein oligomerization. In the case of membrane protein assemblies, domain swapping of the iron-sulfur protein (ISP) subunit occurs in the hetero-oligomeric cytochrome b6f and bc1 complexes, which are organized as symmetric dimers that generate the transmembrane proton electrochemical gradient utilized for ATP synthesis. In these complexes, the ISP C-terminal predominantly β-sheet extrinsic domain containing the redox-active [2Fe-2S] cluster resides on the electrochemically positive side of each monomer in the dimeric complex. This domain is bound to the membrane sector of the complex through an N-terminal transmembrane α-helix that is "swapped' to the other monomer of the complex where it spans the complex and the membrane. Detailed analysis of the function and structure of the b6f complex isolated from the cyanobacterium Fremyella diplosiphon SF33 shows that the domain-swapped ISP structure is necessary for function but is not necessarily essential for maintenance of the dimeric structure of the complex. On the basis of crystal structures of the cytochrome complex, the stability of the cytochrome dimer is attributed to specific intermonomer protein-protein and protein-lipid hydrophobic interactions. The geometry of the domain-swapped ISP structure is proposed to be a consequence of the requirement that the anchoring helix of the ISP not perturb the heme organization or quinone channel in the conserved core of each monomer.
Collapse
Affiliation(s)
- Rachna Agarwal
- †Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - S Saif Hasan
- †Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - LaDonna M Jones
- ‡Department of Biology, Indiana University, Bloomington, Indiana 47405, United States
| | - Jason T Stofleth
- †Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christopher M Ryan
- §Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute, University of California, Los Angeles, California 90095, United States
| | - Julian P Whitelegge
- §Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute, University of California, Los Angeles, California 90095, United States
| | - David M Kehoe
- ‡Department of Biology, Indiana University, Bloomington, Indiana 47405, United States
| | - William A Cramer
- †Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
25
|
Reimann J, Jetten MSM, Keltjens JT. Metal enzymes in "impossible" microorganisms catalyzing the anaerobic oxidation of ammonium and methane. Met Ions Life Sci 2015; 15:257-313. [PMID: 25707470 DOI: 10.1007/978-3-319-12415-5_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ammonium and methane are inert molecules and dedicated enzymes are required to break up the N-H and C-H bonds. Until recently, only aerobic microorganisms were known to grow by the oxidation of ammonium or methane. Apart from respiration, oxygen was specifically utilized to activate the inert substrates. The presumed obligatory need for oxygen may have resisted the search for microorganisms that are capable of the anaerobic oxidation of ammonium and of methane. However extremely slowly growing, these "impossible" organisms exist and they found other means to tackle ammonium and methane. Anaerobic ammonium-oxidizing (anammox) bacteria use the oxidative power of nitric oxide (NO) by forging this molecule to ammonium, thereby making hydrazine (N2H4). Nitrite-dependent anaerobic methane oxidizers (N-DAMO) again take advantage of NO, but now apparently disproportionating the compound into dinitrogen and dioxygen gas. This intracellularly produced dioxygen enables N-DAMO bacteria to adopt an aerobic mechanism for methane oxidation.Although our understanding is only emerging how hydrazine synthase and the NO dismutase act, it seems clear that reactions fully rely on metal-based catalyses known from other enzymes. Metal-dependent conversions not only hold for these key enzymes, but for most other reactions in the central catabolic pathways, again supported by well-studied enzymes from model organisms, but adapted to own specific needs. Remarkably, those accessory catabolic enzymes are not unique for anammox bacteria and N-DAMO. Close homologs are found in protein databases where those homologs derive from (partly) known, but in most cases unknown species that together comprise an only poorly comprehended microbial world.
Collapse
Affiliation(s)
- Joachim Reimann
- Department of Microbiology, Institute of Wetland and Water Research (IWWR), Radboud University of Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands,
| | | | | |
Collapse
|
26
|
Hasan SS, Zakharov SD, Chauvet A, Stadnytskyi V, Savikhin S, Cramer WA. A map of dielectric heterogeneity in a membrane protein: the hetero-oligomeric cytochrome b6f complex. J Phys Chem B 2014; 118:6614-25. [PMID: 24867491 PMCID: PMC4067154 DOI: 10.1021/jp501165k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
The
cytochrome b6f complex,
a member of the cytochrome bc family that
mediates energy transduction in photosynthetic and respiratory membranes,
is a hetero-oligomeric complex that utilizes two pairs of b-hemes in a symmetric dimer to accomplish trans-membrane
electron transfer, quinone oxidation–reduction, and generation
of a proton electrochemical potential. Analysis of electron storage
in this pathway, utilizing simultaneous measurement of heme reduction,
and of circular dichroism (CD) spectra, to assay heme–heme
interactions, implies a heterogeneous distribution of the dielectric
constants that mediate electrostatic interactions between the four
hemes in the complex. Crystallographic information was used to determine
the identity of the interacting hemes. The Soret band CD signal is
dominated by excitonic interaction between the intramonomer b-hemes, bn and bp, on the electrochemically negative and positive sides
of the complex. Kinetic data imply that the most probable pathway
for transfer of the two electrons needed for quinone oxidation–reduction
utilizes this intramonomer heme pair, contradicting the expectation
based on heme redox potentials and thermodynamics, that the two higher
potential hemes bn on different monomers
would be preferentially reduced. Energetically preferred intramonomer
electron storage of electrons on the intramonomer b-hemes is found to require heterogeneity of interheme dielectric
constants. Relative to the medium separating the two higher potential
hemes bn, a relatively large dielectric
constant must exist between the intramonomer b-hemes,
allowing a smaller electrostatic repulsion between the reduced hemes.
Heterogeneity of dielectric constants is an additional structure–function
parameter of membrane protein complexes.
Collapse
Affiliation(s)
- S Saif Hasan
- Department of Biological Sciences and ‡Department of Physics, Purdue University , West Lafayette, Indiana 47907, United States
| | | | | | | | | | | |
Collapse
|
27
|
Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev 2014; 114:4366-469. [PMID: 24758379 PMCID: PMC4002152 DOI: 10.1021/cr400479b] [Citation(s) in RCA: 599] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Liu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Saumen Chakraborty
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Parisa Hosseinzadeh
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yang Yu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shiliang Tian
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Igor Petrik
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ambika Bhagi
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
28
|
Baniulis D, Hasan SS, Stofleth JT, Cramer WA. Mechanism of enhanced superoxide production in the cytochrome b(6)f complex of oxygenic photosynthesis. Biochemistry 2013; 52:8975-83. [PMID: 24298890 DOI: 10.1021/bi4013534] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The specific rate of superoxide (O2(•-)) production in the purified active crystallizable cytochrome b6f complex, normalized to the rate of electron transport, has been found to be more than an order of magnitude greater than that measured in isolated yeast respiratory bc1 complex. The biochemical and structural basis for the enhanced production of O2(•-) in the cytochrome b6f complex compared to that in the bc1 complex is discussed. The higher rate of superoxide production in the b6f complex could be a consequence of an increased residence time of plastosemiquinone/plastoquinol in its binding niche near the Rieske protein iron-sulfur cluster, resulting from (i) occlusion of the quinone portal by the phytyl chain of the unique bound chlorophyll, (ii) an altered environment of the proton-accepting glutamate believed to be a proton acceptor from semiquinone, or (iii) a more negative redox potential of the heme bp on the electrochemically positive side of the complex. The enhanced rate of superoxide production in the b6f complex is physiologically significant as the chloroplast-generated reactive oxygen species (ROS) functions in the regulation of excess excitation energy, is a source of oxidative damage inflicted during photosynthetic reactions, and is a major source of ROS in plant cells. Altered levels of ROS production are believed to convey redox signaling from the organelle to the cytosol and nucleus.
Collapse
Affiliation(s)
- Danas Baniulis
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University , West Lafayette, Indiana 47907, United States
| | | | | | | |
Collapse
|
29
|
Saif Hasan S, Baniulis D, Yamashita E, Zhalnina MV, Zakharov SD, Stofleth JT, Cramer WA. Methods for studying interactions of detergents and lipids with α-helical and β-barrel integral membrane proteins. ACTA ACUST UNITED AC 2013; 74:29.7.1-29.7.30. [PMID: 24510648 DOI: 10.1002/0471140864.ps2907s74] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Methods for studying interactions of protein with lipids and detergents are described for representatives of two major classes of membrane proteins: (1) the α-helical hetero-oligomeric integral cytochrome b6 f complex of oxygenic photosynthesis from cyanobacteria, and (2) the outer membrane β-barrel proteins BtuB and OmpF from Gram-negative Escherichia coli bacteria. Details are presented on the use of detergents for purification and crystallization of the b6 f complex as well as a method for lipid exchange. The positions of detergent and lipid molecules, which define eight potential lipid-binding sites in the b6 f complex, are described. Differences in detergent strategies for isolation and crystallization of β-barrel proteins relative to those for oligomeric helical membrane proteins are discussed, and purification and assessment of protein quality by circular dichroism (CD) is presented.
Collapse
Affiliation(s)
- S Saif Hasan
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Danas Baniulis
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana.,Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Babtai, Kaunas Region, Lithuania
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Mariya V Zhalnina
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Stanislav D Zakharov
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana.,Institute of Basic Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - Jason T Stofleth
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana.,Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California
| | - William A Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
30
|
Laureau C, De Paepe R, Latouche G, Moreno-Chacón M, Finazzi G, Kuntz M, Cornic G, Streb P. Plastid terminal oxidase (PTOX) has the potential to act as a safety valve for excess excitation energy in the alpine plant species Ranunculus glacialis L. PLANT, CELL & ENVIRONMENT 2013; 36:1296-310. [PMID: 23301628 DOI: 10.1111/pce.12059] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 12/18/2012] [Indexed: 05/03/2023]
Abstract
Ranunculus glacialis leaves were tested for their plastid terminal oxidase (PTOX) content and electron flow to photorespiration and to alternative acceptors. In shade-leaves, the PTOX and NAD(P)H dehydrogenase (NDH) content were markedly lower than in sun-leaves. Carbon assimilation/light and Ci response curves were not different in sun- and shade-leaves, but photosynthetic capacity was the highest in sun-leaves. Based on calculation of the apparent specificity factor of ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco), the magnitude of alternative electron flow unrelated to carboxylation and oxygenation of Rubisco correlated to the PTOX content in sun-, shade- and growth chamber-leaves. Similarly, fluorescence induction kinetics indicated more complete and more rapid reoxidation of the plastoquinone (PQ) pool in sun- than in shade-leaves. Blocking electron flow to assimilation, photorespiration and the Mehler reaction with appropriate inhibitors showed that sun-leaves were able to maintain higher electron flow and PQ oxidation. The results suggest that PTOX can act as a safety valve in R. glacialis leaves under conditions where incident photon flux density (PFD) exceeds the growth PFD and under conditions where the plastoquinone pool is highly reduced. Such conditions can occur frequently in alpine climates due to rapid light and temperature changes.
Collapse
Affiliation(s)
- Constance Laureau
- Ecologie, Systématique et Evolution, Université Paris-Sud 11, UMR-CNRS 8079, Bâtiment 362, 91405 Orsay cedex, France
| | - Rosine De Paepe
- Institut de Biologie des Plantes, Université Paris-Sud 11, UMR-CNRS 8618, Bâtiment 630, 91405, Orsay cedex, France
| | - Gwendal Latouche
- Ecologie, Systématique et Evolution, Université Paris-Sud 11, UMR-CNRS 8079, Bâtiment 362, 91405, Orsay cedex, France
| | - Maria Moreno-Chacón
- Ecologie, Systématique et Evolution, Université Paris-Sud 11, UMR-CNRS 8079, Bâtiment 362, 91405, Orsay cedex, France
| | - Giovanni Finazzi
- Unité Mixte Recherche 5168, Laboratoire Physiologie Cellulaire et Végétale, Centre National Recherche Scientifique, F-38054, Grenoble, France
- Commissariat à l'Energie Atomique et Energies Alternatives, l'Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054, Grenoble, France
- Université Grenoble 1, F-38041, Grenoble, France
- Institut National Recherche Agronomique, UMR1200, F-38054, Grenoble, France
| | - Marcel Kuntz
- Unité Mixte Recherche 5168, Laboratoire Physiologie Cellulaire et Végétale, Centre National Recherche Scientifique, F-38054, Grenoble, France
- Commissariat à l'Energie Atomique et Energies Alternatives, l'Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054, Grenoble, France
- Université Grenoble 1, F-38041, Grenoble, France
- Institut National Recherche Agronomique, UMR1200, F-38054, Grenoble, France
| | - Gabriel Cornic
- Ecologie, Systématique et Evolution, Université Paris-Sud 11, UMR-CNRS 8079, Bâtiment 362, 91405, Orsay cedex, France
| | - Peter Streb
- Ecologie, Systématique et Evolution, Université Paris-Sud 11, UMR-CNRS 8079, Bâtiment 362, 91405, Orsay cedex, France
| |
Collapse
|
31
|
Hasan SS, Cramer WA. Lipid functions in cytochrome bc complexes: an odd evolutionary transition in a membrane protein structure. Philos Trans R Soc Lond B Biol Sci 2013; 367:3406-11. [PMID: 23148267 DOI: 10.1098/rstb.2012.0058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lipid-binding sites and properties were compared in the hetero-oligomeric cytochrome (cyt) b(6)f and the yeast bc(1) complexes that function, respectively, in photosynthetic and respiratory electron transport. Seven lipid-binding sites in the monomeric unit of the dimeric cyanobacterial b(6)f complex overlap four sites in the Chlamydomonas reinhardtii algal b(6)f complex and four in the yeast bc(1) complex. The proposed lipid functions include: (i) interfacial-interhelix mediation between (a) the two 8-subunit monomers of the dimeric complex, (b) between the core domain (cyt b, subunit IV) and the six trans membrane helices of the peripheral domain (cyt f, iron-sulphur protein (ISP), and four small subunits in the boundary 'picket fence'); (ii) stabilization of the ISP domain-swapped trans-membrane helix; (iii) neutralization of basic residues in the single helix of cyt f and of the ISP; (iv) a 'latch' to photosystem I provided by the β-carotene chain protruding through the 'picket fence'; (v) presence of a lipid and chlorophyll a chlorin ring in b(6)f in place of the eighth helix in the bc(1) cyt b polypeptide. The question is posed of the function of the lipid substitution in relation to the evolutionary change between the eight and seven helix structures of the cyt b polypeptide. On the basis of the known n-side activation of light harvesting complex II (LHCII) kinase by the p-side level of plastoquinol, one possibility is that the change was directed by the selective advantage of p- to n-side trans membrane signalling functions in b(6)f, with the lipid either mediating this function or substituting for the trans membrane helix of a signalling protein lost in crystallization.
Collapse
Affiliation(s)
- S Saif Hasan
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
32
|
Hasan SS, Stofleth JT, Yamashita E, Cramer WA. Lipid-induced conformational changes within the cytochrome b6f complex of oxygenic photosynthesis. Biochemistry 2013; 52:2649-54. [PMID: 23514009 DOI: 10.1021/bi301638h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome b6f catalyzes quinone redox reactions within photosynthetic membranes to generate a transmembrane proton electrochemical gradient for ATP synthesis. A key step involves the transfer of an electron from the [2Fe-2S] cluster of the iron-sulfur protein (ISP) extrinsic domain to the cytochrome f heme across a distance of 26 Å, which is too large for competent electron transfer but could be bridged by translation-rotation of the ISP. Here we report the first crystallographic evidence of significant motion of the ISP extrinsic domain. It is inferred that extensive crystallographic disorder of the ISP extrinsic domain indicates conformational flexibility. The ISP disorder observed in this structure, in contrast to the largely ordered ISP structure observed in the b6f complex supplemented with neutral lipids, is attributed to electrostatic interactions arising from anionic lipids.
Collapse
Affiliation(s)
- S Saif Hasan
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
33
|
Quinone-dependent proton transfer pathways in the photosynthetic cytochrome b6f complex. Proc Natl Acad Sci U S A 2013; 110:4297-302. [PMID: 23440205 DOI: 10.1073/pnas.1222248110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As much as two-thirds of the proton gradient used for transmembrane free energy storage in oxygenic photosynthesis is generated by the cytochrome b6f complex. The proton uptake pathway from the electrochemically negative (n) aqueous phase to the n-side quinone binding site of the complex, and a probable route for proton exit to the positive phase resulting from quinol oxidation, are defined in a 2.70-Å crystal structure and in structures with quinone analog inhibitors at 3.07 Å (tridecyl-stigmatellin) and 3.25-Å (2-nonyl-4-hydroxyquinoline N-oxide) resolution. The simplest n-side proton pathway extends from the aqueous phase via Asp20 and Arg207 (cytochrome b6 subunit) to quinone bound axially to heme c(n). On the positive side, the heme-proximal Glu78 (subunit IV), which accepts protons from plastosemiquinone, defines a route for H(+) transfer to the aqueous phase. These pathways provide a structure-based description of the quinone-mediated proton transfer responsible for generation of the transmembrane electrochemical potential gradient in oxygenic photosynthesis.
Collapse
|
34
|
Kargul J, Janna Olmos JD, Krupnik T. Structure and function of photosystem I and its application in biomimetic solar-to-fuel systems. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1639-1653. [PMID: 22784471 DOI: 10.1016/j.jplph.2012.05.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 05/09/2012] [Accepted: 05/11/2012] [Indexed: 06/01/2023]
Abstract
Photosystem I (PSI) is one of the most efficient biological macromolecular complexes that converts solar energy into condensed energy of chemical bonds. Despite high structural complexity, PSI operates with a quantum yield close to 1.0 and to date, no man-made synthetic system approached this remarkable efficiency. This review highlights recent developments in dissecting molecular structure and function of the prokaryotic and eukaryotic PSI. It also overviews progress in the application of this complex as a natural photocathode for production of hydrogen within the biomimetic solar-to-fuel nanodevices.
Collapse
Affiliation(s)
- Joanna Kargul
- Department of Plant Molecular Physiology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | |
Collapse
|
35
|
Oxidized quinones signal onset of darkness directly to the cyanobacterial circadian oscillator. Proc Natl Acad Sci U S A 2012; 109:17765-9. [PMID: 23071342 DOI: 10.1073/pnas.1216401109] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synchronization of the circadian clock in cyanobacteria with the day/night cycle proceeds without an obvious photoreceptor, leaving open the question of its specific mechanism. The circadian oscillator can be reconstituted in vitro, where the activities of two of its proteins, KaiA and KaiC, are affected by metabolites that reflect photosynthetic activity: KaiC phosphorylation is directly influenced by the ATP/ADP ratio, and KaiA stimulation of KaiC phosphorylation is blocked by oxidized, but not reduced, quinones. Manipulation of the ATP/ADP ratio can reset the timing of KaiC phosphorylation peaks in the reconstituted in vitro oscillator. Here, we show that pulses of oxidized quinones reset the cyanobacterial circadian clock both in vitro and in vivo. Onset of darkness causes an abrupt oxidation of the plastoquinone pool in vivo, which is in contrast to a gradual decrease in the ATP/ADP ratio that falls over the course of hours until the onset of light. Thus, these two metabolic measures of photosynthetic activity act in concert to signal both the onset and duration of darkness to the cyanobacterial clock.
Collapse
|
36
|
Ueda T, Nomoto N, Koga M, Ogasa H, Ogawa Y, Matsumoto M, Stampoulis P, Sode K, Terasawa H, Shimada I. Structural basis of efficient electron transport between photosynthetic membrane proteins and plastocyanin in spinach revealed using nuclear magnetic resonance. THE PLANT CELL 2012; 24:4173-86. [PMID: 23032988 PMCID: PMC3517244 DOI: 10.1105/tpc.112.102517] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 09/01/2012] [Accepted: 09/14/2012] [Indexed: 05/29/2023]
Abstract
In the photosynthetic light reactions of plants and cyanobacteria, plastocyanin (Pc) plays a crucial role as an electron carrier and shuttle protein between two membrane protein complexes: cytochrome b(6)f (cyt b(6)f) and photosystem I (PSI). The rapid turnover of Pc between cyt b(6)f and PSI enables the efficient use of light energy. In the Pc-cyt b(6)f and Pc-PSI electron transfer complexes, the electron transfer reactions are accomplished within <10(-4) s. However, the mechanisms enabling the rapid association and dissociation of Pc are still unclear because of the lack of an appropriate method to study huge complexes with short lifetimes. Here, using the transferred cross-saturation method, we investigated the residues of spinach (Spinacia oleracea) Pc in close proximity to spinach PSI and cyt b(6)f, in both the thylakoid vesicle-embedded and solubilized states. We demonstrated that the hydrophobic patch residues of Pc are in close proximity to PSI and cyt b(6)f, whereas the acidic patch residues of Pc do not form stable salt bridges with either PSI or cyt b(6)f, in the electron transfer complexes. The transient characteristics of the interactions on the acidic patch facilitate the rapid association and dissociation of Pc.
Collapse
Affiliation(s)
- Takumi Ueda
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Japan Biological Informatics Consortium, Koto-ku, Tokyo 135-0064, Japan
| | - Naoko Nomoto
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Japan Biological Informatics Consortium, Koto-ku, Tokyo 135-0064, Japan
| | - Masamichi Koga
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Ogasa
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuuta Ogawa
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masahiko Matsumoto
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Japan Biological Informatics Consortium, Koto-ku, Tokyo 135-0064, Japan
| | - Pavlos Stampoulis
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Japan Biological Informatics Consortium, Koto-ku, Tokyo 135-0064, Japan
| | - Koji Sode
- Department of Biotechnology, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan
| | - Hiroaki Terasawa
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo 135-0064, Japan
| |
Collapse
|
37
|
Stirbet A. Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. PHOTOSYNTHESIS RESEARCH 2012; 113:15-61. [PMID: 22810945 DOI: 10.1007/s11120-012-9754-5] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/29/2012] [Indexed: 05/03/2023]
Abstract
The fast (up to 1 s) chlorophyll (Chl) a fluorescence induction (FI) curve, measured under saturating continuous light, has a photochemical phase, the O-J rise, related mainly to the reduction of Q(A), the primary electron acceptor plastoquinone of Photosystem II (PSII); here, the fluorescence rise depends strongly on the number of photons absorbed. This is followed by a thermal phase, the J-I-P rise, which disappears at subfreezing temperatures. According to the mainstream interpretation of the fast FI, the variable fluorescence originates from PSII antenna, and the oxidized Q(A) is the most important quencher influencing the O-J-I-P curve. As the reaction centers of PSII are gradually closed by the photochemical reduction of Q(A), Chl fluorescence, F, rises from the O level (the minimal level) to the P level (the peak); yet, the relationship between F and [Q(A) (-)] is not linear, due to the presence of other quenchers and modifiers. Several alternative theories have been proposed, which give different interpretations of the O-J-I-P transient. The main idea in these alternative theories is that in saturating light, Q(A) is almost completely reduced already at the end of the photochemical phase O-J, but the fluorescence yield is lower than its maximum value due to the presence of either a second quencher besides Q(A), or there is an another process quenching the fluorescence; in the second quencher hypothesis, this quencher is consumed (or the process of quenching the fluorescence is reversed) during the thermal phase J-I-P. In this review, we discuss these theories. Based on our critical examination, that includes pros and cons of each theory, as well mathematical modeling, we conclude that the mainstream interpretation of the O-J-I-P transient is the most credible one, as none of the alternative ideas provide adequate explanation or experimental proof for the almost complete reduction of Q(A) at the end of the O-J phase, and for the origin of the fluorescence rise during the thermal phase. However, we suggest that some of the factors influencing the fluorescence yield that have been proposed in these newer theories, as e.g., the membrane potential ΔΨ, as suggested by Vredenberg and his associates, can potentially contribute to modulate the O-J-I-P transient in parallel with the reduction of Q(A), through changes at the PSII antenna and/or at the reaction center, or, possibly, through the control of the oxidation-reduction of the PQ-pool, including proton transfer into the lumen, as suggested by Rubin and his associates. We present in this review our personal perspective mainly on our understanding of the thermal phase, the J-I-P rise during Chl a FI in plants and algae.
Collapse
|
38
|
Hasan SS, Cramer WA. On rate limitations of electron transfer in the photosynthetic cytochrome b6f complex. Phys Chem Chem Phys 2012; 14:13853-60. [PMID: 22890107 DOI: 10.1039/c2cp41386h] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Considering information in the crystal structures of the cytochrome b(6)f complex relevant to the rate-limiting step in oxygenic photosynthesis, it is enigmatic that electron transport in the complex is not limited by the large distance, approximately 26 Å, between the iron-sulfur cluster (ISP) and its electron acceptor, cytochrome f. This enigma has been explained for the respiratory bc(1) complex by a crystal structure with a greatly shortened cluster-heme c(1) distance, leading to a concept of ISP dynamics in which the ISP soluble domain undergoes a translation-rotation conformation change and oscillates between positions relatively close to the cyt c(1) heme and a membrane-proximal position close to the ubiquinol electron-proton donor. Comparison of cytochrome b(6)f structures shows a variation in cytochrome f heme position that suggests the possibility of flexibility and motion of the extended cytochrome f structure that could entail a transient decrease in cluster-heme f distance. The dependence of cyt f turnover on lumen viscosity is consistent with a role of ISP - cyt f dynamics in determination of the rate-limiting step under conditions of low light intensity. Under conditions of low light intensity and proton electrochemical gradient present, for example, under a leaf canopy, it is proposed that a rate limitation of electron transport in the b(6)f complex may also arise from steric constraints in the entry/exit portal for passage of the plastoquinol and -quinone to/from its oxidation site proximal to the iron-sulfur cluster.
Collapse
Affiliation(s)
- S Saif Hasan
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
39
|
Cerezo J, Zúñiga J, Bastida A, Requena A, Cerón-Carrasco JP, Eriksson LA. Antioxidant Properties of β-Carotene Isomers and Their Role in Photosystems: Insights from Ab Initio Simulations. J Phys Chem A 2012; 116:3498-506. [DOI: 10.1021/jp301485k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Javier Cerezo
- Departamento de Química Física, Universidad de Murcia, 30100 Murcia, Spain
| | - José Zúñiga
- Departamento de Química Física, Universidad de Murcia, 30100 Murcia, Spain
| | - Adolfo Bastida
- Departamento de Química Física, Universidad de Murcia, 30100 Murcia, Spain
| | - Alberto Requena
- Departamento de Química Física, Universidad de Murcia, 30100 Murcia, Spain
| | - José Pedro Cerón-Carrasco
- CEISAM, UMR CNRS 6230, BP 92208, Université de Nantes, 2, rue de la Houssinière, 44322 Nantes
Cedex 3, France
| | - Leif A. Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Göteborg, Sweden
| |
Collapse
|
40
|
Kallas T. Cytochrome b 6 f Complex at the Heart of Energy Transduction and Redox Signaling. PHOTOSYNTHESIS 2012. [DOI: 10.1007/978-94-007-1579-0_21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Cramer WA, Zakharov SD, Saif Hasan S, Zhang H, Baniulis D, Zhalnina MV, Soriano GM, Sharma O, Rochet JC, Ryan C, Whitelegge J, Kurisu G, Yamashita E. Membrane proteins in four acts: function precedes structure determination. Methods 2011; 55:415-20. [PMID: 22079407 DOI: 10.1016/j.ymeth.2011.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/30/2011] [Accepted: 11/01/2011] [Indexed: 10/15/2022] Open
Abstract
Studies on four membrane protein systems, which combine information derived from crystal structures and biophysical studies have emphasized, as a precursor to crystallization, demonstration of functional activity. These assays have relied on sensitive spectrophotometric, electrophysiological, and microbiological assays of activity to select purification procedures that lead to functional complexes and with greater likelihood to successful crystallization: (I), Hetero-oligomeric proteins involved in electron transport/proton translocation. (1) Crystal structures of the eight subunit hetero-oligomeric trans-membrane dimeric cytochrome b(6)f complex were obtained from cyanobacteria using a protocol that allowed an analysis of the structure and function of internal lipids at specific intra-membrane, intra-protein sites. Proteolysis and monomerization that inactivated the complex and prevented crystallization was minimized through the use of filamentous cyanobacterial strains that seem to have a different set of membrane-active proteases. (2) An NADPH-quinone oxido-reductase isolated from cyanobacteria contains an expanded set of 17 monotopic and polytopic hetero-subunits. (II) β-Barrel outer membrane proteins (OMPs). High resolution structures of the vitamin B(12) binding protein, BtuB, solved in meso and in surfo, provide the best example of the differences in such structures that were anticipated in the first application of the lipid cubic phase to membrane proteins [1]. A structure of the complex of BtuB with the colicin E3 and E2 receptor binding domain established a "fishing pole" model for outer membrane receptor function in cellular import of nuclease colicins. (III) A modified faster purification procedure contributed to significantly improved resolution (1.83Å) of the universal porin, OmpF, the first membrane protein for which meaningful 3D crystals have been obtained [2]. A crystal structure of the N-terminal translocation domain of colicin E3 complexed to OmpF established the role of OmpF as an import channel for colicin nuclease cytotoxins. (IV) α-Synuclein, associated with the etiology of Parkinson's Disease, is an example of a protein, which is soluble and disordered in solution, but which can assume an ordered predominantly α-helical conformation upon binding to membranes. When subjected in its membrane-bound form to a trans-membrane electrical potential, α-synuclein can form voltage-gated ion channels. Summary of methods to assay functions/activities: (i) sensitive spectrophotometric assay to measure electron transfer activities; (ii) hydrophobic chromatography to deplete lipids, allowing reconstitution with specific lipids for studies on lipid-protein interactions; (iii) microbiological screen to assay high affinity binding of colicin receptor domains to Escherichia coli outer membrane receptors; (iv) electrophysiology/channel analysis (a) to select channel-occluding ligands for co-crystallization with ion channels of OmpF, and (b) to provide a unique description of voltage-gated ion channels of α-synuclein.
Collapse
Affiliation(s)
- W A Cramer
- Department of Biological Sciences, Purdue University, Hall of Structural Biology, 240 Hockmeyer Hall, West Lafayette, IN 47907-1354, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hasan SS, Yamashita E, Ryan CM, Whitelegge JP, Cramer WA. Conservation of lipid functions in cytochrome bc complexes. J Mol Biol 2011; 414:145-62. [PMID: 21978667 DOI: 10.1016/j.jmb.2011.09.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 09/05/2011] [Accepted: 09/14/2011] [Indexed: 11/24/2022]
Abstract
Lipid binding sites and properties are compared in two sub-families of hetero-oligomeric membrane protein complexes known to have similar functions in order to gain further understanding of the role of lipid in the function, dynamics, and assembly of these complexes. Using the crystal structure information for both complexes, we compared the lipid binding properties of the cytochrome b(6)f and bc(1) complexes that function in photosynthetic and respiratory membrane energy transduction. Comparison of lipid and detergent binding sites in the b(6)f complex with those in bc(1) shows significant conservation of lipid positions. Seven lipid binding sites in the cyanobacterial b(6)f complex overlap three natural sites in the Chlamydomonas reinhardtii algal complex and four sites in the yeast mitochondrial bc(1) complex. The specific identity of lipids is different in b(6)f and bc(1) complexes: b(6)f contains sulfoquinovosyldiacylglycerol, phosphatidylglycerol, phosphatidylcholine, monogalactosyldiacylglycerol, and digalactosyldiacylglycerol, whereas cardiolipin, phosphatidylethanolamine, and phosphatidic acid are present in the yeast bc(1) complex. The lipidic chlorophyll a and β-carotene (β-car) in cyanobacterial b(6)f, as well as eicosane in C. reinhardtii, are unique to the b(6)f complex. Inferences of lipid binding sites and functions were supported by sequence, interatomic distance, and B-factor information on interacting lipid groups and coordinating amino acid residues. The lipid functions inferred in the b(6)f complex are as follows: (i) substitution of a transmembrane helix by a lipid and chlorin ring, (ii) lipid and β-car connection of peripheral and core domains, (iii) stabilization of the iron-sulfur protein transmembrane helix, (iv) n-side charge and polarity compensation, and (v) β-car-mediated super-complex with the photosystem I complex.
Collapse
Affiliation(s)
- S Saif Hasan
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
43
|
Cramer WA, Hasan SS, Yamashita E. The Q cycle of cytochrome bc complexes: a structure perspective. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1807:788-802. [PMID: 21352799 PMCID: PMC3101715 DOI: 10.1016/j.bbabio.2011.02.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 02/08/2011] [Accepted: 02/13/2011] [Indexed: 12/01/2022]
Abstract
Aspects of the crystal structures of the hetero-oligomeric cytochrome bc(1) and b(6)f ("bc") complexes relevant to their electron/proton transfer function and the associated redox reactions of the lipophilic quinones are discussed. Differences between the b(6)f and bc(1) complexes are emphasized. The cytochrome bc(1) and b(6)f dimeric complexes diverge in structure from a core of subunits that coordinate redox groups consisting of two bis-histidine coordinated hemes, a heme b(n) and b(p) on the electrochemically negative (n) and positive (p) sides of the complex, the high potential [2Fe-2S] cluster and c-type heme at the p-side aqueous interface and aqueous phase, respectively, and quinone/quinol binding sites on the n- and p-sides of the complex. The bc(1) and b(6)f complexes diverge in subunit composition and structure away from this core. b(6)f Also contains additional prosthetic groups including a c-type heme c(n) on the n-side, and a chlorophyll a and β-carotene. Common structure aspects; functions of the symmetric dimer. (I) Quinone exchange with the bilayer. An inter-monomer protein-free cavity of approximately 30Å along the membrane normal×25Å (central inter-monomer distance)×15Å (depth in the center), is common to both bc(1) and b(6)f complexes, providing a niche in which the lipophilic quinone/quinol (Q/QH(2)) can be exchanged with the membrane bilayer. (II) Electron transfer. The dimeric structure and the proximity of the two hemes b(p) on the electrochemically positive side of the complex in the two monomer units allow the possibility of two alternate routes of electron transfer across the complex from heme b(p) to b(n): intra-monomer and inter-monomer involving electron cross-over between the two hemes b(p). A structure-based summary of inter-heme distances in seven bc complexes, representing mitochondrial, chromatophore, cyanobacterial, and algal sources, indicates that, based on the distance parameter, the intra-monomer pathway would be favored kinetically. (III) Separation of quinone binding sites. A consequence of the dimer structure and the position of the Q/QH(2) binding sites is that the p-side QH(2) oxidation and n-side Q reduction sites are each well separated. Therefore, in the event of an overlap in residence time by QH(2) or Q molecules at the two oxidation or reduction sites, their spatial separation would result in minimal steric interference between extended Q or QH(2) isoprenoid chains. (IV) Trans-membrane QH(2)/Q transfer. (i) n/p-side QH(2)/Q transfer may be hindered by lipid acyl chains; (ii) the shorter less hindered inter-monomer pathway across the complex would not pass through the center of the cavity, as inferred from the n-side antimycin site on one monomer and the p-side stigmatellin site on the other residing on the same surface of the complex. (V) Narrow p-side portal for QH(2)/Q passage. The [2Fe-2S] cluster that serves as oxidant, and whose histidine ligand serves as a H(+) acceptor in the oxidation of QH(2), is connected to the inter-monomer cavity by a narrow extended portal, which is also occupied in the b(6)f complex by the 20 carbon phytyl chain of the bound chlorophyll.
Collapse
Affiliation(s)
- William A Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
44
|
Pisciotta JM, Zou Y, Baskakov IV. Role of the photosynthetic electron transfer chain in electrogenic activity of cyanobacteria. Appl Microbiol Biotechnol 2011; 91:377-85. [PMID: 21484209 DOI: 10.1007/s00253-011-3239-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/09/2011] [Accepted: 03/09/2011] [Indexed: 11/26/2022]
Abstract
Certain anaerobic bacteria, termed electrogens, produce an electric current when electrons from oxidized organic molecules are deposited to extracellular metal oxide acceptors. In these heterotrophic "metal breathers", the respiratory electron transport chain (R-ETC) works in concert with membrane-bound cytochrome oxidases to transfer electrons to the extracellular acceptors. The diversity of bacteria able to generate an electric current appears more widespread than previously thought, and aerobic phototrophs, including cyanobacteria, possess electrogenic activity. However, unlike heterotrophs, cyanobacteria electrogenic activity is light dependent, which suggests that a novel pathway could exist. To elucidate the electrogenic mechanism of cyanobacteria, the current studies used site-specific inhibitors to target components of the photosynthetic electron transport chain (P-ETC) and cytochrome oxidases. Here, we show that (1) P-ETC and, particularly, water photolysed by photosystem II (PSII) is the source of electrons discharged to the environment by illuminated cyanobacteria, and (2) water-derived electrons are transmitted from PSII to extracellular electron acceptors via plastoquinone and cytochrome bd quinol oxidase. Two cyanobacterial genera (Lyngbya and Nostoc) displayed very similar electrogenic responses when treated with P-ETC site-specific inhibitors, suggesting a conserved electrogenic pathway. We propose that in cyanobacteria, electrogenic activity may represent a form of overflow metabolism to protect cells under high-intensity light. This study offers insight into electron transfer between phototrophic microorganisms and the environment and expands our knowledge into biologically based mechanisms for harnessing solar energy.
Collapse
Affiliation(s)
- John M Pisciotta
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 725 W. Lombard St, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
45
|
Wood TL, Bridwell-Rabb J, Kim YI, Gao T, Chang YG, LiWang A, Barondeau DP, Golden SS. The KaiA protein of the cyanobacterial circadian oscillator is modulated by a redox-active cofactor. Proc Natl Acad Sci U S A 2010; 107:5804-9. [PMID: 20231482 PMCID: PMC2851934 DOI: 10.1073/pnas.0910141107] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The circadian rhythms exhibited in the cyanobacterium Synechococcus elongatus are generated by an oscillator comprised of the proteins KaiA, KaiB, and KaiC. An external signal that commonly affects the circadian clock is light. Previously, we reported that the bacteriophytochrome-like protein CikA passes environmental signals to the oscillator by directly binding a quinone and using cellular redox state as a measure of light in this photosynthetic organism. Here, we report that KaiA also binds the quinone analog 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), and the oxidized form of DBMIB, but not its reduced form, decreases the stability of KaiA in vivo, causes multimerization in vitro, and blocks KaiA stimulation of KaiC phosphorylation, which is central to circadian oscillation. Our data suggest that KaiA directly senses environmental signals as changes in redox state and modulates the circadian clock.
Collapse
Affiliation(s)
- Thammajun L. Wood
- The Center for Biological Clocks Research, Department of Biology, and
| | | | - Yong-Ick Kim
- Center for Chronobiology and Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093-0116; and
| | - Tiyu Gao
- The Center for Biological Clocks Research, Department of Biology, and
| | - Yong-Gang Chang
- School of Natural Sciences, University of California, Merced, CA 95340
| | - Andy LiWang
- School of Natural Sciences, University of California, Merced, CA 95340
| | - David P. Barondeau
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Susan S. Golden
- The Center for Biological Clocks Research, Department of Biology, and
- Center for Chronobiology and Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093-0116; and
| |
Collapse
|
46
|
McLuskey K, Roszak AW, Zhu Y, Isaacs NW. Crystal structures of all-alpha type membrane proteins. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:723-55. [DOI: 10.1007/s00249-009-0546-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/19/2009] [Accepted: 08/26/2009] [Indexed: 01/05/2023]
|
47
|
Baniulis D, Yamashita E, Zhang H, Hasan SS, Cramer WA. Structure-function of the cytochrome b6f complex. Photochem Photobiol 2009; 84:1349-58. [PMID: 19067956 DOI: 10.1111/j.1751-1097.2008.00444.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The structure and function of the cytochrome b6f complex is considered in the context of recent crystal structures of the complex as an eight subunit, 220 kDa symmetric dimeric complex obtained from the thermophilic cyanobacterium, Mastigocladus laminosus, and the green alga, Chlamydomonas reinhardtii. A major problem confronted in crystallization of the cyanobacterial complex, proteolysis of three of the subunits, is discussed along with initial efforts to identify the protease. The evolution of these cytochrome complexes is illustrated by conservation of the hydrophobic heme-binding transmembrane domain of the cyt b polypeptide between b6f and bc1 complexes, and the rubredoxin-like membrane proximal domain of the Rieske [2Fe-2S] protein. Pathways of coupled electron and proton transfer are discussed in the framework of a modified Q cycle, in which the heme c(n), not found in the bc1 complex, but electronically tightly coupled to the heme b(n) of the b6f complex, is included. Crystal structures of the cyanobacterial complex with the quinone analogue inhibitors, NQNO or tridecyl-stigmatellin, show the latter to be ligands of heme c(n), implicating heme c(n) as an n-side plastoquinone reductase. Existing questions include (a) the details of the shuttle of: (i) the [2Fe-2S] protein between the membrane-bound PQH2 electron/H+ donor and the cytochrome f acceptor to complete the p-side electron transfer circuit; (ii) PQ/PQH2 between n- and p-sides of the complex across the intermonomer quinone exchange cavity, through the narrow portal connecting the cavity with the p-side [2Fe-2S] niche; (b) the role of the n-side of the b6f complex and heme c(n) in regulation of the relative rates of noncyclic and cyclic electron transfer. The likely presence of cyclic electron transport in the b6f complex, and of heme c(n) in the firmicute bc complex suggests the concept that hemes b(n)-c(n) define a branch point in bc complexes that can support electron transport pathways that differ in detail from the Q cycle supported by the bc1 complex.
Collapse
Affiliation(s)
- D Baniulis
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | | | | | | | | |
Collapse
|
48
|
Fromme P, Grotjohann I. Chapter 9 Crystallization of Photosynthetic Membrane Proteins. CURRENT TOPICS IN MEMBRANES 2009. [DOI: 10.1016/s1063-5823(09)63009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Yan J, Dashdorj N, Baniulis D, Yamashita E, Savikhin S, Cramer WA. On the Structural Role of the Aromatic Residue Environment of the Chlorophyll a in the Cytochrome b6f Complex. Biochemistry 2008; 47:3654-61. [PMID: 18302324 DOI: 10.1021/bi702299b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jiusheng Yan
- Departments of Biological Sciences and Physics, Purdue University, West Lafayette, Indiana 47907
| | - Naranbaatar Dashdorj
- Departments of Biological Sciences and Physics, Purdue University, West Lafayette, Indiana 47907
| | - Danas Baniulis
- Departments of Biological Sciences and Physics, Purdue University, West Lafayette, Indiana 47907
| | - Eiki Yamashita
- Departments of Biological Sciences and Physics, Purdue University, West Lafayette, Indiana 47907
| | - Sergei Savikhin
- Departments of Biological Sciences and Physics, Purdue University, West Lafayette, Indiana 47907
| | - William A. Cramer
- Departments of Biological Sciences and Physics, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
50
|
Yamashita E, Zhang H, Cramer WA. Structure of the cytochrome b6f complex: quinone analogue inhibitors as ligands of heme cn. J Mol Biol 2007; 370:39-52. [PMID: 17498743 PMCID: PMC1993820 DOI: 10.1016/j.jmb.2007.04.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 04/01/2007] [Accepted: 04/04/2007] [Indexed: 11/24/2022]
Abstract
A native structure of the cytochrome b(6)f complex with improved resolution was obtained from crystals of the complex grown in the presence of divalent cadmium. Two Cd(2+) binding sites with different occupancy were determined: (i) a higher affinity site, Cd1, which bridges His143 of cytochrome f and the acidic residue, Glu75, of cyt b(6); in addition, Cd1 is coordinated by 1-2 H(2)O or 1-2 Cl(-); (ii) a second site, Cd2, of lower affinity for which three identified ligands are Asp58 (subunit IV), Glu3 (PetG subunit) and Glu4 (PetM subunit). Binding sites of quinone analogue inhibitors were sought to map the pathway of transfer of the lipophilic quinone across the b(6)f complex and to define the function of the novel heme c(n). Two sites were found for the chromone ring of the tridecyl-stigmatellin (TDS) quinone analogue inhibitor, one near the p-side [2Fe-2S] cluster. A second TDS site was found on the n-side of the complex facing the quinone exchange cavity as an axial ligand of heme c(n). A similar binding site proximal to heme c(n) was found for the n-side inhibitor, NQNO. Binding of these inhibitors required their addition to the complex before lipid used to facilitate crystallization. The similar binding of NQNO and TDS as axial ligands to heme c(n) implies that this heme utilizes plastoquinone as a natural ligand, thus defining an electron transfer complex consisting of hemes b(n), c(n), and PQ, and the pathway of n-side reduction of the PQ pool. The NQNO binding site explains several effects associated with its inhibitory action: the negative shift in heme c(n) midpoint potential, the increased amplitude of light-induced heme b(n) reduction, and an altered EPR spectrum attributed to interaction between hemes c(n) and b(n). A decreased extent of heme c(n) reduction by reduced ferredoxin in the presence of NQNO allows observation of the heme c(n) Soret band in a chemical difference spectrum.
Collapse
|