1
|
Brooks WH. Polyamine Dysregulation and Nucleolar Disruption in Alzheimer's Disease. J Alzheimers Dis 2024; 98:837-857. [PMID: 38489184 DOI: 10.3233/jad-231184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
A hypothesis of Alzheimer's disease etiology is proposed describing how cellular stress induces excessive polyamine synthesis and recycling which can disrupt nucleoli. Polyamines are essential in nucleolar functions, such as RNA folding and ribonucleoprotein assembly. Changes in the nucleolar pool of anionic RNA and cationic polyamines acting as counterions can cause significant nucleolar dynamics. Polyamine synthesis reduces S-adenosylmethionine which, at low levels, triggers tau phosphorylation. Also, polyamine recycling reduces acetyl-CoA needed for acetylcholine, which is low in Alzheimer's disease. Extraordinary nucleolar expansion and/or contraction can disrupt epigenetic control in peri-nucleolar chromatin, such as chromosome 14 with the presenilin-1 gene; chromosome 21 with the amyloid precursor protein gene; chromosome 17 with the tau gene; chromosome 19 with the APOE4 gene; and the inactive X chromosome (Xi; aka "nucleolar satellite") with normally silent spermine synthase (polyamine synthesis) and spermidine/spermine-N1-acetyltransferase (polyamine recycling) alleles. Chromosomes 17, 19 and the Xi have high concentrations of Alu elements which can be transcribed by RNA polymerase III if positioned nucleosomes are displaced from the Alu elements. A sudden flood of Alu RNA transcripts can competitively bind nucleolin which is usually bound to Alu sequences in structural RNAs that stabilize the nucleolar heterochromatic shell. This Alu competition leads to loss of nucleolar integrity with leaking of nucleolar polyamines that cause aggregation of phosphorylated tau. The hypothesis was developed with key word searches (e.g., PubMed) using relevant terms (e.g., Alzheimer's, lupus, nucleolin) based on a systems biology approach and exploring autoimmune disease tautology, gaining synergistic insights from other diseases.
Collapse
|
2
|
Lari A, Glaunsinger BA. Murine Gammaherpesvirus 68 ORF45 Stimulates B2 Retrotransposon and Pre-tRNA Activation in a Manner Dependent on Mitogen-Activated Protein Kinase (MAPK) Signaling. Microbiol Spectr 2023; 11:e0017223. [PMID: 36752632 PMCID: PMC10100704 DOI: 10.1128/spectrum.00172-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 02/09/2023] Open
Abstract
RNA polymerase III (RNAPIII) transcribes a variety of noncoding RNAs, including tRNA (tRNA) and the B2 family of short interspersed nuclear elements (SINEs). B2 SINEs are noncoding retrotransposons that possess tRNA-like promoters and are normally silenced in healthy somatic tissue. Infection with the murine gammaherpesvirus MHV68 induces transcription of both SINEs and tRNAs, in part through the activity of the viral protein kinase ORF36. Here, we identify the conserved MHV68 tegument protein ORF45 as an additional activator of these RNAPIII loci. MHV68 ORF45 and ORF36 form a complex, resulting in an additive induction RNAPIII and increased ORF45 expression. ORF45-induced RNAPIII transcription is dependent on its activation of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) signaling pathway, which in turn increases the abundance of the RNAPIII transcription factor Brf1. Other viral and nonviral activators of MAPK/ERK signaling also increase the levels of Brf1 protein, B2 SINE RNA, and tRNA, suggesting that this is a common strategy to increase RNAPIII activity. IMPORTANCE Gammaherpesviral infection alters the gene expression landscape of a host cell, including through the induction of noncoding RNAs transcribed by RNA polymerase III (RNAPIII). Among these are a class of repetitive genes known as retrotransposons, which are normally silenced elements and can copy and spread throughout the genome, and transfer RNAs (tRNAs), which are fundamental components of protein translation machinery. How these loci are activated during infection is not well understood. Here, we identify ORF45 from the model murine gammaherpesvirus MHV68 as a novel activator of RNAPIII transcription. To do so, it engages the MAPK/ERK signaling pathway, which is a central regulator of cellular response to environmental stimuli. Activation of this pathway leads to the upregulation of a key factor required for RNAPIII activity, Brf1. These findings expand our understanding of the regulation and dysregulation of RNAPIII transcription and highlight how viral cooption of key signaling pathways can impact host gene expression.
Collapse
Affiliation(s)
- Azra Lari
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Britt A. Glaunsinger
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Howard Hughes Medical Institute, Berkeley, California, USA
| |
Collapse
|
3
|
Mettler E, Fottner C, Bakhshandeh N, Trenkler A, Kuchen R, Weber MM. Quantitative Analysis of Plasma Cell-Free DNA and Its DNA Integrity and Hypomethylation Status as Biomarkers for Tumor Burden and Disease Progression in Patients with Metastatic Neuroendocrine Neoplasias. Cancers (Basel) 2022; 14:cancers14041025. [PMID: 35205773 PMCID: PMC8870292 DOI: 10.3390/cancers14041025] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Neuroendocrine neoplasias (NEN) are a heterogeneous group of frequent slow-progressing malignant tumors for which a reliable marker for tumor relapse and progression is still lacking. Previously, circulating cell-free DNA and its global methylation status and fragmentation rate have been proposed to be valuable prognostic tumor markers in a variety of malignancies. In the current study, we compared plasma cell-free DNA (cfDNA) properties of NEN patients with a healthy control group and a group of surgically cured patients. Our results revealed significantly higher plasma cfDNA concentrations with increased fragmentation and hypomethylation in patients with advanced metastatic NEN, which was strongly associated with tumor load and could help to differentiate between metastasized disease and presumably cured patients. This suggests that the combined analysis of plasma cfDNA characteristics is a potent and sensitive prognostic and therapeutic biomarker for tumor burden and disease progression in patients with neuroendocrine neoplasias. Abstract Background: Neuroendocrine neoplasia (NEN) encompasses a diverse group of malignancies marked by histological heterogeneity and highly variable clinical outcomes. Apart from Chromogranin A, specific biomarkers predicting residual tumor disease, tumor burden, and disease progression in NEN are scant. Thus, there is a strong clinical need for new and minimally invasive biomarkers that allow for an evaluation of the prognosis, clinical course, and response to treatment of NEN patients, thereby helping implement individualized treatment decisions in this heterogeneous group of patients. In the current prospective study, we evaluated the role of plasma cell-free DNA concentration and its global hypomethylation and fragmentation as possible diagnostic and prognostic biomarkers in patients with neuroendocrine neoplasias. Methods: The plasma cfDNA concentration, cfDNA Alu hypomethylation, and LINE-1 cfDNA integrity were evaluated prospectively in 63 NEN patients with presumably cured or advanced metastatic disease. The cfDNA characteristics in NEN patients were compared to the results of a group of 29 healthy controls and correlated with clinical and histopathological data of the patients. Results: Patients with advanced NEN showed a significantly higher cfDNA concentration and percentage of Alu hypomethylation and a reduced LINE-1 cfDNA integrity as compared to the surgically cured NET patients and the healthy control group. The increased hypomethylation and concentration of cfDNA and the reduced cfDNA integrity in NEN patients were strongly associated with tumor burden and poor prognosis, while no correlation with tumor grading, differentiation, localization, or hormonal activity could be found. Multiparametric ROC analysis of plasma cfDNA characteristics was able to distinguish NEN patients with metastatic disease from the control group and the cured NEN patients with AUC values of 0.694 and 0.908, respectively. This was significant even for the group with only a low tumor burden. Conclusions: The present study, for the first time, demonstrates that the combination of plasma cfDNA concentration, global hypomethylation, and fragment length pattern has the potential to serve as a potent and sensitive prognostic and therapeutic “liquid biopsy” biomarker for tumor burden and disease progression in patients with neuroendocrine neoplasias.
Collapse
Affiliation(s)
- Esther Mettler
- Department of Endocrinology and Metabolism, I Medical Clinic, University Hospital, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany; (C.F.); (N.B.); (A.T.); (M.M.W.)
- Correspondence:
| | - Christian Fottner
- Department of Endocrinology and Metabolism, I Medical Clinic, University Hospital, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany; (C.F.); (N.B.); (A.T.); (M.M.W.)
| | - Neda Bakhshandeh
- Department of Endocrinology and Metabolism, I Medical Clinic, University Hospital, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany; (C.F.); (N.B.); (A.T.); (M.M.W.)
| | - Anja Trenkler
- Department of Endocrinology and Metabolism, I Medical Clinic, University Hospital, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany; (C.F.); (N.B.); (A.T.); (M.M.W.)
| | - Robert Kuchen
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany;
| | - Matthias M. Weber
- Department of Endocrinology and Metabolism, I Medical Clinic, University Hospital, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany; (C.F.); (N.B.); (A.T.); (M.M.W.)
| |
Collapse
|
4
|
Stark A, Trick A, Pisanic TR, Wang TH. Droplet Magnetofluidic Assay Platform for Quantitative Methylation-Specific PCR. Methods Mol Biol 2022; 2394:199-209. [PMID: 35094330 DOI: 10.1007/978-1-0716-1811-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Early cancer detection requires identification of cellular changes resulting from oncogenesis. Abnormal DNA methylation patterns occurring early in tumor development have been widely identified as early biomarkers for multiple types of cancer tumors. Methylation-Specific PCR (MSP) has permitted highly sensitive detection of these methylation changes at known biomarker locations. MSP requires multiple sample preparation steps including protein digestion, DNA isolation, and bisulfite conversion prior to detection. In this work, we present a streamlined assay platform and instrumentation for integration of all sample processing steps required to obtain quantitative MSP signal from raw biological samples through the use of droplet magnetofluidic principles. In conjunction with this platform, we present a streamlined protocol for solid-phase DNA extraction from cells and bisulfite conversion of genomic DNA, minimizing the processing steps and reagent volume for implementation on a compact assay platform.
Collapse
Affiliation(s)
- Alejandro Stark
- Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Alexander Trick
- Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Thomas R Pisanic
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Tza-Huei Wang
- Mechanical & Biomedical Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
5
|
Song Z, Shah S, Lv B, Ji N, Liu X, Yan L, Khan M, Zhao Y, Wu P, Liu S, Zheng L, Su L, Wang X, Lv Z. Anti-aging and anti-oxidant activities of murine short interspersed nuclear element antisense RNA. Eur J Pharmacol 2021; 912:174577. [PMID: 34688636 DOI: 10.1016/j.ejphar.2021.174577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 12/09/2022]
Abstract
Short interspersed nuclear elements (SINEs) play a key role in regulating gene expression, and SINE RNAs are involved in age-related diseases. We investigated the anti-aging effects of a genetically engineered murine SINE B1 antisense RNA (B1as RNA) and explored its mechanism of action in naturally senescent BALB/c (≥14 months) and moderately senscent C57BL/6N (≥9 months) mice. After tail vein injection, B1as RNA was available in the blood of mice for approximately 30 min, persisted for approximately 2-4 h in most detected tissues and persisted approximately 48 h in lungs. We found that treatment with B1as RNA improved stamina and promoted hair re-growth in aged mice. Treatment with B1as RNA also partially rescued the increase in mitochondrial DNA copy number in liver and spleen tissues observed in aged and moderately senescent mice. Finally, treatment with B1as RNA increased the activities of superoxide dismutase and glutathione peroxidase in aged and moderately senescent mice, reduced these animals' malondialdehyde and reactive oxygen species levels, and modulated the expression of several aging-associated genes, including Sirtuin 1, p21, p16Ink4a, p15Ink4b and p19Arf, and anti-oxidant genes (Sesn1 and Sesn 2). These data suggest that B1as RNA inhibits the aging process by enhancing antioxidant activity, promoting the scavenging of free radicals, and modulating the expression of aging-associated genes. This is the first report describing the anti-aging activity of SINE antisense RNA, which may serve as an effective nucleic acid drug for the treatment of age-related diseases.
Collapse
Affiliation(s)
- Zhixue Song
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Suleman Shah
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Baixue Lv
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, PR China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei Province, PR China.
| | - Ning Ji
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Xin Liu
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Lifang Yan
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Murad Khan
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Yufang Zhao
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Peiyuan Wu
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Shufeng Liu
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Long Zheng
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Libo Su
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Xiufang Wang
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Zhanjun Lv
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| |
Collapse
|
6
|
Al-Asadi S, Malik A, Bakiu R, Santovito G, Menz I, Schuller K. Characterization of the peroxiredoxin 1 subfamily from Tetrahymena thermophila. Cell Mol Life Sci 2019; 76:4745-4768. [PMID: 31129858 PMCID: PMC11105310 DOI: 10.1007/s00018-019-03131-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/02/2019] [Accepted: 05/02/2019] [Indexed: 12/16/2022]
Abstract
Peroxiredoxins are antioxidant enzymes that use redox active Cys residues to reduce H2O2 and various organic hydroperoxides to less reactive products, and thereby protect cells against oxidative stress. In yeasts and mammals, the Prx1 proteins are sensitive to hyperoxidation and consequent loss of their peroxidase activity whereas in most bacteria they are not. In this paper we report the characterization of the Prx1 family in the non-parasitic protist Tetrahymena thermophila. In this organism, four genes potentially encoding Prx1 have been identified. In particular, we show that the mitochondrial Prx1 protein (Prx1m) from T. thermophila is relatively robust to hyperoxidation. This is surprising given that T. thermophila is a eukaryote like yeasts and mammals. In addition, the proliferation of the T. thermophila cells was relatively robust to inhibition by H2O2, cumene hydroperoxide and plant natural products that are known to promote the production of H2O2. In the presence of these agents, the abundance of the T. thermophila Prx1m protein was shown to increase. This suggested that the Prx1m protein may be protecting the cells against oxidative stress. There was no evidence for any increase in Prx1m gene expression in the stressed cells. Thus, increasing protein stability rather than increasing gene expression may explain the increasing Prx1m protein abundance we observed.
Collapse
Affiliation(s)
- Sarmad Al-Asadi
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
- Department of Biology, College of Education for Pure Sciences, University of Basrah, Basrah, Iraq
| | - Arif Malik
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Rigers Bakiu
- Department of Aquaculture and Fisheries, Agricultural University of Tirana, Tirana, Albania
| | | | - Ian Menz
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Kathryn Schuller
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia.
| |
Collapse
|
7
|
Movassat M, Forouzmand E, Reese F, Hertel KJ. Exon size and sequence conservation improves identification of splice-altering nucleotides. RNA (NEW YORK, N.Y.) 2019; 25:1793-1805. [PMID: 31554659 PMCID: PMC6859846 DOI: 10.1261/rna.070987.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Pre-mRNA splicing is regulated through multiple trans-acting splicing factors. These regulators interact with the pre-mRNA at intronic and exonic positions. Given that most exons are protein coding, the evolution of exons must be modulated by a combination of selective coding and splicing pressures. It has previously been demonstrated that selective splicing pressures are more easily deconvoluted when phylogenetic comparisons are made for exons of identical size, suggesting that exon size-filtered sequence alignments may improve identification of nucleotides evolved to mediate efficient exon ligation. To test this hypothesis, an exon size database was created, filtering 76 vertebrate sequence alignments based on exon size conservation. In addition to other genomic parameters, such as splice-site strength, gene position, or flanking intron length, this database permits the identification of exons that are size- and/or sequence-conserved. Highly size-conserved exons are always sequence-conserved. However, sequence conservation does not necessitate exon size conservation. Our analysis identified evolutionarily young exons and demonstrated that length conservation is a strong predictor of alternative splicing. A published data set of approximately 5000 exonic SNPs associated with disease was analyzed to test the hypothesis that exon size-filtered sequence comparisons increase detection of splice-altering nucleotides. Improved splice predictions could be achieved when mutations occur at the third codon position, especially when a mutation decreases exon inclusion efficiency. The results demonstrate that coding pressures dominate nucleotide composition at invariable codon positions and that exon size-filtered sequence alignments permit identification of splice-altering nucleotides at wobble positions.
Collapse
Affiliation(s)
- Maliheh Movassat
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, California 92697, USA
| | - Elmira Forouzmand
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, California 92697, USA
| | - Fairlie Reese
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, California 92697, USA
| | - Klemens J Hertel
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
8
|
Jourdy Y, Janin A, Fretigny M, Lienhart A, Négrier C, Bozon D, Vinciguerra C. Reccurrent F8 Intronic Deletion Found in Mild Hemophilia A Causes Alu Exonization. Am J Hum Genet 2018; 102:199-206. [PMID: 29357978 DOI: 10.1016/j.ajhg.2017.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/12/2017] [Indexed: 01/12/2023] Open
Abstract
Incorporation of distant intronic sequences in mature mRNA is an underappreciated cause of genetic disease. Several disease-causing pseudoexons have been found to contain repetitive elements such as Alu elements. This study describes an original pathological mechanism by which a small intronic deletion leads to Alu exonization. We identified an intronic deletion, c.2113+461_2113+473del, in the F8 intron 13, in two individuals with mild hemophilia A. In vivo and in vitro transcript analysis found an aberrant transcript, with an insertion of a 122-bp intronic fragment (c.2113_2114ins2113+477_2113+598) at the exon 13-14 junction. This out-of-frame insertion is predicted to lead to truncated protein (p.Gly705Aspfs∗37). DNA sequencing analysis found that the pseudoexon corresponds to antisense AluY element and the deletion removed a part of the poly(T)-tail from the right arm of these AluY. The heterogenous nuclear riboprotein C1/C2 (hnRNP C) is an important antisense Alu-derived cryptic exon silencer and binds to poly(T)-tracts. Disruption of the hnRNP C binding site in AluY T-tract by mutagenesis or hnRNP C knockdown using siRNA in HeLa cells reproduced the effect of c.2113+461_2113+473del. The screening of 114 unrelated families with mild hemophilia A in whom no genetic event was previously identified found a deletion in the poly(T)-tail of AluY in intron 13 in 54% of case subjects (n = 61/114). In conclusion, this study describes a deletion leading to Alu exonization found in 6.1% of families with mild hemophila A in France.
Collapse
Affiliation(s)
- Yohann Jourdy
- Service d'hématologie biologique, Centre de Biologie et Pathologie Est, Bron (69500) Hospices Civils de Lyon, France; EA 4609 Hémostase et cancer, Lyon (69008), Université Claude Bernard Lyon 1, Univ Lyon, France.
| | - Alexandre Janin
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Bron (69500), Hospices Civils de Lyon, France; Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Univ Lyon, France, CNRS UMR 5510, Villeurbanne (69100), France; INSERM U1217, Villeurbanne, France
| | - Mathilde Fretigny
- Service d'hématologie biologique, Centre de Biologie et Pathologie Est, Bron (69500) Hospices Civils de Lyon, France
| | - Anne Lienhart
- Unité d'hémostase clinique, Hôpital Cardiologique Louis Pradel, Bron (69500), Hospices Civils de Lyon, France
| | - Claude Négrier
- Service d'hématologie biologique, Centre de Biologie et Pathologie Est, Bron (69500) Hospices Civils de Lyon, France; EA 4609 Hémostase et cancer, Lyon (69008), Université Claude Bernard Lyon 1, Univ Lyon, France; Unité d'hémostase clinique, Hôpital Cardiologique Louis Pradel, Bron (69500), Hospices Civils de Lyon, France
| | - Dominique Bozon
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Bron (69500), Hospices Civils de Lyon, France
| | - Christine Vinciguerra
- Service d'hématologie biologique, Centre de Biologie et Pathologie Est, Bron (69500) Hospices Civils de Lyon, France; EA 4609 Hémostase et cancer, Lyon (69008), Université Claude Bernard Lyon 1, Univ Lyon, France
| |
Collapse
|
9
|
Karijolich J, Zhao Y, Alla R, Glaunsinger B. Genome-wide mapping of infection-induced SINE RNAs reveals a role in selective mRNA export. Nucleic Acids Res 2017; 45:6194-6208. [PMID: 28334904 PMCID: PMC5449642 DOI: 10.1093/nar/gkx180] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 03/08/2017] [Indexed: 12/11/2022] Open
Abstract
Short interspersed nuclear elements (SINEs) are retrotransposons evolutionarily derived from endogenous RNA Polymerase III RNAs. Though SINE elements have undergone exaptation into gene regulatory elements, how transcribed SINE RNA impacts transcriptional and post-transcriptional regulation is largely unknown. This is partly due to a lack of information regarding which of the loci have transcriptional potential. Here, we present an approach (short interspersed nuclear element sequencing, SINE-seq), which selectively profiles RNA Polymerase III-derived SINE RNA, thereby identifying transcriptionally active SINE loci. Applying SINE-seq to monitor murine B2 SINE expression during a gammaherpesvirus infection revealed transcription from 28 270 SINE loci, with ∼50% of active SINE elements residing within annotated RNA Polymerase II loci. Furthermore, B2 RNA can form intermolecular RNA–RNA interactions with complementary mRNAs, leading to nuclear retention of the targeted mRNA via a mechanism involving p54nrb. These findings illuminate a pathway for the selective regulation of mRNA export during stress via retrotransposon activation.
Collapse
Affiliation(s)
- John Karijolich
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720-3370, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3370, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232-2363, USA
| | - Yang Zhao
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232-2363, USA
| | - Ravi Alla
- California Institute for Quantitative Biology, University of California, Berkeley, CA 94720-3370, USA
| | - Britt Glaunsinger
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720-3370, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3370, USA.,California Institute for Quantitative Biology, University of California, Berkeley, CA 94720-3370, USA
| |
Collapse
|
10
|
Krufczik M, Sievers A, Hausmann A, Lee JH, Hildenbrand G, Schaufler W, Hausmann M. Combining Low Temperature Fluorescence DNA-Hybridization, Immunostaining, and Super-Resolution Localization Microscopy for Nano-Structure Analysis of ALU Elements and Their Influence on Chromatin Structure. Int J Mol Sci 2017; 18:ijms18051005. [PMID: 28481278 PMCID: PMC5454918 DOI: 10.3390/ijms18051005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 01/12/2023] Open
Abstract
Immunostaining and fluorescence in situ hybridization (FISH) are well established methods for specific labelling of chromatin in the cell nucleus. COMBO-FISH (combinatorial oligonucleotide fluorescence in situ hybridization) is a FISH method using computer designed oligonucleotide probes specifically co-localizing at given target sites. In combination with super resolution microscopy which achieves spatial resolution far beyond the Abbe Limit, it allows new insights into the nano-scaled structure and organization of the chromatin of the nucleus. To avoid nano-structural changes of the chromatin, the COMBO-FISH labelling protocol was optimized omitting heat treatment for denaturation of the target. As an example, this protocol was applied to ALU elements—dispersed short stretches of DNA which appear in different kinds in large numbers in primate genomes. These ALU elements seem to be involved in gene regulation, genomic diversity, disease induction, DNA repair, etc. By computer search, we developed a unique COMBO-FISH probe which specifically binds to ALU consensus elements and combined this DNA–DNA labelling procedure with heterochromatin immunostainings in formaldehyde-fixed cell specimens. By localization microscopy, the chromatin network-like arrangements of ALU oligonucleotide repeats and heterochromatin antibody labelling sites were simultaneously visualized and quantified. This novel approach which simultaneously combines COMBO-FISH and immunostaining was applied to chromatin analysis on the nanoscale after low-linear-energy-transfer (LET) radiation exposure at different doses. Dose-correlated curves were obtained from the amount of ALU representing signals, and the chromatin re-arrangements during DNA repair after irradiation were quantitatively studied on the nano-scale. Beyond applications in radiation research, the labelling strategy of immunostaining and COMBO-FISH with localization microscopy will also offer new potentials for analyses of subcellular elements in combination with other specific chromatin targets.
Collapse
Affiliation(s)
- Matthias Krufczik
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Aaron Sievers
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Annkathrin Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Jin-Ho Lee
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Georg Hildenbrand
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
- Department of Radiation Oncology, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 3-5, 68159 Mannheim, Germany.
| | - Wladimir Schaufler
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Michael Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| |
Collapse
|
11
|
Jordà M, Díez-Villanueva A, Mallona I, Martín B, Lois S, Barrera V, Esteller M, Vavouri T, Peinado MA. The epigenetic landscape of Alu repeats delineates the structural and functional genomic architecture of colon cancer cells. Genome Res 2016; 27:118-132. [PMID: 27999094 PMCID: PMC5204336 DOI: 10.1101/gr.207522.116] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 11/10/2016] [Indexed: 12/16/2022]
Abstract
Cancer cells exhibit multiple epigenetic changes with prominent local DNA hypermethylation and widespread hypomethylation affecting large chromosomal domains. Epigenome studies often disregard the study of repeat elements owing to technical complexity and their undefined role in genome regulation. We have developed NSUMA (Next-generation Sequencing of UnMethylated Alu), a cost-effective approach allowing the unambiguous interrogation of DNA methylation in more than 130,000 individual Alu elements, the most abundant retrotransposon in the human genome. DNA methylation profiles of Alu repeats have been analyzed in colon cancers and normal tissues using NSUMA and whole-genome bisulfite sequencing. Normal cells show a low proportion of unmethylated Alu (1%–4%) that may increase up to 10-fold in cancer cells. In normal cells, unmethylated Alu elements tend to locate in the vicinity of functionally rich regions and display epigenetic features consistent with a direct impact on genome regulation. In cancer cells, Alu repeats are more resistant to hypomethylation than other retroelements. Genome segmentation based on high/low rates of Alu hypomethylation allows the identification of genomic compartments with differential genetic, epigenetic, and transcriptomic features. Alu hypomethylated regions show low transcriptional activity, late DNA replication, and its extent is associated with higher chromosomal instability. Our analysis demonstrates that Alu retroelements contribute to define the epigenetic landscape of normal and cancer cells and provides a unique resource on the epigenetic dynamics of a principal, but largely unexplored, component of the primate genome.
Collapse
Affiliation(s)
- Mireia Jordà
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Anna Díez-Villanueva
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Izaskun Mallona
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Berta Martín
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Sergi Lois
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Víctor Barrera
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08908, Catalonia, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona 08907, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Catalonia, Spain
| | - Tanya Vavouri
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Josep Carreras Leukaemia Research Institute (IJC), Badalona 08916, Catalonia, Spain
| | - Miguel A Peinado
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| |
Collapse
|
12
|
Ferro D, Bakiu R, De Pittà C, Boldrin F, Cattalini F, Pucciarelli S, Miceli C, Santovito G. Cu,Zn Superoxide Dismutases from Tetrahymena thermophila: Molecular Evolution and Gene Expression of the First Line of Antioxidant Defenses. Protist 2015; 166:131-45. [DOI: 10.1016/j.protis.2014.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 12/05/2014] [Accepted: 12/09/2014] [Indexed: 11/28/2022]
|
13
|
Genome-wide prediction and functional validation of promoter motifs regulating gene expression in spore and infection stages of Phytophthora infestans. PLoS Pathog 2013; 9:e1003182. [PMID: 23516354 PMCID: PMC3597505 DOI: 10.1371/journal.ppat.1003182] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 12/20/2012] [Indexed: 01/18/2023] Open
Abstract
Most eukaryotic pathogens have complex life cycles in which gene expression networks orchestrate the formation of cells specialized for dissemination or host colonization. In the oomycete Phytophthora infestans, the potato late blight pathogen, major shifts in mRNA profiles during developmental transitions were identified using microarrays. We used those data with search algorithms to discover about 100 motifs that are over-represented in promoters of genes up-regulated in hyphae, sporangia, sporangia undergoing zoosporogenesis, swimming zoospores, or germinated cysts forming appressoria (infection structures). Most of the putative stage-specific transcription factor binding sites (TFBSs) thus identified had features typical of TFBSs such as position or orientation bias, palindromy, and conservation in related species. Each of six motifs tested in P. infestans transformants using the GUS reporter gene conferred the expected stage-specific expression pattern, and several were shown to bind nuclear proteins in gel-shift assays. Motifs linked to the appressoria-forming stage, including a functionally validated TFBS, were over-represented in promoters of genes encoding effectors and other pathogenesis-related proteins. To understand how promoter and genome architecture influence expression, we also mapped transcription patterns to the P. infestans genome assembly. Adjacent genes were not typically induced in the same stage, including genes transcribed in opposite directions from small intergenic regions, but co-regulated gene pairs occurred more than expected by random chance. These data help illuminate the processes regulating development and pathogenesis, and will enable future attempts to purify the cognate transcription factors. The genus Phytophthora includes over one hundred species of plant pathogens that have devastating effects worldwide in agriculture and natural environments. Its most notorious member is P. infestans, which causes the late blight diseases of potato and tomato. Their success as pathogens is dependent on the formation of specialized cells for plant-to-plant transmission and host infection, but little is known about how this is regulated. Recognizing that changes in gene expression drive the formation of these cell types, we used a computational approach to predict the sequences of about one hundred transcription factor binding sites associated with expression in either of five life stages, including several types of spores and infection structures. We then used a functional testing strategy to prove their biological activity by showing that the DNA motifs enabled the stage-specific expression of a transgene. Our work lays the groundwork for dissecting the molecular mechanisms that regulate life-stage transitions and pathogenesis in Phytophthora. A similar approach should be useful for other plant and animal pathogens.
Collapse
|
14
|
Li H, Chen D, Zhang J. Analysis of intron sequence features associated with transcriptional regulation in human genes. PLoS One 2012; 7:e46784. [PMID: 23082130 PMCID: PMC3474797 DOI: 10.1371/journal.pone.0046784] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 09/06/2012] [Indexed: 11/18/2022] Open
Abstract
Although some preliminary work has revealed the potential transcriptional regulatory function of the introns in eukaryotes, additional evidences are needed to support this conjecture. In this study, we perform systemic analyses of the sequence characteristics of human introns. The results show that the first introns are generally longer and C, G and their dinucleotide compositions are over-represented relative to other introns, which are consistent with the previous findings. In addition, some new phenomena concerned with transcriptional regulation are found: i) the first introns are enriched in CpG islands; and ii) the percentages of the first introns containing TATA, CAAT and GC boxes are relatively higher than other position introns. The similar features of introns are observed in tissue-specific genes. The results further support that the first introns of human genes are likely to be involved in transcriptional regulation, and give an insight into the transcriptional regulatory regions of genes.
Collapse
Affiliation(s)
- Huimin Li
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, China
- School of Mathematics and Computer Science, Yunnan University of Nationalities, Kunming, China
| | - Dan Chen
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, China
- School of Mathematics and Statistics, Yunnan University, Kunming, China
| | - Jing Zhang
- School of Mathematics and Statistics, Yunnan University, Kunming, China
- * E-mail:
| |
Collapse
|
15
|
Jády BE, Ketele A, Kiss T. Human intron-encoded Alu RNAs are processed and packaged into Wdr79-associated nucleoplasmic box H/ACA RNPs. Genes Dev 2012; 26:1897-910. [PMID: 22892240 PMCID: PMC3435494 DOI: 10.1101/gad.197467.112] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/16/2012] [Indexed: 11/25/2022]
Abstract
Alu repetitive sequences are the most abundant short interspersed DNA elements in the human genome. Full-length Alu elements are composed of two tandem sequence monomers, the left and right Alu arms, both derived from the 7SL signal recognition particle RNA. Since Alu elements are common in protein-coding genes, they are frequently transcribed into pre-mRNAs. Here, we demonstrate that the right arms of nascent Alu transcripts synthesized within pre-mRNA introns are processed into metabolically stable small RNAs. The intron-encoded Alu RNAs, termed AluACA RNAs, are structurally highly reminiscent of box H/ACA small Cajal body (CB) RNAs (scaRNAs). They are composed of two hairpin units followed by the essential H (AnAnnA) and ACA box motifs. The mature AluACA RNAs associate with the four H/ACA core proteins: dyskerin, Nop10, Nhp2, and Gar1. Moreover, the 3' hairpin of AluACA RNAs carries two closely spaced CB localization motifs, CAB boxes (UGAG), which bind Wdr79 in a cumulative fashion. In contrast to canonical H/ACA scaRNPs, which concentrate in CBs, the AluACA RNPs accumulate in the nucleoplasm. Identification of 348 human AluACA RNAs demonstrates that intron-encoded AluACA RNAs represent a novel, large subgroup of H/ACA RNAs, which are apparently confined to human or primate cells.
Collapse
Affiliation(s)
- Beáta E Jády
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, 31062 Toulouse Cedex 9, France
| | | | | |
Collapse
|
16
|
Dynamics and innovations within oomycete genomes: insights into biology, pathology, and evolution. EUKARYOTIC CELL 2012; 11:1304-12. [PMID: 22923046 DOI: 10.1128/ec.00155-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The eukaryotic microbes known as oomycetes are common inhabitants of terrestrial and aquatic environments and include saprophytes and pathogens. Lifestyles of the pathogens extend from biotrophy to necrotrophy, obligate to facultative pathogenesis, and narrow to broad host ranges on plants or animals. Sequencing of several pathogens has revealed striking variation in genome size and content, a plastic set of genes related to pathogenesis, and adaptations associated with obligate biotrophy. Features of genome evolution include repeat-driven expansions, deletions, gene fusions, and horizontal gene transfer in a landscape organized into gene-dense and gene-sparse sectors and influenced by transposable elements. Gene expression profiles are also highly dynamic throughout oomycete life cycles, with transcriptional polymorphisms as well as differences in protein sequence contributing to variation. The genome projects have set the foundation for functional studies and should spur the sequencing of additional species, including more diverse pathogens and nonpathogens.
Collapse
|
17
|
NINJ2 polymorphism is associated with ischemic stroke in Chinese Han population. J Neurol Sci 2011; 308:67-71. [DOI: 10.1016/j.jns.2011.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/27/2011] [Accepted: 06/07/2011] [Indexed: 11/18/2022]
|
18
|
Dunham I, Beare DM, Collins JE. The characteristics of human genes: analysis of human chromosome 22. Comp Funct Genomics 2010; 4:635-46. [PMID: 18629020 PMCID: PMC2447302 DOI: 10.1002/cfg.335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2003] [Revised: 09/04/2003] [Accepted: 09/08/2003] [Indexed: 11/11/2022] Open
Affiliation(s)
- Ian Dunham
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| | | | | |
Collapse
|
19
|
Liu G, Li H, Cai L. Processed pseudogenes are located preferentially in regions of low recombination rates in the human genome. J Evol Biol 2010; 23:1107-15. [PMID: 20345820 DOI: 10.1111/j.1420-9101.2010.01974.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The aim of this article is to demonstrate possible recombination-associated evolutionary forces affecting the genomic distribution of processed pseudogenes. The relationship between recombination rate and the distribution of processed pseudogenes is analysed in the human genome. The results show that processed pseudogenes preferentially accumulate in regions of low recombination rates and this correlation cannot be explained by indirect relationships with GC content and gene density. Several explanatory models for the observation are discussed. A model of selection against ectopic recombination is tested based on the difference in distribution pattern between two classes of processed pseudogenes, which differ in the possibility of stimulating ectopic recombination. Our results indicate that the correlation between processed pseudogene density and recombination rate is probably results, in part, from the selection against ectopic recombination between closely located homologous processed pseudogenes. We also found a length effect in processed pseudogene distribution, namely long processed pseudogenes are located more preferentially in regions of low recombination rates than short ones.
Collapse
Affiliation(s)
- G Liu
- School of Mathematics, Physics and Biological Engineering, Inner Mongolia University of Science and Technology, Baotou, China.
| | | | | |
Collapse
|
20
|
Pastor T, Talotti G, Lewandowska MA, Pagani F. An Alu-derived intronic splicing enhancer facilitates intronic processing and modulates aberrant splicing in ATM. Nucleic Acids Res 2010; 37:7258-67. [PMID: 19773425 PMCID: PMC2790898 DOI: 10.1093/nar/gkp778] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have previously reported a natural GTAA deletion within an intronic splicing processing element (ISPE) of the ataxia telangiectasia mutated (ATM) gene that disrupts a non-canonical U1 snRNP interaction and activates the excision of the upstream portion of the intron. The resulting pre-mRNA splicing intermediate is then processed to a cryptic exon, whose aberrant inclusion in the final mRNA is responsible for ataxia telangiectasia. We show here that the last 40 bases of a downstream intronic antisense Alu repeat are required for the activation of the cryptic exon by the ISPE deletion. Evaluation of the pre-mRNA splicing intermediate by a hybrid minigene assay indicates that the identified intronic splicing enhancer represents a novel class of enhancers that facilitates processing of splicing intermediates possibly by recruiting U1 snRNP to defective donor sites. In the absence of this element, the splicing intermediate accumulates and is not further processed to generate the cryptic exon. Our results indicate that Alu-derived sequences can provide intronic splicing regulatory elements that facilitate pre-mRNA processing and potentially affect the severity of disease-causing splicing mutations.
Collapse
Affiliation(s)
- Tibor Pastor
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | | | | | | |
Collapse
|
21
|
Thomson SJP, Goh FG, Banks H, Krausgruber T, Kotenko SV, Foxwell BMJ, Udalova IA. The role of transposable elements in the regulation of IFN-lambda1 gene expression. Proc Natl Acad Sci U S A 2009; 106:11564-9. [PMID: 19570999 PMCID: PMC2710658 DOI: 10.1073/pnas.0904477106] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Indexed: 01/21/2023] Open
Abstract
IFNs lambda1, lambda2, and lambda3, or type III IFNs, are recently identified cytokines distantly related to type I IFNs. Despite an early evolutionary divergence, the 2 types of IFNs display similar antiviral activities, and both are produced primarily in dendritic cells. Although virus induction of the type I IFN-beta gene had served as a paradigm of gene regulation, relatively little is known about the regulation of IFN-lambda gene expression. Studies of virus induction of IFN-lambda1 identified an essential role of IFN regulatory factors (IRF) 3 and 7, which bind to a regulatory DNA sequence near the start site of transcription. Here, we report that the proximal promoter region of the IFN-lambda1 regulatory region is not sufficient for maximal gene induction in response to bacterial LPS, and we identify an essential cluster of homotypic NF-kappaB binding sites. Remarkably, these sites, which bind efficiently to NF-kappaB and function independently of the IRF3/7 binding sites, originate as transposable elements of the Alu and LTR families. We also show that depletion of the NF-kappaB RelA protein significantly reduces the level of the IFN-lambda1 gene expression. We conclude that IFN-lambda1 gene expression requires NF-kappaB, and we propose a model for IFN-lambda1 gene regulation, in which IRF and NF-kappaB activate gene expression independently via spatially separated promoter elements. These observations provide insights into the independent evolution of the IFN-lambda1 and IFN-beta promoters and directly implicate transposable elements in the regulation of the IFN-lambda1 gene by NF-kappaB.
Collapse
Affiliation(s)
- Scott J. P. Thomson
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science, Technology, and Medicine, 65 Aspenlea Road, London W6 8LH, United Kingdom; and
| | - Fui G. Goh
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science, Technology, and Medicine, 65 Aspenlea Road, London W6 8LH, United Kingdom; and
| | - Helen Banks
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science, Technology, and Medicine, 65 Aspenlea Road, London W6 8LH, United Kingdom; and
| | - Thomas Krausgruber
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science, Technology, and Medicine, 65 Aspenlea Road, London W6 8LH, United Kingdom; and
| | - Sergei V. Kotenko
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry, New Jersey Medical School, Newark, NJ 07103
| | - Brian M. J. Foxwell
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science, Technology, and Medicine, 65 Aspenlea Road, London W6 8LH, United Kingdom; and
| | - Irina A. Udalova
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science, Technology, and Medicine, 65 Aspenlea Road, London W6 8LH, United Kingdom; and
| |
Collapse
|
22
|
Ivashchenko AT, Khailenko VA, Atambaeva SA. Variations of the length of exons and introns in human genome genes. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409010025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Rodriguez J, Vives L, Jordà M, Morales C, Muñoz M, Vendrell E, Peinado MA. Genome-wide tracking of unmethylated DNA Alu repeats in normal and cancer cells. Nucleic Acids Res 2007; 36:770-84. [PMID: 18084025 PMCID: PMC2241897 DOI: 10.1093/nar/gkm1105] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Methylation of the cytosine is the most frequent epigenetic modification of DNA in mammalian cells. In humans, most of the methylated cytosines are found in CpG-rich sequences within tandem and interspersed repeats that make up to 45% of the human genome, being Alu repeats the most common family. Demethylation of Alu elements occurs in aging and cancer processes and has been associated with gene reactivation and genomic instability. By targeting the unmethylated SmaI site within the Alu sequence as a surrogate marker, we have quantified and identified unmethylated Alu elements on the genomic scale. Normal colon epithelial cells contain in average 25 486 ± 10 157 unmethylated Alu's per haploid genome, while in tumor cells this figure is 41 995 ± 17 187 (P = 0.004). There is an inverse relationship in Alu families with respect to their age and methylation status: the youngest elements exhibit the highest prevalence of the SmaI site (AluY: 42%; AluS: 18%, AluJ: 5%) but the lower rates of unmethylation (AluY: 1.65%; AluS: 3.1%, AluJ: 12%). Data are consistent with a stronger silencing pressure on the youngest repetitive elements, which are closer to genes. Further insights into the functional implications of atypical unmethylation states in Alu elements will surely contribute to decipher genomic organization and gene regulation in complex organisms.
Collapse
Affiliation(s)
- Jairo Rodriguez
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet, Catalonia, Spain
| | | | | | | | | | | | | |
Collapse
|
24
|
Schwartz SH, Silva J, Burstein D, Pupko T, Eyras E, Ast G. Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes. Genome Res 2007; 18:88-103. [PMID: 18032728 DOI: 10.1101/gr.6818908] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Introns are among the hallmarks of eukaryotic genes. Splicing of introns is directed by three main splicing signals: the 5' splice site (5'ss), the branch site (BS), and the polypyrimdine tract/3'splice site (PPT-3'ss). To study the evolution of these splicing signals, we have conducted a systematic comparative analysis of these signals in over 1.2 million introns from 22 eukaryotes. Our analyses suggest that all these signals have dramatically evolved: The PPT is weak among most fungi, intermediate in plants and protozoans, and strongest in metazoans. Within metazoans it shows a gradual strengthening from Caenorhabditis elegans to human. The 5'ss and the BS were found to be degenerate among most organisms, but highly conserved among some fungi. A maximum parsimony-based algorithm for reconstructing ancestral position-specific scoring matrices suggested that the ancestral 5'ss and BS were degenerate, as in metazoans. To shed light on the evolutionary variation in splicing signals, we have analyzed the evolutionary changes in the factors that bind these signals. Our analysis reveals coevolution of splicing signals and their corresponding splicing factors: The strength of the PPT is correlated to changes in key residues in its corresponding splicing factor U2AF2; limited correlation was found between changes in the 5'ss and U1 snRNA that binds it; but not between the BS and U2 snRNA. Thus, although the basic ability of eukaryotes to splice introns has remained conserved throughout evolution, the splicing signals and their corresponding splicing factors have considerably evolved, uniquely shaping the splicing mechanisms of different organisms.
Collapse
Affiliation(s)
- Schraga H Schwartz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
25
|
Melodelima C, Gautier C, Piau D. A markovian approach for the prediction of mouse isochores. J Math Biol 2007; 55:353-64. [PMID: 17486342 DOI: 10.1007/s00285-007-0087-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2006] [Revised: 03/01/2007] [Indexed: 10/23/2022]
Abstract
Hidden Markov models (HMMs) are effective tools to detect series of statistically homogeneous structures, but they are not well suited to analyse complex structures. For example, the duration of stay in a state of a HMM must follow a geometric law. Numerous other methodological difficulties are encountered when using HMMs to segregate genes from transposons or retroviruses, or to determine the isochore classes of genes. The aim of this paper is to analyse these methodological difficulties, and to suggest new tools for the exploration of genome data. We show that HMMs can be used to analyse complex gene structures with bell-shaped length distribution by using convolution of geometric distributions. Thus, we have introduced macros-states to model the distributions of the lengths of the regions. Our study shows that simple HMM could be used to model the isochore organisation of the mouse genome. This potential use of markovian models to help in data exploration has been underestimated until now.
Collapse
Affiliation(s)
- Christelle Melodelima
- UMR 5558 CNRS Biométrie et Biologie Evolutive, Université Claude Bernard Lyon 1, 43 boulevard du 11 Novembre 1818, 69622 Villeurbanne Cedex, France.
| | | | | |
Collapse
|
26
|
Mitrophanov AY, Borodovsky M. Convergence rate estimation for the TKF91 model of biological sequence length evolution. Math Biosci 2007; 209:470-85. [PMID: 17448505 DOI: 10.1016/j.mbs.2007.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 02/17/2007] [Accepted: 02/23/2007] [Indexed: 10/23/2022]
Abstract
The TKF91 model of biological sequence evolution describes changes in the sequence length via an infinite state-space birth-death process, which we term the TKF91-BD process. The TKF91 model assumes that, for any pair of modern sequences, the ancestral sequence has equilibrium length distribution, an assumption whose validity has not been rigorously investigated. We obtain explicit upper and lower bounds on the rate of convergence to equilibrium for the distribution of the TKF91-BD process. We show that the rate of convergence of the TKF91-BD process for protein sequences with parameter values inferred from sequence data on alpha and beta globins is too low to guarantee convergence to equilibrium on a reasonable timescale. For the analyzed nucleotide sequences, the convergence is faster, but the equilibrium sequence length is unrealistically small. The Jukes-Cantor model of nucleotide substitutions can converge considerably faster than the length evolution model for both amino acid and nucleotide sequences, while the speed of convergence for the Kimura model is close to that for the TKF91-BD process describing nucleotide sequences.
Collapse
|
27
|
Liu GB, Jiang YF, Yan H, Zhao KN. Computational analysis of base composition pattern and promoter elements in the putative promoter regions in relation to expression profiles of 682 human genes on chromosome 22. ACTA ACUST UNITED AC 2007; 17:270-81. [PMID: 17312946 DOI: 10.1080/10425170600886136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract The base composition pattern (BCP) in the putative promoter region (PPRs) up to 5 Kb lengths of 682 human genes on Chromosome 22 (Chr22) was examined. Two-dimensional (2D) and three-dimensional (3D) functions were designed to delineate the DNA base composition, with four major patterns identified. It is found that 17.6% genes include TATA box, 28.0% GC box, 18.9% CAAT box and 38.4% CpG islands, and approximately 10% genes have one of four putative initiator (Inr) motifs. The occurrence of the promoter elements is tightly associated with the base composition features in the promoter regions, and the associations of the base composition features with occurrence of the promoter elements in the promoter regions mediate tissue-wide expression of the genes in human. The occurrence of two or more promoter elements in the promoter regions is required for the medium- and wide-range expression profiles of the human genes on Chr22. Thus, the reported data shed light on the characteristics of the PPRs of the human genes on Chr22, which may improve our understanding of regulatory roles of the PPRs with occurrence of the promoter elements in gene expression.
Collapse
Affiliation(s)
- Guang Bin Liu
- Department of Biological and Physical Sciences, Faculty of Science, Centre for Systems Biology, The University of Southern Queensland, Toowoomba, Qld 4350, Australia.
| | | | | | | |
Collapse
|
28
|
Carter D, Durbin R. Vertebrate gene finding from multiple-species alignments using a two-level strategy. Genome Biol 2006; 7 Suppl 1:S6.1-12. [PMID: 16925840 PMCID: PMC1810555 DOI: 10.1186/gb-2006-7-s1-s6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background One way in which the accuracy of gene structure prediction in vertebrate DNA sequences can be improved is by analyzing alignments with multiple related species, since functional regions of genes tend to be more conserved. Results We describe DOGFISH, a vertebrate gene finder consisting of a cleanly separated site classifier and structure predictor. The classifier scores potential splice sites and other features, using sequence alignments between multiple vertebrate species, while the structure predictor hypothesizes coding transcripts by combining these scores using a simple model of gene structure. This also identifies and assigns confidence scores to possible additional exons. Performance is assessed on the ENCODE regions. We predict transcripts and exons across the whole human genome, and identify over 10,000 high confidence new coding exons not in the Ensembl gene set. Conclusion We present a practical multiple species gene prediction method. Accuracy improves as additional species, up to at least eight, are introduced. The novel predictions of the whole-genome scan should support efficient experimental verification.
Collapse
Affiliation(s)
- David Carter
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| | | |
Collapse
|
29
|
Dehnert M, Helm WE, Hütt MT. Informational structure of two closely related eukaryotic genomes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 74:021913. [PMID: 17025478 DOI: 10.1103/physreve.74.021913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Indexed: 05/12/2023]
Abstract
Attempts to identify a species on the basis of its DNA sequence on purely statistical grounds have been formulated for more than a decade. The most prominent of such genome signatures relies on neighborhood correlations (i.e., dinucleotide frequencies) and, consequently, attributes species identification to mechanisms operating on the dinucleotide level (e.g., neighbor-dependent mutations). For the examples of Mus musculus and Rattus norvegicus we analyze short- and intermediate-range statistical correlations in DNA sequences. These correlation profiles are computed for all chromosomes of the two species. We find that with increasing range of correlations the capacity to distinguish between the species on the basis of this correlation profile is getting better and requires ever shorter sequence segments for obtaining a full species separation. This finding suggests that distinctive traits within the sequence are situated beyond the level of few nucleotides. The large-scale statistical patterning of DNA sequences on which such genome signatures are based is thus substantially determined by mobile elements (e.g., transposons and retrotransposons). The study and interspecies comparison of such correlation profiles can, therefore, reveal features of retrotransposition, segmental duplications, and other processes of genome evolution.
Collapse
Affiliation(s)
- Manuel Dehnert
- Computational Systems Biology, School of Engineering and Science, International University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | | | | |
Collapse
|
30
|
Rayko E, Jabbari K, Bernardi G. The evolution of introns in human duplicated genes. Gene 2006; 365:41-7. [PMID: 16356663 DOI: 10.1016/j.gene.2005.09.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 07/07/2005] [Accepted: 09/07/2005] [Indexed: 11/17/2022]
Abstract
In previous work [Jabbari, K., Rayko, E., Bernardi, G., 2003. The major shifts of human duplicated genes. Gene 317, 203-208], we investigated the fate of ancient duplicated genes after the compositional transitions that occurred between the genomes of cold- and warm-blooded vertebrates. We found that the majority of duplicated copies were transposed to the "ancestral genome core", the gene-dense genome compartment that underwent a GC enrichment at the compositional transitions. Here, we studied the consequences of the events just outlined on the introns of duplicated genes. We found that, while intron number was highly conserved, total intron size (the sum of intron sizes within any given gene) was smaller in the GC-rich copies compared to the GC-poor copies, especially in dispersed copies (i.e., copies located on different chromosomes or chromosome arms). GC-rich copies also showed higher densities of CpG islands and Alus, whereas GC-poor copies were characterized by higher densities of LINEs. The features of the copies that underwent the compositional transition and became GC-richer are suggestive of, or related to, functional changes.
Collapse
Affiliation(s)
- Edda Rayko
- Laboratoire de Génétique Moléculaire, Institut Jacques Monod, 2 Place Jussieu, F-75005 Paris, France.
| | | | | |
Collapse
|
31
|
Abstract
The present review considered: (a) the factors that conditioned the early transition from non-life to life; (b) genome structure and complexity in prokaryotes, eukaryotes, and organelles; (c) comparative human chromosome genomics; and (d) the Brazilian contribution to some of these studies. Understanding the dialectical conflict between freedom and organization is fundamental to give meaning to the patterns and processes of organic evolution.
Collapse
Affiliation(s)
- Francisco M Salzano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
32
|
Abstract
The Arthur M. Sackler Colloquium of the National Academy of Sciences, "Frontiers in Bioinformatics: Unsolved Problems and Challenges," organized by David Eisenberg, Russ Altman, and myself, was held October 15-17, 2004, to provide a forum for discussing concepts and methods in bioinformatics serving the biological and medical sciences. The deluge of genomic and proteomic data in the last two decades has driven the creation of tools that search and analyze biomolecular sequences and structures. Bioinformatics is highly interdisciplinary, using knowledge from mathematics, statistics, computer science, biology, medicine, physics, chemistry, and engineering.
Collapse
Affiliation(s)
- Samuel Karlin
- Department of Mathematics, Stanford University, Stanford, CA 94305-2125, USA.
| |
Collapse
|
33
|
Harrison PM, Zheng D, Zhang Z, Carriero N, Gerstein M. Transcribed processed pseudogenes in the human genome: an intermediate form of expressed retrosequence lacking protein-coding ability. Nucleic Acids Res 2005; 33:2374-83. [PMID: 15860774 PMCID: PMC1087782 DOI: 10.1093/nar/gki531] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 03/14/2005] [Accepted: 04/04/2005] [Indexed: 01/31/2023] Open
Abstract
Pseudogenes, in the case of protein-coding genes, are gene copies that have lost the ability to code for a protein; they are typically identified through annotation of disabled, decayed or incomplete protein-coding sequences. Processed pseudogenes (PPsigs) are made through mRNA retrotransposition. There is overwhelming genomic evidence for thousands of human PPsigs and also dozens of human processed genes that comprise complete retrotransposed copies of other genes. Here, we survey for an intermediate entity, the transcribed processed pseudogene (TPPsig), which is disabled but nonetheless transcribed. TPPsigs may affect expression of paralogous genes, as observed in the case of the mouse makorin1-p1 TPPsig. To elucidate their role, we identified human TPPsigs by mapping expressed sequences onto PPsigs and, reciprocally, extracting TPPsigs from known mRNAs. We consider only those PPsigs that are homologous to either non-mammalian eukaryotic proteins or protein domains of known structure, and require detection of identical coding-sequence disablements in both the expressed and genomic sequences. Oligonucleotide microarray data provide further expression verification. Overall, we find 166-233 TPPsigs ( approximately 4-6% of PPsigs). Proteins/transcripts with the highest numbers of homologous TPPsigs generally have many homologous PPsigs and are abundantly expressed. TPPsigs are significantly over-represented near both the 5' and 3' ends of genes; this suggests that TPPsigs can be formed through gene-promoter co-option, or intrusion into untranslated regions. However, roughly half of the TPPsigs are located away from genes in the intergenic DNA and thus may be co-opting cryptic promoters of undesignated origin. Furthermore, TPPsigs are unlike other PPsigs and processed genes in the following ways: (i) they do not show a significant tendency to either deposit on or originate from the X chromosome; (ii) only 5% of human TPPsigs have potential orthologs in mouse. This latter finding indicates that the vast majority of TPPsigs is lineage specific. This is likely linked to well-documented extensive lineage-specific SINE/LINE activity. The list of TPPsigs is available at: http://www.biology.mcgill.ca/faculty/harrison/tppg/bppg.tov (or) http:pseudogene.org.
Collapse
Affiliation(s)
- Paul M Harrison
- Department of Biology, McGill University Stewart Biology Building, 1205 Dr. Penfield Avenue, Montreal, Quebec, Canada H3A 1B1.
| | | | | | | | | |
Collapse
|
34
|
Jakob J, Nagase S, Gazdar A, Chien M, Morozova I, Russo JJ, Nandula SV, Murty VVVS, Li CM, Tycko B, Parsons R. Two somatic biallelic lesions within and near SMAD4 in a human breast cancer cell line. Genes Chromosomes Cancer 2005; 42:372-83. [PMID: 15645498 DOI: 10.1002/gcc.20142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Loss of chromosome arm 18q is a common event in human pancreatic, colon, and breast cancers and is often interpreted as representing loss of one or more tumor-suppressor genes. In this article, we describe two novel biallelic deletions at chromosome band 18q21.1 in a recently characterized human breast cancer cell line, HCC-1428. One lesion deletes a fragment of approximately 300 kb between SMAD4 and DCC that encodes no known genes. The second lesion is an in-frame SMAD4 deletion (amino acids 49-51) that affects the level of SMAD4 protein but not the SMAD4 message. This change accelerates 26S proteasome-mediated degradation of both endogenous and exogenous mutant SMAD4. Examination of normal DNA from the same patient demonstrated that both lesions are somatic and associated with loss of both normal alleles. These data support the concept that two independent tumor-suppressor loci exist at chromosome segment 18q21.1, one at SMAD4 and the other potentially at an enhancer of DCC or an unrelated novel gene.
Collapse
Affiliation(s)
- John Jakob
- Institute for Cancer Genetics, Columbia University, Russ Berrie Pavilion, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hamon SC, Stengard JH, Clark AG, Salomaa V, Boerwinkle E, Sing CF. Evidence for Non-additive Influence of Single Nucleotide Polymorphisms within the Apolipoprotein E Gene. Ann Hum Genet 2004; 68:521-35. [PMID: 15598211 DOI: 10.1046/j.1529-8817.2003.00112.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We analyzed 13 single nucleotide polymorphisms (SNPs) within the apolipoprotein E (APOE) gene, to identify pairs of SNPs that interact in a non-additive manner to influence genotypic mean levels of the ApoE protein in blood. An overparameterized general linear model of two-SNP genotype means was applied to data from 456 female and 398 male unrelated European Americans from Rochester, MN, USA. We found statistically significant evidence for non-additivity between SNPs within the male sample, but not within the female sample. We observed nine pairs of SNPs with evidence of non-additivity at the alpha=0.05 level of statistical significance within the male sample, when approximately three were expected by chance. Five of the nine pairs involved three SNPs (560, 624 and 1163) that did not have a statistically significant influence when considered separately in a single-site analysis. Three of the nine pairs involving four SNPs (832, 1998, 3937 and 4951) showed significant evidence for non-additivity in at least one of two other male samples from Jackson, MS, USA and North Karelia, Finland. Although all four of these SNPs had a statistically significant influence in Rochester when considered separately, only SNP 3937 gave a significant result in the other male samples. The four SNPs are located in the promoter, intronic and exonic regions, and 3' to the polyadenylation signal in the APOE gene. Our study suggests that analyses that only consider SNPs located in exons and ignore contexts such as those indexed by gender and population, and disregard non-additivity of SNP effects, may inappropriately model the contribution of a gene to the genetic architecture of a trait that has a complex multifactorial etiology.
Collapse
Affiliation(s)
- S C Hamon
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-0618, USA
| | | | | | | | | | | |
Collapse
|
36
|
Athanasiadis A, Rich A, Maas S. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol 2004; 2:e391. [PMID: 15534692 PMCID: PMC526178 DOI: 10.1371/journal.pbio.0020391] [Citation(s) in RCA: 584] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Accepted: 09/13/2004] [Indexed: 01/22/2023] Open
Abstract
RNA editing by adenosine deamination generates RNA and protein diversity through the posttranscriptional modification of single nucleotides in RNA sequences. Few mammalian A-to-I edited genes have been identified despite evidence that many more should exist. Here we identify intramolecular pairs of Alu elements as a major target for editing in the human transcriptome. An experimental demonstration in 43 genes was extended by a broader computational analysis of more than 100,000 human mRNAs. We find that 1,445 human mRNAs (1.4%) are subject to RNA editing at more than 14,500 sites, and our data further suggest that the vast majority of pre-mRNAs (greater than 85%) are targeted in introns by the editing machinery. The editing levels of Alu-containing mRNAs correlate with distance and homology between inverted repeats and vary in different tissues. Alu-mediated RNA duplexes targeted by RNA editing are formed intramolecularly, whereas editing due to intermolecular base-pairing appears to be negligible. We present evidence that these editing events can lead to the posttranscriptional creation or elimination of splice signals affecting alternatively spliced Alu-derived exons. The analysis suggests that modification of repetitive elements is a predominant activity for RNA editing with significant implications for cellular gene expression. A computational analysis of human RNA has identified 1,445 transcripts are edited mainly within non-coding Alu repeats, with the potential effect of regulating alternative splicing
Collapse
Affiliation(s)
- Alekos Athanasiadis
- 1Department of Biological Sciences, Lehigh UniversityBethlehem, PennsylvaniaUnited States of America
- 2Department of Biology, Massachusetts Institute of TechnologyCambridge, MassachusettsUnited States of America
| | - Alexander Rich
- 2Department of Biology, Massachusetts Institute of TechnologyCambridge, MassachusettsUnited States of America
| | - Stefan Maas
- 1Department of Biological Sciences, Lehigh UniversityBethlehem, PennsylvaniaUnited States of America
| |
Collapse
|
37
|
Hedges DJ, Callinan PA, Cordaux R, Xing J, Barnes E, Batzer MA. Differential alu mobilization and polymorphism among the human and chimpanzee lineages. Genome Res 2004; 14:1068-75. [PMID: 15173113 PMCID: PMC419785 DOI: 10.1101/gr.2530404] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alu elements are primate-specific members of the SINE (short interspersed element) retroposon family, which comprise approximately 10% of the human genome. Here we report the first chromosomal-level comparison examining the Alu retroposition dynamics following the divergence of humans and chimpanzees. We find a twofold increase in Alu insertions in humans in comparison to the common chimpanzee (Pan troglodytes). The genomic diversity (polymorphism for presence or absence of the Alu insertion) associated with these inserts indicates that, analogous to recent nucleotide diversity studies, the level of chimpanzee Alu diversity is approximately 1.7 times higher than that of humans. Evolutionarily recent Alu subfamily structure differs markedly between the human and chimpanzee lineages, with the major human subfamilies remaining largely inactive in the chimpanzee lineage. We propose a population-based model to account for the observed fluctuation in Alu retroposition rates across primate taxa.
Collapse
Affiliation(s)
- Dale J Hedges
- Department of Biological Sciences, Biological Computation and Visualization Center, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | | | | | |
Collapse
|
38
|
Lafontaine I, Fischer G, Talla E, Dujon B. Gene relics in the genome of the yeast Saccharomyces cerevisiae. Gene 2004; 335:1-17. [PMID: 15194185 DOI: 10.1016/j.gene.2004.03.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 02/09/2004] [Accepted: 03/29/2004] [Indexed: 10/26/2022]
Abstract
There is increasing evidence that DNA duplication is a common and ongoing process that plays a major role in molecular evolution of genomes and that a large fraction of the duplicated gene copies becomes non-functional by accumulation of deleterious mutations. In order to describe this phenomenon, we systematically searched the 6404 intergenic regions (IRs) of the genome of Saccharomyces cerevisiae for traces of coding sequences presenting degenerated but still recognizable sequence similarity with active open reading frames (5823 annotated ORFs). We detected a total of 124 anciently coding regions, or "gene relics", showing similarity to a total of 149 distinct active ORFs. This set of relics shows a continuum of sequence degeneration from those whose sequence is slightly altered compared to the functional ORF (classically defined as pseudogenes), to those that contains so many deleterious mutations, as to reach the limit of recognition. Gene relics are more concentrated in the subtelomeric regions of the chromosomes, reflecting the high plasticity of these regions. The presence of relics also revealed ancestral duplication events of chromosomal segments that were previously undetected. Some of these segments are intermingled with the more easily recognizable ancestral blocks of duplication, indicating successive duplication events. We present a compilation of all the data available, leading to a total of 278 pseudogenes in the genome of S. cerevisiae.
Collapse
Affiliation(s)
- Ingrid Lafontaine
- Unité de Génétique Moléculaire des Levures, CNRS URA 2171, Institut Pasteur, Université Pierre et Marie Curie UFR 927, 25, rue du Docteur Roux 75724, Paris, Cedex 15, France.
| | | | | | | |
Collapse
|
39
|
Oei SL, Babich VS, Kazakov VI, Usmanova NM, Kropotov AV, Tomilin NV. Clusters of regulatory signals for RNA polymerase II transcription associated with Alu family repeats and CpG islands in human promoters. Genomics 2004; 83:873-82. [PMID: 15081116 DOI: 10.1016/j.ygeno.2003.11.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Accepted: 11/07/2003] [Indexed: 10/26/2022]
Abstract
Primate genomes contain a very large number of short interspersed GC-rich repeats of the Alu family, which are abundant in introns and intergenic spacers but also present in 5' flanking regions of genes enriched in binding motifs (BMs) for transcription factors and frequently containing CpG islands. Here we studied whether CpG islands located in promoters of human genes overlap with Alu repeats and with clusters of BMs for the zinc-finger transcription factors Sp1, estrogen receptor alpha, and YY1. The presence of estrogen-response elements in Alu was shown earlier and here we confirm the presence in the consensus Alu sequence of the binding sites for Sp1 and YY1. Analyzing >5000 promoters from the two databases we found that Alu sequences are underrepresented in promoters compared to introns and that approximately 4% of CpG islands located within the -1000 to +200 segments of human promoters overlap with Alu repeats. Although this fraction was found to be lower for proximal segments of promoters (-500 to +100), our results indicate that a significant number (>1000) of all human genes may be controlled by Alu-associated CpG islands. Analysis of clustering of potential BMs for the indicated transcription factors within some promoters also suggests that the Alu family contributed to the evolution of transcription cis-regulatory modules in the human genome. It is important that among Alu sequences overlapping with CpG islands in promoters a large fraction of members of the old Alu subfamilies is found, suggesting extensive retroposon-assisted regulatory genome evolution during the divergence of the primates.
Collapse
Affiliation(s)
- Shiao-Li Oei
- Institute of Biochemistry, Free University of Berlin, Thielallee 63, D-14195, Berlin-Dahlem, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Mishmar D, Ruiz-Pesini E, Brandon M, Wallace DC. Mitochondrial DNA-like sequences in the nucleus (NUMTs): insights into our African origins and the mechanism of foreign DNA integration. Hum Mutat 2004; 23:125-133. [PMID: 14722916 DOI: 10.1002/humu.10304] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nuclear mitochondrial DNA sequences (NUMTs) are common in eukaryotes. However, the mechanism by which they integrate into the nuclear genome remains a riddle. We analyzed 247 NUMTs in the human nuclear DNA (nDNA), along with their flanking regions. This analysis revealed that some NUMTs have accumulated many changes, and thus have resided in the nucleus a long time, while others are >94% similar to the reference human mitochondrial DNA (mtDNA), and thus must be recent. Among the latter, two NUMTs, encompassing the COI gene, carry a set of transitions characteristic of the extant African-specific L macrohaplogroup mtDNAs and are more homologous to human mtDNA than to chimp. Screening for one of these NUMTs revealed its presence in all human samples tested, confirming that the African macrohaplogroup L mtDNAs were present in the earliest modern humans and thus were the first human mtDNAs. An analysis of flanking sequences of the NUMTs revealed that 59% were within 150 bp of repetitive elements, with 26% being within 15 bp of and 33% being within 15-150 bp of repetitive elements. Only 14% were integrated into a repetitive element. This association of NUMTs with repetitive elements is highly nonrandom (p<0.001). These data suggest that the vicinity of transposable elements influences the ongoing integration of mtDNA sequences and their subsequent duplication within the nDNA. Finally, NUMTs appear to preferentially integrate into DNA with different GC content than the surrounding chromosomal band. Our results suggest that chromosomal structure might influence integration of NUMTs.
Collapse
Affiliation(s)
- Dan Mishmar
- The Center of Molecular and Mitochondrial Genetics and Medicine (MAMMAG), University of California, Irvine, California
| | - Eduardo Ruiz-Pesini
- The Center of Molecular and Mitochondrial Genetics and Medicine (MAMMAG), University of California, Irvine, California
| | - Martin Brandon
- The Center of Molecular and Mitochondrial Genetics and Medicine (MAMMAG), University of California, Irvine, California
| | - Douglas C Wallace
- The Center of Molecular and Mitochondrial Genetics and Medicine (MAMMAG), University of California, Irvine, California
| |
Collapse
|
41
|
Ohshima K, Hattori M, Yada T, Gojobori T, Sakaki Y, Okada N. Whole-genome screening indicates a possible burst of formation of processed pseudogenes and Alu repeats by particular L1 subfamilies in ancestral primates. Genome Biol 2003; 4:R74. [PMID: 14611660 PMCID: PMC329124 DOI: 10.1186/gb-2003-4-11-r74] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Revised: 09/02/2003] [Accepted: 09/25/2003] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Abundant pseudogenes are a feature of mammalian genomes. Processed pseudogenes (PPs) are reverse transcribed from mRNAs. Recent molecular biological studies show that mammalian long interspersed element 1 (L1)-encoded proteins may have been involved in PP reverse transcription. Here, we present the first comprehensive analysis of human PPs using all known human genes as queries. RESULTS The human genome was queried and 3,664 candidate PPs were identified. The most abundant were copies of genes encoding keratin 18, glyceraldehyde-3-phosphate dehydrogenase and ribosomal protein L21. A simple method was developed to estimate the level of nucleotide substitutions (and therefore the age) of PPs. A Poisson-like age distribution was obtained with a mean age close to that of the Alu repeats, the predominant human short interspersed elements. These data suggest a nearly simultaneous burst of PP and Alu formation in the genomes of ancestral primates. The peak period of amplification of these two distinct retrotransposons was estimated to be 40-50 million years ago. Concordant amplification of certain L1 subfamilies with PPs and Alus was observed. CONCLUSIONS We suggest that a burst of formation of PPs and Alus occurred in the genome of ancestral primates. One possible mechanism is that proteins encoded by members of particular L1 subfamilies acquired an enhanced ability to recognize cytosolic RNAs in trans.
Collapse
Affiliation(s)
- Kazuhiko Ohshima
- School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Masahira Hattori
- RIKEN Genomic Sciences Center, 1-7-22, Suehiro Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Laboratory of Genome Information, Kitasato Institute for Life Science, Kitasato University, 1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555, Japan
| | - Tetsusi Yada
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Takashi Gojobori
- Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Yoshiyuki Sakaki
- RIKEN Genomic Sciences Center, 1-7-22, Suehiro Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Norihiro Okada
- School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
42
|
Abstract
As we enter the post-genomic era, with the accelerating availability of complete genome sequences, new theoretical approaches and new experimental techniques, our ability to dissect cellular processes at the molecular level continues to expand. Recent advances include the application of RNA interference methods to characterize loss-of-function phenotype genes in higher eukaryotes, comparative analysis of the human and mouse genome sequences, and methods for reconciling contradictory phylogenetic reconstructions. New developments feed into the increasingly rich content of databases such as the COG database. The next phase of research will be increasingly dominated by efforts to integrate the deluge of data into our understanding of biological systems.
Collapse
Affiliation(s)
- Samuel Karlin
- Department of Mathematics, Stanford University, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
43
|
Karlin S, Chen C, Gentles AJ, Cleary M. Associations between human disease genes and overlapping gene groups and multiple amino acid runs. Proc Natl Acad Sci U S A 2002; 99:17008-13. [PMID: 12473749 PMCID: PMC139260 DOI: 10.1073/pnas.262658799] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Overlapping gene groups (OGGs) arise when exons of one gene are contained within the introns of another. Typically, the two overlapping genes are encoded on opposite DNA strands. OGGs are often associated with specific disease phenotypes. In this report, we identify genes with OGG architecture and genes encoding multiple long amino acid runs and examine their relations to diseases. OGGs appear to be susceptible to genomic rearrangements as happens commonly with the loci of the DiGeorge syndrome on human chromosome 22. We also examine the degree of conservation of OGGs between human and mouse. Our analyses suggest that (i) a high proportion of genes in OGG regions are disease-associated, (ii) genomic rearrangements are likely to occur within OGGs, possibly as a consequence of anomalous sequence features prevalent in these regions, and (iii) multiple amino acid runs are also frequently associated with pathologies.
Collapse
Affiliation(s)
- Samuel Karlin
- Departments of Mathematics and Pathology, Stanford University, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
44
|
|
45
|
Jurka J, Krnjajic M, Kapitonov VV, Stenger JE, Kokhanyy O. Active Alu elements are passed primarily through paternal germlines. Theor Popul Biol 2002; 61:519-30. [PMID: 12167372 DOI: 10.1006/tpbi.2002.1602] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Repetitive elements are distributed non-randomly in the human genome but, as reviewed in this paper, biological processes underlying the observed patterns appear to be complex and remain relatively obscure. Recent findings indicate that chromosomal distribution of Alu retroelements deposited in the past is different from the distribution of Alu elements that continue to be inserted in human population. These active elements from AluY sub(sub)families are the major focus of this paper. In particular, we analyzed chromosomal proportions of 19 AluY subfamilies, of which nine are reported for the first time in this paper. These 19 subfamilies contain over 80% of Alu elements that are polymorphic in the human genome. The chromosomal density of these most recent Alu insertions is around three times higher on chromosome Y than on chromosome X and over two times higher than the average density for all human autosomes. Based on this observation and other data we propose that active Alu elements are passed through paternal germlines. There is also some evidence that a small fraction of active Alu elements from less abundant subfamilies can be retroposed in female germlines or in the early embryos. Finally, we propose that the origin of Alu subfamilies in human populations may be related to evolution of chromosome Y.
Collapse
Affiliation(s)
- Jerzy Jurka
- Genetic Information Research Institute, Mountain View, California 94043, USA.
| | | | | | | | | |
Collapse
|
46
|
Abstract
During the past 65 million years, Alu elements have propagated to more than one million copies in primate genomes, which has resulted in the generation of a series of Alu subfamilies of different ages. Alu elements affect the genome in several ways, causing insertion mutations, recombination between elements, gene conversion and alterations in gene expression. Alu-insertion polymorphisms are a boon for the study of human population genetics and primate comparative genomics because they are neutral genetic markers of identical descent with known ancestral states.
Collapse
Affiliation(s)
- Mark A Batzer
- Department of Biological Sciences, Biological Computation and Visualization Center, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana 70803, USA.
| | | |
Collapse
|