1
|
Ding J, Ma X, Zhang B, Wang H, Gao Y, Wang L, He M, Zhu Z, Chao X. The study on the mechanism of miR-29a in SPPV infection. Virology 2024; 600:110221. [PMID: 39357255 DOI: 10.1016/j.virol.2024.110221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/10/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024]
Abstract
The members of the miR-29 family play an important role in the process of viral infection. The sheep pox epidemic has hindered the development of the livestock industry worldwide. The aim of this study was to analyze the action mechanism of miR-29a during sheep pox virus (SPPV) infection. We found that during viral infection, miR-29a showed a trend of increasing, then decreasing, and then again increasing. It was determined that AKT3 was a target gene of miR-29a, and miR-29a might be involved in the PI3K-AKT signaling pathway. SPPV was able to inhibit cell proliferation and promote apoptosis, and miR-29a reversed the inhibition of cell proliferation by SPPV and the promotion of apoptosis. This study provides an experimental basis and theoretical foundation for the pathogenic mechanism of SPPV infection, as well as contributing to the proposal of new strategies for the development of anti-sheep-poxvirus drugs.
Collapse
Affiliation(s)
- Juntao Ding
- College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China.
| | - Xiaoqin Ma
- College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China
| | - Beibei Zhang
- College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China
| | - Hongyu Wang
- College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China
| | - Yun Gao
- College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China
| | - Lan Wang
- College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China
| | - Mingyu He
- College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China
| | - Zhongzheng Zhu
- College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China
| | - Xiaoshan Chao
- College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China
| |
Collapse
|
2
|
Gupta T, Chahota R. Unique ankyrin repeat proteins in the genome of poxviruses-Boon or Wane, a critical review. Gene 2024; 927:148759. [PMID: 38992761 DOI: 10.1016/j.gene.2024.148759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Ankyrin repeat is a 33-amino acid motif commonly observed in eukaryotes and, to a lesser extent, in prokaryotes and archaea and rarely in viruses. This motif plays a crucial role in regulating various cellular processes like the cell cycle, transcription, cell signaling, and inflammatory responses through interactions between proteins. Poxviruses exhibit a distinctive feature of containing multiple ankyrin repeat proteins within their genomes. All the genera of poxviruses possess these proteins except molluscipox virus, crocodylidpox virus, and red squirrel poxvirus. An intriguing characteristic has generated notable interest in studying the functions of these proteins within poxvirus biology. Within poxviruses, ankyrin repeat proteins exhibit a distinct configuration, featuring ankyrin repeats in the N-terminal region and a cellular F-box homolog in the C-terminal region, which enables interactions with the cellular Skp, Cullin, F-box containing ubiquitin ligase complex. Through the examination of experimental evidences and discussions from current literature, this review elucidates the organization and role of ankyrin repeat proteins in poxviruses. Various research studies have highlighted the significant importance of these proteins in poxviral pathogenesis and, acting as factors that enhance virulence. Consequently, they represent viable targets for developing genetically altered viruses with decreased virulence, thus displaying potential as candidates for vaccines and antiviral therapeutic development contributing to safer and more effective strategies against poxviral infections.
Collapse
Affiliation(s)
- Tania Gupta
- Department of Veterinary Microbiology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana, Punjab, 141012 India; Department of Veterinary Microbiology, DGCN College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, 176062 India
| | - Rajesh Chahota
- Department of Veterinary Microbiology, DGCN College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, 176062 India.
| |
Collapse
|
3
|
Arrías PN, Osmanli Z, Peralta E, Chinestrad PM, Monzon AM, Tosatto SCE. Diversity and structural-functional insights of alpha-solenoid proteins. Protein Sci 2024; 33:e5189. [PMID: 39465903 PMCID: PMC11514114 DOI: 10.1002/pro.5189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/29/2024]
Abstract
Alpha-solenoids are a significant and diverse subset of structured tandem repeat proteins (STRPs) that are important in various domains of life. This review examines their structural and functional diversity and highlights their role in critical cellular processes such as signaling, apoptosis, and transcriptional regulation. Alpha-solenoids can be classified into three geometric folds: low curvature, high curvature, and corkscrew, as well as eight subfolds: ankyrin repeats; Huntingtin, elongation factor 3, protein phosphatase 2A, and target of rapamycin; armadillo repeats; tetratricopeptide repeats; pentatricopeptide repeats; Pumilio repeats; transcription activator-like; and Sel-1 and Sel-1-like repeats. These subfolds represent distinct protein families with unique structural properties and functions, highlighting the versatility of alpha-solenoids. The review also discusses their association with disease, highlighting their potential as therapeutic targets and their role in protein design. Advances in state-of-the-art structure prediction methods provide new opportunities and challenges in the functional characterization and classification of this kind of fold, emphasizing the need for continued development of methods for their identification and proper data curation and deposition in the main databases.
Collapse
Affiliation(s)
- Paula Nazarena Arrías
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Department of Protein ScienceKTH Royal Institute of TechnologyStockholmSweden
| | - Zarifa Osmanli
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Estefanía Peralta
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataBuenos AiresArgentina
| | | | | | - Silvio C. E. Tosatto
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Institute of Biomembranes, Bioenergetics and Molecular BiotechnologiesNational Research Council (CNR‐IBIOM)BariItaly
| |
Collapse
|
4
|
Raimondi V, Vescovini R, Dessena M, Donofrio G, Storti P, Giuliani N. Oncolytic viruses: a potential breakthrough immunotherapy for multiple myeloma patients. Front Immunol 2024; 15:1483806. [PMID: 39539548 PMCID: PMC11557349 DOI: 10.3389/fimmu.2024.1483806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Oncolytic virotherapy represents an innovative and promising approach for the treatment of cancer, including multiple myeloma (MM), a currently incurable plasma cell (PC) neoplasm. Despite the advances that new therapies, particularly immunotherapy, have been made, relapses still occur in MM patients, highlighting the medical need for new treatment options. Oncolytic viruses (OVs) preferentially infect and destroy cancer cells, exerting a direct and/or indirect cytopathic effect, combined with a modulation of the tumor microenvironment leading to an activation of the immune system. Both naturally occurring and genetically modified viruses have demonstrated significant preclinical effects against MM cells. Currently, the OVs genetically modified measles virus strains, reovirus, and vesicular stomatitis virus are employed in clinical trials for MM. Nevertheless, significant challenges remain, including the efficiency of the virus delivery to the tumor, overcoming antiviral immune responses, and the specificity of the virus for MM cells. Different strategies are being explored to optimize OV therapy, including combining it with standard treatments and targeted therapies to enhance efficacy. This review will provide a comprehensive analysis of the mechanism of action of the different OVs, and preclinical and clinical evidence, focusing on the role of oncolytic virotherapy as a new possible immunotherapeutic approach also in combination with the current therapeutic armamentarium and underlying the future directions in the context of MM treatments.
Collapse
Affiliation(s)
- Vincenzo Raimondi
- Laboratory of Hematology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rosanna Vescovini
- Laboratory of Hematology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mattia Dessena
- Laboratory of Hematology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Paola Storti
- Laboratory of Hematology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Nicola Giuliani
- Laboratory of Hematology, Department of Medicine and Surgery, University of Parma, Parma, Italy
- Multiple Myeloma and Monoclonal Gammopathy Program, Department of Onco-Hematology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
- Hematology Unit, Department of Onco-Hematology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
5
|
Chattopadhyay S, Hazra R, Mallick A, Gayen S, Roy S. A review exploring the fusion of oncolytic viruses and cancer immunotherapy: An innovative strategy in the realm of cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189110. [PMID: 38754793 DOI: 10.1016/j.bbcan.2024.189110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Oncolytic viruses (OVs) are increasingly recognized as potent tools in cancer therapy, effectively targeting and eradicating oncogenic conditions while sparing healthy cells. They enhance antitumor immunity by triggering various immune responses throughout the cancer cycle. Genetically engineered OVs swiftly destroy cancerous tissues and activate the immune system by releasing soluble antigens like danger signals and interferons. Their ability to stimulate both innate and adaptive immunity makes them particularly attractive in cancer immunotherapy. Recent advancements involve combining OVs with other immune therapies, yielding promising results. Transgenic OVs, designed to enhance immunostimulation and specifically target cancer cells, further improve immune responses. This review highlights the intrinsic mechanisms of OVs and underscores their synergistic potential with other immunotherapies. It also proposes strategies for optimizing armed OVs to bolster immunity against tumors.
Collapse
Affiliation(s)
- Soumyadeep Chattopadhyay
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Rudradeep Hazra
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Arijit Mallick
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Sakuntala Gayen
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India.
| |
Collapse
|
6
|
Yang CH, Song AL, Qiu Y, Ge XY. Cross-species transmission and host range genes in poxviruses. Virol Sin 2024; 39:177-193. [PMID: 38272237 PMCID: PMC11074647 DOI: 10.1016/j.virs.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The persistent epidemic of human mpox, caused by mpox virus (MPXV), raises concerns about the future spread of MPXV and other poxviruses. MPXV is a typical zoonotic virus which can infect human and cause smallpox-like symptoms. MPXV belongs to the Poxviridae family, which has a relatively broad host range from arthropods to vertebrates. Cross-species transmission of poxviruses among different hosts has been frequently reported and resulted in numerous epidemics. Poxviruses have a complex linear double-strand DNA genome that encodes hundreds of proteins. Genes related to the host range of poxvirus are called host range genes (HRGs). This review briefly introduces the taxonomy, phylogeny and hosts of poxviruses, and then comprehensively summarizes the current knowledge about the cross-species transmission of poxviruses. In particular, the HRGs of poxvirus are described and their impacts on viral host range are discussed in depth. We hope that this review will provide a comprehensive perspective about the current progress of researches on cross-species transmission and HRG variation of poxviruses, serving as a valuable reference for academic studies and disease control in the future.
Collapse
Affiliation(s)
- Chen-Hui Yang
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China
| | - A-Ling Song
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China
| | - Ye Qiu
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China.
| | - Xing-Yi Ge
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China.
| |
Collapse
|
7
|
Chakraborty P, Kumar R, Karn S, Raviya DD, Mondal P. Application of Oncolytic Poxviruses: An Emerging Paradigm in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:369-381. [PMID: 38801591 DOI: 10.1007/978-3-031-57165-7_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Despite the significant advancement of new tools and technology in the field of medical biology and molecular biology, the challenges in the treatment of most cancer types remain constant with the problem of developing resistance toward drugs and no substantial enhancement in the overall survival rate of cancer patients. Immunotherapy has shown the most promising results in different clinical and preclinical trials in the treatment of various cancer due to its higher efficacy and minimum collateral damage in many cancer patients as compared to conventional chemotherapy and radiotherapy. An oncolytic virus is a new class of immunotherapy that can selectively replicate in tumor cells and destroy them by the process of cell lysis while exerting minimum or no effect on a normal cell. Besides this, it can also activate the host's innate immune system, which generates an anti-tumor immune response to eliminate the tumor cells. Several wild types and genetically modified viruses have been investigated to show oncolytic behavior. Vaccinia virus has been studied extensively and tested for its promising oncolytic nature on various model systems and clinical trials. Recently, several engineered vaccinia viruses have been developed that express the desired genes encoded for selective penetration in tumor cells and enhanced activation of the immune system for generating anti-tumor immunity. However, further investigation is required to prove their potential and enhance their therapeutic efficacy.
Collapse
Affiliation(s)
- Prasenjit Chakraborty
- Department of Biosciences, School of Science, Indrashil University, Rajpur-Kadi, Mehsana, Gujarat, 382740, India.
| | - Randhir Kumar
- Department of Biosciences, School of Science, Indrashil University, Rajpur-Kadi, Mehsana, Gujarat, 382740, India
| | - Sanjay Karn
- Department of Biosciences, School of Science, Indrashil University, Rajpur-Kadi, Mehsana, Gujarat, 382740, India
| | - Dharmiben D Raviya
- Department of Biosciences, School of Science, Indrashil University, Rajpur-Kadi, Mehsana, Gujarat, 382740, India
| | - Priya Mondal
- Laboratory of Cell Biology, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
8
|
Lichtor T, Tang B, Roy EJ. Cytokine Gene Vaccine Therapy for Treatment of a Brain Tumor. Brain Sci 2023; 13:1505. [PMID: 38002466 PMCID: PMC10669932 DOI: 10.3390/brainsci13111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
A glioma is a malignant brain tumor with a poor prognosis. Attempts at the surgical removal of the tumor are the first approach, but additional treatment strategies, including radiation therapy and systemic or local chemotherapy, are necessary. Furthermore, the treatments are often associated with significant adverse side effects. Normal and malignant cells generally have antigenic differences, and this is the rationale for clinical immunotherapeutic strategies. Cytokines such as IL-15 or IL-2, which stimulate an anti-tumor immune response, have been shown to have a particularly high potential for use in immunotherapy against various tumors. In this review, treatments with either a poxvirus, genetically engineered to secrete IL-15, or allogeneic fibroblasts, transfected with tumor DNA and engineered to secrete IL-2, are shown to be effective strategies in extending the survival of mice with malignant brain tumors upon intracerebral injection of the treatment cells. Future studies with these treatment strategies in patients with intracerebral tumors are urgently needed.
Collapse
Affiliation(s)
- Terry Lichtor
- Department of Neurological Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Bingtao Tang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (B.T.); (E.J.R.)
| | - Edward J. Roy
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (B.T.); (E.J.R.)
| |
Collapse
|
9
|
Daniels A, Fletcher S, Kerr HEM, Kratzel A, Pinto RM, Kriplani N, Craig N, Hastie CJ, Davies P, Digard P, Thiel V, Tait-Burkard C. One for all-human kidney Caki-1 cells are highly susceptible to infection with corona- and other respiratory viruses. J Virol 2023; 97:e0055523. [PMID: 37668370 PMCID: PMC10537734 DOI: 10.1128/jvi.00555-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/05/2023] [Indexed: 09/06/2023] Open
Abstract
In vitro investigations of host-virus interactions are reliant on suitable cell and tissue culture models. Results are only as good as the model they are generated in. However, choosing cell models for in vitro work often depends on availability and previous use alone. Despite the vast increase in coronavirus research over the past few years, scientists are still heavily reliant on: non-human, highly heterogeneous or not fully differentiated, or naturally unsusceptible cells requiring overexpression of receptors and other accessory factors. Complex primary or stem cell models are highly representative of human tissues but are expensive and time-consuming to develop and maintain with limited suitability for high-throughput experiments.Using tissue-specific expression patterns, we identified human kidney cells as an ideal target for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and broader coronavirus infection. We show the use of the well-characterized human kidney cell line Caki-1 for infection with three human coronaviruses (hCoVs): Betacoronaviruses SARS-CoV-2 and Middle Eastern respiratory syndrome coronavirus and Alphacoronavirus hCoV 229E. Caki-1 cells show equal or superior susceptibility to all three coronaviruses when compared to other commonly used cell lines for the cultivation of the respective virus. Antibody staining against SARS-CoV-2 N protein shows comparable replication rates. A panel of 26 custom antibodies shows the location of SARS-CoV-2 proteins during replication using immunocytochemistry. In addition, Caki-1 cells were found to be susceptible to two other human respiratory viruses, influenza A virus and respiratory syncytial virus, making them an ideal model for cross-comparison for a broad range of respiratory viruses. IMPORTANCE Cell lines remain the backbone of virus research, but results are only as good as their originating model. Despite increased research into human coronaviruses following the COVID-19 pandemic, researchers continue to rely on suboptimal cell line models of: non-human origin, incomplete differentiation, or lacking active interferon responses. We identified the human kidney Caki-1 cell line as a potential target for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This cell line could be shown to be infectable with a wide range of coronaviruses including common cold virus hCoV-229E, epidemic virus MERS-CoV, and SARS-CoV-2 as well as other important respiratory viruses influenza A virus and respiratory syncytial virus. We could show the localization of 26 SARS-CoV-2 proteins in Caki-1 cells during natural replication and the cells are competent of forming a cellular immune response. Together, this makes Caki-1 cells a unique tool for cross-virus comparison in one cell line.
Collapse
Affiliation(s)
- Alison Daniels
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
- Infection Medicine, University of Edinburgh, Little France Crescent, United Kingdom
| | - Sarah Fletcher
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Holly E. M. Kerr
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Annika Kratzel
- Institute of Virology and Immunology (IVI), Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Rute Maria Pinto
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Nisha Kriplani
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Nicky Craig
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - C. James Hastie
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Paul Davies
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Paul Digard
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Volker Thiel
- Institute of Virology and Immunology (IVI), Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Christine Tait-Burkard
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| |
Collapse
|
10
|
Thomas RJ, Bartee MY, Valenzuela-Cardenas M, Bartee E. Oncolytic myxoma virus is effective in murine models of triple negative breast cancer despite poor rates of infection. Mol Ther Oncolytics 2023; 30:316-319. [PMID: 37732297 PMCID: PMC10507476 DOI: 10.1016/j.omto.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Oncolytic viruses are being heavily investigated as novel methods to treat cancers; however, predicting their therapeutic efficacy remains challenging. The most commonly used predictive tests involve determining the in vitro susceptibility of a tumor's malignant cells to infection with an oncolytic agent. Whether these tests are truly predictive of in vivo efficacy, however, remains unclear. Here we demonstrate that a recombinant, oncolytic myxoma virus shows efficacy in two murine models of triple negative breast cancer despite extremely low permissivity of these models to viral infection. These data demonstrate that in vitro infectivity studies are not an accurate surrogate for therapeutic efficacy and suggest that other tests need to be developed.
Collapse
Affiliation(s)
- Raquela J. Thomas
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Mee Y. Bartee
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | | | - Eric Bartee
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
11
|
Rahman MM, van Oosterom F, Enow JA, Hossain M, Gutierrez-Jensen AD, Cashen M, Everts A, Lowe K, Kilbourne J, Daggett-Vondras J, Karr TL, McFadden G. Nuclear Export Inhibitor Selinexor Enhances Oncolytic Myxoma Virus Therapy against Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:952-968. [PMID: 37377603 PMCID: PMC10234290 DOI: 10.1158/2767-9764.crc-22-0483] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/08/2023] [Accepted: 05/11/2023] [Indexed: 06/29/2023]
Abstract
Oncolytic viruses exploited for cancer therapy have been developed to selectively infect, replicate, and kill cancer cells to inhibit tumor growth. However, in some cancer cells, oncolytic viruses are often limited in completing their full replication cycle, forming progeny virions, and/or spreading in the tumor bed because of the heterogeneous cell types within the tumor bed. Here, we report that the nuclear export pathway regulates oncolytic myxoma virus (MYXV) infection and cytoplasmic viral replication in a subclass of human cancer cell types where viral replication is restricted. Inhibition of the XPO-1 (exportin 1) nuclear export pathway with nuclear export inhibitors can overcome this restriction by trapping restriction factors in the nucleus and allow significantly enhanced viral replication and killing of cancer cells. Furthermore, knockdown of XPO-1 significantly enhanced MYXV replication in restrictive human cancer cells and reduced the formation of antiviral granules associated with RNA helicase DHX9. Both in vitro and in vivo, we demonstrated that the approved XPO1 inhibitor drug selinexor enhances the replication of MYXV and kills diverse human cancer cells. In a xenograft tumor model in NSG mice, combination therapy with selinexor plus MYXV significantly reduced the tumor burden and enhanced the survival of animals. In addition, we performed global-scale proteomic analysis of nuclear and cytosolic proteins in human cancer cells to identify the host and viral proteins that were upregulated or downregulated by different treatments. These results indicate, for the first time, that selinexor in combination with oncolytic MYXV can be used as a potential new therapy. Significance We demonstrated that a combination of nuclear export inhibitor selinexor and oncolytic MYXV significantly enhanced viral replication, reduced cancer cell proliferation, reduced tumor burden, and enhanced the overall survival of animals. Thus, selinexor and oncolytic MYXV can be used as potential new anticancer therapy.
Collapse
Affiliation(s)
- Masmudur M. Rahman
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Fleur van Oosterom
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Junior A. Enow
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Maksuda Hossain
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Ami D. Gutierrez-Jensen
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Mackenzie Cashen
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Anne Everts
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Kenneth Lowe
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Jacquelyn Kilbourne
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Juliane Daggett-Vondras
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Timothy L. Karr
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Grant McFadden
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| |
Collapse
|
12
|
Mahar R, Ragavan M, Chang MC, Hardiman S, Moussatche N, Behar A, Renne R, Merritt ME. Metabolic signatures associated with oncolytic myxoma viral infections. Sci Rep 2022; 12:12599. [PMID: 35871072 PMCID: PMC9308783 DOI: 10.1038/s41598-022-15562-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/27/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractOncolytic viral therapy is a recent advance in cancer treatment, demonstrating promise as a primary treatment option. To date, the secondary metabolic effects of viral infection in cancer cells has not been extensively studied. In this work, we have analyzed early-stage metabolic changes in cancer cells associated with oncolytic myxoma virus infection. Using GC–MS based metabolomics, we characterized the myxoma virus infection induced metabolic changes in three cancer cell lines—small cell (H446) and non-small cell (A549) lung cancers, and glioblastoma (SFxL). We show that even at an early stage (6 and 12 h) myxoma infection causes profound changes in cancer cell metabolism spanning several important pathways such as the citric acid cycle, fatty acid metabolism, and amino acid metabolism. In general, the metabolic effects of viral infection across cell lines are not conserved. However, we have identified several candidate metabolites that can potentially serve as biomarkers for monitoring oncolytic viral action in general.
Collapse
|
13
|
Conrad SJ, Raza T, Peterson EA, Liem J, Connor R, Nounamo B, Cannon M, Liu J. Myxoma virus lacking the host range determinant M062 stimulates cGAS-dependent type 1 interferon response and unique transcriptomic changes in human monocytes/macrophages. PLoS Pathog 2022; 18:e1010316. [PMID: 36103568 PMCID: PMC9473615 DOI: 10.1371/journal.ppat.1010316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
The evolutionarily successful poxviruses possess effective and diverse strategies to circumvent or overcome host defense mechanisms. Poxviruses encode many immunoregulatory proteins to evade host immunity to establish a productive infection and have unique means of inhibiting DNA sensing-dependent type 1 interferon (IFN-I) responses, a necessity given their dsDNA genome and exclusively cytoplasmic life cycle. We found that the key DNA sensing inhibition by poxvirus infection was dominant during the early stage of poxvirus infection before DNA replication. In an effort to identify the poxvirus gene products which subdue the antiviral proinflammatory responses (e.g., IFN-I response), we investigated the function of one early gene that is the known host range determinant from the highly conserved poxvirus host range C7L superfamily, myxoma virus (MYXV) M062. Host range factors are unique features of poxviruses that determine the species and cell type tropism. Almost all sequenced mammalian poxviruses retain at least one homologue of the poxvirus host range C7L superfamily. In MYXV, a rabbit-specific poxvirus, the dominant and broad-spectrum host range determinant of the C7L superfamily is the M062R gene. The M062R gene product is essential for MYXV infection in almost all cells tested from different mammalian species and specifically inhibits the function of host Sterile αMotif Domain-containing 9 (SAMD9), as M062R-null (ΔM062R) MYXV causes abortive infection in a SAMD9-dependent manner. In this study we investigated the immunostimulatory property of the ΔM062R. We found that the replication-defective ΔM062R activated host DNA sensing pathway during infection in a cGAS-dependent fashion and that knocking down SAMD9 expression attenuated proinflammatory responses. Moreover, transcriptomic analyses showed a unique feature of the host gene expression landscape that is different from the dsDNA alone-stimulated inflammatory state. This study establishes a link between the anti-neoplastic function of SAMD9 and the regulation of innate immune responses. Poxviruses encode a group of genes called host range determinants to maintain or expand their host tropism. The mechanism by which many viral host range factors function remains elusive. Some host range factors possess immunoregulatory functions responsible for evading or subduing host immune defense mechanisms. Most known immunoregulatory proteins encoded by poxviruses are dispensable for viral replication in vitro. The uniqueness of MYXV M062R is that it is essential for viral infection in vitro and belongs to one of the most conserved poxvirus host range families, the C7L superfamily. There is one known host target of the MYXV M062 protein, SAMD9. SAMD9 is constitutively expressed in mammalian cells and exclusively present in the cytoplasm with an anti-neoplastic function. Humans with deleterious mutations in SAMD9 present disease that ranges from lethality at a young age to a predisposition to myelodysplastic syndromes (MDS) that often require bone marrow transplantation. More importantly, SAMD9 serves as an important antiviral intrinsic molecule to many viruses. The cellular function of SAMD9 remains unclear mostly due to the difficulty of studying this protein, i.e., its large size, long half-life, and its constitutive expression in most cells. In this study we used M062R-null MYXV as a tool to study SAMD9 function and report a functional link between SAMD9 and the regulation of the proinflammatory responses triggered by cGAS-dependent DNA sensing.
Collapse
Affiliation(s)
- Steven J. Conrad
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - Tahseen Raza
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - Erich A. Peterson
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jason Liem
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Richard Connor
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - Bernice Nounamo
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - Martin Cannon
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - Jia Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
- Center of Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
14
|
Poxviral ANKR/F-box Proteins: Substrate Adapters for Ubiquitylation and More. Pathogens 2022; 11:pathogens11080875. [PMID: 36014996 PMCID: PMC9414399 DOI: 10.3390/pathogens11080875] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
Poxviruses are double-stranded DNA viruses that infect insects and a variety of vertebrate species. The large genomes of poxviruses contain numerous genes that allow these viruses to successfully establish infection, including those that help evade the host immune response and prevent cell death. Ankyrin-repeat (ANKR)/F-box proteins are almost exclusively found in poxviruses, and they function as substrate adapters for Skp1-Cullin-1-F-box protein (SCF) multi-subunit E3 ubiquitin (Ub)-ligases. In this regard, they use their C-terminal F-box domain to bind Skp1, Cullin-1, and Roc1 to recruit cellular E2 enzymes to facilitate the ubiquitylation, and subsequent proteasomal degradation, of proteins bound to their N-terminal ANKRs. However, these proteins do not just function as substrate adapters as they also have Ub-independent activities. In this review, we examine both Ub-dependent and -independent activities of ANKR/F-box proteins and discuss how poxviruses use these proteins to counteract the host innate immune response, uncoat their genome, replicate, block cell death, and influence transcription. Finally, we consider important outstanding questions that need to be answered in order to better understand the function of this versatile protein family.
Collapse
|
15
|
Naumenko VA, Stepanenko AA, Lipatova AV, Vishnevskiy DA, Chekhonin VP. Infection of non-cancer cells: A barrier or support for oncolytic virotherapy? MOLECULAR THERAPY - ONCOLYTICS 2022; 24:663-682. [PMID: 35284629 PMCID: PMC8898763 DOI: 10.1016/j.omto.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oncolytic viruses are designed to specifically target cancer cells, sparing normal cells. Although numerous studies demonstrate the ability of oncolytic viruses to infect a wide range of non-tumor cells, the significance of this phenomenon for cancer virotherapy is poorly understood. To fill the gap, we summarize the data on infection of non-cancer targets by oncolytic viruses with a special focus on tumor microenvironment and secondary lymphoid tissues. The review aims to address two major questions: how do attenuated viruses manage to infect normal cells, and whether it is of importance for oncolytic virotherapy.
Collapse
Affiliation(s)
- Victor A. Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Corresponding author Victor A. Naumenko, PhD, V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia.
| | - Aleksei A. Stepanenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Anastasiia V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Daniil A. Vishnevskiy
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Vladimir P. Chekhonin
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|
16
|
Rahman MM, McFadden G. Oncolytic Viruses: Newest Frontier for Cancer Immunotherapy. Cancers (Basel) 2021; 13:5452. [PMID: 34771615 PMCID: PMC8582515 DOI: 10.3390/cancers13215452] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer remains a leading cause of death worldwide. Despite many signs of progress, currently available cancer treatments often do not provide desired outcomes for too many cancers. Therefore, newer and more effective therapeutic approaches are needed. Oncolytic viruses (OVs) have emerged as a novel cancer treatment modality, which selectively targets and kills cancer cells while sparing normal ones. In the past several decades, many different OV candidates have been developed and tested in both laboratory settings as well as in cancer patient clinical trials. Many approaches have been taken to overcome the limitations of OVs, including engineering OVs to selectively activate anti-tumor immune responses. However, newer approaches like the combination of OVs with current immunotherapies to convert "immune-cold" tumors to "immune-hot" will almost certainly improve the potency of OVs. Here, we discuss strategies that are explored to further improve oncolytic virotherapy.
Collapse
Affiliation(s)
- Masmudur M. Rahman
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA;
| | | |
Collapse
|
17
|
Santos Apolonio J, Lima de Souza Gonçalves V, Cordeiro Santos ML, Silva Luz M, Silva Souza JV, Rocha Pinheiro SL, de Souza WR, Sande Loureiro M, de Melo FF. Oncolytic virus therapy in cancer: A current review. World J Virol 2021; 10:229-255. [PMID: 34631474 PMCID: PMC8474975 DOI: 10.5501/wjv.v10.i5.229] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/19/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023] Open
Abstract
In view of the advancement in the understanding about the most diverse types of cancer and consequently a relentless search for a cure and increased survival rates of cancer patients, finding a therapy that is able to combat the mechanism of aggression of this disease is extremely important. Thus, oncolytic viruses (OVs) have demonstrated great benefits in the treatment of cancer because it mediates antitumor effects in several ways. Viruses can be used to infect cancer cells, especially over normal cells, to present tumor-associated antigens, to activate "danger signals" that generate a less immune-tolerant tumor microenvironment, and to serve transduction vehicles for expression of inflammatory and immunomodulatory cytokines. The success of therapies using OVs was initially demonstrated by the use of the genetically modified herpes virus, talimogene laherparepvec, for the treatment of melanoma. At this time, several OVs are being studied as a potential treatment for cancer in clinical trials. However, it is necessary to be aware of the safety and possible adverse effects of this therapy; after all, an effective treatment for cancer should promote regression, attack the tumor, and in the meantime induce minimal systemic repercussions. In this manuscript, we will present a current review of the mechanism of action of OVs, main clinical uses, updates, and future perspectives on this treatment.
Collapse
Affiliation(s)
- Jonathan Santos Apolonio
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Maria Luísa Cordeiro Santos
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - João Victor Silva Souza
- Universidade Estadual do Sudoeste da Bahia, Campus Vitória da Conquista, Vitória da Conquista 45083-900, Bahia, Brazil
| | - Samuel Luca Rocha Pinheiro
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Wedja Rafaela de Souza
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Matheus Sande Loureiro
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
18
|
Lant S, Maluquer de Motes C. Poxvirus Interactions with the Host Ubiquitin System. Pathogens 2021; 10:pathogens10081034. [PMID: 34451498 PMCID: PMC8399815 DOI: 10.3390/pathogens10081034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
The ubiquitin system has emerged as a master regulator of many, if not all, cellular functions. With its large repertoire of conjugating and ligating enzymes, the ubiquitin system holds a unique mechanism to provide selectivity and specificity in manipulating protein function. As intracellular parasites viruses have evolved to modulate the cellular environment to facilitate replication and subvert antiviral responses. Poxviruses are a large family of dsDNA viruses with large coding capacity that is used to synthetise proteins and enzymes needed for replication and morphogenesis as well as suppression of host responses. This review summarises our current knowledge on how poxvirus functions rely on the cellular ubiquitin system, and how poxviruses exploit this system to their own advantage, either facilitating uncoating and genome release and replication or rewiring ubiquitin ligases to downregulate critical antiviral factors. Whilst much remains to be known about the intricate interactions established between poxviruses and the host ubiquitin system, our knowledge has revealed crucial viral processes and important restriction factors that open novel avenues for antiviral treatment and provide fundamental insights on the biology of poxviruses and other virus families.
Collapse
|
19
|
Spiesschaert B, Angerer K, Park J, Wollmann G. Combining Oncolytic Viruses and Small Molecule Therapeutics: Mutual Benefits. Cancers (Basel) 2021; 13:3386. [PMID: 34298601 PMCID: PMC8306439 DOI: 10.3390/cancers13143386] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
The focus of treating cancer with oncolytic viruses (OVs) has increasingly shifted towards achieving efficacy through the induction and augmentation of an antitumor immune response. However, innate antiviral responses can limit the activity of many OVs within the tumor and several immunosuppressive factors can hamper any subsequent antitumor immune responses. In recent decades, numerous small molecule compounds that either inhibit the immunosuppressive features of tumor cells or antagonize antiviral immunity have been developed and tested for. Here we comprehensively review small molecule compounds that can achieve therapeutic synergy with OVs. We also elaborate on the mechanisms by which these treatments elicit anti-tumor effects as monotherapies and how these complement OV treatment.
Collapse
Affiliation(s)
- Bart Spiesschaert
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
- ViraTherapeutics GmbH, 6063 Rum, Austria
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany;
| | - Katharina Angerer
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - John Park
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany;
| | - Guido Wollmann
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
20
|
Rahman MM, Gutierrez-Jensen AD, Glenn HL, Abrantes M, Moussatche N, McFadden G. RNA Helicase A/DHX9 Forms Unique Cytoplasmic Antiviral Granules That Restrict Oncolytic Myxoma Virus Replication in Human Cancer Cells. J Virol 2021; 95:e0015121. [PMID: 33952639 PMCID: PMC8223942 DOI: 10.1128/jvi.00151-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
RNA helicase A/DHX9 is required for diverse RNA-related essential cellular functions and antiviral responses and is hijacked by RNA viruses to support their replication. Here, we show that during the late replication stage in human cancer cells of myxoma virus (MYXV), a member of the double-stranded DNA (dsDNA) poxvirus family that is being developed as an oncolytic virus, DHX9, forms unique granular cytoplasmic structures, which we named "DHX9 antiviral granules." These DHX9 antiviral granules are not formed if MYXV DNA replication and/or late protein synthesis is blocked. When formed, DHX9 antiviral granules significantly reduced nascent protein synthesis in the MYXV-infected cancer cells. MYXV late gene transcription and translation were also significantly compromised, particularly in nonpermissive or semipermissive human cancer cells where MYXV replication is partly or completely restricted. Directed knockdown of DHX9 significantly enhanced viral late protein synthesis and progeny virus formation in normally restrictive cancer cells. We further demonstrate that DHX9 is not a component of the canonical cellular stress granules. DHX9 antiviral granules are induced by MYXV, and other poxviruses, in human cells and are associated with other known cellular components of stress granules, dsRNA and virus encoded dsRNA-binding protein M029, a known interactor with DHX9. Thus, DHX9 antiviral granules function by hijacking poxviral elements needed for the cytoplasmic viral replication factories. These results demonstrate a novel antiviral function for DHX9 that is recruited from the nucleus into the cytoplasm, and this step can be exploited to enhance oncolytic virotherapy against the subset of human cancer cells that normally restrict MYXV. IMPORTANCE The cellular DHX9 has both proviral and antiviral roles against diverse RNA and DNA viruses. In this article, we demonstrate that DHX9 can form unique antiviral granules in the cytoplasm during myxoma virus (MYXV) replication in human cancer cells. These antiviral granules sequester viral proteins and reduce viral late protein synthesis and thus regulate MYXV, and other poxviruses, that replicate in the cytoplasm. In addition, we show that in the absence of DHX9, the formation of DHX9 antiviral granules can be inhibited, which significantly enhanced oncolytic MYXV replication in human cancer cell lines where the virus is normally restricted. Our results also show that DHX9 antiviral granules are formed after viral infection but not by common nonviral cellular stress inducers. Thus, our study suggests that DHX9 has antiviral activity in human cancer cells, and this pathway can be targeted for enhanced activity of oncolytic poxviruses against even restrictive cancer cells.
Collapse
Affiliation(s)
- Masmudur M. Rahman
- Center for Immunotherapy, Vaccines, and Virotherapy Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Ami D. Gutierrez-Jensen
- Center for Immunotherapy, Vaccines, and Virotherapy Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Honor L. Glenn
- Center for Immunotherapy, Vaccines, and Virotherapy Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Mario Abrantes
- Center for Immunotherapy, Vaccines, and Virotherapy Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Nissin Moussatche
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Grant McFadden
- Center for Immunotherapy, Vaccines, and Virotherapy Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
21
|
Woo Y, Warner SG, Geha R, Stanford MM, Decarolis P, Rahman MM, Singer S, McFadden G, Fong Y. The Oncolytic Activity of Myxoma Virus against Soft Tissue Sarcoma Is Mediated by the Overexpression of Ribonucleotide Reductase. Clin Med Insights Oncol 2021; 15:1179554921993069. [PMID: 33633477 PMCID: PMC7887694 DOI: 10.1177/1179554921993069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/15/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Myxoma virus (MYXV) is an oncolytic poxvirus that lacks the gene for 1 of the subunits of ribonucleotide reductase (RR), a crucial DNA synthesis and repair enzyme. The overexpression of RR has been implicated in the invasiveness of several cancers, including soft tissue sarcomas (STS). The purpose of the study was to investigate the oncolytic efficacy of MYXV in STS with different levels of RR expression. METHODS The oncolytic effect of recombinant MYXV was evaluated in 4 human STS cell lines, LS141 (a dedifferentiated liposarcoma), DDLS8817 (a dedifferentiated liposarcoma), RDD2213 (recurrent dedifferentiated liposarcoma), and HSSYII (a synovial sarcoma) using infectivity and cytotoxicity assays. Following the overexpression of RRM2 by cDNA transfection and silencing of RRM2 by siRRM2 in these STS cell lines, the RRM2 expression levels were analyzed by Western blot. RESULTS We observed a direct correlation between viral oncolysis and RRM2 mRNA levels (R = 0.96) in STS. Higher RRM2 expression was associated with a more robust cell kill. Silencing the RRM2 gene led to significantly greater cell survival (80%) compared with the control group (P = .003), whereas overexpression of the RRM2 increased viral oncolysis by 33% (P < .001). CONCLUSIONS Our results show that the oncolytic effects of MYXV correlate directly with RR expression levels and are enhanced in STS cell lines with naturally occurring or artificially induced high expression levels of RR. Myxoma virus holds promise in the treatment of advanced soft tissue cancer, especially in tumors overexpressing RR.
Collapse
Affiliation(s)
- Yanghee Woo
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Susanne G Warner
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Rula Geha
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marianne M Stanford
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Penelope Decarolis
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY, USA
| | - Masmudur M Rahman
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL, USA
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Grant McFadden
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL, USA
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Yuman Fong
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
22
|
Perfetto M, Xu X, Lu C, Shi Y, Yousaf N, Li J, Yien YY, Wei S. The RNA helicase DDX3 induces neural crest by promoting AKT activity. Development 2021; 148:dev.184341. [PMID: 33318149 DOI: 10.1242/dev.184341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/02/2020] [Indexed: 01/02/2023]
Abstract
Mutations in the RNA helicase DDX3 have emerged as a frequent cause of intellectual disability in humans. Because many individuals carrying DDX3 mutations have additional defects in craniofacial structures and other tissues containing neural crest (NC)-derived cells, we hypothesized that DDX3 is also important for NC development. Using Xenopus tropicalis as a model, we show that DDX3 is required for normal NC induction and craniofacial morphogenesis by regulating AKT kinase activity. Depletion of DDX3 decreases AKT activity and AKT-dependent inhibitory phosphorylation of GSK3β, leading to reduced levels of β-catenin and Snai1: two GSK3β substrates that are crucial for NC induction. DDX3 function in regulating these downstream signaling events during NC induction is likely mediated by RAC1, a small GTPase whose translation depends on the RNA helicase activity of DDX3. These results suggest an evolutionarily conserved role of DDX3 in NC development by promoting AKT activity, and provide a potential mechanism for the NC-related birth defects displayed by individuals harboring mutations in DDX3 and its downstream effectors in this signaling cascade.
Collapse
Affiliation(s)
- Mark Perfetto
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.,Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Xiaolu Xu
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Congyu Lu
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yu Shi
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Natasha Yousaf
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Jiejing Li
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA.,Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical School, Kunming University of Science and Technology, Kunming 650032, China
| | - Yvette Y Yien
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shuo Wei
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
23
|
Sarkar K, Sil PC. Potential Drug Strategies to Target Coronaviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1352:111-124. [DOI: 10.1007/978-3-030-85109-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
NSCs are permissive to oncolytic Myxoma virus and provide a delivery method for targeted ovarian cancer therapy. Oncotarget 2020; 11:4693-4698. [PMID: 33473255 PMCID: PMC7771716 DOI: 10.18632/oncotarget.27845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/03/2020] [Indexed: 11/25/2022] Open
Abstract
Despite the development of many anticancer agents over the past 20 years, ovarian cancer remains the most lethal gynecologic malignancy. Due to a lack of effective screening, the majority of patients with ovarian cancer are diagnosed at an advanced stage, and only ~20% of patients are cured. Thus, in addition to improved screening methods, there is an urgent need for novel anticancer agents that are effective against late-stage, metastatic disease. Oncolytic virotherapy is a promising approach; unfortunately, systemic delivery of viruses to tumors remains a major challenge. In this regard, neural stem/progenitor cells (NSCs) with well-established tumor-homing properties may serve as an effective delivery platform for oncolytic viruses. In this study, we tested the efficacy of myxoma virus (MYXV), a rabbit-specific poxvirus that has demonstrated efficacy against a variety of tumors, using human and mouse ovarian cancer cell lines. We showed that MYXV effectively lysed ovarian cancer cells in vitro, reducing their viability. We also demonstrated that MYXV can infect human NSCs, specifically the clonal HB1.F3.CD21 NSC line. Taken together, these results suggest that NSC-mediated delivery of MYXV may be a promising strategy for achieving more selectively targeted anti-tumor efficacy.
Collapse
|
25
|
Gilchrist VH, Jémus-Gonzalez E, Said A, Alain T. Kinase inhibitors with viral oncolysis: Unmasking pharmacoviral approaches for cancer therapy. Cytokine Growth Factor Rev 2020; 56:83-93. [PMID: 32690442 DOI: 10.1016/j.cytogfr.2020.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/28/2022]
Abstract
There are more than 500 kinases in the human genome, many of which are oncogenic once constitutively activated. Fortunately, numerous hyperactive kinases are druggable, and several targeted small molecule kinase inhibitors have demonstrated impressive clinical benefits in cancer treatment. However, their often cytostatic rather than cytotoxic effect on cancer cells, and the development of resistance mechanisms, remain significant limitations to these targeted therapies. Oncolytic viruses are an emerging class of immunotherapeutic agents with a specific oncotropic nature and excellent safety profile, highlighting them as a promising alternative to conventional therapeutic modalities. Nonetheless, the clinical efficacy of oncolytic virotherapy is challenged by immunological and physical barriers that limit viral delivery, replication, and spread within tumours. Several of these barriers are often associated with oncogenic kinase activity and, in some cases, worsened by the action of oncolytic viruses on kinase signaling during infection. What if inhibiting these kinases could potentiate the cancer-lytic and anti-tumour immune stimulating properties of oncolytic virotherapies? This could represent a paradigm shift in the use of specific kinase inhibitors in the clinic and provide a novel therapeutic approach to the treatment of cancers. A phase III clinical trial combining the oncolytic Vaccinia virus Pexa-Vec with the kinase inhibitor Sorafenib was initiated. While this trial failed to show any benefits over Sorafenib monotherapy in patients with advanced liver cancer, several pre-clinical studies demonstrate that targeting kinases combined with oncolytic viruses have synergistic effects highlighting this strategy as a unique avenue to cancer therapy. Herein, we review the combinations of oncolytic viruses with kinase inhibitors reported in the literature and discuss the clinical opportunities that represent these pharmacoviral approaches.
Collapse
Affiliation(s)
- Victoria Heather Gilchrist
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| | - Estephanie Jémus-Gonzalez
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada
| | - Aida Said
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
26
|
Jazowiecka-Rakus J, Sochanik A, Rusin A, Hadryś A, Fidyk W, Villa N, Rahman MM, Chmielik E, Franco LS, McFadden G. Myxoma Virus-Loaded Mesenchymal Stem Cells in Experimental Oncolytic Therapy of Murine Pulmonary Melanoma. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:335-350. [PMID: 32775618 PMCID: PMC7398944 DOI: 10.1016/j.omto.2020.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Oncolytic viruses can target neoplasms, triggering oncolytic and immune effects. Their delivery to melanoma lesions remains challenging. Bone-marrow-derived mesenchymal stem cells (MSCs) were shown to be permissive for oncolytic myxoma virus (MYXV), allowing its transfer to melanoma cells, leading to their killing. Involvement of progeny virus was demonstrated in the transfer from MSCs to co-cultured melanoma cells. The inhibitory effect of virus on melanoma foci formation in murine lungs was revealed using melanoma cells previously co-cultured with MYXV-infected MSCs. Virus accumulation and persistence in lungs of lesion-bearing mice were shown following intravenous administration of MSC-shielded MYXV construct encoding luciferase. Therapy of experimentally induced lung melanoma in mice with interleukin (IL)-15-carrying MYXV construct delivered by MSCs led to marked regression of lesions and could increase survival. Elevated natural killer (NK) cell percentages in blood indicated robust innate responses against unshielded virus only. Lung infiltration by NK cells was followed by inflow of CD8+ T lymphocytes into melanoma lesions. Elevated expression of genes involved in adaptive immune response following oncolytic treatment was confirmed using RT-qPCR. No adverse pathological effects related to MSC-mediated oncolytic therapy with MYXV were observed. MSCs allow for safe and efficient ferrying of therapeutic MYXV to pulmonary melanoma foci triggering immune effects.
Collapse
Affiliation(s)
- Joanna Jazowiecka-Rakus
- Maria Skłodowska-Curie Memorial National Research Institute of Oncology, 44-102 Gliwice, Poland
- Corresponding author: Joanna Jazowiecka-Rakus, Maria Skłodowska-Curie Memorial National Research Institute of Oncology, 44-102 Gliwice, Poland.
| | - Aleksander Sochanik
- Maria Skłodowska-Curie Memorial National Research Institute of Oncology, 44-102 Gliwice, Poland
| | - Aleksandra Rusin
- Maria Skłodowska-Curie Memorial National Research Institute of Oncology, 44-102 Gliwice, Poland
| | - Agata Hadryś
- Maria Skłodowska-Curie Memorial National Research Institute of Oncology, 44-102 Gliwice, Poland
| | - Wojciech Fidyk
- Maria Skłodowska-Curie Memorial National Research Institute of Oncology, 44-102 Gliwice, Poland
| | - Nancy Villa
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | | | - Ewa Chmielik
- Maria Skłodowska-Curie Memorial National Research Institute of Oncology, 44-102 Gliwice, Poland
| | - Lina S. Franco
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Grant McFadden
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
27
|
Ashton LV, Quackenbush SL, Castle J, Wilson G, McCoy J, Jordan M, MacNeill AL. Recombinant Myxoma Virus Expressing Walleye Dermal Sarcoma Virus orfC Is Attenuated in Rabbits. Viruses 2020; 12:v12050517. [PMID: 32397134 PMCID: PMC7290507 DOI: 10.3390/v12050517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 01/09/2023] Open
Abstract
The poxvirus, myxoma virus (MYXV) has shown efficacy as an oncolytic virus (OV) in some cancer models. However, MYXV replication within murine cancer models and spontaneous canine sarcomas is short-lived. In mice, successful treatment of tumors requires frequent injections with MYXV. We hypothesize that treatment of cancer with a recombinant MYXV that promotes apoptosis could improve the efficacy of MYXV. The orfC gene of walleye dermal sarcoma virus (WDSV), which induces apoptosis, was recombined into the MYXV genome (MYXVorfC). A marked increase in apoptosis was observed in cells infected with MYXVorfC. To ensure that expression of WDSV orfC by MYXV does not potentiate the pathogenesis of MYXV, we evaluated the effects of MYXVorfC inoculation in the only known host of MYXV, New Zealand white rabbits. Virus dissemination in rabbit tissues was similar for MYXVorfC and MYXV. Virus titers recovered from tissues were lower in MYXVorfC-infected rabbits as compared to MYXV-infected rabbits. Importantly, rabbits infected with MYXVorfC had a delayed onset of clinical signs and a longer median survival time than rabbits infected with MYXV. This study indicates that MYXVorfC is attenuated and suggests that MYXVorfC will be safe to use as an OV therapy in future studies.
Collapse
Affiliation(s)
- Laura V. Ashton
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (L.V.A.); (S.L.Q.); (G.W.); (J.M.); (M.J.)
| | - Sandra L. Quackenbush
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (L.V.A.); (S.L.Q.); (G.W.); (J.M.); (M.J.)
| | - Jake Castle
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| | - Garin Wilson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (L.V.A.); (S.L.Q.); (G.W.); (J.M.); (M.J.)
| | - Jasmine McCoy
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (L.V.A.); (S.L.Q.); (G.W.); (J.M.); (M.J.)
| | - Mariah Jordan
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (L.V.A.); (S.L.Q.); (G.W.); (J.M.); (M.J.)
| | - Amy L. MacNeill
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (L.V.A.); (S.L.Q.); (G.W.); (J.M.); (M.J.)
- Correspondence: ; Tel.: +1-970-297-5112
| |
Collapse
|
28
|
Li Y, Shen Y, Zhao R, Samudio I, Jia W, Bai X, Liang T. Oncolytic virotherapy in hepato-bilio-pancreatic cancer: The key to breaking the log jam? Cancer Med 2020; 9:2943-2959. [PMID: 32130786 PMCID: PMC7196045 DOI: 10.1002/cam4.2949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional therapies have limited efficacy in hepatocellular carcinoma, pancreatic cancer, and biliary tract cancer, especially for advanced and refractory cancers. Through a deeper understanding of antitumor immunity and the tumor microenvironment, novel immunotherapies are becoming available for cancer treatment. Oncolytic virus (OV) therapy is an emerging type of immunotherapy that has demonstrated effective antitumor efficacy in many preclinical studies and clinical studies. Thus, it may represent a potential feasible treatment for hard to treat gastrointestinal (GI) tumors. Here, we summarize the research progress of OV therapy for the treatment of hepato-bilio-pancreatic cancers. In general, most OV therapies exhibits potent, specific oncolysis both in cell lines in vitro and the animal models in vivo. Currently, several clinical trials have suggested that OV therapy may also be effective in patients with refractory hepato-bilio-pancreatic cancer. Multiple strategies such as introducing immunostimulatory genes, modifying virus capsid and combining various other therapeutic modalities have been shown enhanced specific oncolysis and synergistic anti-cancer immune stimulation. Combining OV with other antitumor therapies may become a more effective strategy than using virus alone. Nevertheless, more studies are needed to better understand the mechanisms underlying the therapeutic effects of OV, and to design appropriate dosing and combination strategies.
Collapse
Affiliation(s)
- Yuwei Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.,Innovation Center for the study of Pancreatic Diseases, Hangzhou, China
| | - Yinan Shen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.,Innovation Center for the study of Pancreatic Diseases, Hangzhou, China
| | | | | | - William Jia
- Virogin Biotech Canada Ltd, Vancouver, Canada
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.,Innovation Center for the study of Pancreatic Diseases, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.,Innovation Center for the study of Pancreatic Diseases, Hangzhou, China
| |
Collapse
|
29
|
Rahman MM, McFadden G. Oncolytic Virotherapy with Myxoma Virus. J Clin Med 2020; 9:jcm9010171. [PMID: 31936317 PMCID: PMC7020043 DOI: 10.3390/jcm9010171] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/25/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Oncolytic viruses are one of the most promising novel therapeutics for malignant cancers. They selectively infect and kill cancer cells while sparing the normal counterparts, expose cancer- specific antigens and activate the host immune system against both viral and tumor determinants. Oncolytic viruses can be used as monotherapy or combined with existing cancer therapies to become more potent. Among the many types of oncolytic viruses that have been developed thus far, members of poxviruses are the most promising candidates against diverse cancer types. This review summarizes recent advances that are made with oncolytic myxoma virus (MYXV), a member of the Leporipoxvirus genus. Unlike other oncolytic viruses, MYXV infects only rabbits in nature and causes no harm to humans or any other non-leporid animals. However, MYXV can selectively infect and kill cancer cells originating from human, mouse and other host species. This selective cancer tropism and safety profile have led to the testing of MYXV in various types of preclinical cancer models. The next stage will be successful GMP manufacturing and clinical trials that will bring MYXV from bench to bedside for the treatment of currently intractable malignancies.
Collapse
|
30
|
Virotherapy as a Potential Therapeutic Approach for the Treatment of Aggressive Thyroid Cancer. Cancers (Basel) 2019; 11:cancers11101532. [PMID: 31636245 PMCID: PMC6826611 DOI: 10.3390/cancers11101532] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Virotherapy is a novel cancer treatment based on oncolytic viruses (OVs), which selectively infect and lyse cancer cells, without harming normal cells or tissues. Several viruses, either naturally occurring or developed through genetic engineering, are currently under investigation in clinical studies. Emerging reports suggesting the immune-stimulatory property of OVs against tumor cells further support the clinical use of OVs for the treatment of lesions lacking effective therapies. Poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid carcinoma (ATC), have a poor prognosis and limited treatment options. Therefore, several groups investigated the therapeutic potential of OVs in PDTC/ATC models producing experimental data sustaining the potential clinical efficacy of OVs in these cancer models. Moreover, the presence of an immunosuppressive microenvironment further supports the potential use of OVs in ATC. In this review, we present the results of the studies evaluating the efficacy of OVs alone or in combination with other treatment options. In particular, their potential therapeutic combination with multiple kinases inhibitors (MKIs) or immune checkpoint inhibitors are discussed.
Collapse
|
31
|
Kellish P, Shabashvili D, Rahman MM, Nawab A, Guijarro MV, Zhang M, Cao C, Moussatche N, Boyle T, Antonia S, Reinhard M, Hartzell C, Jantz M, Mehta HJ, McFadden G, Kaye FJ, Zajac-Kaye M. Oncolytic virotherapy for small-cell lung cancer induces immune infiltration and prolongs survival. J Clin Invest 2019; 129:2279-2292. [PMID: 31033480 DOI: 10.1172/jci121323] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 03/14/2019] [Indexed: 12/14/2022] Open
Abstract
Oncolytic virotherapy has been proposed as an ablative and immunostimulatory treatment strategy for solid tumors that are resistant to immunotherapy alone; however, there is a need to optimize host immune activation using preclinical immunocompetent models in previously untested common adult tumors. We studied a modified oncolytic myxoma virus (MYXV) that shows high efficiency for tumor-specific cytotoxicity in small-cell lung cancer (SCLC), a neuroendocrine carcinoma with high mortality and modest response rates to immune checkpoint inhibitors. Using an immunocompetent SCLC mouse model, we demonstrated the safety of intrapulmonary MYXV delivery with efficient tumor-specific viral replication and cytotoxicity associated with induction of immune cell infiltration. We observed increased SCLC survival following intrapulmonary MYXV that was enhanced by combined low-dose cisplatin. We also tested intratumoral MYXV delivery and observed immune cell infiltration associated with tumor necrosis and growth inhibition in syngeneic murine allograft tumors. Freshly collected primary human SCLC tumor cells were permissive to MYXV and intratumoral delivery into patient-derived xenografts resulted in extensive tumor necrosis. We confirmed MYXV cytotoxicity in classic and variant SCLC subtypes as well as cisplatin-resistant cells. Data from 26 SCLC human patients showed negligible immune cell infiltration, supporting testing MYXV as an ablative and immune-enhancing therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Min Zhang
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Chunxia Cao
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | | | | | | | - Mary Reinhard
- Department of Veterinary Pathology, University of Florida, Gainesville, Florida, USA
| | | | - Michael Jantz
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Hiren J Mehta
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | | | - Frederic J Kaye
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | | |
Collapse
|
32
|
Punctuated Evolution of Myxoma Virus: Rapid and Disjunct Evolution of a Recent Viral Lineage in Australia. J Virol 2019; 93:JVI.01994-18. [PMID: 30728252 DOI: 10.1128/jvi.01994-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/23/2019] [Indexed: 11/20/2022] Open
Abstract
Myxoma virus (MYXV) has been evolving in a novel host species-European rabbits-in Australia since 1950. Previous studies of viruses sampled from 1950 to 1999 revealed a remarkably clock-like evolutionary process across all Australian lineages of MYXV. Through an analysis of 49 newly generated MYXV genome sequences isolated in Australia between 2008 and 2017, we show that MYXV evolution in Australia can be characterized by three lineages, one of which exhibited a greatly elevated rate of evolutionary change and a dramatic breakdown of temporal structure. Phylogenetic analysis revealed that this apparently punctuated evolutionary event occurred between 1996 and 2012. The branch leading to the rapidly evolving lineage contained a relatively high number of nonsynonymous substitutions, and viruses in this lineage reversed a mutation found in the progenitor standard laboratory strain (SLS) and all previous sequences that disrupts the reading frame of the M005L/R gene. Analysis of genes encoding proteins involved in DNA synthesis or RNA transcription did not reveal any mutations likely to cause rapid evolution. Although there was some evidence for recombination across the MYXV phylogeny, this was not associated with the increase in the evolutionary rate. The period from 1996 to 2012 saw significant declines in wild rabbit numbers, due to the introduction of rabbit hemorrhagic disease and prolonged drought in southeastern Australia, followed by the partial recovery of populations. It is therefore possible that a rapidly changing environment for virus transmission changed the selection pressures faced by MYXV, altering the course and pace of virus evolution.IMPORTANCE The coevolution of myxoma virus (MYXV) and European rabbits in Australia is one of the most important natural experiments in evolutionary biology, providing insights into virus adaptation to new hosts and the evolution of virulence. Previous studies of MYXV evolution have also shown that the virus evolves both relatively rapidly and in a strongly clock-like manner. Using newly acquired MYXV genome sequences from Australia, we show that the virus has experienced a dramatic change in evolutionary behavior over the last 20 years, with a breakdown in clock-like structure, the appearance of a rapidly evolving virus lineage, and the accumulation of multiple nonsynonymous and indel mutations. We suggest that this punctuated evolutionary event may reflect a change in selection pressures as rabbit numbers declined following the introduction of rabbit hemorrhagic disease virus and drought in the geographic regions inhabited by rabbits.
Collapse
|
33
|
Villa NY, McFadden G. Virotherapy as Potential Adjunct Therapy for Graft-Vs-Host Disease. CURRENT PATHOBIOLOGY REPORTS 2018; 6:247-263. [PMID: 30595970 PMCID: PMC6290699 DOI: 10.1007/s40139-018-0186-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW This review discusses the pathophysiology, risk factors, and the advances in the prevention or treatment of graft-vs-host disease (GvHD) by exploiting adjunct virotherapy. In addition, nonviral adjunct therapeutic options for the prevention of GvHD in the context of allogeneic hematopoietic stem cell transplantation (allo-HSCT) are discussed. The role of oncolytic viruses to treat different HSCT-eligible hematological cancers is also considered and correlated with the issue of GvHD in the context of allo-HSCT. RECENT FINDINGS Emerging therapies focused on the prevention or treatment of GvHD include the use of regulatory T cells (Tregs), mesenchymal stem cells (MSCs), microbiome manipulation, B cell inhibitors, among others. Our lab and others have reported that an oncolytic DNA virus from the Poxviridae family, called myxoma virus (MYXV), not only exhibits oncolytic activity against various hematologic malignancies like multiple myeloma (MM) or acute myeloid leukemia (AML) but also, in addition, ex vivo MYXV treatment of human allogeneic-bone marrow transplants (allo-BMT), or allo-peripheral blood mononuclear cell (allo-PBMC) transplants can abrogate GvHD in xenografted mice without impairing graft-vs-tumor (GvT) effects against residual cancer. To date, this is the first and the only oncolytic virus with a dual potential of mediating oncolysis against a residual cancer target and also inhibiting or preventing GvHD following allo-HSCT. SUMMARY This review discusses how oncolytic virotherapy can be applied as a potential adjunct therapy for the potential treatment of GvHD. In addition, we highlight major emerging nonviral therapies currently studied for the treatment or prevention of GvHD. We also review the emerging oncolytic virotherapies against different hematological cancers currently eligible for allo-HSCT and highlight the potential role of the oncolytic virus MYXV to decrease GvHD while maintaining or enhancing the positive benefits of GvT.
Collapse
Affiliation(s)
- Nancy Y. Villa
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85287 USA
| | - Grant McFadden
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85287 USA
| |
Collapse
|
34
|
Passaro C, Somma SD, Malfitano AM, Portella G. Oncolytic virotherapy for anaplastic and poorly differentiated thyroid cancer: a promise or a clinical reality? INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2018. [DOI: 10.2217/ije-2017-0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Oncolytic viruses (OVs) selectively infect and lyse cancer cells. A direct lytic effect of OVs has been theorized in the initial studies; however, the antineoplastic effect of OVs is also due to the induction of an immune response against cancer cells. Anaplastic thyroid cancer is one of the most aggressive human malignancies with a short survival time of about 6–12 months from the diagnosis. The lack of effective therapies has prompted to investigate the efficacy of OVs in anaplastic thyroid carcinoma. Different OVs have been tested in preclinical studies, either as single agents or in combinatorial treatments. In this review, the results of these studies are summarized and future perspective discussed.
Collapse
Affiliation(s)
- Carmela Passaro
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Napoli, Italia
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarah Di Somma
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Napoli, Italia
| | - Anna Maria Malfitano
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Napoli, Italia
| | - Giuseppe Portella
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Napoli, Italia
| |
Collapse
|
35
|
Sánchez D, Cesarman-Maus G, Amador-Molina A, Lizano M. Oncolytic Viruses for Canine Cancer Treatment. Cancers (Basel) 2018; 10:cancers10110404. [PMID: 30373251 PMCID: PMC6266482 DOI: 10.3390/cancers10110404] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022] Open
Abstract
Oncolytic virotherapy has been investigated for several decades and is emerging as a plausible biological therapy with several ongoing clinical trials and two viruses are now approved for cancer treatment in humans. The direct cytotoxicity and immune-stimulatory effects make oncolytic viruses an interesting strategy for cancer treatment. In this review, we summarize the results of in vitro and in vivo published studies of oncolytic viruses in different phases of evaluation in dogs, using PubMed and Google scholar as search platforms, without time restrictions (to date). Natural and genetically modified oncolytic viruses were evaluated with some encouraging results. The most studied viruses to date are the reovirus, myxoma virus, and vaccinia, tested mostly in solid tumors such as osteosarcomas, mammary gland tumors, soft tissue sarcomas, and mastocytomas. Although the results are promising, there are issues that need addressing such as ensuring tumor specificity, developing optimal dosing, circumventing preexisting antibodies from previous exposure or the development of antibodies during treatment, and assuring a reasonable safety profile, all of which are required in order to make this approach a successful therapy in dogs.
Collapse
Affiliation(s)
- Diana Sánchez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
| | - Gabriela Cesarman-Maus
- Department of Hematology, Instituto Nacional de Cancerología, Mexico City 14080, Mexico.
| | - Alfredo Amador-Molina
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
| |
Collapse
|
36
|
Oncolytic Viruses as Therapeutic Tools for Pediatric Brain Tumors. Cancers (Basel) 2018; 10:cancers10070226. [PMID: 29987215 PMCID: PMC6071081 DOI: 10.3390/cancers10070226] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/04/2018] [Indexed: 12/18/2022] Open
Abstract
In recent years, we have seen an important progress in our comprehension of the molecular basis of pediatric brain tumors (PBTs). However, they still represent the main cause of death by disease in children. Due to the poor prognosis of some types of PBTs and the long-term adverse effects associated with the traditional treatments, oncolytic viruses (OVs) have emerged as an interesting therapeutic option since they displayed safety and high tolerability in pre-clinical and clinical levels. In this review, we summarize the OVs evaluated in different types of PBTs, mostly in pre-clinical studies, and we discuss the possible future direction of research in this field. In this sense, one important aspect of OVs antitumoral effect is the stimulation of an immune response against the tumor which is necessary for a complete response in preclinical immunocompetent models and in the clinic. The role of the immune system in the response of OVs needs to be evaluated in PBTs and represents an experimental challenge due to the limited immunocompetent models of these diseases available for pre-clinical research.
Collapse
|
37
|
Choi AH, O’Leary MP, Lu J, Kim SI, Fong Y, Chen NG. Endogenous Akt Activity Promotes Virus Entry and Predicts Efficacy of Novel Chimeric Orthopoxvirus in Triple-Negative Breast Cancer. MOLECULAR THERAPY-ONCOLYTICS 2018; 9:22-29. [PMID: 29988465 PMCID: PMC6026447 DOI: 10.1016/j.omto.2018.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/01/2018] [Indexed: 12/04/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with high recurrence rate and poor prognosis. Here, we describe a novel, chimeric orthopoxvirus (CF33) that efficiently kills TNBC. Cytotoxicity was assayed in vitro in four TNBC cell lines. Viral replication was examined through standard plaque assay. Two orthotopic TNBC xenograft models were generated in athymic nude mice and were injected with CF33 intratumorally. CF33 was effective in vitro with potent cytotoxicity and efficient intracellular replication observed in TNBC lines with phosphatidylinositol 3-kinase (PI3K)/Akt pathway mutations that resulted in endogenous phospho-Akt (p-Akt) activity (BT549, Hs578T, and MDA-MB-468). Relative resistance to CF33 by wild-type PI3K/Akt pathway cell line MDA-MB-231 was overcome using higher MOI. The virus was effective in vivo with significant tumor size reduction in both xenograft models. Mechanistically, CF33 appears to share similar properties to vaccinia virus with respect to Akt-mediated and low-pH-mediated viral entry. In summary, CF33 demonstrated potent antitumoral effect in vitro and in vivo, with the most potent effect predicted by the presence of endogenous Akt activity in the TNBC cell line. Further investigation of its mechanism of action as well as genetic modifications to enhance its natural viral tropism are warranted for preclinical development.
Collapse
Affiliation(s)
- Audrey H. Choi
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Michael P. O’Leary
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Jianming Lu
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Sang-In Kim
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
- Center for Gene Therapy, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Nanhai G. Chen
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
- Center for Gene Therapy, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
- Gene Editing and Viral Vector Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
- Corresponding author: Nanhai G. Chen, PhD, Department of Surgery, City of Hope National Medical Center, 1500 E. Duarte Road, Rm 1102, Familian Science Building, Duarte, CA 91010, USA.
| |
Collapse
|
38
|
Choi AH, O'Leary MP, Chaurasiya S, Lu J, Kim SI, Fong Y, Chen NG. Novel chimeric parapoxvirus CF189 as an oncolytic immunotherapy in triple-negative breast cancer. Surgery 2017; 163:336-342. [PMID: 29174433 DOI: 10.1016/j.surg.2017.09.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/13/2017] [Accepted: 09/16/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Triple-negative breast cancer is an aggressive subtype of breast cancer with high recurrence rate and poor prognosis. Here we describe a novel, genetically engineered parapoxvirus that efficiently kills triple-negative breast cancer. METHODS A novel chimeric parapoxvirus (CF189) was generated via homologous recombination and identified through high-throughput screening. Cytotoxicity was assayed in vitro in 4 triple-negative breast cancer cell lines. Viral replication was examined through standard plaque assay. Orthotopic triple-negative breast cancer xenografts were generated by MDA-MB-468 implantation into the 2nd and 4th mammary fat pads of athymic nude mice and treated with the virus. RESULTS Chimeric parapoxvirus (CF189) demonstrated dose-dependent cytotoxicity at low multiplicity of infection, with > 80% cell death 6 days after treatment. Significant reductions in tumor size were observed 2 weeks after intratumoral injection at doses as low as 103 plaque-forming units (PFU) compared with control (P < 0.01). In addition, abscopal effect (shrinkage of noninjected remote tumors) was clearly demonstrated. CONCLUSION Chimeric parapoxvirus (CF189) demonstrated efficient cytotoxicity in vitro and potent antitumor effect in vivo at doses as low as 103 PFU. These are data encouraging of clinical development for this highly potent agent against triple-negative breast cancer.
Collapse
Affiliation(s)
- Audrey H Choi
- Department of Surgery, City of Hope National Medical Center, Duarte, CA
| | - Michael P O'Leary
- Department of Surgery, City of Hope National Medical Center, Duarte, CA
| | | | - Jianming Lu
- Department of Surgery, City of Hope National Medical Center, Duarte, CA
| | - Sang-In Kim
- Department of Surgery, City of Hope National Medical Center, Duarte, CA
| | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Duarte, CA; Center for Gene Therapy, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA
| | - Nanhai G Chen
- Department of Surgery, City of Hope National Medical Center, Duarte, CA; Center for Gene Therapy, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA.
| |
Collapse
|
39
|
Identification of host DEAD-box RNA helicases that regulate cellular tropism of oncolytic Myxoma virus in human cancer cells. Sci Rep 2017; 7:15710. [PMID: 29146961 PMCID: PMC5691082 DOI: 10.1038/s41598-017-15941-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/06/2017] [Indexed: 12/28/2022] Open
Abstract
Myxoma virus (MYXV), a Leporipoxvirus, is being developed as an oncolytic virotherapeutic for the treatment of a variety of human cancers. MYXV tropism for human cancer cells is largely mediated by intracellular signaling networks that regulate viral replication or innate antiviral response pathways. Thus, MYXV is fully or partially permissive for the majority of human cancer cells that harbor defects in antiviral signaling, but a minority are nonpermissive because the virus infection aborts before its completion. To identify host factors relevant for MYXV tropism in human cancer cells, we performed a small interfering RNA (siRNA) library screen targeting the 58 human DEAD-box RNA helicases in two permissive human cancer cells (HeLa and A549), one semi-permissive (786-0), and one nonpermissive cell line (PANC-1). Five host RNA helicases (DDX3X, DDX5, DHX9, DHX37, DDX52) were inhibitory for optimal replication and thus classified as anti-viral, while three other cellular RNA helicases (DHX29, DHX35, RIG-I) were identified as pro-viral or pro-cellular because knockdown consistently reduced MYXV replication and/or required metabolic functions of permissive cancer cells. These findings suggest that replication of MYXV, and likely all poxviruses, is dramatically regulated positively and negatively by multiple host DEAD-box RNA helicases.
Collapse
|
40
|
Ursu O, Gosline SJC, Beeharry N, Fink L, Bhattacharjee V, Huang SSC, Zhou Y, Yen T, Fraenkel E. Network modeling of kinase inhibitor polypharmacology reveals pathways targeted in chemical screens. PLoS One 2017; 12:e0185650. [PMID: 29023490 PMCID: PMC5638242 DOI: 10.1371/journal.pone.0185650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 09/15/2017] [Indexed: 01/22/2023] Open
Abstract
Small molecule screens are widely used to prioritize pharmaceutical development. However, determining the pathways targeted by these molecules is challenging, since the compounds are often promiscuous. We present a network strategy that takes into account the polypharmacology of small molecules in order to generate hypotheses for their broader mode of action. We report a screen for kinase inhibitors that increase the efficacy of gemcitabine, the first-line chemotherapy for pancreatic cancer. Eight kinase inhibitors emerge that are known to affect 201 kinases, of which only three kinases have been previously identified as modifiers of gemcitabine toxicity. In this work, we use the SAMNet algorithm to identify pathways linking these kinases and genetic modifiers of gemcitabine toxicity with transcriptional and epigenetic changes induced by gemcitabine that we measure using DNaseI-seq and RNA-seq. SAMNet uses a constrained optimization algorithm to connect genes from these complementary datasets through a small set of protein-protein and protein-DNA interactions. The resulting network recapitulates known pathways including DNA repair, cell proliferation and the epithelial-to-mesenchymal transition. We use the network to predict genes with important roles in the gemcitabine response, including six that have already been shown to modify gemcitabine efficacy in pancreatic cancer and ten novel candidates. Our work reveals the important role of polypharmacology in the activity of these chemosensitizing agents.
Collapse
Affiliation(s)
- Oana Ursu
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Sara J. C. Gosline
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Neil Beeharry
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Lauren Fink
- Cancer Biology Program, Fox Chase Cancer Center; Philadelphia, Pennsylvania, United States of America
| | | | - Shao-shan Carol Huang
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Yan Zhou
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Tim Yen
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
41
|
Oliva S, Gambella M, Boccadoro M, Bringhen S. Systemic virotherapy for multiple myeloma. Expert Opin Biol Ther 2017; 17:1375-1387. [PMID: 28796556 DOI: 10.1080/14712598.2017.1364359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The multiple myeloma (MM) treatment scenario has changed considerably over the past few years. Several novel targeted therapies are currently under consideration including oncolytic virotherapy. Areas covered: This review provides an analysis of the mechanisms of action of virotherapy, and summarizes the preclinical and clinical studies of systemic virotherapy developed for the treatment of MM. Different types of viruses have been identified, including: adenovirus, vaccinia virus, herpes simplex virus 1, myxoma virus, reovirus, measles virus, vesicular stomatitis virus and coxsackievirus A21. Expert opinion: The above-mentioned viruses can do more than simply infect and kill malignant plasma cells alone or in combination with chemo and/or radiotherapy. In fact, some of them can also be used to purge myeloma cells from an autologous bone marrow (BM) transplant. Further investigations are required to better explore the best therapeutic combinations for MM and to also overcome antiviral response immunity that can limit the efficacy of this therapeutic strategy.
Collapse
Affiliation(s)
- Stefania Oliva
- a Myeloma Unit, Division of Hematology , University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino , Torino , Italy
| | - Manuela Gambella
- a Myeloma Unit, Division of Hematology , University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino , Torino , Italy
| | - Mario Boccadoro
- a Myeloma Unit, Division of Hematology , University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino , Torino , Italy
| | - Sara Bringhen
- a Myeloma Unit, Division of Hematology , University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino , Torino , Italy
| |
Collapse
|
42
|
Nounamo B, Liem J, Cannon M, Liu J. Myxoma Virus Optimizes Cisplatin for the Treatment of Ovarian Cancer In Vitro and in a Syngeneic Murine Dissemination Model. MOLECULAR THERAPY-ONCOLYTICS 2017; 6:90-99. [PMID: 28875159 PMCID: PMC5573804 DOI: 10.1016/j.omto.2017.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 08/06/2017] [Indexed: 12/15/2022]
Abstract
A therapeutic approach to improve treatment outcome of ovarian cancer (OC) in patients is urgently needed. Myxoma virus (MYXV) is a candidate oncolytic virus that infects to eliminate OC cells. We found that in vitro MYXV treatment enhances cisplatin or gemcitabine treatment by allowing lower doses than the corresponding IC50 calculated for primary OC cells. MYXV also affected OC patient ascites-associated CD14+ myeloid cells, one of the most abundant immunological components of the OC tumor environment; without causing cell death, MYXV infection reduces the ability of these cells to secrete cytokines such as IL-10 that are signatures of the immunosuppressive tumor environment. We found that pretreatment with replication-competent but not replication-defective MYXV-sensitized tumor cells to later cisplatin treatments to drastically improve survival in a murine syngeneic OC dissemination model. We thus conclude that infection with replication-competent MYXV before cisplatin treatment markedly enhances the therapeutic benefit of chemotherapy. Treatment with replication-competent MYXV followed by cisplatin potentiated splenocyte activation and IFNγ expression, possibly by T cells, when splenocytes from treated mice were stimulated with tumor cell antigen ex vivo. The impact on immune responses in the tumor environment may thus contribute to the enhanced antitumor activity of combinatorial MYXV-cisplatin treatment.
Collapse
Affiliation(s)
- Bernice Nounamo
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205-7199, USA
| | - Jason Liem
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205-7199, USA
| | - Martin Cannon
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205-7199, USA
| | - Jia Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205-7199, USA.,The Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
43
|
Zhang QS, Zhang M, Huang XJ, Liu XJ, Li WP. Apoptosis-inducing effect of myxoma virus on human neuroglioma cell lines. Exp Ther Med 2017; 14:344-348. [PMID: 28672936 DOI: 10.3892/etm.2017.4487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 12/23/2017] [Indexed: 12/15/2022] Open
Abstract
The purpose of this study was to further evaluate the role of myxoma virus (MYXV) as an oncolytic agent against experimental human gliomas in vitro, and analyze the effect of MYXV on malignant glioma cells at different incubation periods and infected at different multiplicities of infection. Neuroglioma cell lines U251 and A172 were cultured with various infective doses of myxoma virus at different time points (0-3 days) and cellular survival rates were evaluated using an MTT assay. Cell viability and cell death rates were assessed using Annexin V/propidium iodide and applying flow cytometry. Furthermore, the expression levels of phosphorylated AKT (p-AKT) in malignant gliomas were detected by western blot analysis to investigate the possible cell signaling targets in the pathway. MYXV exhibited a dose and time-dependent cytotoxic effect on neuroglioma cells, and there was increased expression of p-AKT in malignant gliomas. The present study confirms that MYXV induces oncolysis of malignant gliomas through regulating the activation of AKT. As such, MYXV is a potential therapeutic agent against human malignant gliomas.
Collapse
Affiliation(s)
- Qiu-Sheng Zhang
- Department of Neurosurgery, Shenzhen Clinical College Affiliated to Anhui Medical University, Shenzhen, Guandong 518000, P.R. China.,Department of Neurosurgery, Shenzhen 2nd People's Hospital, Shenzhen, Guangdong 508035, P.R. China
| | - Meng Zhang
- Department of Neurosurgery, Shenzhen 2nd People's Hospital, Shenzhen, Guangdong 508035, P.R. China
| | - Xian-Jian Huang
- Department of Neurosurgery, Shenzhen 2nd People's Hospital, Shenzhen, Guangdong 508035, P.R. China
| | - Xiao-Jia Liu
- Department of Neurosurgery, Shenzhen 2nd People's Hospital, Shenzhen, Guangdong 508035, P.R. China
| | - Wei-Ping Li
- Department of Neurosurgery, Shenzhen 2nd People's Hospital, Shenzhen, Guangdong 508035, P.R. China
| |
Collapse
|
44
|
Rahal A, Musher B. Oncolytic viral therapy for pancreatic cancer. J Surg Oncol 2017; 116:94-103. [PMID: 28407327 DOI: 10.1002/jso.24626] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/05/2017] [Indexed: 12/18/2022]
Abstract
Outcomes of pancreatic adenocarcinoma (PDA) remain dismal despite extensive clinical investigation. Combination chemotherapy provides modest improvements in survival above best supportive care, and immunotherapy has thus far not proven effective. Nevertheless, growing insight into antitumor immunity and the tumor microenvironment has inspired the discovery of novel agents targeting PDA. Oncolytic viruses represent an emerging class of immunotherapeutic agents that have undergone extensive preclinical investigation and warrant further investigation in well-designed clinical trials.
Collapse
Affiliation(s)
- Ahmad Rahal
- Division of Hematology-Oncology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Benjamin Musher
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
45
|
Marqus S, Pirogova E, Piva TJ. Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci 2017; 24:21. [PMID: 28320393 PMCID: PMC5359827 DOI: 10.1186/s12929-017-0328-x] [Citation(s) in RCA: 319] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/14/2017] [Indexed: 12/25/2022] Open
Abstract
Cancer along with cardiovascular disease are the main causes of death in the industrialised countries around the World. Conventional cancer treatments are losing their therapeutic uses due to drug resistance, lack of tumour selectivity and solubility and as such there is a need to develop new therapeutic agents. Therapeutic peptides are a promising and a novel approach to treat many diseases including cancer. They have several advantages over proteins or antibodies: as they are (a) easy to synthesise, (b) have a high target specificity and selectivity and (c) have low toxicity. Therapeutic peptides do have some significant drawbacks related to their stability and short half-life. In this review, strategies used to overcome peptide limitations and to enhance their therapeutic effect will be compared. The use of short cell permeable peptides that interfere and inhibit protein-protein interactions will also be evaluated.
Collapse
Affiliation(s)
- Susan Marqus
- School of Engineering, RMIT University, Bundoora, VIC 3083 Australia
| | - Elena Pirogova
- School of Engineering, RMIT University, Bundoora, VIC 3083 Australia
| | - Terrence J. Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| |
Collapse
|
46
|
Reprogramming antitumor immunity against chemoresistant ovarian cancer by a CXCR4 antagonist-armed viral oncotherapy. MOLECULAR THERAPY-ONCOLYTICS 2016; 3:16034. [PMID: 28035333 PMCID: PMC5155641 DOI: 10.1038/mto.2016.34] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/17/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022]
Abstract
Ovarian cancer remains the most lethal gynecologic malignancy owing to late detection, intrinsic and acquired chemoresistance, and remarkable heterogeneity. Here, we explored approaches to inhibit metastatic growth of murine and human ovarian tumor variants resistant to paclitaxel and carboplatin by oncolytic vaccinia virus expressing a CXCR4 antagonist to target the CXCL12 chemokine/CXCR4 receptor signaling axis alone or in combination with doxorubicin. The resistant variants exhibited augmented expression of the hyaluronan receptor CD44 and CXCR4 along with elevated Akt and ERK1/2 activation and displayed an increased susceptibility to viral infection compared with the parental counterparts. The infected cultures were more sensitive to doxorubicin-mediated killing both in vitro and in tumor-challenged mice. Mechanistically, the combination treatment increased apoptosis and phagocytosis of tumor material by dendritic cells associated with induction of antitumor immunity. Targeting syngeneic tumors with this regimen increased intratumoral infiltration of antitumor CD8+ T cells. This was further enhanced by reducing the immunosuppressive network by the virally-delivered CXCR4 antagonist, which augmented antitumor immune responses and led to tumor-free survival. Our results define novel strategies for treatment of drug-resistant ovarian cancer that increase immunogenic cell death and reverse the immunosuppressive tumor microenvironment, culminating in antitumor immune responses that control metastatic tumor growth.
Collapse
|
47
|
Lülf AT, Freudenstein A, Marr L, Sutter G, Volz A. Non-plaque-forming virions of Modified Vaccinia virus Ankara express viral genes. Virology 2016; 499:322-330. [PMID: 27741426 PMCID: PMC7111619 DOI: 10.1016/j.virol.2016.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 01/23/2023]
Abstract
In cell culture infections with vaccinia virus the number of counted virus particles is substantially higher than the number of plaques obtained by titration. We found that standard vaccine preparations of recombinant Modified Vaccinia virus Ankara produce only about 20–30% plaque-forming virions in fully permissive cell cultures. To evaluate the biological activity of the non-plaque-forming particles, we generated recombinant viruses expressing fluorescent reporter proteins under transcriptional control of specific viral early and late promoters. Live cell imaging and automated counting by fluorescent microscopy indicated that virtually all virus particles can enter cells and switch on viral gene expression. Although most of the non-plaque-forming infections are arrested at the level of viral early gene expression, we detected activation of late viral transcription in 10–20% of single infected cells. Thus, non-plaque-forming particles are biologically active, and likely contribute to the immunogenicity of vaccinia virus vaccines. Recombinant vaccinia virus MVA preparations contain >70% non-plaque-forming virions. Non-plaque-forming particles can enter cells and switch on viral gene expression. Non-plaque-forming virions are likely to contribute to vaccine immunogenicity.
Collapse
Affiliation(s)
- Anna-Theresa Lülf
- Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, 80539 Munich, Germany; German Centre for Infection Research (DZIF), Veterinaerstrasse 13, 80539 Munich, Germany
| | - Astrid Freudenstein
- Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, 80539 Munich, Germany
| | - Lisa Marr
- Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, 80539 Munich, Germany
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, 80539 Munich, Germany; German Centre for Infection Research (DZIF), Veterinaerstrasse 13, 80539 Munich, Germany.
| | - Asisa Volz
- Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, 80539 Munich, Germany; German Centre for Infection Research (DZIF), Veterinaerstrasse 13, 80539 Munich, Germany
| |
Collapse
|
48
|
Huang F, Wang BR, Wu YQ, Wang FC, Zhang J, Wang YG. Oncolytic viruses against cancer stem cells: A promising approach for gastrointestinal cancer. World J Gastroenterol 2016; 22:7999-8009. [PMID: 27672294 PMCID: PMC5028813 DOI: 10.3748/wjg.v22.i35.7999] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/12/2016] [Accepted: 08/10/2016] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal cancer has been one of the five most commonly diagnosed and leading causes of cancer mortality over the past few decades. Great progress in traditional therapies has been made, which prolonged survival in patients with early cancer, yet tumor relapse and drug resistance still occurred, which is explained by the cancer stem cell (CSC) theory. Oncolytic virotherapy has attracted increasing interest in cancer because of its ability to infect and lyse CSCs. This paper reviews the basic knowledge, CSC markers and therapeutics of gastrointestinal cancer (liver, gastric, colon and pancreatic cancer), as well as research advances and possible molecular mechanisms of various oncolytic viruses against gastrointestinal CSCs. This paper also summarizes the existing obstacles to oncolytic virotherapy and proposes several alternative suggestions to overcome the therapeutic limitations.
Collapse
|
49
|
Kinn VG, Hilgenberg VA, MacNeill AL. Myxoma virus therapy for human embryonal rhabdomyosarcoma in a nude mouse model. Oncolytic Virother 2016; 5:59-71. [PMID: 27579297 PMCID: PMC4996258 DOI: 10.2147/ov.s108831] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a devastating tumor of young people that is difficult to cure. To determine if oncolytic virus therapy can improve outcomes in individuals with RMS, myxoma virus expressing a red fluorescent protein (MYXV-red) was evaluated for antitumoral effects using a murine model of RMS. Fluorescent protein was expressed in four RMS cell lines inoculated with MYXV-red, indicating that these cells were semipermissive to MYXV infection. MYXV-red replication and cytopathic effects were further evaluated using human embryonal RMS (CCL-136) cells. Logarithmic growth of MYXV-red and significant cell death were observed 72 hours after inoculation with MYXV. The oncolytic effects of MYXV-red were then studied in nude mice that were injected subcutaneously with CCL-136 cells to establish RMS xenografts. Once tumors measured 5 mm in diameter, mice were treated with multiple intratumoral injections of MXYV-red or saline. The average final tumor volume and rate of tumor growth were significantly decreased, and median survival time was significantly increased in MYXV-red-treated mice (P-values =0.0416, 0.0037, and 0.0004, respectively). Histologic sections of MYXV-red-treated tumors showed increased inflammation compared to saline-treated tumors (P-value =0.0002). In conclusion, MXYV-red treatment of RMS tumors was successful in individual mice as it resulted in decreased tumor burden in eight of eleven mice with nearly complete tumor remission in five of eleven mice. These data hold promise that MYXV-red treatment may be beneficial for people suffering from RMS. To our knowledge, this is the first report of successful treatment of RMS tumors using an oncolytic poxvirus.
Collapse
Affiliation(s)
- Veronica G Kinn
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Valerie A Hilgenberg
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Amy L MacNeill
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
50
|
Choi AH, O'Leary MP, Fong Y, Chen NG. From Benchtop to Bedside: A Review of Oncolytic Virotherapy. Biomedicines 2016; 4:biomedicines4030018. [PMID: 28536385 PMCID: PMC5344257 DOI: 10.3390/biomedicines4030018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/14/2022] Open
Abstract
Oncolytic viruses (OVs) demonstrate the ability to replicate selectively in cancer cells, resulting in antitumor effects by a variety of mechanisms, including direct cell lysis and indirect cell death through immune-mediate host responses. Although the mechanisms of action of OVs are still not fully understood, major advances have been made in our understanding of how OVs function and interact with the host immune system, resulting in the recent FDA approval of the first OV for cancer therapy in the USA. This review provides an overview of the history of OVs, their selectivity for cancer cells, and their multifaceted mechanism of antitumor action, as well as strategies employed to augment selectivity and efficacy of OVs. OVs in combination with standard cancer therapies are also discussed, as well as a review of ongoing human clinical trials.
Collapse
Affiliation(s)
- Audrey H Choi
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Michael P O'Leary
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA.
- Center for Gene Therapy, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Nanhai G Chen
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA.
- Center for Gene Therapy, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|