1
|
Smith A, Zhang I, Trang P, Liu F. Engineering of RNase P Ribozymes for Therapy against Human Cytomegalovirus Infection. Viruses 2024; 16:1196. [PMID: 39205170 PMCID: PMC11360822 DOI: 10.3390/v16081196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Nucleic acid-based gene interference and editing strategies, such as antisense oligonucleotides, ribozymes, RNA interference (RNAi), and CRISPR/Cas9 coupled with guide RNAs, are exciting research tools and show great promise for clinical applications in treating various illnesses. RNase P ribozymes have been engineered for therapeutic applications against human viruses such as human cytomegalovirus (HCMV). M1 ribozyme, the catalytic RNA subunit of RNase P from Escherichia coli, can be converted into a sequence-specific endonuclease, M1GS ribozyme, which is capable of hydrolyzing an mRNA target base-pairing with the guide sequence. M1GS RNAs have been shown to hydrolyze essential HCMV mRNAs and block viral progeny production in virus-infected cell cultures. Furthermore, RNase P ribozyme variants with enhanced hydrolyzing activity can be generated by employing in vitro selection procedures and exhibit better ability in suppressing HCMV gene expression and replication in cultured cells. Additional studies have also examined the antiviral activity of RNase P ribozymes in mice in vivo. Using cytomegalovirus infection as an example, this review summarizes the principles underlying RNase P ribozyme-mediated gene inactivation, presents recent progress in engineering RNase P ribozymes for applications in vitro and in mice, and discusses the prospects of using M1GS technology for therapeutic applications against HCMV as well as other pathogenic viruses.
Collapse
Affiliation(s)
- Adam Smith
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Isadora Zhang
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Phong Trang
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Fenyong Liu
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
- School of Public Health, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Kirsebom LA, Liu F, McClain WH. The discovery of a catalytic RNA within RNase P and its legacy. J Biol Chem 2024; 300:107318. [PMID: 38677513 PMCID: PMC11143913 DOI: 10.1016/j.jbc.2024.107318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
Sidney Altman's discovery of the processing of one RNA by another RNA that acts like an enzyme was revolutionary in biology and the basis for his sharing the 1989 Nobel Prize in Chemistry with Thomas Cech. These breakthrough findings support the key role of RNA in molecular evolution, where replicating RNAs (and similar chemical derivatives) either with or without peptides functioned in protocells during the early stages of life on Earth, an era referred to as the RNA world. Here, we cover the historical background highlighting the work of Altman and his colleagues and the subsequent efforts of other researchers to understand the biological function of RNase P and its catalytic RNA subunit and to employ it as a tool to downregulate gene expression. We primarily discuss bacterial RNase P-related studies but acknowledge that many groups have significantly contributed to our understanding of archaeal and eukaryotic RNase P, as reviewed in this special issue and elsewhere.
Collapse
Affiliation(s)
- Leif A Kirsebom
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, California, USA.
| | - William H McClain
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
3
|
Kotwal SB, Orekondey N, Saradadevi GP, Priyadarshini N, Puppala NV, Bhushan M, Motamarry S, Kumar R, Mohannath G, Dey RJ. Multidimensional futuristic approaches to address the pandemics beyond COVID-19. Heliyon 2023; 9:e17148. [PMID: 37325452 PMCID: PMC10257889 DOI: 10.1016/j.heliyon.2023.e17148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
Globally, the impact of the coronavirus disease 2019 (COVID-19) pandemic has been enormous and unrelenting with ∼6.9 million deaths and ∼765 million infections. This review mainly focuses on the recent advances and potentially novel molecular tools for viral diagnostics and therapeutics with far-reaching implications in managing the future pandemics. In addition to briefly highlighting the existing and recent methods of viral diagnostics, we propose a couple of potentially novel non-PCR-based methods for rapid, cost-effective, and single-step detection of nucleic acids of viruses using RNA mimics of green fluorescent protein (GFP) and nuclease-based approaches. We also highlight key innovations in miniaturized Lab-on-Chip (LoC) devices, which in combination with cyber-physical systems, could serve as ideal futuristic platforms for viral diagnosis and disease management. We also discuss underexplored and underutilized antiviral strategies, including ribozyme-mediated RNA-cleaving tools for targeting viral RNA, and recent advances in plant-based platforms for rapid, low-cost, and large-scale production and oral delivery of antiviral agents/vaccines. Lastly, we propose repurposing of the existing vaccines for newer applications with a major emphasis on Bacillus Calmette-Guérin (BCG)-based vaccine engineering.
Collapse
Affiliation(s)
- Shifa Bushra Kotwal
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Nidhi Orekondey
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | | | - Neha Priyadarshini
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Navinchandra V Puppala
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Mahak Bhushan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, West Bengal 741246, India
| | - Snehasri Motamarry
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Rahul Kumar
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Gireesha Mohannath
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Ruchi Jain Dey
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| |
Collapse
|
4
|
Abstract
Ribozymes are structured RNA molecules that act as catalysts in different biological reactions. From simple genome cleaving activities in satellite RNAs to more complex functions in cellular protein synthesis and gene regulation, ribozymes play important roles in all forms of life. Several naturally existing ribozymes have been modified for use as therapeutics in different conditions, with HIV-1 infection being one of the most studied. This chapter summarizes data from different preclinical and clinical studies conducted to evaluate the potential of ribozymes to be used in HIV-1 therapies. The different ribozyme motifs that have been modified, as well as their target sites and expression strategies, are described. RNA conjugations used to enhance the antiviral effect of ribozymes are also presented and the results from clinical trials conducted to date are summarized. Studies on anti-HIV-1 ribozymes have provided valuable information on the optimal expression strategies and clinical protocols for RNA gene therapy and remain competitive candidates for future therapy.
Collapse
|
5
|
Jiang X, Sunkara N, Lu S, Liu F. Directing RNase P-mediated cleavage of target mRNAs by engineered external guide sequences in cultured cells. Methods Mol Biol 2014; 1103:45-56. [PMID: 24318885 PMCID: PMC4066411 DOI: 10.1007/978-1-62703-730-3_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Ribonuclease P (RNase P) complexed with external guide sequence (termed as EGS) represents a novel nucleic acid-based gene interference approach to modulate gene expression. In previous studies, by using an in vitro selection procedure, we have successfully generated EGS variants that are complementary to target mRNAs, and these variants exhibit higher efficiency in directing human RNase P to cleave the target mRNAs than those derived from nature RNAs in vitro. This chapter describes the procedure of using engineered EGSs for in vitro trans-cleavage of target viral mRNAs in cultured cells. Detailed information is focused on (1) generation and in vitro cleavage assay of the customized EGS variants and (2) stable expression of EGS and evaluation of its activity in inhibition of viral gene expression and growth in cultured cells. These methods should provide general guidelines for using engineered EGS to direct RNase P-mediated cleavage of target mRNAs in cultured cells.
Collapse
Affiliation(s)
- Xiaohong Jiang
- School of Public Health, University of California, Berkeley, CA, USA
| | | | | | | |
Collapse
|
6
|
RNase P-associated external guide sequence effectively reduces the expression of human CC-chemokine receptor 5 and inhibits the infection of human immunodeficiency virus 1. BIOMED RESEARCH INTERNATIONAL 2013; 2013:509714. [PMID: 23509733 PMCID: PMC3591226 DOI: 10.1155/2013/509714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/17/2012] [Accepted: 10/25/2012] [Indexed: 11/30/2022]
Abstract
External guide sequences (EGSs) represent a new class of RNA-based gene-targeting agents, consist of a sequence complementary to a target mRNA, and render the target RNA susceptible to degradation by ribonuclease P (RNase P). In this study, EGSs were constructed to target the mRNA encoding human CC-chemokine receptor 5 (CCR5), one of the primary coreceptors for HIV. An EGS RNA, C1, efficiently directed human RNase P to cleave the CCR5 mRNA sequence in vitro. A reduction of about 70% in the expression level of both CCR5 mRNA and protein and an inhibition of more than 50-fold in HIV (R5 strain Ba-L) p24 production were observed in cells that expressed C1. In comparison, a reduction of about 10% in the expression of CCR5 and viral growth was found in cells that either did not express the EGS or produced a “disabled” EGS which carried nucleotide mutations that precluded RNase P recognition. Furthermore, the same C1-expressing cells that were protected from R5 strain Ba-L retained susceptibility to X4 strain IIIB, which uses CXCR4 as the coreceptor instead of CCR5, suggesting that the RNase P-mediated cleavage induced by the EGS is specific for the target CCR5 but not the closely related CXCR4. Our results provide direct evidence that EGS RNAs against CCR5 are effective and specific in blocking HIV infection and growth. These results also demonstrate the feasibility to develop highly effective EGSs for anti-HIV therapy.
Collapse
|
7
|
Zeng W, Chen YC, Bai Y, Trang P, Vu GP, Lu S, Wu J, Liu F. Effective inhibition of human immunodeficiency virus 1 replication by engineered RNase P ribozyme. PLoS One 2012; 7:e51855. [PMID: 23300569 PMCID: PMC3530568 DOI: 10.1371/journal.pone.0051855] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/13/2012] [Indexed: 11/18/2022] Open
Abstract
Using an in vitro selection procedure, we have previously isolated RNase P ribozyme variants that efficiently cleave an mRNA sequence in vitro. In this study, a variant was used to target the HIV RNA sequence in the tat region. The variant cleaved the tat RNA sequence in vitro about 20 times more efficiently than the wild type ribozyme. Our results provide the first direct evidence that combined mutations at nucleotide 83 and 340 of RNase P catalytic RNA from Escherichia coli (G(83) -> U(83) and G(340) -> A(340)) increase the overall efficiency of the ribozyme in cleaving an HIV RNA sequence. Moreover, the variant is more effective in reducing HIV-1 p24 expression and intracellular viral RNA level in cells than the wild type ribozyme. A reduction of about 90% in viral RNA level and a reduction of 150 fold in viral growth were observed in cells that expressed the variant, while a reduction of less than 10% was observed in cells that either did not express the ribozyme or produced a catalytically inactive ribozyme mutant. Thus, engineered ribozyme variants are effective in inhibiting HIV infection. These results also demonstrate the potential of engineering RNase P ribozymes for anti-HIV application.
Collapse
Affiliation(s)
- Wenbo Zeng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yuan-Chuan Chen
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
| | - Yong Bai
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Phong Trang
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Gia-Phong Vu
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
| | - Sangwei Lu
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
- School of Public Health, University of California, Berkeley, California, United States of America
- * E-mail: (FL); (JW); (SL)
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- * E-mail: (FL); (JW); (SL)
| | - Fenyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
- School of Public Health, University of California, Berkeley, California, United States of America
- * E-mail: (FL); (JW); (SL)
| |
Collapse
|
8
|
Jiang X, Bai Y, Rider P, Kim K, Zhang CY, Lu S, Liu F. Engineered external guide sequences effectively block viral gene expression and replication in cultured cells. J Biol Chem 2010; 286:322-30. [PMID: 20980254 DOI: 10.1074/jbc.m110.158857] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribonuclease P (RNase P) complexed with external guide sequence (EGS) represents a novel nucleic acid-based gene interference approach to modulate gene expression. We have previously used an in vitro selection procedure to generate EGS variants that efficiently direct human RNase P to cleave a target mRNA in vitro. In this study, a variant was used to target the mRNA encoding the protease of human cytomegalovirus (HCMV), which is essential for viral capsid formation and replication. The EGS variant was about 35-fold more active in inducing human RNase P to cleave the mRNA in vitro than the EGS derived from a natural tRNA. Moreover, a reduction of 95% in the expression of the protease and a reduction of 4,000-fold in viral growth were observed in HCMV-infected cells that expressed the EGS variant, whereas a reduction of 80% in the protease expression and an inhibition of 150-fold in viral growth were detected in cells that expressed the EGS derived from a natural tRNA sequence. No significant reduction in viral protease expression or viral growth was observed in cells that either did not express an EGS or produced a "disabled" EGS, which carried nucleotide mutations that precluded RNase P recognition. Our results provide direct evidence that engineered EGS variant is highly effective in blocking HCMV expression and growth by targeting the viral protease. Furthermore, these results demonstrate the utility of engineered EGS RNAs in gene targeting applications, including the inhibition of HCMV infection by blocking the expression of virus-encoded essential proteins.
Collapse
Affiliation(s)
- Xiaohong Jiang
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The ability to interfere with gene expression is of crucial importance to unravel the function of genes and is also a promising therapeutic strategy. Here we discuss methodologies for inhibition of target RNAs based on the cleavage activity of the essential enzyme, Ribonuclease P (RNase P). RNase P-mediated cleavage of target RNAs can be directed by external guide sequences (EGSs) or by the use of the catalytic M1 RNA from E. coli linked to a guide sequence (M1GSs). These are not only basic tools for functional genetic studies in prokaryotic and eukaryotic cells but also promising antibacterial, anticancer and antiviral agents.
Collapse
Affiliation(s)
- Eirik Wasmuth Lundblad
- Reference Centre for Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway.
| | | |
Collapse
|
10
|
Ruiz ADS, Chauffaille MDLF, Alves ST, Oliveira JSRD. Prevalence of chimerism after non-myeloablative hematopoietic stem cell transplantation. SAO PAULO MED J 2009; 127:251-8. [PMID: 20169272 PMCID: PMC11553119 DOI: 10.1590/s1516-31802009000500002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 11/22/2022] Open
Abstract
CONTEXT AND OBJECTIVE Non-myeloablative hematopoietic stem cell transplantation (NMA-HSCT) is performed in onco-hematological patients who cannot tolerate ablative conditioning because of older age or comorbidities. This approach does not completely eliminate host cells and initially results in mixed chimerism. Long-term persistence of mixed chimerism results in graft rejection and relapse. Involvement of graft-versus-host disease is concomitant with complete chimerism and graft-versus-tumor effect. The aim of this study was to evaluate the prevalence of chimerism in onco-hematological patients who underwent NMA-HSCT. DESIGN AND SETTING Observational clinical study on chimerism status after human leukocyte antigen-identical NMA-HSCT at the Discipline of Hematology and Hemotherapy of Universidade Federal de São Paulo. METHODS We sequentially analyzed the amplification of APO-B, D1S80, DxS52, FVW, 33.6, YNZ-2 and H-ras primers using variable number of tandem repeats (VNTR) on 17 pairs and fluorescent in situ hybridization (FISH) with the XY probe and SRY primer on 13 sex-unmatched pairs. RESULTS The informativeness of the primers using VNTR was 60% for APO-B, 75% D1S80, 36% DxS52, 14% FVW, 40% YNZ-22 and 16% H-ras. The SRY primer was informative in female receptors with male donors. The XY-FISH method was informative in 100% of the sex-unmatched pairs. CONCLUSION These methods were sensitive and informative. In VNTR, the association of APO-B with D1S80 showed 88% informativeness. The quantitative FISH method was more sensitive, but had the disadvantage of only being used for sex-unmatched pairs.
Collapse
Affiliation(s)
- Azulamara da Silva Ruiz
- Division of Hematology and Transfusion Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
11
|
Vourekas A, Vryzaki E, Toumpeki C, Stamatopoulou V, Monastirli A, Tsambaos D, Drainas D. Partial purification and characterization of RNase P from human peripheral lymphocytes. Exp Dermatol 2009; 18:130-3. [DOI: 10.1111/j.1600-0625.2008.00772.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Dreyfus DH, Tompkins SM, Fuleihan R, Ghoda LY. Gene silencing in the therapy of influenza and other respiratory diseases: Targeting to RNase P by use of External Guide Sequences (EGS). Biologics 2007; 1:425-32. [PMID: 19707312 PMCID: PMC2721295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Respiratory diseases provide an attractive target for gene silencing using small nucleic acids since the respiratory epithelium can be reached by inhalation therapy. Natural surfactant appears to facilitate the uptake and distribution of these types of molecules making aerosolized nucleic acids a possible new class of therapeutics. This article will review the rationale for the use of External Guide Sequence (EGS) in targeting specific mRNA molecules for RNase P-mediated intracellular destruction. Specific destruction of target mRNA results in gene-specific silencing similar to that instigated by siRNA via the RISC complex. The application of EGS molecules specific for influenza genes are discussed as well as the potential for synergy with siRNA. Furthermore, EGS could be adapted to target other respiratory diseases of viral etiology as well as conditions such as asthma.
Collapse
Affiliation(s)
- David H Dreyfus
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA;, Keren Pharmaceuticals, New Haven, CT, USA
| | - S Mark Tompkins
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Ramsay Fuleihan
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Lucy Y Ghoda
- Keren Pharmaceuticals, New Haven, CT, USA;, The Webb-Waring Institute and the Department of Medicine, University of Colorado Health Sciences Center, Denver, CO,Correspondence: Lucy Y Ghoda, The Webb-Waring Institute, UCDHSC, 4200 East Ninth Ave, Campus Box C321, Denver, CO 80262, USA, Tel +1 303 315 7961, Email
| |
Collapse
|
13
|
Kim K, Liu F. Inhibition of gene expression in human cells using RNase P-derived ribozymes and external guide sequences. ACTA ACUST UNITED AC 2007; 1769:603-12. [PMID: 17976837 DOI: 10.1016/j.bbaexp.2007.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 09/13/2007] [Accepted: 09/14/2007] [Indexed: 11/19/2022]
Abstract
Ribonuclease P (RNase P) complexed with an external guide sequence (EGS) represents a novel nucleic acid-based gene interference approach to modulate gene expression. This enzyme is a ribonucleoprotein complex for tRNA processing. In Escherichia coli, RNase P contains a catalytic RNA subunit (M1 ribozyme) and a protein subunit (C5 cofactor). EGSs, which are RNAs derived from natural tRNAs, bind to a target mRNA and render the mRNA susceptible to hydrolysis by RNase P and M1 ribozyme. When covalently linked with a guide sequence, M1 can be engineered into a sequence-specific endonuclease, M1GS ribozyme, which cleaves any target RNAs that base pair with the guide sequence. Studies have demonstrated efficient cleavage of mRNAs by M1GS and RNase P complexed with EGSs in vitro. Moreover, highly active M1GS and EGSs were successfully engineered using in vitro selection procedures. EGSs and M1GS ribozymes are effective in blocking gene expression in both bacteria and human cells, and exhibit promising activity for antimicrobial, antiviral, and anticancer applications. In this review, we highlight some recent results using the RNase P-based technology, and offer new insights into the future of using EGS and M1GS RNA as tools for basic research and as gene-targeting agents for clinical applications.
Collapse
Affiliation(s)
- Kihoon Kim
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
14
|
Habu Y, Miyano-Kurosaki N, Kitano M, Endo Y, Yukita M, Ohira S, Takaku H, Nashimoto M, Takaku H. Inhibition of HIV-1 gene expression by retroviral vector-mediated small-guide RNAs that direct specific RNA cleavage by tRNase ZL. Nucleic Acids Res 2005; 33:235-43. [PMID: 15647506 PMCID: PMC546152 DOI: 10.1093/nar/gki164] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 12/15/2004] [Accepted: 12/15/2004] [Indexed: 11/13/2022] Open
Abstract
The tRNA 3'-processing endoribonuclease (tRNase Z or 3' tRNase; EC 3.1.26.11) is an essential enzyme that removes the 3' trailer from pre-tRNA. The long form (tRNase ZL) can cleave a target RNA in vitro at the site directed by an appropriate small-guide RNA (sgRNA). Here, we investigated whether this sgRNA/tRNase ZL strategy could be applied to gene therapy for AIDS. We tested the ability of four sgRNA-expression plasmids to inhibit HIV-1 gene expression in COS cells, using a transient-expression assay. The three sgRNAs guide inhibition of HIV-1 gene expression in cultured COS cells. Analysis of the HIV-1 mRNA levels suggested that sgRNA directed the tRNase ZL to mediate the degradation of target RNA. The observation that sgRNA was localized primarily in nuclei suggests that tRNase ZL cleaves the HIV-1 mRNA when complexed with sgRNA in this location. We also examined the ability of two retroviral vectors expressing sgRNA to suppress HIV-1 expression in HIV-1-infected Jurkat T cells. sgRNA-SL4 suppressed HIV-1 expression almost completely in infected cells for up to 18 days. These results suggest that the sgRNA/tRNase ZL approach is effective in downregulating HIV-1 gene expression.
Collapse
Affiliation(s)
- Yuichiro Habu
- High Technology Research Center, Chiba Institute of Technology2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Naoko Miyano-Kurosaki
- Department of Life and Environmental Sciences, Chiba Institute of Technology2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
- High Technology Research Center, Chiba Institute of Technology2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Michiko Kitano
- Department of Life and Environmental Sciences, Chiba Institute of Technology2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Yumihiko Endo
- Department of Life and Environmental Sciences, Chiba Institute of Technology2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Masakazu Yukita
- Department of Life and Environmental Sciences, Chiba Institute of Technology2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Shigeru Ohira
- Department of Life and Environmental Sciences, Chiba Institute of Technology2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Hiroaki Takaku
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences265-1 Higashito, Niitsu, Niigata 956-8603, Japan
| | - Masayuki Nashimoto
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences265-1 Higashito, Niitsu, Niigata 956-8603, Japan
| | - Hiroshi Takaku
- Department of Life and Environmental Sciences, Chiba Institute of Technology2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
- High Technology Research Center, Chiba Institute of Technology2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| |
Collapse
|
15
|
Zhang H, Altman S. Inhibition of the expression of the human RNase P protein subunits Rpp21, Rpp25, Rpp29 by external guide sequences (EGSs) and siRNA. J Mol Biol 2004; 342:1077-83. [PMID: 15351636 DOI: 10.1016/j.jmb.2004.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 05/23/2004] [Accepted: 06/03/2004] [Indexed: 12/27/2022]
Abstract
External guide sequences (EGSs) and siRNAs were targeted individually to the mRNA of three of the protein subunits of human RNase P, Rpp21, Rpp25 and Rpp29. The production of each of the three targets was inhibited in every specific case. In addition, some of the remaining protein subunits were also inhibited by these specific EGSs and the siRNAs. These data, in general, confirm previous results on the inhibition of a sub-group of all the protein subunits with an EGS against Rpp38. The effect of EGSs is apparent in 24 hours after transfection but the effect of siRNAs, which is comparable to the EGS data in amounts of inhibition, takes at least 48 to 96 hours to become evident. No general understanding of the mechanism of action of the siRNAs, in terms of which portion of a target mRNA they bind to for function, was apparent from the design of those used here.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
16
|
Barnor JS, Endo Y, Habu Y, Miyano-Kurosaki N, Kitano M, Yamamoto H, Takaku H. Effective inhibition of HIV-1 replication in cultured cells by external guide sequences and ribonuclease P. Bioorg Med Chem Lett 2004; 14:4941-4. [PMID: 15341956 DOI: 10.1016/j.bmcl.2004.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 07/06/2004] [Accepted: 07/12/2004] [Indexed: 11/29/2022]
Abstract
We examined the suppressive effect of HIV-1 RNA gene cleavage on HIV-1 expression, using the catalytic RNA subunit RNase P and the 3'-half tRNA(Try) [external guide sequence (EGS)] in cultured cells. HIV-1 expression was inhibited by the tRNA(met)-EGS-U5 and U6-EGS-U5 from the tRNA(met) and U6 promoters, respectively. There was no difference in the inhibitory effects on HIV-1 expression between the tRNA(met) and U6 promoters.
Collapse
Affiliation(s)
- Jacob S Barnor
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Zhu J, Trang P, Kim K, Zhou T, Deng H, Liu F. Effective inhibition of Rta expression and lytic replication of Kaposi's sarcoma-associated herpesvirus by human RNase P. Proc Natl Acad Sci U S A 2004; 101:9073-8. [PMID: 15184661 PMCID: PMC428475 DOI: 10.1073/pnas.0403164101] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Indexed: 11/18/2022] Open
Abstract
Ribonuclease P (RNase P) complexed with external guide sequence (EGS) represents a nucleic acid-based gene interference approach to knock-down gene expression. Unlike other strategies, such as antisense oligonucleotides, ribozymes, and RNA interference, the RNase P-based technology is unique because a custom-designed EGS molecule can bind to any complementary mRNA sequence and recruit intracellular RNase P for specific degradation of the target mRNA. In this study, we demonstrate that the RNase P-based strategy is effective in blocking gene expression and growth of Kaposi's sarcoma (KS)-associated herpesvirus (KSHV), the causative agent of the leading AIDS-associated neoplasms, such as KS and primary-effusion lymphoma. We constructed 2'-O-methyl-modified EGS molecules that target the mRNA encoding KSHV immediate-early transcription activator Rta, and we administered them directly to human primary-effusion lymphoma cells infected with KSHV. A reduction of 90% in Rta expression and a reduction of approximately 150-fold in viral growth were observed in cells treated with a functional EGS. In contrast, a reduction of <10% in the Rta expression and viral growth was found in cells that were either not treated with an EGS or that were treated with a disabled EGS containing mutations that preclude recognition by RNase P. Our study provides direct evidence that EGSs are highly effective in inhibiting KSHV gene expression and growth. Exogenous administration of chemically modified EGSs in inducing RNase P-mediated cleavage represents an approach for inhibiting specific gene expression and for treating human diseases, including KSHV-associated tumors.
Collapse
Affiliation(s)
- Jiaming Zhu
- Program in Infectious Diseases, School of Public Health, 140 Warren Hall, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Ribonuclease P (RNase P) is a ubiquitous ribonucleoprotein complex responsible for the biosynthesis of tRNA. This enzyme from Escherichia coli contains a catalytic RNA subunit (M1 ribozyme) and a protein subunit (C5 cofactor). M1 ribozyme cleaves an RNA helix that resembles the acceptor stem and T-stem structure of its natural tRNA substrate. When covalently linked with a guide sequence, M1 RNA can be engineered into a sequence-specific endonuclease, M1GS ribozyme, which can cleave any target RNA sequences that base pair with the guide sequence. Recent studies indicate that M1GS ribozymes efficiently cleave the mRNAs of herpes simplex virus 1, human cytomegalovirus, and cancer causing BCR-ABL proteins in vitro and effectively inhibit the expression of these mRNAs in cultured cells. Moreover, RNase P ribozyme variants that are more active than the wild type M1 RNA can be generated using in vitro selection procedures and the selected variants are also more effective in inhibiting gene expression in cultured cells. These results demonstrate that engineered RNase P ribozymes represent a novel class of promising gene-targeting agents for applications in both basic research and clinical therapy. This review discusses the principle underlying M1GS-mediated gene inactivation and methodologies involved in effective M1GS construction, expression in vivo and emerging prospects of this technology for gene therapy.
Collapse
Affiliation(s)
- Stephen M L Raj
- Division of Infectious Diseases, School of Public Health, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
19
|
Steele D, Kertsburg A, Soukup GA. Engineered catalytic RNA and DNA : new biochemical tools for drug discovery and design. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2003; 3:131-44. [PMID: 12749730 DOI: 10.2165/00129785-200303020-00006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Since the fundamental discovery that RNA catalyzes critical biological reactions, the conceptual and practical utility of nucleic acid catalysts as molecular therapeutic and diagnostic agents continually develops. RNA and DNA catalysts are particularly attractive tools for drug discovery and design due to their relative ease of synthesis and tractable rational design features. Such catalysts can intervene in cellular or viral gene expression by effectively destroying virtually any target RNA, repairing messenger RNAs derived from mutant genes, or directly disrupting target genes. Consequently, catalytic nucleic acids are apt tools for dissecting gene function and for effecting gene pharmacogenomic strategies. It is in this capacity that RNA and DNA catalysts have been most widely utilized to affect gene expression of medically relevant targets associated with various disease states, where a number of such catalysts are presently being evaluated in clinical trials. Additionally, biotechnological prospects for catalytic nucleic acids are seemingly unlimited. Controllable nucleic acid catalysts, termed allosteric ribozymes or deoxyribozymes, form the basis of effector or ligand-dependent molecular switches and sensors. Allosteric nucleic acid catalysts promise to be useful tools for detecting and scrutinizing the function of specified components of the metabolome, proteome, transcriptome, and genome. The remarkable versatility of nucleic acid catalysis is thus the fountainhead for wide-ranging applications of ribozymes and deoxyribozymes in biomedical and biotechnological research.
Collapse
Affiliation(s)
- David Steele
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska, USA
| | | | | |
Collapse
|
20
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2003; 11:238-241. [DOI: 10.11569/wcjd.v11.i2.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|