1
|
Oliveira CBP, Gomes V, Ferreira PMT, Martins JA, Jervis PJ. Peptide-Based Supramolecular Hydrogels as Drug Delivery Agents: Recent Advances. Gels 2022; 8:706. [PMID: 36354614 PMCID: PMC9689023 DOI: 10.3390/gels8110706] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/19/2023] Open
Abstract
Supramolecular peptide hydrogels have many important applications in biomedicine, including drug delivery applications for the sustained release of therapeutic molecules. Targeted and selective drug administration is often preferential to systemic drug delivery, as it can allow reduced doses and can avoid the toxicity and side-effects caused by off-target binding. New discoveries are continually being reported in this rapidly developing field. In this review, we report the latest developments in supramolecular peptide-based hydrogels for drug delivery, focusing primarily on discoveries that have been reported in the last four years (2018-present). We address clinical points, such as peptide self-assembly and drug release, mechanical properties in drug delivery, peptide functionalization, bioadhesive properties and drug delivery enhancement strategies, drug release profiles, and different hydrogel matrices for anticancer drug loading and release.
Collapse
Affiliation(s)
| | | | | | | | - Peter J. Jervis
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
2
|
Retini M, Bartoccini F, Zappia G, Piersanti G. Novel, Chiral, and Enantiopure C
2
‐Symmetric Thioureas Promote Asymmetric Protio‐Pictet‐Spengler Reactions by Anion‐Binding Catalysis. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Michele Retini
- Dipartimento di Scienze Biomolecolari Università degli studi di Urbino Carlo Bo P.zza del Rinascimento 6 61029 Urbino Italy
| | - Francesca Bartoccini
- Dipartimento di Scienze Biomolecolari Università degli studi di Urbino Carlo Bo P.zza del Rinascimento 6 61029 Urbino Italy
| | - Giovanni Zappia
- Dipartimento di Scienze Biomolecolari Università degli studi di Urbino Carlo Bo P.zza del Rinascimento 6 61029 Urbino Italy
| | - Giovanni Piersanti
- Dipartimento di Scienze Biomolecolari Università degli studi di Urbino Carlo Bo P.zza del Rinascimento 6 61029 Urbino Italy
| |
Collapse
|
3
|
Zou Y, Yu L, Fang X, Zheng Y, Yang Y, Wang C. Position-coded multivalent peptide-peptide interactions revealed by tryptophan-scanning mutagenesis. J Pept Sci 2020; 26:e3273. [PMID: 32583616 DOI: 10.1002/psc.3273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 11/08/2022]
Abstract
We demonstrate in this contribution the evidence that significant cooperative binding effect can be identified for the amino acid sites that are determinant to the binding characteristics in peptide-peptide interactions. The analysis of tryptophan-scanning mutagenesis of the 14-mer peptide consisting only of glycine provides a mapping of position-dependent contributions to the binding energy. The pronounced tryptophan-associated peptide-peptide interactions are originated from the indole moieties with the main chains of 14-mer glycines containing N-H and CO moieties. Specifically, with the presence of two tryptophans as determinant amino acids, cooperative binding can be observed, which are dependent on relative positions of the two tryptophans with a "volcano"-like characteristics. An optimal separation of 6-10 amino acids between two adjacent binding sites can be identified to achieve maximal binding interactions.
Collapse
Affiliation(s)
- Yimin Zou
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, CAS Center for Excellence in Brain Science, National Center for Nanoscience and Technology, Beijing, China.,Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Lanlan Yu
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, CAS Center for Excellence in Brain Science, National Center for Nanoscience and Technology, Beijing, China.,State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaocui Fang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, CAS Center for Excellence in Brain Science, National Center for Nanoscience and Technology, Beijing, China
| | - Yongfang Zheng
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, CAS Center for Excellence in Brain Science, National Center for Nanoscience and Technology, Beijing, China.,Department of Chemistry, Tsinghua University, Beijing, China
| | - Yanlian Yang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, CAS Center for Excellence in Brain Science, National Center for Nanoscience and Technology, Beijing, China
| | - Chen Wang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, CAS Center for Excellence in Brain Science, National Center for Nanoscience and Technology, Beijing, China
| |
Collapse
|
4
|
Zhou J, Panaitiu AE, Grigoryan G. A general-purpose protein design framework based on mining sequence-structure relationships in known protein structures. Proc Natl Acad Sci U S A 2020; 117:1059-1068. [PMID: 31892539 PMCID: PMC6969538 DOI: 10.1073/pnas.1908723117] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Current state-of-the-art approaches to computational protein design (CPD) aim to capture the determinants of structure from physical principles. While this has led to many successful designs, it does have strong limitations associated with inaccuracies in physical modeling, such that a reliable general solution to CPD has yet to be found. Here, we propose a design framework-one based on identifying and applying patterns of sequence-structure compatibility found in known proteins, rather than approximating them from models of interatomic interactions. We carry out extensive computational analyses and an experimental validation for our method. Our results strongly argue that the Protein Data Bank is now sufficiently large to enable proteins to be designed by using only examples of structural motifs from unrelated proteins. Because our method is likely to have orthogonal strengths relative to existing techniques, it could represent an important step toward removing remaining barriers to robust CPD.
Collapse
Affiliation(s)
- Jianfu Zhou
- Department of Computer Science, Dartmouth College, Hanover, NH 03755
| | | | - Gevorg Grigoryan
- Department of Computer Science, Dartmouth College, Hanover, NH 03755;
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| |
Collapse
|
5
|
Merritt HI, Sawyer N, Arora PS. Bent Into Shape: Folded Peptides to Mimic Protein Structure and Modulate Protein Function. Pept Sci (Hoboken) 2020; 112:e24145. [PMID: 33575525 PMCID: PMC7875438 DOI: 10.1002/pep2.24145] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022]
Abstract
Protein secondary and tertiary structure mimics have served as model systems to probe biophysical parameters that guide protein folding and as attractive reagents to modulate protein interactions. Here we review contemporary methods to reproduce loop, helix, sheet and coiled-coil conformations in short peptides.
Collapse
Affiliation(s)
| | | | - Paramjit S. Arora
- Department of Chemistry New York University, New York, New York 10003, United States
| |
Collapse
|
6
|
Bureau HR, Quirk S, Hernandez R. The relative stability of trpzip1 and its mutants determined by computation and experiment. RSC Adv 2020; 10:6520-6535. [PMID: 35495997 PMCID: PMC9049704 DOI: 10.1039/d0ra00920b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 02/04/2020] [Indexed: 11/21/2022] Open
Abstract
The single-point mutations of tprzip1 are indicated at left, and their relative energetics are compared at right.
Collapse
|
7
|
De Leon-Rodriguez LM, Park YE, Naot D, Musson DS, Cornish J, Brimble MA. Design, characterization and evaluation of β-hairpin peptide hydrogels as a support for osteoblast cell growth and bovine lactoferrin delivery. RSC Adv 2020; 10:18222-18230. [PMID: 35692623 PMCID: PMC9122575 DOI: 10.1039/d0ra03011b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 11/21/2022] Open
Abstract
The use of peptide hydrogels is of growing interest in bone regeneration. Self-assembling peptides form hydrogels and can be used as injectable drug delivery matrices. Injected into the defect site, they can gel in situ, and release factors that aid bone growth. We report on the design, synthesis and characterization of three β-hairpin peptide hydrogels, and on their osteoblast cytocompatibility as well as delivery of the lactoferrin glycoprotein, a bone anabolic factor. Osteoblasts cultured in hydrogels of the peptide with sequence NH2-Leu-His-Leu-His-Leu-Lys-Leu-Lys-Val-dPro-Pro-Thr-Lys-Leu-Lys-Leu-His-Leu-His-Leu-Arg-Gly-Asp-Ser-CONH2 (H4LMAX-RGDS) increased the osteoblast cell number and the cells appeared healthy after seven days. Furthermore, we showed that H4LMAX-RGDS was capable of releasing up to 60% of lactoferrin (pre-encapsulated in the gel) over five days while retaining the rest of the glycoprotein. Thus, H4LMAX-RGDS hydrogels are cytocompatible with primary osteoblasts and capable of delivering bio-active lactoferrin that increases osteoblast cell number. Self-assembling peptide H4LMAX-RGDS hydrogels, designed to enhance bone regeneration, are cytocompatible and capable of delivering the bone anabolic factor lactoferrin to increase osteoblast cell number.![]()
Collapse
Affiliation(s)
| | - Young-Eun Park
- Department of Medicine
- University of Auckland
- Auckland 1023
- New Zealand
| | - Dorit Naot
- Department of Medicine
- University of Auckland
- Auckland 1023
- New Zealand
| | - David S. Musson
- Department of Medicine
- University of Auckland
- Auckland 1023
- New Zealand
| | - Jillian Cornish
- Department of Medicine
- University of Auckland
- Auckland 1023
- New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences
- The University of Auckland
- Auckland 1010
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| |
Collapse
|
8
|
Design and structural characterisation of monomeric water-soluble α-helix and β-hairpin peptides: State-of-the-art. Arch Biochem Biophys 2019; 661:149-167. [DOI: 10.1016/j.abb.2018.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/06/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
|
9
|
Abstract
Peptide secondary and tertiary structure motifs frequently serve as inspiration for the development of protein-protein interaction (PPI) inhibitors. While a wide variety of strategies have been used to stabilize or imitate α-helices, similar strategies for β-sheet stabilization are more limited. Synthetic scaffolds that stabilize reverse turns and cross-strand interactions have provided important insights into β-sheet stability and folding. However, these templates occupy regions of the β-sheet that might impact the β-sheet's ability to bind at a PPI interface. Here, we present the hydrogen bond surrogate (HBS) approach for stabilization of β-hairpin peptides. The HBS linkage replaces a cross-strand hydrogen bond with a covalent linkage, conferring significant conformational and proteolytic resistance. Importantly, this approach introduces the stabilizing linkage in the buried β-sheet interior, retains all side chains for further functionalization, and allows efficient solid-phase macrocyclization. We anticipate that HBS stabilization of PPI β-sheets will enhance the development of β-sheet PPI inhibitors and expand the repertoire of druggable PPIs.
Collapse
Affiliation(s)
- Nicholas Sawyer
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Paramjit S. Arora
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
10
|
Sawyer N, Watkins AM, Arora PS. Protein Domain Mimics as Modulators of Protein-Protein Interactions. Acc Chem Res 2017; 50:1313-1322. [PMID: 28561588 DOI: 10.1021/acs.accounts.7b00130] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protein-protein interactions (PPIs) are ubiquitous in biological systems and often misregulated in disease. As such, specific PPI modulators are desirable to unravel complex PPI pathways and expand the number of druggable targets available for therapeutic intervention. However, the large size and relative flatness of PPI interfaces make them challenging molecular targets. This Account describes our systematic approach using secondary and tertiary protein domain mimics (PDMs) to specifically modulate PPIs. Our strategy focuses on mimicry of regular secondary and tertiary structure elements from one of the PPI partners to inspire rational PDM design. We have compiled three databases (HIPPDB, SIPPDB, and DIPPDB) of secondary and tertiary structures at PPI interfaces to guide our designs and better understand the energetics of PPI secondary and tertiary structures. Our efforts have focused on three of the most common secondary and tertiary structures: α-helices, β-strands, and helix dimers (e.g., coiled coils). To mimic α-helices, we designed the hydrogen bond surrogate (HBS) as an isosteric PDM and the oligooxopiperazine helix mimetic (OHM) as a topographical PDM. The nucleus of the HBS approach is a peptide macrocycle in which the N-terminal i, i + 4 main-chain hydrogen bond is replaced with a covalent carbon-carbon bond. In mimicking a main-chain hydrogen bond, the HBS approach stabilizes the α-helical conformation while leaving all helical faces available for functionalization to tune binding affinity and specificity. The OHM approach, in contrast, envisions a tetrapeptide to mimic one face of a two-turn helix. We anticipated that placement of ethylene bridges between adjacent amides constrains the tetrapeptide backbone to mimic the i, i + 4, and i + 7 side chains on one face of an α-helix. For β-strands, we developed triazolamers, a topographical PDM where the peptide bonds are replaced by triazoles. The triazoles simultaneously stabilize the extended, zigzag conformation of β-strands and transform an otherwise ideal protease substrate into a stable molecule by replacement of the peptide bonds. We turned to a salt bridge surrogate (SBS) approach as a means for stabilizing very short helix dimers. As with the HBS approach, the SBS strategy replaces a noncovalent interaction with a covalent bond. Specifically, we used a bis-triazole linkage that mimics a salt bridge interaction to drive helix association and folding. Using this approach, we were able to stabilize helix dimers that are less than half of the length required to form a coiled coil from two independent strands. In addition to demonstrating the stabilization of desired structures, we have also shown that our designed PDMs specifically modulate target PPIs in vitro and in vivo. Examples of PPIs successfully targeted include HIF1α/p300, p53/MDM2, Bcl-xL/Bak, Ras/Sos, and HIV gp41. The PPI databases and designed PDMs created in these studies will aid development of a versatile set of molecules to probe complex PPI functions and, potentially, PPI-based therapeutics.
Collapse
Affiliation(s)
- Nicholas Sawyer
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Andrew M. Watkins
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Paramjit S. Arora
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
11
|
Piekarski DG, Díaz-Tendero S. Structure and stability of clusters of β-alanine in the gas phase: importance of the nature of intermolecular interactions. Phys Chem Chem Phys 2017; 19:5465-5476. [DOI: 10.1039/c6cp07792g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a theoretical study of neutral clusters of β-alanine molecules in the gas phase, (β-ala)nn ≤ 5.
Collapse
Affiliation(s)
| | - Sergio Díaz-Tendero
- Departamento de Química
- Módulo 13
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| |
Collapse
|
12
|
De Leon Rodriguez LM, Hemar Y, Cornish J, Brimble MA. Structure–mechanical property correlations of hydrogel forming β-sheet peptides. Chem Soc Rev 2016; 45:4797-824. [DOI: 10.1039/c5cs00941c] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review discusses about β-sheet peptide structure at the molecular level and the bulk mechanical properties of the corresponding hydrogels.
Collapse
Affiliation(s)
| | - Yacine Hemar
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
- The Riddet Institute
| | - Jillian Cornish
- Department of Medicine
- The University of Auckland
- Auckland
- New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| |
Collapse
|
13
|
Makwana KM, Mahalakshmi R. Nature of aryl-tyrosine interactions contribute to β-hairpin scaffold stability: NMR evidence for alternate ring geometry. Phys Chem Chem Phys 2016; 17:4220-30. [PMID: 25569770 DOI: 10.1039/c4cp04991h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The specific contribution of the acidic-aromatic β-sheet favouring amino acid tyrosine to the stability of short octapeptide β-hairpin structures is presented here. Solution NMR analysis in near-apolar environments suggests the energetically favourable mode of interaction to be T-shaped face-to-edge (FtE) and that a Trp-Tyr interacting pair is the most stabilizing. Alternate aryl geometries also exist in solution, which readily equilibrate between a preferred π···π conformation to an aromatic-amide conformation, without any change in the backbone structure. While the phenolic ring is readily accommodated at the "edge" of FtE aryl interactions, it exhibits an overall lowered contribution to scaffold stability in the "face" orientation. Such differential tyrosine interactions are key to its dual nature in proteins.
Collapse
Affiliation(s)
- Kamlesh Madhusudan Makwana
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462023, India.
| | | |
Collapse
|
14
|
Sharma A, Goswami S, Rajagopalan R, Konar AD. Supramolecular heterogeneity in β-turn forming synthetic tripeptides nucleated by isomers of fluorinated phenylalanine and aib as corner residues. Supramol Chem 2015. [DOI: 10.1080/10610278.2015.1075021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ankita Sharma
- Department of Chemistry and School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, Madhya Pradesh, 462033, India
| | - Soumyabrata Goswami
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Indore By-Pass Road, Bhauri, Bhopal 462023, Madhya Pradesh, India
| | - R. Rajagopalan
- Department of Chemistry and School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, Madhya Pradesh, 462033, India
| | - Anita Dutt Konar
- Department of Chemistry and School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, Madhya Pradesh, 462033, India
| |
Collapse
|
15
|
Deng L, Dong X, Wu A, Song T, Jiang T. Coevolution signals capture the specific packing of secondary structures in protein architecture. Protein Cell 2015; 5:480-3. [PMID: 24699983 PMCID: PMC4026424 DOI: 10.1007/s13238-014-0051-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Lizong Deng
- Key Laboratory of Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | |
Collapse
|
16
|
Nair RV, Baravkar SB, Ingole TS, Sanjayan GJ. Synthetic turn mimetics and hairpin nucleators: Quo Vadimus? Chem Commun (Camb) 2014; 50:13874-84. [PMID: 25051222 DOI: 10.1039/c4cc03114h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Structural mimicry of peptides has witnessed perceptible progress in the last three decades. Reverse turn and β-hairpin units are the smallest secondary structural motifs that are some of the most scrutinized functional cores of peptides and proteins. The practice of mimicking, without altering the function of the bioactive core, ranges from conformational locking of the basic skeleton to total replacement of structural architecture using synthetic analogues. Development of heterogeneous backbones--using unnatural residues in place of natural ones--has broadened further opportunities for efficient structural rigidification. This feature article endeavours to trail the path of progress achieved hitherto and envisage the possibilities that lie ahead in the development of synthetic turn mimetics and hairpin nucleators.
Collapse
Affiliation(s)
- Roshna V Nair
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.
| | | | | | | |
Collapse
|
17
|
Abstract
Since the first report in 1993 (JACS 115, 5887-5888) of a peptide able to form a monomeric β-hairpin structure in aqueous solution, the design of peptides forming either β-hairpins (two-stranded antiparallel β-sheets) or three-stranded antiparallel β-sheets has become a field of growing interest and activity. These studies have yielded great insights into the principles governing the stability and folding of β-hairpins and antiparallel β-sheets. This chapter provides an overview of the reported β-hairpin/β-sheet peptides focussed on the applied design criteria, reviews briefly the factors contributing to β-hairpin/β-sheet stability, and describes a protocol for the de novo design of β-sheet-forming peptides based on them. Guidelines to select appropriate turn and strand residues and to avoid self-association are provided. The methods employed to check the success of new designed peptides are also summarized. Since NMR is the best technique to that end, NOEs and chemical shifts characteristic of β-hairpins and three-stranded antiparallel β-sheets are given.
Collapse
Affiliation(s)
- M Angeles Jiménez
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Química Física Rocasolano (IQFR), Serrano 119, 28006, Madrid, Spain,
| |
Collapse
|
18
|
β-Hairpin protein epitope mimetic technology in drug discovery. DRUG DISCOVERY TODAY. TECHNOLOGIES 2013; 9:e1-e70. [PMID: 24064246 DOI: 10.1016/j.ddtec.2011.07.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Kim SH, Parquette JR. A model for the controlled assembly of semiconductor peptides. NANOSCALE 2012; 4:6940-6947. [PMID: 23034819 DOI: 10.1039/c2nr32140h] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The self-assembly of small molecules provides a potentially powerful method to create functional nanomaterials for many applications ranging from optoelectronics to oncology. However, the design of well-defined nanostructures via molecular assembly is a highly empirical process, which severely hampers efforts to create functional nanostructures using this method. In this review, we describe a simple strategy to control the assembly of functionalized peptides by balancing attractive hydrophobic effects that drive assembly with opposing electrostatic repulsions. Extended π-π contacts are created in the nanostructures when assembly is driven by π-stacking interactions among chromophores that are appended to the peptide. The formation of insoluble β-sheet aggregates are mitigated by incorporating charged side-chains capable of attenuating the assembly process. Although the application of this approach to the assembly of organic semiconductors is described, we expect this strategy to be effective for many other functional organic materials.
Collapse
Affiliation(s)
- Se Hye Kim
- Department of Chemistry, The Ohio State University, 100 W. 18th Ave, Columbus, Ohio 43210, USA
| | | |
Collapse
|
20
|
Clark GA, Baleja JD, Kumar K. Cross-strand interactions of fluorinated amino acids in β-hairpin constructs. J Am Chem Soc 2012; 134:17912-21. [PMID: 23078597 DOI: 10.1021/ja212080f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We describe herein the design, synthesis, and thermodynamic characterization of fluorinated β-hairpin constructs. Introduction of hexafluoroleucine (Hfl) did not perturb β-hairpin formation, as judged by (1)H NMR structures of four peptides determined to <1 Å backbone RMSDs, allowing direct comparison of thermodynamic stabilities of fluorinated peptides to their hydrocarbon counterparts. Judicious fluorination of peptides often results in increased thermal and chemical stability of the resultant folded structures. However, we found that when cross-strand residue partners were varied, the side-chain interaction energies followed the order Leu-Leu > Hfl-Leu > Hfl-Hfl. All peptides were more structured in 90% MeOH than in aqueous buffers. The peptides with Hfl-Leu or Hfl-Hfl cross-strand partners showed increased interaction energies in this solvent compared to those in water, in contrast to the insignificant effect on Leu-Leu. Our results inform the binding and assembly of peptides containing Hfl in the context of β-sheet structures and may be useful in interpreting binding of fluorinated ligands and peptides to biological targets.
Collapse
Affiliation(s)
- Ginevra A Clark
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, USA
| | | | | |
Collapse
|
21
|
Understanding hydrogen bonding of hydroxamic acids with some amino acid side chain model molecules. Struct Chem 2011. [DOI: 10.1007/s11224-011-9840-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Loughlin WA, Tyndall JDA, Glenn MP, Hill TA, Fairlie DP. Update 1 of: Beta-Strand Mimetics. Chem Rev 2011; 110:PR32-69. [DOI: 10.1021/cr900395y] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Wendy A. Loughlin
- School of Science, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia, and Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2004, 104 (12), 6085−6117, DOI: 10.1021/cr040648k; Published (Web) Nov. 4, 2004. Updates to the text appear in red type
| | - Joel D. A. Tyndall
- School of Science, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia, and Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2004, 104 (12), 6085−6117, DOI: 10.1021/cr040648k; Published (Web) Nov. 4, 2004. Updates to the text appear in red type
| | - Matthew P. Glenn
- School of Science, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia, and Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2004, 104 (12), 6085−6117, DOI: 10.1021/cr040648k; Published (Web) Nov. 4, 2004. Updates to the text appear in red type
| | - Timothy A. Hill
- School of Science, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia, and Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2004, 104 (12), 6085−6117, DOI: 10.1021/cr040648k; Published (Web) Nov. 4, 2004. Updates to the text appear in red type
| | - David P. Fairlie
- School of Science, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia, and Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2004, 104 (12), 6085−6117, DOI: 10.1021/cr040648k; Published (Web) Nov. 4, 2004. Updates to the text appear in red type
| |
Collapse
|
23
|
Patel K, Goyal B, Kumar A, Kishore N, Durani S. Cured of “Stickiness”, Poly-l β-Hairpin is Promoted with ll-to-dd Mutation as a Protein and a Hydrolase Mimic. J Phys Chem B 2010; 114:16887-93. [DOI: 10.1021/jp1062572] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Kirti Patel
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India
| | - Bhupesh Goyal
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India
| | - Anil Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India
| | - Susheel Durani
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India
| |
Collapse
|
24
|
Irfan Ashiq M, Tesfatsion BF, Gaggini F, Dixon S, Kilburn JD. Dimeric Self‐Assembly of Pyridyl Guanidinium Carboxylates in Polar Solvents. Chemistry 2010; 16:12387-97. [DOI: 10.1002/chem.201001861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Francesca Gaggini
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ (UK)
| | - Sally Dixon
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ (UK)
| | - Jeremy D. Kilburn
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ (UK)
- Present address: School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London, E1 4NS (UK), Fax: (+44) 020‐78822848
| |
Collapse
|
25
|
Shao H, Nguyen T, Romano NC, Modarelli DA, Parquette JR. Self-Assembly of 1-D n-Type Nanostructures Based on Naphthalene Diimide-Appended Dipeptides. J Am Chem Soc 2009; 131:16374-6. [DOI: 10.1021/ja906377q] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hui Shao
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, and Department of Chemistry and The Center for Laser and Optical Spectroscopy, Knight Chemical Laboratory, The University of Akron, Akron, Ohio 44325-3601
| | - Tuan Nguyen
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, and Department of Chemistry and The Center for Laser and Optical Spectroscopy, Knight Chemical Laboratory, The University of Akron, Akron, Ohio 44325-3601
| | - Natalie C. Romano
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, and Department of Chemistry and The Center for Laser and Optical Spectroscopy, Knight Chemical Laboratory, The University of Akron, Akron, Ohio 44325-3601
| | - David A. Modarelli
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, and Department of Chemistry and The Center for Laser and Optical Spectroscopy, Knight Chemical Laboratory, The University of Akron, Akron, Ohio 44325-3601
| | - Jon R. Parquette
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, and Department of Chemistry and The Center for Laser and Optical Spectroscopy, Knight Chemical Laboratory, The University of Akron, Akron, Ohio 44325-3601
| |
Collapse
|
26
|
Yang G, Zhou L, Zu Y, Fu Y, Zhu R, Liu C. Effects of side chains in gas-phase amino acids: Conformational analysis and relative stabilities. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.theochem.2009.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Yang G, Zu Y, Fu Y, Zhou L, Zhu R, Liu C. Assembly and Stabilization of Multi-Amino Acid Zwitterions by the Zn(II) Ion: A Computational Exploration. J Phys Chem B 2009; 113:4899-906. [DOI: 10.1021/jp808741c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gang Yang
- Institute of Theoretical Chemistry, Shandong University, Jinan 250100, People’s Republic of China, and Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People’s Republic of China
| | - Yuangang Zu
- Institute of Theoretical Chemistry, Shandong University, Jinan 250100, People’s Republic of China, and Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People’s Republic of China
| | - Yujie Fu
- Institute of Theoretical Chemistry, Shandong University, Jinan 250100, People’s Republic of China, and Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People’s Republic of China
| | - Lijun Zhou
- Institute of Theoretical Chemistry, Shandong University, Jinan 250100, People’s Republic of China, and Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People’s Republic of China
| | - Rongxiu Zhu
- Institute of Theoretical Chemistry, Shandong University, Jinan 250100, People’s Republic of China, and Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People’s Republic of China
| | - Chengbu Liu
- Institute of Theoretical Chemistry, Shandong University, Jinan 250100, People’s Republic of China, and Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People’s Republic of China
| |
Collapse
|
28
|
Molteni M, Bellucci MC, Bigotti S, Mazzini S, Volonterio A, Zanda M. Ψ[CH(CF3)NH]Gly-peptides: synthesis and conformation analysis. Org Biomol Chem 2009; 7:2286-96. [DOI: 10.1039/b901718f] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Abstract
Beta-sheets consist of extended polypeptide strands (beta-strands) connected by a network of hydrogen bonds and occur widely in proteins. Although the importance of beta-sheets in the folded structures of proteins has long been recognized, there is a growing recognition of the importance of intermolecular interactions among beta-sheets. Intermolecular interactions between the hydrogen-bonding edges of beta-sheets constitute a fundamental form of biomolecular recognition (like DNA base pairing) and are involved protein quaternary structure, protein-protein interactions, and peptide and protein aggregation. The importance of beta-sheet interactions in biological processes makes them potential targets for intervention in diseases such as AIDS, cancer, and Alzheimer's disease. This Account describes my research group's use of chemical model systems to study the structure and interactions of beta-sheets. Chemical model systems provide an excellent vehicle with which to explore beta-sheets, because they are smaller, simpler, and easier to manipulate than proteins. Synthetic chemical models also provide the opportunity to control or modulate natural systems or to develop other useful applications and may eventually lead to new drugs with which to treat diseases. In our "artificial beta-sheets", molecular template and turn units are combined with peptides to mimic the structures of parallel and antiparallel beta-sheets. The templates and turn units form folded, hydrogen-bonded structures with the peptide groups and help prevent the formation of complex, ill-defined aggregates. Templates that duplicate the hydrogen-bonding pattern of one edge of a peptide beta-strand while blocking the other edge have proven particularly valuable in preventing aggregate formation and in promoting the formation of simple monomeric and dimeric structures. Artificial beta-sheets that present exposed hydrogen-bonding edges can form well-defined hydrogen-bonded dimers. Dimerization occurs readily in chloroform solutions but requires additional hydrophobic interactions to occur in aqueous solution. Interactions among the side chains, as well as hydrogen bonding among the main chains, are important in dimer formation. NMR studies of artificial beta-sheets have elucidated the importance of hydrogen-bonding complementarity, size complementarity, and chiral complementarity in these interactions. These pairing preferences demonstrate sequence selectivity in the molecular recognition between beta-sheets. These studies help illustrate the importance of intermolecular edge-to-edge interactions between beta-sheets in peptides and proteins. Ultimately, these model systems may lead to new ways of controlling beta-sheet interactions and treating diseases in which they are involved.
Collapse
Affiliation(s)
- James S Nowick
- Department of Chemistry University of California, Irvine, Irvine, California 92617-4048, USA.
| |
Collapse
|
30
|
Santiveri C, León E, Rico M, Jiménez M. Context-Dependence of the Contribution of Disulfide Bonds to β-Hairpin Stability. Chemistry 2008; 14:488-99. [DOI: 10.1002/chem.200700845] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Hadley EB, Witek AM, Freire F, Peoples AJ, Gellman SH. Thermodynamic Analysis of β-Sheet Secondary Structure by Backbone Thioester Exchange. Angew Chem Int Ed Engl 2007; 46:7056-9. [PMID: 17691093 DOI: 10.1002/anie.200702449] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Erik B Hadley
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53726, USA
| | | | | | | | | |
Collapse
|
32
|
Hadley E, Witek A, Freire F, Peoples A, Gellman S. Thermodynamic Analysis of β-Sheet Secondary Structure by Backbone Thioester Exchange. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200702449] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Andersen NH, Olsen KA, Fesinmeyer RM, Tan X, Hudson FM, Eidenschink LA, Farazi SR. Minimization and optimization of designed beta-hairpin folds. J Am Chem Soc 2007; 128:6101-10. [PMID: 16669679 PMCID: PMC3164952 DOI: 10.1021/ja054971w] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Minimized beta hairpins have provided additional data on the geometric preferences of Trp interactions in TW-loop-WT motifs. This motif imparts significant fold stability to peptides as short as 8 residues. High-resolution NMR structures of a 16- (KKWTWNPATGKWTWQE, DeltaG(U)(298) >or= +7 kJ/mol) and 12-residue (KTWNPATGKWTE, DeltaG(U)(298) = +5.05 kJ/mol) hairpin reveal a common turn geometry and edge-to-face (EtF) packing motif and a cation-pi interaction between Lys(1) and the Trp residue nearest the C-terminus. The magnitude of a CD exciton couplet (due to the two Trp residues) and the chemical shifts of a Trp Hepsilon3 site (shifted upfield by 2.4 ppm due to the EtF stacking geometry) provided near-identical measures of folding. CD melts of representative peptides with the -TW-loop-WT- motif provided the thermodynamic parameters for folding, which reflect enthalpically driven folding at laboratory temperatures with a small DeltaC(p) for unfolding (+420 J K(-)(1)/mol). In the case of Asx-Pro-Xaa-Thr-Gly-Xaa loops, mutations established that the two most important residues in this class of direction-reversing loops are Asx and Gly: mutation to alanine is destabilizing by about 6 and 2 kJ/mol, respectively. All indicators of structuring are retained in a minimized 8-residue construct (Ac-WNPATGKW-NH(2)) with the fold stability reduced to DeltaG(U)(278) = -0.7 kJ/mol. NMR and CD comparisons indicate that -TWXNGKWT- (X = S, I) sequences also form the same hairpin-stabilizing W/W interaction.
Collapse
Affiliation(s)
- Niels H Andersen
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Neumoin A, Mares J, Lerch-Bader M, Bader R, Zerbe O. Probing the Formation of Stable Tertiary Structure in a Model Miniprotein at Atomic Resolution: Determinants of Stability of a Helical Hairpin. J Am Chem Soc 2007; 129:8811-7. [PMID: 17580866 DOI: 10.1021/ja0716960] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The minimal model system to study the basic principles of protein folding is the hairpin. The formation of beta-hairpins, which are the basic components of antiparallel beta-sheets, has been studied extensively in the past decade, but much less is known about helical hairpins. Here, we probe hairpin formation between a polyproline type-II helix and an alpha-helix as present in the natural miniprotein peptide YY (PYY). Both turn sequence and interactions of aromatic side chains from the C-terminal alpha-helix with the pockets formed by N-terminal Pro residues are shown by site-directed mutagenesis and solution NMR spectroscopy in different solvent systems to be important determinants of backbone dynamics and hairpin stability, suggesting a close analogy with some beta-hairpin structures. It is shown that multiple relatively weak contacts between the helices are necessary for the formation of the helical hairpin studied here, whereas the type-I beta-turn acts like a hinge, which through certain single amino acid substitutions is destabilized such that hairpin formation is completely abolished. Denaturation and renaturation of tertiary structure by temperature or cosolvents were probed by measuring changes of chemical shifts. Folding of PYY is both reversible and cooperative as inferred from the sigmoidal denaturation curves displayed by residues at the interface of the helical hairpin. Such miniproteins thus feature an important hallmark of globular proteins and should provide a convenient system to study basic aspects of helical hairpin folding that are complementary to those derived from studies of beta-hairpins.
Collapse
Affiliation(s)
- Alexey Neumoin
- Institute of Organic Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
35
|
Baldwin RL. Energetics of protein folding. J Mol Biol 2007; 371:283-301. [PMID: 17582437 DOI: 10.1016/j.jmb.2007.05.078] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 05/23/2007] [Accepted: 05/25/2007] [Indexed: 10/23/2022]
Abstract
The energetics of protein folding determine the 3D structure of a folded protein. Knowledge of the energetics is needed to predict the 3D structure from the amino acid sequence or to modify the structure by protein engineering. Recent developments are discussed: major factors are reviewed and auxiliary factors are discussed briefly. Major factors include the hydrophobic factor (burial of non-polar surface area) and van der Waals interactions together with peptide hydrogen bonds and peptide solvation. The long-standing model for the hydrophobic factor (free energy change proportional to buried non-polar surface area) is contrasted with the packing-desolvation model and the approximate nature of the proportionality between free energy and apolar surface area is discussed. Recent energetic studies of forming peptide hydrogen bonds (gas phase) are reviewed together with studies of peptide solvation in solution. Closer agreement is achieved between the 1995 values for protein unfolding enthalpies in vacuum given by Lazaridis-Archontis-Karplus and Makhatadze-Privalov when the solvation enthalpy of the peptide group is taken from electrostatic calculations. Auxiliary factors in folding energetics include salt bridges and side-chain hydrogen bonds, disulfide bridges, and propensities to form alpha-helices and beta-structure. Backbone conformational entropy is a major energetic factor which is discussed only briefly for lack of knowledge.
Collapse
Affiliation(s)
- Robert L Baldwin
- Department of Biochemistry, Beckman Center, Stanford University Medical Center, Stanford, CA 94305, USA.
| |
Collapse
|
36
|
Haldar D, Drew MG, Banerjee A. Conformational heterogeneity of tripeptides containing Boc–Leu–Aib as corner residues in the solid state. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.04.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Hammond MC, Bartlett PA. Synthesis of amino acid-derived cyclic acyl amidines for use in beta-strand peptidomimetics. J Org Chem 2007; 72:3104-7. [PMID: 17371075 PMCID: PMC2536638 DOI: 10.1021/jo062664i] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The acyl amidine represented by the 4,5-dihydro-2(3H)-pyrazinone ring system 2 is isosteric to the vinylogous amide of the 1,2-dihydro-3(6H)-pyridinone 1, but its assembly from separate amine and amide components enables ready incorporation of an amino acid side chain with correct regio- and stereochemistry. beta-Strand peptidomimetics incorporating amino acid analogues based on 2 have recently been shown to be potent, protease-resistant ligands to a PDZ protein-interaction domain. Two routes to the protected dipeptide analogue 3 are described.
Collapse
|
38
|
Shao H, Lockman JW, Parquette JR. Coupled Conformational Equilibria in β-Sheet Peptide−Dendron Conjugates. J Am Chem Soc 2007; 129:1884-5. [PMID: 17256863 DOI: 10.1021/ja068154n] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hui Shao
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
39
|
Haldar D, Jiang H, Léger JM, Huc I. Interstrand Interactions between Side Chains in a Double-Helical Foldamer. Angew Chem Int Ed Engl 2006; 45:5483-6. [PMID: 16850517 DOI: 10.1002/anie.200600698] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Debasish Haldar
- Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac, France
| | | | | | | |
Collapse
|
40
|
Haldar D, Jiang H, Léger JM, Huc I. Interstrand Interactions between Side Chains in a Double-Helical Foldamer. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200600698] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Hughes RM, Waters ML. Model systems for β-hairpins and β-sheets. Curr Opin Struct Biol 2006; 16:514-24. [PMID: 16837192 DOI: 10.1016/j.sbi.2006.06.008] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 05/16/2006] [Accepted: 06/27/2006] [Indexed: 11/18/2022]
Abstract
beta-Sheets and alpha-helices are the two principal secondary structures in proteins. However, our understanding of beta-sheet structure lags behind that of alpha-helices, largely because, until recently, there was no model system to study the beta-sheet secondary structure in isolation. With the development of well-folded beta-hairpins, this is changing rapidly. Recent advances include: increased understanding of the relative contributions of turn, strand and sidechain interactions to beta-hairpin and beta-sheet stability, with the role of aromatic residues as a common subtheme; experimental and theoretical kinetic and thermodynamic studies of beta-hairpin and beta-sheet folding; de novo protein design, including all-beta structures, mixed alpha/beta motifs and switchable systems; and the creation of functional beta-hairpins.
Collapse
Affiliation(s)
- Robert M Hughes
- Department of Chemistry, CB 3290, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|