1
|
Laine MA, Greiner EM, Shansky RM. Sex differences in the rodent medial prefrontal cortex - What Do and Don't we know? Neuropharmacology 2024; 248:109867. [PMID: 38387553 DOI: 10.1016/j.neuropharm.2024.109867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
The prefrontal cortex, particularly its medial subregions (mPFC), mediates critical functions such as executive control, behavioral inhibition, and memory formation, with relevance for everyday functioning and psychopathology. Despite broad characterization of the mPFC in multiple model organisms, the extent to which mPFC structure and function vary according to an individual's sex is unclear - a knowledge gap that can be attributed to a historical bias for male subjects in neuroscience research. Recent efforts to consider sex as a biological variable in basic science highlight the great need to close this gap. Here we review the knowns and unknowns about how rodents categorized as male or female compare in mPFC neuroanatomy, pharmacology, as well as in aversive, appetitive, and goal- or habit-directed behaviors that recruit the mPFC. We propose that long-standing dogmatic concepts of mPFC structure and function may not remain supported when we move beyond male-only studies, and that empirical challenges to these dogmas are warranted. Additionally, we note some common pitfalls in this work. Most preclinical studies operationalize sex as a binary categorization, and while this approach has furthered the inclusion of non-male rodents it is not as such generalizable to what we know of sex as a multidimensional, dynamic variable. Exploration of sex variability may uncover both sex differences and sex similarities, but care must be taken in their interpretation. Including females in preclinical research needs to go beyond the investigation of sex differences, improving our knowledge of how this brain region and its subregions mediate behavior and health. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- M A Laine
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - E M Greiner
- Department of Psychology, Northeastern University, Boston, MA, USA.
| | - R M Shansky
- Department of Psychology, Northeastern University, Boston, MA, USA
| |
Collapse
|
2
|
Rose EM, Haakenson CM, Ball GF. Sex differences in seasonal brain plasticity and the neuroendocrine regulation of vocal behavior in songbirds. Horm Behav 2022; 142:105160. [PMID: 35366412 DOI: 10.1016/j.yhbeh.2022.105160] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/20/2022]
Abstract
Birdsong is controlled in part by a discrete network of interconnected brain nuclei regulated in turn by steroid hormones and environmental stimuli. This complex interaction results in neural changes that occur seasonally as the environment varies (e.g., photoperiod, food/water availability, etc.). Variation in environment, vocal behavior, and neuroendocrine control has been primarily studied in male songbirds in both laboratory studies of captive birds and field studies of wild caught birds. The bias toward studying seasonality in the neuroendocrine regulation of song in male birds comes from a historic focus on sexually selected male behaviors. In fact, given that male song is often loud and accompanied by somewhat extravagant courtship behaviors, female song has long been overlooked. To compound this bias, the primary model songbird species for studies in the lab, zebra finches (Taeniopygia guttata) and canaries (Serinus canaria), exhibit little or no female song. Therefore, understanding the degree of variation and neuroendocrine control of seasonality in female songbirds is a major gap in our knowledge. In this review, we discuss the importance of studying sex differences in seasonal plasticity and the song control system. Specifically, we discuss sex differences in 1) the neuroanatomy of the song control system, 2) the distribution of receptors for androgens and estrogens and 3) the seasonal neuroplasticity of the hypothalamo-pituitary-gonadal axis as well as in the neural and cellular mechanisms mediating song system changes. We also discuss how these neuroendocrine mechanisms drive sex differences in seasonal behavior. Finally, we highlight specific gaps in our knowledge and suggest experiments critical for filling these gaps.
Collapse
Affiliation(s)
- Evangeline M Rose
- Department of Psychology, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA.
| | - Chelsea M Haakenson
- Department of Psychology, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| |
Collapse
|
3
|
Mir FR, Wilson C, Cabrera Zapata LE, Aguayo LG, Cambiasso MJ. Gonadal hormone-independent sex differences in GABA A receptor activation in rat embryonic hypothalamic neurons. Br J Pharmacol 2020; 177:3075-3090. [PMID: 32133616 DOI: 10.1111/bph.15037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE GABAA receptor functions are dependent on subunit composition, and, through their activation, GABA can exert trophic actions in immature neurons. Although several sex differences in GABA-mediated responses are known to be dependent on gonadal hormones, few studies have dealt with sex differences detected before the critical period of brain masculinisation. In this study, we assessed GABAA receptor functionality in sexually segregated neurons before brain hormonal masculinisation. EXPERIMENTAL APPROACH Ventromedial hypothalamic neurons were obtained from embryonic day 16 rat brains and grown in vitro for 2 days. Calcium imaging and electrophysiology recordings were carried out to assess GABAA receptor functional parameters. KEY RESULTS GABAA receptor activation elicited calcium entry in immature hypothalamic neurons mainly through L-type voltage-dependent calcium channels. Nifedipine blocked calcium entry more efficiently in male than in female neurons. There were more male than female neurons responding to GABA, and they needed more time to return to resting levels. Pharmacological characterisation revealed that propofol enhanced GABAA -mediated currents and blunted GABA-mediated calcium entry more efficiently in female neurons than in males. Testosterone treatment did not erase such sex differences. These data suggest sex differences in the expression of GABAA receptor subtypes. CONCLUSION AND IMPLICATIONS GABA-mediated responses are sexually dimorphic even in the absence of gonadal hormone influence, suggesting genetically biased differences. These results highlight the importance of GABAA receptors in hypothalamic neurons even before hormonal masculinisation of the brain.
Collapse
Affiliation(s)
- Franco R Mir
- Laboratorio de Neurofisiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.,Cátedra de Fisiología Animal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.,Cátedra de Fisiología Animal, Departamento de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de La Rioja, La Rioja, Argentina
| | - Carlos Wilson
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigación en Medicina Traslaciona, Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Córdoba, Argentina
| | - Lucas E Cabrera Zapata
- Laboratorio de Neurofisiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Luis G Aguayo
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - María Julia Cambiasso
- Laboratorio de Neurofisiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.,Departamento de Biología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
4
|
Równiak M. The neurons expressing calcium-binding proteins in the amygdala of the guinea pig: precisely designed interface for sex hormones. Brain Struct Funct 2017; 222:3775-3793. [PMID: 28456912 PMCID: PMC5676811 DOI: 10.1007/s00429-017-1432-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 04/24/2017] [Indexed: 01/18/2023]
Abstract
The generation of emotional responses by the amygdala is determined largely by the balance of excitatory and inhibitory inputs to its principal neurons. These responses are often sex-specific, and any imbalance in excitatory and/or inhibitory tones leads to serious psychiatric disorders which occur with different rates in men versus women. To investigate the neural basis of sex-specific processing in the amygdala, relationships between the neurons expressing calbindin (CB), parvalbumin (PV) and calretinin (CR), which form in the amygdala main subsets of γ-aminobutyric acid (GABA)-ergic inhibitory system, and neurons endowed with oestrogen alpha (ERα), oestrogen beta (ERβ) or androgen (AR) receptors were analysed using double immunohistochemistry in male and female guinea pig subjects. The results show that in various nuclei of the amygdala in both sexes small subsets of CB neurons and substantial proportions of PV neurons co-express ERβ, while many of the CR neurons co-express ERα. Both these oestrogen-sensitive populations are strictly separated as CB and PV neurons almost never co-express ERα, while CR cells are usually devoid of ERβ. In addition, in the medial nucleus and some other neighbouring regions, there are non-overlapping subpopulations of CB and CR neurons which co-express AR. In conclusion, the localization of ERα, ERβ or AR within subsets of GABAergic interneurons across diverse amygdaloid regions suggests that steroid hormones may exert a significant influence over local neuronal activity by directly modulating inhibitory tone. The control of inhibitory tone may be one of the mechanisms whereby oestrogen and androgen could modulate amygdala processing in a sex-specific manner. Another mechanism may be thorough steroid-sensitive projection neurons, which are most probably located in the medial and central nuclei.
Collapse
Affiliation(s)
- Maciej Równiak
- Department of Comparative Anatomy, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727, Olsztyn, Poland.
| |
Collapse
|
5
|
Mir FR, Carrer HF, Cambiasso MJ. Sex differences in depolarizing actions of GABA A receptor activation in rat embryonic hypothalamic neurons. Eur J Neurosci 2016; 45:521-527. [PMID: 27888546 DOI: 10.1111/ejn.13467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/27/2016] [Accepted: 11/02/2016] [Indexed: 11/28/2022]
Abstract
GABAA receptor activation exerts trophic actions in immature neurons through depolarization of resting membrane potential. The switch to its classical hyperpolarizing role is developmentally regulated. Previous results suggest that a hormonally biased sex difference exists at the onset of the switch in hypothalamic neurons. The aim of this work was to evaluate sex differences in GABAA receptor function of hypothalamic neurons before brain masculinization by gonadal hormones. Hypothalamic cells were obtained from embryonic day 16 male and female rat foetuses, 2 days before the peak of testosterone production by the foetal testis, and grown in vitro for 9 days. Whole-cell and perforated patch-clamp recordings were carried out in order to measure several electrophysiological parameters. Our results show that there are more male than female neurons responding with depolarization to muscimol. Additionally, among cells with depolarizing responses, males have higher and longer lasting responses than females. These results highlight the relevance of differences in neural cell sex irrespective of exposure to sex hormones.
Collapse
Affiliation(s)
- Franco R Mir
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Friuli 2434, 5016, Córdoba, Argentina
| | - Hugo F Carrer
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Friuli 2434, 5016, Córdoba, Argentina
| | - María J Cambiasso
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Friuli 2434, 5016, Córdoba, Argentina.,Departamento de Biología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
6
|
Zhang Y, Huang Y, Liu X, Wang G, Wang X, Wang Y. Estrogen suppresses epileptiform activity by enhancing Kv4.2-mediated transient outward potassium currents in primary hippocampal neurons. Int J Mol Med 2015; 36:865-72. [PMID: 26179130 DOI: 10.3892/ijmm.2015.2287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/08/2015] [Indexed: 11/05/2022] Open
Abstract
Catamenial epilepsy is a common phenomenon in female epileptic patients that is, in part, influenced by the 17-β-estradiol level during the menstrual cycle, which modulates the strength of the epileptic seizures. However, the underlying mechanism(s) for catamenial epilepsy remains unknown. In the present study, the effect of 17‑β‑estradiol on modulating epileptiform activities was investigated in cultured hippocampal neurons by focusing on the transient outward potassium current. Using the patch clamp technique, 17‑β‑estradiol was demonstrated to have a dose‑dependent U‑shape effect on epileptiform bursting activities in cultured hippocampal neurons; only the low dose (~0.1 ng/ml) of 17‑β‑estradiol had a suppressive effect on the epileptiform activities. The blockade effect of the low dose 17‑β‑estradiol could be suppressed by phrixotoxin2 (PaTx2), a selective channel blocker for voltage‑gated potassium channel type 4.2 (Kv4.2), which mediates the transient outward potassium current. Furthermore, the 17‑β‑estradiol bell‑shape‑like dose‑dependently enhanced the transient outward potassium current, which was inhibited by the estrogen receptor antagonist ICI 182,780. In conclusion, these results indicate that reduced activation of the transient outward potassium current by a high (or none) 17‑β‑estradiol level may enhance the epileptiform bursting activities in neurons, which may be one of the triggering causes for catamenial epilepsy, and therefore, maintaining a certain low 17‑β‑estradiol level may aid in the control of catamenial epilepsy.
Collapse
Affiliation(s)
- Yuwen Zhang
- Department of Neurology, Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Fudan University, Shanghai 200032, P.R. China
| | - Yian Huang
- Department of Neurology, Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Fudan University, Shanghai 200032, P.R. China
| | - Xu Liu
- Department of Neurology, Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Fudan University, Shanghai 200032, P.R. China
| | - Guoxiang Wang
- Department of Neurology, Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Fudan University, Shanghai 200032, P.R. China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Fudan University, Shanghai 200032, P.R. China
| | - Yun Wang
- Department of Neurology, Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
7
|
Mori H, Matsuda KI, Yamawaki M, Kawata M. Estrogenic regulation of histamine receptor subtype H1 expression in the ventromedial nucleus of the hypothalamus in female rats. PLoS One 2014; 9:e96232. [PMID: 24805361 PMCID: PMC4013143 DOI: 10.1371/journal.pone.0096232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 04/04/2014] [Indexed: 02/03/2023] Open
Abstract
Female sexual behavior is controlled by central estrogenic action in the ventromedial nucleus of the hypothalamus (VMN). This region plays a pivotal role in facilitating sex-related behavior in response to estrogen stimulation via neural activation by several neurotransmitters, including histamine, which participates in this mechanism through its strong neural potentiating action. However, the mechanism through which estrogen signaling is linked to the histamine system in the VMN is unclear. This study was undertaken to investigate the relationship between estrogen and histamine receptor subtype H1 (H1R), which is a potent subtype among histamine receptors in the brain. We show localization of H1R exclusively in the ventrolateral subregion of the female VMN (vl VMN), and not in the dorsomedial subregion. In the vl VMN, abundantly expressed H1R were mostly colocalized with estrogen receptor α. Intriguingly, H1R mRNA levels in the vl VMN were significantly elevated in ovariectomized female rats treated with estrogen benzoate. These data suggest that estrogen can amplify histamine signaling by enhancing H1R expression in the vl VMN. This enhancement of histamine signaling might be functionally important for allowing neural excitation in response to estrogen stimulation of the neural circuit and may serve as an accelerator of female sexual arousal.
Collapse
Affiliation(s)
- Hiroko Mori
- Department of Medical Education, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, Japan
- * E-mail:
| | - Ken-Ichi Matsuda
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Masanaga Yamawaki
- Department of Medical Education, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Mitsuhiro Kawata
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, Japan
| |
Collapse
|
8
|
U-shape suppressive effect of phenol red on the epileptiform burst activity via activation of estrogen receptors in primary hippocampal culture. PLoS One 2013; 8:e60189. [PMID: 23560076 PMCID: PMC3613357 DOI: 10.1371/journal.pone.0060189] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 02/22/2013] [Indexed: 02/06/2023] Open
Abstract
Phenol red is widely used in cell culture as a pH indicator. Recently, it also has been reported to have estrogen-like bioactivity and be capable of promoting cell proliferation in different cell lines. However, the effect of phenol red on primary neuronal culture has never been investigated. By using patch clamp technique, we demonstrated that hippocampal pyramidal neurons cultured in neurobasal medium containing no phenol red had large depolarization-associated epileptiform bursting activities, which were rarely seen in neurons cultured in phenol red-containing medium. Further experiment data indicate that the suppressive effect of the phenol red on the abnormal epileptiform burst neuronal activities was U-shape dose related, with the most effective concentration at 28 µM. In addition, this concentration related inhibitory effect of phenol red on the epileptiform neuronal discharges was mimicked by 17-β-estradiol, an estrogen receptor agonist, and inhibited by ICI-182,780, an estrogen receptor antagonist. Our results suggest that estrogen receptor activation by phenol red in the culture medium prevents formation of abnormal, epileptiform burst activity. These studies highlight the importance of phenol red as estrogen receptor stimulator and cautions of careful use of phenol red in cell culture media.
Collapse
|
9
|
Devidze N, Zhang Q, Zhou J, Lee A, Pataky S, Kow LM, Pfaff D. Presynaptic actions of opioid receptor agonists in ventromedial hypothalamic neurons in estrogen- and oil-treated female mice. Neuroscience 2008; 152:942-9. [DOI: 10.1016/j.neuroscience.2008.01.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 01/18/2008] [Accepted: 02/04/2008] [Indexed: 12/14/2022]
|
10
|
Abstract
Estradiol is the most potent and ubiquitous member of a class of steroid hormones called estrogens. Fetuses and newborns are exposed to estradiol derived from their mother, their own gonads, and synthesized locally in their brains. Receptors for estradiol are nuclear transcription factors that regulate gene expression but also have actions at the membrane, including activation of signal transduction pathways. The developing brain expresses high levels of receptors for estradiol. The actions of estradiol on developing brain are generally permanent and range from establishment of sex differences to pervasive trophic and neuroprotective effects. Cellular end points mediated by estradiol include the following: 1) apoptosis, with estradiol preventing it in some regions but promoting it in others; 2) synaptogenesis, again estradiol promotes in some regions and inhibits in others; and 3) morphometry of neurons and astrocytes. Estradiol also impacts cellular physiology by modulating calcium handling, immediate-early-gene expression, and kinase activity. The specific mechanisms of estradiol action permanently impacting the brain are regionally specific and often involve neuronal/glial cross-talk. The introduction of endocrine disrupting compounds into the environment that mimic or alter the actions of estradiol has generated considerable concern, and the developing brain is a particularly sensitive target. Prostaglandins, glutamate, GABA, granulin, and focal adhesion kinase are among the signaling molecules co-opted by estradiol to differentiate male from female brains, but much remains to be learned. Only by understanding completely the mechanisms and impact of estradiol action on the developing brain can we also understand when these processes go awry.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Physiology, University of Maryland Baltimore School of Medicine, Baltimore, Maryland 21201, USA.
| |
Collapse
|
11
|
Chesnoy-Marchais D, Meillerais A. Oestradiol rapidly enhances spontaneous glycinergic synaptic inhibition of hypoglossal motoneurones. J Neuroendocrinol 2008; 20:233-44. [PMID: 18047550 DOI: 10.1111/j.1365-2826.2007.01635.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Whereas oestradiol is well-known to facilitate excitatory glutamatergic synaptic transmission, its effects on fast inhibitory neurotransmission are not as well established. Possible acute modulation of the spontaneous glycinergic synaptic activity by oestradiol was investigated in voltage-clamped hypoglossal motoneurones by whole-cell patch-clamp recording in rat brainstem slices. The spontaneous glycinergic synaptic activity was continuously recorded in each neurone under control conditions, during 12-20 min of perfusion with 17beta-oestradiol and during washing. When oestradiol was diluted in ethanol, the control solution contained the same amount of ethanol. At 100 nM, oestradiol markedly increased the frequency of the total spontaneous glycinergic activity. Similar experiments were performed after blockade of action potentials by tetrodotoxin, aiming to isolate miniature glycinergic synaptic currents. Oestradiol increased the frequency of glycinergic miniatures in most slices, in some cases within less than 1 min. In some slices, oestradiol also favoured the occurrence of glycinergic miniatures of large amplitude. These effects were slowly reversible during washing. At 1 nm, oestradiol still increased the frequency of glycinergic miniatures. The results were confirmed in the absence of ethanol by using water-soluble cyclodextrin-encapsulated oestradiol. In these experiments, the control solution contained the same amount of (2-hydroxypropyl)-beta-cyclodextrin as the oestradiol-containing solution. In addition, prolonged control recordings were performed without applying oestradiol to check the stability of the glycinergic synaptic activity during prolonged whole-cell recordings. The results show, for the first time, that, within a few minutes, oestradiol can enhance the spontaneous synaptic release of a major inhibitory transmitter, glycine.
Collapse
Affiliation(s)
- D Chesnoy-Marchais
- UMR788 INSERM - University Paris-Sud, Bâtiment Grégory Pincus, Le Kremlin-Bicêtre Cedex, France.
| | | |
Collapse
|
12
|
Zhou J, Lee AW, Devidze N, Zhang Q, Kow LM, Pfaff DW. Histamine-induced excitatory responses in mouse ventromedial hypothalamic neurons: ionic mechanisms and estrogenic regulation. J Neurophysiol 2007; 98:3143-52. [PMID: 17942628 DOI: 10.1152/jn.00337.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Histamine is capable of modulating CNS arousal states by regulating neuronal excitability. In the current study, histamine action in the ventromedial hypothalamus (VMH), its related ionic mechanisms, and its possible facilitation by estrogen were investigated using whole cell patch-clamp recording in brain slices from ovariectomized female mice. Under current clamp, a bath application of histamine (20 microM) caused membrane depolarization, associated with an increased membrane resistance. In some cells, the depolarization was accompanied by action potentials. Histamine application also significantly reduced the latency of action potential evoked by current steps. Histamine-induced depolarization was not affected by either tetrodotoxin or Cd(2+). However, after blocking K(+) channels with tetraethylammonium, 4-aminopyridine, and Cs(+), depolarization was significantly decreased. Under voltage clamp, histamine-induced depolarization was associated with an inward current. The current-voltage relationship revealed that this inward current reversed near E(K). The histamine effect was mimicked by a histamine receptor 1 (H(1)) agonist, but not a histamine receptor 2 (H(2)) agonist. An H(1) antagonist, but not H(2) antagonist, abolished histamine responses. When ovariectomized mice were treated with estradiol benzoate (E2), histamine-induced depolarization was significantly enhanced with an increased percentage of cells showing action potential firing. These results suggest that histamine depolarized VMH neurons by attenuating a K(+) leakage current and this effect was mediated by H(1) receptor. E2 facilitated histamine-induced excitation of VMH neurons. This histamine effect may present a potential mechanism by which estrogens modulate the impact of generalized CNS arousal on a sexual arousal-related neuronal group.
Collapse
Affiliation(s)
- Jin Zhou
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Bibliography. Current world literature. Growth and development. Curr Opin Endocrinol Diabetes Obes 2007; 14:74-89. [PMID: 17940424 DOI: 10.1097/med.0b013e32802e6d87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|