1
|
Marzulli M, Hall BL, Zhang M, Goins WF, Cohen JB, Glorioso JC. Novel mutations in U L24 and gH rescue efficient infection of an HSV vector retargeted to TrkA. Mol Ther Methods Clin Dev 2023; 30:208-220. [PMID: 37519407 PMCID: PMC10384243 DOI: 10.1016/j.omtm.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Transductional targeting of herpes simplex virus (HSV)-based gene therapy vectors offers the potential for improved tissue-specific delivery and can be achieved by modification of the viral entry machinery to incorporate ligands that bind the desired cell surface proteins. The interaction of nerve growth factor (NGF) with tropomyosin receptor kinase A (TrkA) is essential for survival of sensory neurons during development and is involved in chronic pain signaling. We targeted HSV infection to TrkA-bearing cells by replacing the signal peptide and HVEM binding domain of glycoprotein D (gD) with pre-pro-NGF. This TrkA-targeted virus (KNGF) infected cells via both nectin-1 and TrkA. However, infection through TrkA was inefficient, prompting a genetic search for KNGF mutants showing enhanced infection following repeat passage on TrkA-expressing cells. These studies revealed unique point mutations in envelope glycoprotein gH and in UL24, a factor absent from mature particles. Together these mutations rescued efficient infection of TrkA-expressing cells, including neurons, and facilitated the production of a completely retargeted KNGF derivative. These studies provide insight into HSV vector improvements that will allow production of replication-defective TrkA-targeted HSV for delivery to the peripheral nervous system and may be applied to other retargeted vector studies in the central nervous system.
Collapse
Affiliation(s)
- Marco Marzulli
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bonnie L. Hall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mingdi Zhang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - William F. Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Justus B. Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph C. Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Sanchez Gil J, Dubois M, Neirinckx V, Lombard A, Coppieters N, D’Arrigo P, Isci D, Aldenhoff T, Brouwers B, Lassence C, Rogister B, Lebrun M, Sadzot-Delvaux C. Nanobody-based retargeting of an oncolytic herpesvirus for eliminating CXCR4+ GBM cells: A proof of principle. MOLECULAR THERAPY - ONCOLYTICS 2022; 26:35-48. [PMID: 35784400 PMCID: PMC9217993 DOI: 10.1016/j.omto.2022.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/01/2022] [Indexed: 12/15/2022]
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, which remains difficult to cure. The very high recurrence rate has been partly attributed to the presence of GBM stem-like cells (GSCs) within the tumors, which have been associated with elevated chemokine receptor 4 (CXCR4) expression. CXCR4 is frequently overexpressed in cancer tissues, including GBM, and usually correlates with a poor prognosis. We have created a CXCR4-retargeted oncolytic herpesvirus (oHSV) by insertion of an anti-human CXCR4 nanobody in glycoprotein D of an attenuated HSV-1 (ΔICP34.5, ΔICP6, and ΔICP47), thereby describing a proof of principle for the use of nanobodies to target oHSVs toward specific cellular entities. Moreover, this virus has been armed with a transgene expressing a soluble form of TRAIL to trigger apoptosis. In vitro, this oHSV infects U87MG CXCR4+ and patient-derived GSCs in a CXCR4-dependent manner and, when armed, triggers apoptosis. In a U87MG CXCR4+ orthotopic xenograft mouse model, this oHSV slows down tumor growth and significantly improves mice survival. Customizing oHSVs with diverse nanobodies for targeting multiple proteins appears as an interesting approach for tackling the heterogeneity of GBM, especially GSCs. Altogether, our study must be considered as a proof of principle and a first step toward personalized GBM virotherapies to complement current treatments.
Collapse
Affiliation(s)
- Judit Sanchez Gil
- Laboratory of Virology and Immunology, GIGA Infection, Inflammation and Immunity (GIGA I3), University of Liège, 4000 Liège, Belgium
| | - Maxime Dubois
- Laboratory of Virology and Immunology, GIGA Infection, Inflammation and Immunity (GIGA I3), University of Liège, 4000 Liège, Belgium
| | - Virginie Neirinckx
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of Liège, 4000 Liège, Belgium
| | - Arnaud Lombard
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of Liège, 4000 Liège, Belgium
- Department of Neurosurgery, CHU of Liège, 4000 Liège, Belgium
| | - Natacha Coppieters
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of Liège, 4000 Liège, Belgium
| | - Paolo D’Arrigo
- Laboratory of Virology and Immunology, GIGA Infection, Inflammation and Immunity (GIGA I3), University of Liège, 4000 Liège, Belgium
| | - Damla Isci
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of Liège, 4000 Liège, Belgium
| | - Therese Aldenhoff
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of Liège, 4000 Liège, Belgium
| | - Benoit Brouwers
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of Liège, 4000 Liège, Belgium
| | - Cédric Lassence
- Laboratory of Virology and Immunology, GIGA Infection, Inflammation and Immunity (GIGA I3), University of Liège, 4000 Liège, Belgium
| | - Bernard Rogister
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of Liège, 4000 Liège, Belgium
- Department of Neurology, CHU of Liège, 4000 Liège, Belgium
| | - Marielle Lebrun
- Laboratory of Virology and Immunology, GIGA Infection, Inflammation and Immunity (GIGA I3), University of Liège, 4000 Liège, Belgium
| | - Catherine Sadzot-Delvaux
- Laboratory of Virology and Immunology, GIGA Infection, Inflammation and Immunity (GIGA I3), University of Liège, 4000 Liège, Belgium
- Corresponding author Catherine Sadzot-Delvaux, Laboratory of Virology and Immunology, GIGA Infection, Inflammation and Immunity (GIGA I3), University of Liège, 11 Avenue de l’Hôpital, 4000 Liège, Belgium.
| |
Collapse
|
3
|
Scanlan H, Coffman Z, Bettencourt J, Shipley T, Bramblett DE. Herpes simplex virus 1 as an oncolytic viral therapy for refractory cancers. Front Oncol 2022; 12:940019. [PMID: 35965554 PMCID: PMC9364694 DOI: 10.3389/fonc.2022.940019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
The need for efficacious and non-toxic cancer therapies is paramount. Oncolytic viruses (OVs) are showing great promise and are introducing new possibilities in cancer treatment with their ability to selectively infect tumor cells and trigger antitumor immune responses. Herpes Simplex Virus 1 (HSV-1) is a commonly selected OV candidate due to its large genome, relative safety profile, and ability to infect a variety of cell types. Talimogene laherparevec (T-VEC) is an HSV-1-derived OV variant and the first and only OV therapy currently approved for clinical use by the United States Food and Drug Administration (FDA). This review provides a concise description of HSV-1 as an OV candidate and the genomic organization of T-VEC. Furthermore, this review focuses on the advantages and limitations in the use of T-VEC compared to other HSV-1 OV variants currently in clinical trials. In addition, approaches for future directions of HSV-1 OVs as cancer therapy is discussed.
Collapse
Affiliation(s)
- Hayle Scanlan
- Rowan School of Medicine, RowanSOM-Jefferson Health-Virtua Our Lady of Lourdes Hospital, Stratford, NJ, United States
| | - Zachary Coffman
- Monroe Clinic Rural Family Medicine Program, The University of Illinois College of Medicine Rockford, Monroe, WI, United States
| | - Jeffrey Bettencourt
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Timothy Shipley
- Department of Biomedical Sciences, A.T. Still University School of Osteopathic Medicine in Arizona, Mesa, AZ, United States
| | - Debra E. Bramblett
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
- *Correspondence: Debra E. Bramblett,
| |
Collapse
|
4
|
Otani Y, Yoo JY, Shimizu T, Kurozumi K, Date I, Kaur B. Implications of immune cells in oncolytic herpes simplex virotherapy for glioma. Brain Tumor Pathol 2022; 39:57-64. [PMID: 35384530 DOI: 10.1007/s10014-022-00431-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/27/2022] [Indexed: 12/13/2022]
Abstract
Despite current progress in treatment, glioblastoma (GBM) remains a lethal primary malignant tumor of the central nervous system. Although immunotherapy has recently achieved remarkable survival effectiveness in multiple malignancies, none of the immune checkpoint inhibitors (ICIs) for GBM have shown anti-tumor efficacy in clinical trials. GBM has a characteristic immunosuppressive tumor microenvironment (TME) that results in the failure of ICIs. Oncolytic herpes simplex virotherapy (oHSV) is the most advanced United States Food and Drug Administration-approved virotherapy for advanced metastatic melanoma patients. Recently, another oHSV, Delytact®, was granted conditional approval in Japan against GBM, highlighting it as a promising treatment. Since oncolytic virotherapy can recruit abundant immune cells and modify the immune TME, oncolytic virotherapy for immunologically cold GBM will be an attractive therapeutic option for GBM. However, as these immune cells have roles in both anti-tumor and anti-viral immunity, fine-tuning of the TME using oncolytic virotherapy will be important to maximize the therapeutic efficacy. In this review, we discuss the current knowledge of oHSV, with a focus on the role of immune cells as friend or foe in oncolytic virotherapy.
Collapse
Affiliation(s)
- Yoshihiro Otani
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Ji Young Yoo
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Toshihiko Shimizu
- Department of Neurosurgery, Matsuyama Shimin Hospital, 2-6-5 Otemachi, Matsuyama, Ehime, 790-0067, Japan
| | - Kazuhiko Kurozumi
- Department of Neurosurgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Balveen Kaur
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| |
Collapse
|
5
|
Suzuki T, Uchida H, Shibata T, Sasaki Y, Ikeda H, Hamada-Uematsu M, Hamasaki R, Okuda K, Yanagi S, Tahara H. Potent anti-tumor effects of receptor-retargeted syncytial oncolytic herpes simplex virus. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:265-276. [PMID: 34553018 PMCID: PMC8426171 DOI: 10.1016/j.omto.2021.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/12/2021] [Indexed: 11/27/2022]
Abstract
Most oncolytic virotherapy has thus far employed viruses deficient in genes essential for replication in normal cells but not in cancer cells. Intra-tumoral injection of such viruses has resulted in clinically significant anti-tumor effects on the lesions in the vicinity of the injection sites but not on distant visceral metastases. To overcome this limitation, we have developed a receptor-retargeted oncolytic herpes simplex virus employing a single-chain antibody for targeting tumor-associated antigens (RR-oHSV) and its modified version with additional mutations conferring syncytium formation (RRsyn-oHSV). We previously showed that RRsyn-oHSV exhibits preserved antigen specificity and an ∼20-fold higher tumoricidal potency in vitro relative to RR-oHSV. Here, we investigated the in vivo anti-tumor effects of RRsyn-oHSV using human cancer xenografts in immunodeficient mice. With only a single intra-tumoral injection of RRsyn-oHSV at very low doses, all treated tumors regressed completely. Furthermore, intra-venous administration of RRsyn-oHSV resulted in robust anti-tumor effects even against large tumors. We found that these potent anti-tumor effects of RRsyn-oHSV may be associated with the formation of long-lasting tumor cell syncytia not containing non-cancerous cells that appear to trigger death of the syncytia. These results strongly suggest that cancer patients with distant metastases could be effectively treated with our RRsyn-oHSV.
Collapse
Affiliation(s)
- Takuma Suzuki
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiroaki Uchida
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomoko Shibata
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yasuhiko Sasaki
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hitomi Ikeda
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Mika Hamada-Uematsu
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ryota Hamasaki
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Ono Pharmaceutical Co., Ltd., Osaka, Japan
| | - Kosaku Okuda
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Ono Pharmaceutical Co., Ltd., Osaka, Japan
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hideaki Tahara
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Department of Cancer Drug Discovery and Development, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
6
|
Ulasov IV, Borovjagin A, Laevskaya A, Kamynina M, Timashev P, Cerchia L, Rozhkova EA. The IL13α 2R paves the way for anti-glioma nanotherapy. Genes Dis 2021; 10:89-100. [PMID: 37013057 PMCID: PMC10066331 DOI: 10.1016/j.gendis.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/05/2021] [Accepted: 08/17/2021] [Indexed: 11/20/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive (grade IV) gliomas characterized by a high rate of recurrence, resistance to therapy and a grim survival prognosis. The long-awaited improvement in GBM patients' survival rates essentially depends on advances in the development of new therapeutic approaches. Recent preclinical studies show that nanoscale materials could greatly contribute to the improvement of diagnosis and management of brain cancers. In the current review, we will discuss how specific features of glioma pathobiology can be employed for designing efficient targeting approaches. Moreover, we will summarize the main evidence for the potential of the IL-13R alpha 2 receptor (IL13α2R) targeting in GBM early diagnosis and experimental therapy.
Collapse
Affiliation(s)
- Ilya V. Ulasov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
- Corresponding author.
| | - Anton Borovjagin
- Department of BioMedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anastasia Laevskaya
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Margarita Kamynina
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
- Department of Polymers and Composites, N.N. Semenov Institute of Chemical Physics, 4 Kosygin St, Moscow 119991, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow 119991, Russia
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), Naples 80131, Italy
| | - Elena A. Rozhkova
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| |
Collapse
|
7
|
Jahan N, Ghouse SM, Martuza RL, Rabkin SD. In Situ Cancer Vaccination and Immunovirotherapy Using Oncolytic HSV. Viruses 2021; 13:v13091740. [PMID: 34578321 PMCID: PMC8473045 DOI: 10.3390/v13091740] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Herpes simplex virus (HSV) can be genetically altered to acquire oncolytic properties so that oncolytic HSV (oHSV) preferentially replicates in and kills cancer cells, while sparing normal cells, and inducing anti-tumor immune responses. Over the last three decades, a better understanding of HSV genes and functions, and improved genetic-engineering techniques led to the development of oHSV as a novel immunovirotherapy. The concept of in situ cancer vaccination (ISCV) was first introduced when oHSV was found to induce a specific systemic anti-tumor immune response with an abscopal effect on non-injected tumors, in the process of directly killing tumor cells. Thus, the use of oHSV for tumor vaccination in situ is antigen-agnostic. The research and development of oHSVs have moved rapidly, with the field of oncolytic viruses invigorated by the FDA/EMA approval of oHSV talimogene laherparepvec in 2015 for the treatment of advanced melanoma. Immunovirotherapy can be enhanced by arming oHSV with immunomodulatory transgenes and/or using them in combination with other chemotherapeutic and immunotherapeutic agents. This review offers an overview of the development of oHSV as an agent for ISCV against solid tumors, describing the multitude of different oHSVs and their efficacy in immunocompetent mouse models and in clinical trials.
Collapse
Affiliation(s)
- Nusrat Jahan
- Molecular Neurosurgery Laboratory and Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (N.J.); (S.M.G.); (R.L.M.)
| | - Shanawaz M. Ghouse
- Molecular Neurosurgery Laboratory and Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (N.J.); (S.M.G.); (R.L.M.)
| | - Robert L. Martuza
- Molecular Neurosurgery Laboratory and Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (N.J.); (S.M.G.); (R.L.M.)
| | - Samuel D. Rabkin
- Department of Neurosurgery, Massachusetts General Hospital, 185 Cambridge St., CPZN-3800, Boston, MA 02114, USA
- Correspondence:
| |
Collapse
|
8
|
Vannini A, Leoni V, Sanapo M, Gianni T, Giordani G, Gatta V, Barboni C, Zaghini A, Campadelli-Fiume G. Immunotherapeutic Efficacy of Retargeted oHSVs Designed for Propagation in an Ad Hoc Cell Line. Cancers (Basel) 2021; 13:E266. [PMID: 33445744 PMCID: PMC7828196 DOI: 10.3390/cancers13020266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Our laboratory has pursued the generation of cancer-specific oncolytic herpes simplex viruses (oHSVs) which ensure high efficacy while maintaining a high safety profile. Their blueprint included retargeting to a Tumor-Associated Antigen, e.g., HER2, coupled to detargeting from natural receptors to avoid off-target and off-tumor infections and preservation of the full complement of unmodified viral genes. These oHSVs are "fully virulent in their target cancer cells". The 3rd generation retargeted oHSVs carry two distinct retargeting moieties, which enable infection of a producer cell line and of the target cancer cells, respectively. They can be propagated in an ad hoc Vero cell derivative at about tenfold higher yields than 1st generation recombinants, and more effectively replicate in human cancer cell lines. The R-335 and R-337 prototypes were armed with murine IL-12. Intratumorally-administered R-337 conferred almost complete protection from LLC-1-HER2 primary tumors, unleashed the tumor microenvironment immunosuppression, synergized with the checkpoint blockade and conferred long-term vaccination against distant challenge tumors. In summary, the problem intrinsic to the propagation of retargeted oHSVs-which strictly require cells positive for targeted receptors-was solved in 3rd generation viruses. They are effective as immunotherapeutic agents against primary tumors and as antigen-agnostic vaccines.
Collapse
Affiliation(s)
- Andrea Vannini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.L.); (M.S.); (T.G.); (V.G.)
| | - Valerio Leoni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.L.); (M.S.); (T.G.); (V.G.)
| | - Mara Sanapo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.L.); (M.S.); (T.G.); (V.G.)
| | - Tatiana Gianni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.L.); (M.S.); (T.G.); (V.G.)
| | - Giorgia Giordani
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Valentina Gatta
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.L.); (M.S.); (T.G.); (V.G.)
| | - Catia Barboni
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (C.B.); (A.Z.)
| | - Anna Zaghini
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (C.B.); (A.Z.)
| | - Gabriella Campadelli-Fiume
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.L.); (M.S.); (T.G.); (V.G.)
| |
Collapse
|
9
|
Menotti L, Avitabile E. Herpes Simplex Virus Oncolytic Immunovirotherapy: The Blossoming Branch of Multimodal Therapy. Int J Mol Sci 2020; 21:ijms21218310. [PMID: 33167582 PMCID: PMC7664223 DOI: 10.3390/ijms21218310] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Oncolytic viruses are smart therapeutics against cancer due to their potential to replicate and produce the needed therapeutic dose in the tumor, and to their ability to self-exhaust upon tumor clearance. Oncolytic virotherapy strategies based on the herpes simplex virus are reaching their thirties, and a wide variety of approaches has been envisioned and tested in many different models, and on a range of tumor targets. This huge effort has culminated in the primacy of an oncolytic HSV (oHSV) being the first oncolytic virus to be approved by the FDA and EMA for clinical use, for the treatment of advanced melanoma. The path has just been opened; many more cancer types with poor prognosis await effective and innovative therapies, and oHSVs could provide a promising solution, especially as combination therapies and immunovirotherapies. In this review, we analyze the most recent advances in this field, and try to envision the future ahead of oHSVs.
Collapse
|
10
|
Sharma P, Roberts C, Herpai D, Fokt ID, Priebe W, Debinski W. Drug Conjugates for Targeting Eph Receptors in Glioblastoma. Pharmaceuticals (Basel) 2020; 13:E77. [PMID: 32340173 PMCID: PMC7243104 DOI: 10.3390/ph13040077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is a complex and heterogeneous tumor that warrants a comprehensive therapeutic approach for treatment. Tumor-associated antigens offer an opportunity to selectively target various components of the GBM microenvironment while sparing the normal cells within the central nervous system. In this study, we conjugated a multivalent vector protein, QUAD 3.0, that can target four receptors: EphA3, EphA2, EphB2, and also IL-13RA2, spanning virtually 100% of the GBM microenvironment, to doxorubicin derivatives. The conjugates effectively bound to all four receptors, although to varying degrees, and delivered cytotoxic loads to both established and patient-derived GBM cell lines, with IC50 values in the low nM range. The conjugates were also non-toxic to animals. We anticipate that the QUAD 3.0 Dox conjugates will be further used in preclinical models and possibly clinics in the foreseeable future.
Collapse
Affiliation(s)
- Puja Sharma
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, NC 27157, USA; (P.S.); (C.R.); (D.H.)
| | - Callie Roberts
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, NC 27157, USA; (P.S.); (C.R.); (D.H.)
| | - Denise Herpai
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, NC 27157, USA; (P.S.); (C.R.); (D.H.)
| | - Izabela D. Fokt
- Department of Experimental Therapeutics, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX 77054, USA; (I.D.F.); (W.P.)
| | - Waldemar Priebe
- Department of Experimental Therapeutics, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX 77054, USA; (I.D.F.); (W.P.)
| | - Waldemar Debinski
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, NC 27157, USA; (P.S.); (C.R.); (D.H.)
| |
Collapse
|
11
|
Tuzmen C, Cairns TM, Atanasiu D, Lou H, Saw WT, Hall BL, Cohen JB, Cohen GH, Glorioso JC. Point Mutations in Retargeted gD Eliminate the Sensitivity of EGFR/EGFRvIII-Targeted HSV to Key Neutralizing Antibodies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 16:145-154. [PMID: 32042851 PMCID: PMC7000558 DOI: 10.1016/j.omtm.2019.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/26/2019] [Indexed: 11/29/2022]
Abstract
Effective oncolytic virotherapy may require systemic delivery, tumor targeting, and resistance to virus-neutralizing (VN) antibodies. Since herpes simplex virus (HSV) glycoprotein D (gD) is the viral attachment/entry protein and predominant VN target, we examined the impact of gD retargeting alone and in combination with alterations in dominant VN epitopes on virus susceptibility to VN antibodies. We compared the binding of a panel of anti-gD monoclonal antibodies (mAbs) that mimic antibody specificities in human HSV-immune sera to the purified ectodomains of wild-type and retargeted gD, revealing the retention of two prominent epitopes. Substitution of a key residue in each epitope, separately and together, revealed that both substitutions (1) blocked retargeted gD recognition by mAbs to the respective epitopes, and, in combination, caused a global reduction in mAb binding; (2) protected against fusion inhibition by VN mAbs reactive with each epitope in virus-free cell-cell fusion assays; and (3) increased the resistance of retargeted HSV-1 to these VN mAbs. Although the combined modifications of retargeted gD allowed bona fide retargeting, incorporation into virions was partially compromised. Our results indicate that stacking of epitope mutations can additively block retargeted gD recognition by VN antibodies but also that improvements in gD incorporation into virus particles may be required.
Collapse
Affiliation(s)
- Ceren Tuzmen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Tina M Cairns
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Doina Atanasiu
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Huan Lou
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wan Ting Saw
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bonnie L Hall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Justus B Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Gary H Cohen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph C Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
12
|
Rider PJF, Uche IK, Sweeny L, Kousoulas KG. Anti-viral immunity in the tumor microenvironment: implications for the rational design of herpes simplex virus type 1 oncolytic virotherapy. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019; 6:193-199. [PMID: 33344108 DOI: 10.1007/s40588-019-00134-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose of review The design of novel herpes simplex type I (HSV-1)-derived oncolytic virotherapies is a balancing act between safety, immunogenicity and replicative potential. We have undertaken this review to better understand how these considerations can be incorporated into rational approaches to the design of novel herpesvirus oncolytic virotherapies. Recent findings Several recent papers have demonstrated that enhancing the potential of HSV-1 oncolytic viruses to combat anti-viral mechanisms present in the tumor microenvironment leads to greater efficacy than their parental viruses. Summary It is not entirely clear how the immunosuppressive tumor microenvironment affects oncolytic viral replication and spread within tumors. Recent work has shown that the manipulation of specific cellular and molecular mechanisms of immunosuppression operating within the tumor microenvironment can enhance the efficacy of oncolytic virotherapy. We anticipate that future work will integrate greater knowledge of immunosuppression in tumor microenvironments with design of oncolytic virotherapies.
Collapse
Affiliation(s)
- Paul J F Rider
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Ifeanyi K Uche
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Larissa Sweeny
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA.,Louisiana State University Health Sciences Center, New Orleans, Louisiana USA
| | - Konstantin G Kousoulas
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
13
|
Totsch SK, Schlappi C, Kang KD, Ishizuka AS, Lynn GM, Fox B, Beierle EA, Whitley RJ, Markert JM, Gillespie GY, Bernstock JD, Friedman GK. Oncolytic herpes simplex virus immunotherapy for brain tumors: current pitfalls and emerging strategies to overcome therapeutic resistance. Oncogene 2019; 38:6159-6171. [PMID: 31289361 PMCID: PMC6771414 DOI: 10.1038/s41388-019-0870-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 12/25/2022]
Abstract
Malignant tumors of the central nervous system (CNS) continue to be a leading cause of cancer-related mortality in both
children and adults. Traditional therapies for malignant brain tumors consist of surgical resection and adjuvant chemoradiation;
such approaches are often associated with extreme morbidity. Accordingly, novel, targeted therapeutics for neoplasms of the CNS,
such as immunotherapy with oncolytic engineered herpes simplex virus (HSV) therapy, are urgently warranted. Herein, we discuss
treatment challenges related to HSV virotherapy delivery, entry, replication, and spread, and in so doing focus on host antiviral
immune responses and the immune microenvironment. Strategies to overcome such challenges including viral re-engineering,
modulation of the immunoregulatory microenvironment and combinatorial therapies with virotherapy, such as checkpoint inhibitors,
radiation, and vaccination are also examined in detail.
Collapse
Affiliation(s)
- Stacie K Totsch
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Charles Schlappi
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kyung-Don Kang
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Brandon Fox
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Elizabeth A Beierle
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Richard J Whitley
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James M Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - G Yancey Gillespie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joshua D Bernstock
- Avidea Technologies, Inc, Baltimore, MD, USA. .,Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA. .,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Gregory K Friedman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA. .,Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA. .,Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
14
|
Liu XQ, Xin HY, Lyu YN, Ma ZW, Peng XC, Xiang Y, Wang YY, Wu ZJ, Cheng JT, Ji JF, Zhong JX, Ren BX, Wang XW, Xin HW. Oncolytic herpes simplex virus tumor targeting and neutralization escape by engineering viral envelope glycoproteins. Drug Deliv 2019; 25:1950-1962. [PMID: 30799657 PMCID: PMC6282442 DOI: 10.1080/10717544.2018.1534895] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Oncolytic herpes simplex viruses (oHSVs) have been approved for clinical usage and become more and more popular for tumor virotherapy. However, there are still many issues for the oHSVs used in clinics and clinical trials. The main issues are the limited anti-tumor effects, intratumor injection, and some side effects. To overcome such challenges, here we review the genetic engineering of the envelope glycoproteins for oHSVs to target tumors specifically, and at the same time we summarize the many neutralization antibodies against the envelope glycoproteins and align the neutralization epitopes with functional domains of the respective glycoproteins for future identification of new functions of the glycoproteins and future engineering of the epitopes to escape from host neutralization.
Collapse
Affiliation(s)
- Xiao-Qin Liu
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,c Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,d Department of Nursing and Medical Imaging Technology , Yangtze University , Jingzhou , Hubei , China
| | - Hong-Yi Xin
- e Star Array Pte Ltd , JTC Medtech Hub , Singapore , Singapore
| | - Yan-Ning Lyu
- f Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing Center for Diseases Prevention and Control , Beijing , China
| | - Zhao-Wu Ma
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,c Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China
| | - Xiao-Chun Peng
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,g Faculty of Medicine, Department of Pathophysiology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China
| | - Ying Xiang
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,c Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China
| | - Ying-Ying Wang
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,c Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China
| | - Zi-Jun Wu
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,c Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,d Department of Nursing and Medical Imaging Technology , Yangtze University , Jingzhou , Hubei , China
| | - Jun-Ting Cheng
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,c Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China
| | - Jia-Fu Ji
- h Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery , Peking University Cancer Hospital and Institute , Haidian , Beijing , China
| | - Ji-Xin Zhong
- i Cardiovascular Research Institute , Case Western Reserve University , Cleveland , OH , USA
| | - Bo-Xu Ren
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,d Department of Nursing and Medical Imaging Technology , Yangtze University , Jingzhou , Hubei , China
| | - Xian-Wang Wang
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,j Faculty of Medicine, Department of Laboratory Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China
| | - Hong-Wu Xin
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,c Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China
| |
Collapse
|
15
|
Sharma P, Debinski W. Receptor-Targeted Glial Brain Tumor Therapies. Int J Mol Sci 2018; 19:E3326. [PMID: 30366424 PMCID: PMC6274942 DOI: 10.3390/ijms19113326] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 12/24/2022] Open
Abstract
Among primary brain tumors, malignant gliomas are notably difficult to manage. The higher-grade tumors represent an unmet need in medicine. There have been extensive efforts to implement receptor-targeted therapeutic approaches directed against gliomas. These approaches include immunotherapies, such as vaccines, adoptive immunotherapy, and passive immunotherapy. Targeted cytotoxic radio energy and pro-drug activation have been designed specifically for brain tumors. The field of targeting through receptors progressed significantly with the discovery of an interleukin 13 receptor alpha 2 (IL-13RA2) as a tumor-associated receptor over-expressed in most patients with glioblastoma (GBM) but not in normal brain. IL-13RA2 has been exploited in novel experimental therapies with very encouraging clinical responses. Other receptors are specifically over-expressed in many patients with GBM, such as EphA2 and EphA3 receptors, among others. These findings are important in view of the heterogeneity of GBM tumors and multiple tumor compartments responsible for tumor progression and resistance to therapies. The combined targeting of multiple receptors in different tumor compartments should be a preferred way to design novel receptor-targeted therapeutic approaches in gliomas.
Collapse
Affiliation(s)
- Puja Sharma
- Brain Tumor Center of Excellence, Department of Cancer Biology, Wake Forest University School of Medicine, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, 1 Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | - Waldemar Debinski
- Brain Tumor Center of Excellence, Department of Cancer Biology, Wake Forest University School of Medicine, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, 1 Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
16
|
Herpes Simplex Virus Vectors for Gene Transfer to the Central Nervous System. Diseases 2018; 6:diseases6030074. [PMID: 30110885 PMCID: PMC6164475 DOI: 10.3390/diseases6030074] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases (NDs) have a profound impact on human health worldwide and their incidence is predicted to increase as the population ages. ND severely limits the quality of life and leads to early death. Aside from treatments that may reduce symptoms, NDs are almost completely without means of therapeutic intervention. The genetic and biochemical basis of many NDs is beginning to emerge although most have complex etiologies for which common themes remain poorly resolved. Largely relying on progress in vector design, gene therapy is gaining increasing support as a strategy for genetic treatment of diseases. Here we describe recent developments in the engineering of highly defective herpes simplex virus (HSV) vectors suitable for transfer and long-term expression of large and/or multiple therapeutic genes in brain neurons in the complete absence of viral gene expression. These advanced vector platforms are safe, non-inflammatory, and persist in the nerve cell nucleus for life. In the near term, it is likely that HSV can be used to treat certain NDs that have a well-defined genetic cause. As further information on disease etiology becomes available, these vectors may take on an expanded role in ND therapies, including gene editing and repair.
Collapse
|
17
|
Menotti L, Avitabile E, Gatta V, Malatesta P, Petrovic B, Campadelli-Fiume G. HSV as A Platform for the Generation of Retargeted, Armed, and Reporter-Expressing Oncolytic Viruses. Viruses 2018; 10:E352. [PMID: 29966356 PMCID: PMC6070899 DOI: 10.3390/v10070352] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/28/2022] Open
Abstract
Previously, we engineered oncolytic herpes simplex viruses (o-HSVs) retargeted to the HER2 (epidermal growth factor receptor 2) tumor cell specific receptor by the insertion of a single chain antibody (scFv) to HER2 in gD, gH, or gB. Here, the insertion of scFvs to three additional cancer targets—EGFR (epidermal growth factor receptor), EGFRvIII, and PSMA (prostate specific membrane antigen)—in gD Δ6–38 enabled the generation of specifically retargeted o-HSVs. Viable recombinants resulted from the insertion of an scFv in place of aa 6–38, but not in place of aa 61–218. Hence, only the gD N-terminus accepted all tested scFv inserts. Additionally, the insertion of mIL12 in the US1-US2 intergenic region of the HER2- or EGFRvIII-retargeted o-HSVs, and the further insertion of Gaussia Luciferase, gave rise to viable recombinants capable of secreting the cytokine and the reporter. Lastly, we engineered two known mutations in gB; they increased the ability of an HER2-retargeted recombinant to spread among murine cells. Altogether, current data show that the o-HSV carrying the aa 6–38 deletion in gD serves as a platform for the specific retargeting of o-HSV tropism to a number of human cancer targets, and the retargeted o-HSVs serve as simultaneous vectors for two molecules.
Collapse
Affiliation(s)
- Laura Menotti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy.
| | - Elisa Avitabile
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy.
| | - Valentina Gatta
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy.
| | - Paolo Malatesta
- Department of Experimental Medicine, University of Genoa, Genoa 16132, Italy.
- Ospedale Policlinico San Martino-IRCCS per l'Oncologia, Genoa 16132, Italy.
| | - Biljana Petrovic
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy.
| | - Gabriella Campadelli-Fiume
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy.
| |
Collapse
|
18
|
Bommareddy PK, Peters C, Saha D, Rabkin SD, Kaufman HL. Oncolytic Herpes Simplex Viruses as a Paradigm for the Treatment of Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018. [DOI: 10.1146/annurev-cancerbio-030617-050254] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Praveen K. Bommareddy
- Department of Surgery, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA
| | - Cole Peters
- Molecular Neurosurgery Laboratory, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
- Program in Virology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dipongkor Saha
- Molecular Neurosurgery Laboratory, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Samuel D. Rabkin
- Molecular Neurosurgery Laboratory, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Howard L. Kaufman
- Department of Surgery, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA
| |
Collapse
|
19
|
Simultaneous Insertion of Two Ligands in gD for Cultivation of Oncolytic Herpes Simplex Viruses in Noncancer Cells and Retargeting to Cancer Receptors. J Virol 2018; 92:JVI.02132-17. [PMID: 29263255 PMCID: PMC5827369 DOI: 10.1128/jvi.02132-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 01/31/2023] Open
Abstract
Insertion of a single-chain variable-fragment antibody (scFv) to HER2 (human epidermal growth factor receptor 2) in gD, gH, or gB gives rise to herpes simplex viruses (HSVs) specifically retargeted to HER2-positive cancer cells, hence to highly specific nonattenuated oncolytic agents. Clinical-grade virus production cannot rely on cancer cells. Recently, we developed a double-retargeting strategy whereby gH carries the GCN4 peptide for retargeting to the noncancer producer Vero-GCN4R cell line and gD carries the scFv to HER2 for cancer retargeting. Here, we engineered double-retargeted recombinants, which carry both the GCN4 peptide and the scFv to HER2 in gD. Novel, more-advantageous detargeting strategies were devised so as to optimize the cultivation of the double-retargeted recombinants. Nectin1 detargeting was achieved by deletion of amino acids (aa) 35 to 39, 214 to 223, or 219 to 223 and replacement of the deleted sequences with one of the two ligands. The last two deletions were not attempted before. All recombinants exhibited the double retargeting to HER2 and to the Vero-GCN4R cells, as well as detargeting from the natural receptors HVEM and nectin1. Of note, some recombinants grew to higher yields than others. The best-performing recombinants carried a gD deletion as small as 5 amino acids and grew to titers similar to those exhibited by the singly retargeted R-LM113 and by the nonretargeted R-LM5. This study shows that double retargeting through insertion of two ligands in gD is feasible and, when combined with appropriate detargeting modifications, can result in recombinants highly effective in vitro and in vivo. IMPORTANCE There is increasing interest in oncolytic viruses following the FDA and European Medicines Agency (EMA) approval of the oncolytic HSV OncovexGM-CSF and, mainly, because they greatly boost the immune response to the tumor and can be combined with immunotherapeutic agents, particularly immune checkpoint inhibitors. A strategy to gain high cancer specificity and avoid virus attenuation is to retarget the virus tropism to cancer-specific receptors of choice. However, cultivation of retargeted oncolytics in cells expressing the cancer receptor may not be approvable by regulatory agencies. We devised a strategy for their cultivation in noncancer cells. Here, we describe a double-retargeting strategy, based on the simultaneous insertion of two ligands in gD, one for retargeting to a producer, universal Vero cell derivative and one for retargeting to the HER2 cancer receptor. These insertions were combined with novel, minimally disadvantageous detargeting modifications. The current and accompanying studies indicate how to best achieve the clinical-grade cultivation of retargeted oncolytics.
Collapse
|
20
|
Dual Ligand Insertion in gB and gD of Oncolytic Herpes Simplex Viruses for Retargeting to a Producer Vero Cell Line and to Cancer Cells. J Virol 2018; 92:JVI.02122-17. [PMID: 29263257 PMCID: PMC5827396 DOI: 10.1128/jvi.02122-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 01/03/2023] Open
Abstract
Oncolytic viruses gain cancer specificity in several ways. Like the majority of viruses, they grow better in cancer cells that are defective in mounting the host response to viruses. Often, they are attenuated by deletion or mutation of virulence genes that counteract the host response or are naturally occurring oncolytic mutants. In contrast, retargeted viruses are not attenuated or deleted; their cancer specificity rests on a modified, specific tropism for cancer receptors. For herpes simplex virus (HSV)-based oncolytics, the detargeting-retargeting strategies employed so far were based on genetic modifications of gD. Recently, we showed that even gH or gB can serve as retargeting tools. To enable the growth of retargeted HSVs in cells that can be used for clinical-grade virus production, a double-retargeting strategy has been developed. Here we show that several sites in the N terminus of gB are suitable to harbor the 20-amino-acid (aa)-long GCN4 peptide, which readdresses HSV tropism to Vero cells expressing the artificial GCN4 receptor and thus enables virus cultivation in the producer noncancer Vero-GCN4R cell line. The gB modifications can be combined with a minimal detargeting modification in gD, consisting in the deletion of two residues, aa 30 and 38, and replacement of aa 38 with the scFv to human epidermal growth factor receptor 2 (HER2), for retargeting to the cancer receptor. The panel of recombinants was analyzed comparatively in terms of virus growth, cell-to-cell spread, cytotoxicity, and in vivo antitumor efficacy to define the best double-retargeting strategy. IMPORTANCE There is increasing interest in oncolytic viruses, following FDA and the European Medicines Agency (EMA) approval of HSV OncovexGM-CSF, and, mainly, because they greatly boost the immune response to the tumor and can be combined with immunotherapeutic agents, particularly checkpoint inhibitors. A strategy to gain cancer specificity and avoid virus attenuation is to retarget the virus tropism to cancer-specific receptors of choice. Cultivation of fully retargeted viruses is challenging, since they require cells that express the cancer receptor. We devised a strategy for their cultivation in producer noncancer Vero cell derivatives. Here, we developed a double-retargeting strategy, based on insertion of one ligand in gB for retargeting to a Vero cell derivative and of anti-HER2 ligand in gD for cancer retargeting. These modifications were combined with a minimally destructive detargeting strategy. This study and its companion paper explain the clinical-grade cultivation of retargeted oncolytic HSVs and promote their translation to the clinic.
Collapse
|
21
|
Rider PJF, Musarrat F, Nabil R, Naidu S, Kousoulas KG. First Impressions-the Potential of Altering Initial Host-Virus Interactions for Rational Design of Herpesvirus Vaccine Vectors. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018; 5:55-65. [PMID: 30560044 DOI: 10.1007/s40588-018-0082-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose The earliest host-virus interactions occur during virus attachment and entry into cells. These initial steps in the virus lifecycle influence the outcome of infection beyond delivery of the viral genome into the cell. Herpesviruses alter host signaling pathways and processes during attachment and entry to facilitate virus infection and modulate innate immune responses. We suggest in this review that understanding these early signaling events may inform the rational design of therapeutic and prevention strategies for herpesvirus infection, as well as the engineering of viral vectors for immunotherapy purposes. Recent Findings Recent reports demonstrate that modulation of Herpes Simplex Virus Type-1 (HSV-1) entry results in unexpected enhancement of antiviral immune responses. Summary A variety of evidence suggests that herpesviruses promote specific cellular signaling responses that facilitate viral replication after binding to cell surfaces, as well as during virus entry. Of particular interest is the ability of the virus to alter innate immune responses through these cellular signaling events. Uncovering the underlying immune evasion strategies may lead to the design of live-attenuated vaccines that can generate robust and protective anti-viral immune responses against herpesviruses. These adjuvant properties may be extended to a variety of heterologous antigens expressed by herpesviral vectors.
Collapse
Affiliation(s)
- Paul J F Rider
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Farhana Musarrat
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Rafiq Nabil
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Shan Naidu
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Konstantin G Kousoulas
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| |
Collapse
|
22
|
Abstract
Oncolytic virotherapy is a kind of antitumor therapy using viruses with natural or engineered tumor-selective replication to intentionally infect and kill tumor cells. An early clinical trial has been performed in the 1950s using wild-type and non-engineered in vitro-passaged virus strains and vaccine strains (first generation oncolytic viruses). Because of the advances in biotechnology and virology, the field of virotherapy has rapidly evolved over the past two decades and innovative recombinant selectivity-enhanced viruses (second generation oncolytic viruses). Nowadays, therapeutic transgene-delivering "armed" oncolytic viruses (third generation oncolytic viruses) have been engineered using many kinds of viruses. In this chapter, the history, mechanisms, rationality, and advantages of oncolytic virotherapy by herpes simplex virus (HSV) are mentioned. Past and ongoing clinical trials by oncolytic HSVs (G207, HSV1716, NV1020, HF10, Talimogene laherparepvec (T-VEC, OncoVEXGM-CSF)) are also summarized. Finally, the way of enhancement of oncolytic virotherapy by gene modification or combination therapy with radiation, chemotherapy, or immune checkpoint inhibitors are discussed.
Collapse
|
23
|
A Strategy for Cultivation of Retargeted Oncolytic Herpes Simplex Viruses in Non-cancer Cells. J Virol 2017; 91:JVI.00067-17. [PMID: 28250120 PMCID: PMC5411604 DOI: 10.1128/jvi.00067-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/21/2017] [Indexed: 01/01/2023] Open
Abstract
The oncolytic herpes simplex virus (HSV) that has been approved for clinical practice and those HSVs in clinical trials are attenuated viruses, often with the neurovirulence gene γ134.5 and additional genes deleted. One strategy to engineer nonattenuated oncolytic HSVs consists of retargeting the viral tropism to a cancer-specific receptor of choice, exemplified by HER2 (human epidermal growth factor receptor 2), which is present in breast, ovary, and other cancers, and in detargeting from the natural receptors. Because the HER2-retargeted HSVs strictly depend on this receptor for infection, the viruses employed in preclinical studies were cultivated in HER2-positive cancer cells. The production of clinical-grade viruses destined for humans should avoid the use of cancer cells. Here, we engineered the R-213 recombinant, by insertion of a 20-amino-acid (aa) short peptide (named GCN4) in the gH of R-LM113; this recombinant was retargeted to HER2 through insertion in gD of a single-chain antibody (scFv) to HER2. Next, we generated a Vero cell line expressing an artificial receptor (GCN4R) whose N terminus consists of an scFv to GCN4 and therefore is capable of interacting with GCN4 present in gH of R-213. R-213 replicated as well as R-LM113 in SK-OV-3 cells, implying that addition of the GCN4 peptide was not detrimental to gH. R-213 grew to relatively high titers in Vero-GCN4R cells, efficiently spread from cell to cell, and killed both Vero-GCN4R and SK-OV-3 cells, as expected for an oncolytic virus. Altogether, Vero-GCN4R cells represent an efficient system for cultivation of retargeted oncolytic HSVs in non-cancer cells. IMPORTANCE There is growing interest in viruses as oncolytic agents, which can be administered in combination with immunotherapeutic compounds, including immune checkpoint inhibitors. The oncolytic HSV approved for clinical practice and those in clinical trials are attenuated viruses. An alternative to attenuation is a cancer specificity achieved by tropism retargeting to selected cancer receptors. However, the retargeted oncolytic HSVs strictly depend on cancer receptors for infection. Here, we devised a strategy for in vitro cultivation of retargeted HSVs in non-cancer cells. The strategy envisions a double-retargeting approach: one retargeting is via gD to the cancer receptor, and the second retargeting is via gH to an artificial receptor expressed in Vero cells. The double-retargeted HSV uses alternatively the two receptors to infect cancer cells or producer cells. A universal non-cancer cell line for growth of clinical-grade retargeted HSVs represents a step forward in the translational phase.
Collapse
|
24
|
Insertion of a ligand to HER2 in gB retargets HSV tropism and obviates the need for activation of the other entry glycoproteins. PLoS Pathog 2017; 13:e1006352. [PMID: 28423057 PMCID: PMC5411103 DOI: 10.1371/journal.ppat.1006352] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/01/2017] [Accepted: 04/13/2017] [Indexed: 11/19/2022] Open
Abstract
Herpes simplex virus (HSV) entry into the cells requires glycoproteins gD, gH/gL and gB, activated in a cascade fashion by conformational modifications induced by cognate receptors and intermolecular signaling. The receptors are nectin1 and HVEM (Herpes virus entry mediator) for gD, and αvβ6 or αvβ8 integrin for gH. In earlier work, insertion of a single chain antibody (scFv) to the cancer receptor HER2 (human epidermal growth factor receptor 2) in gD, or in gH, resulted in HSVs specifically retargeted to the HER2-positive cancer cells, hence in highly specific non-attenuated oncolytic agents. Here, the scFv to HER2 was inserted in gB (gBHER2). The insertion re-targeted the virus tropism to the HER2-positive cancer cells. This was unexpected since gB is known to be a fusogenic glycoprotein, not a tropism determinant. The gB-retargeted recombinant offered the possibility to investigate how HER2 mediated entry. In contrast to wt-gB, the activation of the chimeric gBHER2 did not require the activation of the gD and of gH/gL by their respective receptors. Furthermore, a soluble form of HER2 could replace the membrane-bound HER2 in mediating virus entry, hinting that HER2 acted by inducing conformational changes to the chimeric gB. This study shows that (i) gB can be modified and become the major determinant of HSV tropism; (ii) the chimeric gBHER2 bypasses the requirement for receptor-mediated activation of other essential entry glycoproteins.
Collapse
|
25
|
Goins WF, Hall B, Cohen JB, Glorioso JC. Retargeting of herpes simplex virus (HSV) vectors. Curr Opin Virol 2016; 21:93-101. [PMID: 27614209 DOI: 10.1016/j.coviro.2016.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 01/17/2023]
Abstract
Gene therapy applications depend on vector delivery and gene expression in the appropriate target cell. Vector infection relies on the distribution of natural virus receptors that may either not be present on the desired target cell or distributed in a manner to give off-target gene expression. Some viruses display a very limited host range, while others, including herpes simplex virus (HSV), can infect almost every cell within the human body. It is often an advantage to retarget virus infectivity to achieve selective target cell infection. Retargeting can be achieved by (i) the inclusion of glycoproteins from other viruses that have a different host-range, (ii) modification of existing viral glycoproteins or coat proteins to incorporate peptide ligands or single-chain antibodies (scFvs) that bind to the desired receptor, or (iii) employing soluble adapters that recognize both the virus and a specific receptor on the target cell. This review summarizes efforts to target HSV using these three strategies.
Collapse
Affiliation(s)
- William F Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 424 BSP-2, 450 Technology Drive, Pittsburgh, PA 15219, United States.
| | - Bonnie Hall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 424 BSP-2, 450 Technology Drive, Pittsburgh, PA 15219, United States
| | - Justus B Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 424 BSP-2, 450 Technology Drive, Pittsburgh, PA 15219, United States
| | - Joseph C Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 424 BSP-2, 450 Technology Drive, Pittsburgh, PA 15219, United States
| |
Collapse
|
26
|
Leoni V, Gatta V, Palladini A, Nicoletti G, Ranieri D, Dall'Ora M, Grosso V, Rossi M, Alviano F, Bonsi L, Nanni P, Lollini PL, Campadelli-Fiume G. Systemic delivery of HER2-retargeted oncolytic-HSV by mesenchymal stromal cells protects from lung and brain metastases. Oncotarget 2016; 6:34774-87. [PMID: 26430966 PMCID: PMC4741489 DOI: 10.18632/oncotarget.5793] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/04/2015] [Indexed: 01/01/2023] Open
Abstract
Fully retargeted oncolytic herpes simplex viruses (o-HSVs) gain cancer-specificity from redirection of tropism to cancer-specific receptors, and are non-attenuated. To overcome the hurdles of systemic delivery, and enable oncolytic viruses (o-viruses) to reach metastatic sites, carrier cells are being exploited. Mesenchymal stromal cells (MSCs) were never tested as carriers of retargeted o-viruses, given their scarse-null expression of the cancer-specific receptors. We report that MSCs from different sources can be forcedly infected with a HER2-retargeted oncolytic HSV. Progeny virus spread from MSCs to cancer cells in vitro and in vivo. We evaluated the organ distribution and therapeutic efficacy in two murine models of metastatic cancers, following a single i.v. injection of infected MSCs. As expected, the highest concentration of carrier-cells and of viral genomes was in the lungs. Viral genomes persisted throughout the body for at least two days. The growth of ovarian cancer lung metastases in nude mice was strongly inhibited, and the majority of treated mice appeared metastasis-free. The treatment significantly inhibited also breast cancer metastases to the brain in NSG mice, and reduced by more than one-half the metastatic burden in the brain.
Collapse
Affiliation(s)
- Valerio Leoni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Valentina Gatta
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Arianna Palladini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Giordano Nicoletti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Dario Ranieri
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Massimiliano Dall'Ora
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Valentina Grosso
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Martina Rossi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Laura Bonsi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Patrizia Nanni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Pier-Luigi Lollini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | | |
Collapse
|
27
|
Buijs PRA, Verhagen JHE, van Eijck CHJ, van den Hoogen BG. Oncolytic viruses: From bench to bedside with a focus on safety. Hum Vaccin Immunother 2016; 11:1573-84. [PMID: 25996182 DOI: 10.1080/21645515.2015.1037058] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Oncolytic viruses are a relatively new class of anti-cancer immunotherapy agents. Several viruses have undergone evaluation in clinical trials in the last decades, and the first agent is about to be approved to be used as a novel cancer therapy modality. In the current review, an overview is presented on recent (pre)clinical developments in the field of oncolytic viruses that have previously been or currently are being evaluated in clinical trials. Special attention is given to possible safety issues like toxicity, environmental shedding, mutation and reversion to wildtype virus.
Collapse
Key Words
- CAR, Coxsackie Adenovirus receptor
- CD, cytosine deaminase
- CEA, carcinoembryonic antigen
- CVA, Coxsackievirus type A
- DAF, decay accelerating factor
- DNA, DNA
- EEV, extracellular enveloped virus
- EGF, epidermal growth factor
- EGF-R, EGF receptor
- EMA, European Medicines Agency
- FDA, Food and Drug Administration
- GBM, glioblastoma multiforme
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- HA, hemagglutinin
- HAdV, Human (mast)adenovirus
- HER2, human epidermal growth factor receptor 2
- HSV, herpes simplex virus
- ICAM-1, intercellular adhesion molecule 1
- IFN, interferon
- IRES, internal ribosome entry site
- KRAS, Kirsten rat sarcoma viral oncogene homolog
- Kb, kilobase pairs
- MeV, Measles virus
- MuLV, Murine leukemia virus
- NDV, Newcastle disease virus
- NIS, sodium/iodide symporter
- NSCLC, non-small cell lung carcinoma
- OV, oncolytic virus
- PEG, polyethylene glycol
- PKR, protein kinase R
- PV, Polio virus
- RCR, replication competent retrovirus
- RCT, randomized controlled trial
- RGD, arginylglycylaspartic acid (Arg-Gly-Asp)
- RNA, ribonucleic acid
- Rb, retinoblastoma
- SVV, Seneca Valley virus
- TGFα, transforming growth factor α
- VGF, Vaccinia growth factor
- VSV, Vesicular stomatitis virus
- VV, Vaccinia virus
- cancer
- crHAdV, conditionally replicating HAdV
- dsDNA, double stranded DNA
- dsRNA, double stranded RNA
- environment
- hIFNβ, human IFN β
- immunotherapy
- mORV, Mammalian orthoreovirus
- mORV-T3D, mORV type 3 Dearing
- oHSV, oncolytic HSV
- oncolytic virotherapy
- oncolytic virus
- rdHAdV, replication-deficient HAdV
- review
- safety
- shedding
- ssRNA, single stranded RNA
- tk, thymidine kinase
Collapse
Affiliation(s)
- Pascal R A Buijs
- a Department of Surgery; Erasmus MC; University Medical Center ; Rotterdam , The Netherlands
| | | | | | | |
Collapse
|
28
|
Campadelli-Fiume G, Petrovic B, Leoni V, Gianni T, Avitabile E, Casiraghi C, Gatta V. Retargeting Strategies for Oncolytic Herpes Simplex Viruses. Viruses 2016; 8:63. [PMID: 26927159 PMCID: PMC4810253 DOI: 10.3390/v8030063] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 02/08/2023] Open
Abstract
Most of the oncolytic herpes simplex viruses (HSVs) exhibit a high safety profile achieved through attenuation. They carry defects in virulence proteins that antagonize host cell response to the virus, including innate response, apoptosis, authophagy, and depend on tumor cell proliferation. They grow robustly in cancer cells, provided that these are deficient in host cell responses, which is often the case. To overcome the attenuation limits, a strategy is to render the virus highly cancer-specific, e.g., by retargeting their tropism to cancer-specific receptors, and detargeting from natural receptors. The target we selected is HER-2, overexpressed in breast, ovarian and other cancers. Entry of wt-HSV requires the essential glycoproteins gD, gH/gL and gB. Here, we reviewed that oncolytic HSV retargeting was achieved through modifications in gD: the addition of a single-chain antibody (scFv) to HER-2 coupled with appropriate deletions to remove part of the natural receptors' binding sites. Recently, we showed that also gH/gL can be a retargeting tool. The insertion of an scFv to HER-2 at the gH N-terminus, coupled with deletions in gD, led to a recombinant capable to use HER-2 as the sole receptor. The retargeted oncolytic HSVs can be administered systemically by means of carrier cells-forcedly-infected mesenchymal stem cells. Altogether, the retargeted oncolytic HSVs are highly cancer-specific and their replication is not dependent on intrinsic defects of the tumor cells. They might be further modified to express immunomodulatory molecules.
Collapse
Affiliation(s)
- Gabriella Campadelli-Fiume
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy.
| | - Biljana Petrovic
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy.
| | - Valerio Leoni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy.
| | - Tatiana Gianni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy.
| | - Elisa Avitabile
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy.
| | - Costanza Casiraghi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy.
| | - Valentina Gatta
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy.
| |
Collapse
|
29
|
Development of an oncolytic HSV vector fully retargeted specifically to cellular EpCAM for virus entry and cell-to-cell spread. Gene Ther 2016; 23:479-88. [DOI: 10.1038/gt.2016.17] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 02/02/2016] [Accepted: 02/09/2016] [Indexed: 12/17/2022]
|
30
|
Sokolowski NA, Rizos H, Diefenbach RJ. Oncolytic virotherapy using herpes simplex virus: how far have we come? Oncolytic Virother 2015; 4:207-19. [PMID: 27512683 PMCID: PMC4918397 DOI: 10.2147/ov.s66086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Oncolytic virotherapy exploits the properties of human viruses to naturally cytolysis of cancer cells. The human pathogen herpes simplex virus (HSV) has proven particularly amenable for use in oncolytic virotherapy. The relative safety of HSV coupled with extensive knowledge on how HSV interacts with the host has provided a platform for manipulating HSV to enhance the targeting and killing of human cancer cells. This has culminated in the approval of talimogene laherparepvec for the treatment of melanoma. This review focuses on the development of HSV as an oncolytic virus and where the field is likely to head in the future.
Collapse
Affiliation(s)
- Nicolas As Sokolowski
- Centre for Virus Research, Westmead Millennium Institute for Medical Research, The University of Sydney, NSW, Australia
| | - Helen Rizos
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Russell J Diefenbach
- Centre for Virus Research, Westmead Millennium Institute for Medical Research, The University of Sydney, NSW, Australia
| |
Collapse
|
31
|
Pediatric cancer gone viral. Part I: strategies for utilizing oncolytic herpes simplex virus-1 in children. MOLECULAR THERAPY-ONCOLYTICS 2015; 2:S2372-7705(16)30017-1. [PMID: 26436135 PMCID: PMC4589755 DOI: 10.1038/mto.2015.15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Progress for improving outcomes in pediatric patients with solid tumors remains slow. In addition, currently available therapies are fraught with numerous side effects, often causing significant life-long morbidity for long-term survivors. The use of viruses to kill tumor cells based on their increased vulnerability to infection is gaining traction, with several viruses moving through early and advanced phase clinical testing. The prospect of increased efficacy and decreased toxicity with these agents is thus attractive for pediatric cancer. In part I of this two-part review, we focus on strategies for utilizing oncolytic engineered herpes simplex virus (HSV) to target pediatric malignancies. We discuss mechanisms of action, routes of delivery, and the role of preexisting immunity on antitumor efficacy. Challenges to maximizing oncolytic HSV in children are examined, and we highlight how these may be overcome through various arming strategies. We review the preclinical and clinical evidence demonstrating safety of a variety of oncolytic HSVs. In Part II, we focus on the antitumor efficacy of oncolytic HSV in pediatric tumor types, pediatric clinical advances made to date, and future prospects for utilizing HSV in pediatric patients with solid tumors.
Collapse
|
32
|
Peters C, Rabkin SD. Designing Herpes Viruses as Oncolytics. MOLECULAR THERAPY-ONCOLYTICS 2015; 2:S2372-7705(16)30012-2. [PMID: 26462293 PMCID: PMC4599707 DOI: 10.1038/mto.2015.10] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oncolytic herpes simplex virus (oHSV) was one of the first genetically-engineered oncolytic viruses. Because herpes simplex virus (HSV) is a natural human pathogen that can cause serious disease, it is incumbent that it be genetically-engineered or significantly attenuated for safety. Here we present a detailed explanation of the functions of HSV-1 genes frequently mutated to endow oncolytic activity. These genes are non-essential for growth in tissue culture cells but are important for growth in post-mitotic cells, interfering with intrinsic antiviral and innate immune responses or causing pathology, functions dispensable for replication in cancer cells. Understanding the function of these genes leads to informed creation of new oHSVs with better therapeutic efficacy. Virus infection and replication can also be directed to cancer cells through tumor-selective receptor binding and transcriptional- or post-transcriptional miRNA-targeting, respectively. In addition to the direct effects of oHSV on infected cancer cells and tumors, oHSV can be 'armed' with transgenes that are: reporters, to track virus replication and spread; cytotoxic, to kill uninfected tumor cells; immune modulatory, to stimulate anti-tumor immunity; or tumor microenvironment altering, to enhance virus spread or to inhibit tumor growth. In addition to HSV-1, other alphaherpesviruses are also discussed for their oncolytic activity.
Collapse
Affiliation(s)
- Cole Peters
- Program in Virology, Harvard Medical School, Boston, MA, and Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston MA
| | - Samuel D Rabkin
- Program in Virology, Harvard Medical School, Boston, MA, and Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston MA
| |
Collapse
|
33
|
The Engineering of a Novel Ligand in gH Confers to HSV an Expanded Tropism Independent of gD Activation by Its Receptors. PLoS Pathog 2015; 11:e1004907. [PMID: 25996983 PMCID: PMC4440635 DOI: 10.1371/journal.ppat.1004907] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/22/2015] [Indexed: 01/08/2023] Open
Abstract
Herpes simplex virus (HSV) enters cells by means of four essential glycoproteins - gD, gH/gL, gB, activated in a cascade fashion by gD binding to one of its receptors, nectin1 and HVEM. We report that the engineering in gH of a heterologous ligand – a single-chain antibody (scFv) to the cancer-specific HER2 receptor – expands the HSV tropism to cells which express HER2 as the sole receptor. The significance of this finding is twofold. It impacts on our understanding of HSV entry mechanism and the design of retargeted oncolytic-HSVs. Specifically, entry of the recombinant viruses carrying the scFv-HER2–gH chimera into HER2+ cells occurred in the absence of gD receptors, or upon deletion of key residues in gD that constitute the nectin1/HVEM binding sites. In essence, the scFv in gH substituted for gD-mediated activation and rendered a functional gD non-essential for entry via HER2. The activation of the gH moiety in the chimera was carried out by the scFv in cis, not in trans as it occurs with wt-gD. With respect to the design of oncolytic-HSVs, previous retargeting strategies were based exclusively on insertion in gD of ligands to cancer-specific receptors. The current findings show that (i) gH accepts a heterologous ligand. The viruses retargeted via gH (ii) do not require the gD-dependent activation, and (iii) replicate and kill cells at high efficiency. Thus, gH represents an additional tool for the design of fully-virulent oncolytic-HSVs retargeted to cancer receptors and detargeted from gD receptors. To enter cells, all herpesviruses use the core fusion glycoproteins gH/gL and gB, in addition to species-specific glycoproteins responsible for specific tropism, etc. In HSV, the additional glycoprotein is the essential gD. We engineered in gH a heterologous ligand to the HER2 cancer receptor. The recombinant viruses entered cells through HER2, independently of gD activation by its receptors, or despite deletion of key residues that are part of the receptors’ binding sites in gD. The ligand activated gH in cis. Cumulatively, the receptor-binding and activating functions of gD were no longer essential and were replaced by the heterologous ligand in gH. Relevance to translational medicine rests in the fact that gH can serve as a tool to retarget HSV tropism to cancer-specific receptors. This expands the toolkit for the design of fully-virulent oncolytic-HSVs.
Collapse
|
34
|
Miao L, Fraefel C, Sia KC, Newman JP, Mohamed-Bashir SA, Ng WH, Lam PYP. The potential application of a transcriptionally regulated oncolytic herpes simplex virus for human cancer therapy. Br J Cancer 2014; 110:94-106. [PMID: 24196790 PMCID: PMC3887293 DOI: 10.1038/bjc.2013.692] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/03/2013] [Accepted: 10/09/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Emerging studies have shown the potential benefit of arming oncolytic viruses with therapeutic genes. However, most of these therapeutic genes are placed under the regulation of ubiquitous viral promoters. Our goal is to generate a safer yet potent oncolytic herpes simplex virus type-1 (HSV-1) for cancer therapy. METHODS Using bacterial artificial chromosome (BAC) recombineering, a cell cycle-regulatable luciferase transgene cassette was replaced with the infected cell protein 6 (ICP6) coding region (encoded for UL39 or large subunit of ribonucleotide reductase) of the HSV-1 genome. These recombinant viruses, YE-PC8, were further tested for its proliferation-dependent luciferase gene expression. RESULTS The ability of YE-PC8 to confer proliferation-dependent transgene expression was demonstrated by injecting similar amount of viruses into the tumour-bearing region of the brain and the contralateral normal brain parenchyma of the same mouse. The results showed enhanced levels of luciferase activities in the tumour region but not in the normal brain parenchyma. Similar findings were observed in YE-PC8-infected short-term human brain patient-derived glioma cells compared with normal human astrocytes. intratumoural injection of YE-PC8 viruses resulted in 77% and 80% of tumour regression in human glioma and human hepatocellular carcinoma xenografts, respectively. CONCLUSION YE-PC8 viruses confer tumour selectivity in proliferating cells and may be developed further as a feasible approach to treat human cancers.
Collapse
MESH Headings
- Animals
- Brain Neoplasms/genetics
- Brain Neoplasms/therapy
- Brain Neoplasms/virology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/virology
- Cell Cycle/genetics
- Cell Line, Tumor
- Chlorocebus aethiops
- Female
- Glioma/genetics
- Glioma/therapy
- Glioma/virology
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/physiology
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/therapy
- Liver Neoplasms/virology
- Luciferases/genetics
- Mice
- Mice, Nude
- Mice, SCID
- Oncolytic Virotherapy/methods
- Regulatory Elements, Transcriptional
- Transcription, Genetic
- Transgenes
- Vero Cells
- Viral Proteins/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- L Miao
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore 169610, Singapore
| | - C Fraefel
- Institute of Virology, University of Zurich, Winterthurerstrasse 266a, CH-8057, Zurich, Switzerland
| | - K C Sia
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore 169610, Singapore
| | - J P Newman
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore 169610, Singapore
| | - S A Mohamed-Bashir
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore 169610, Singapore
| | - W H Ng
- Department of Neurosurgery, National Neuroscience Institute, Singapore 308433, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - P Y P Lam
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore 169610, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
35
|
Lazear E, Whitbeck JC, Zuo Y, Carfí A, Cohen GH, Eisenberg RJ, Krummenacher C. Induction of conformational changes at the N-terminus of herpes simplex virus glycoprotein D upon binding to HVEM and nectin-1. Virology 2013; 448:185-95. [PMID: 24314649 DOI: 10.1016/j.virol.2013.10.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/07/2013] [Accepted: 10/12/2013] [Indexed: 11/15/2022]
Abstract
Herpes simplex virus entry is initiated by glycoprotein D (gD) binding to a cellular receptor, such as HVEM or nectin-1. gD is activated by receptor-induced displacement of the C-terminus from the core of the glycoprotein. Binding of HVEM requires the formation of an N-terminal hairpin loop of gD; once formed this loop masks the nectin-1 binding site on the core of gD. We found that HVEM and nectin-1 exhibit non-reciprocal competition for binding to gD. The N-terminus of gD does not spontaneously form a stable hairpin in the absence of receptor and HVEM does not appear to rely on a pre-existing hairpin for binding to gD(3C-38C) mutants. However, HVEM function is affected by mutations that impair optimal hairpin formation. Furthermore, nectin-1 induces a new conformation of the N-terminus of gD. We conclude that the conformation of the N-terminus of gD is actively modified by the direct action of both receptors.
Collapse
Affiliation(s)
- Eric Lazear
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Displacement of the C terminus of herpes simplex virus gD is sufficient to expose the fusion-activating interfaces on gD. J Virol 2013; 87:12656-66. [PMID: 24049165 DOI: 10.1128/jvi.01727-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Viral entry by herpes simplex virus (HSV) is executed and tightly regulated by four glycoproteins. While several viral glycoproteins can mediate viral adhesion to host cells, only binding of gD to cellular receptor can activate core fusion proteins gB and gH/gL to execute membrane fusion and viral entry. Atomic structures of gD bound to receptor indicate that the C terminus of the gD ectodomain must be displaced before receptor can bind to gD, but it is unclear which conformational changes in gD activate membrane fusion. We rationally designed mutations in gD to displace the C terminus and observe if fusion could be activated without receptor binding. Using a cell-based fusion assay, we found that gD V231W induced cell-cell fusion in the absence of receptor. Using recombinant gD V231W protein, we observed binding to conformationally sensitive antibodies or HSV receptor and concluded that there were changes proximal to the receptor binding interface, while the tertiary structure of gD V231W was similar to that of wild-type gD. We used a biosensor to analyze the kinetics of receptor binding and the extent to which the C terminus blocks binding to receptor. We found that the C terminus of gD V231W was enriched in the open or displaced conformation, indicating a mechanism for its function. We conclude that gD V231W triggers fusion through displacement of its C terminus and that this motion is indicative of how gD links receptor binding to exposure of interfaces on gD that activate fusion via gH/gL and gB.
Collapse
|
37
|
Friedman GK, Raborn J, Kelly VM, Cassady KA, Markert JM, Gillespie GY. Pediatric glioma stem cells: biologic strategies for oncolytic HSV virotherapy. Front Oncol 2013; 3:28. [PMID: 23450706 PMCID: PMC3584319 DOI: 10.3389/fonc.2013.00028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/04/2013] [Indexed: 01/17/2023] Open
Abstract
While glioblastoma multiforme (GBM) is the most common adult malignant brain tumor, GBMs in childhood represent less than 10% of pediatric malignant brain tumors and are phenotypically and molecularly distinct from adult GBMs. Similar to adult patients, outcomes for children with high-grade gliomas (HGGs) remain poor. Furthermore, the significant morbidity and mortality yielded by pediatric GBM is compounded by neurotoxicity for the developing brain caused by current therapies. Poor outcomes have been attributed to a subpopulation of chemotherapy and radiotherapy resistant cells, termed “glioma stem cells” (GSCs), “glioma progenitor cells,” or “glioma-initiating cells,” which have the ability to initiate and maintain the tumor and to repopulate the recurring tumor after conventional therapy. Future innovative therapies for pediatric HGG must be able to eradicate these therapy-resistant GSCs. Oncolytic herpes simplex viruses (oHSV), genetically engineered to be safe for normal cells and to express diverse foreign anti-tumor therapeutic genes, have been demonstrated in preclinical studies to infect and kill GSCs and tumor cells equally while sparing normal brain cells. In this review, we discuss the unique aspects of pediatric GSCs, including markers to identify them, the microenvironment they reside in, signaling pathways that regulate them, mechanisms of cellular resistance, and approaches to target GSCs, with a focus on the promising therapeutic, genetically engineered oHSV.
Collapse
Affiliation(s)
- Gregory K Friedman
- Brain Tumor Research Program, Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
38
|
Effective treatment of an orthotopic xenograft model of human glioblastoma using an EGFR-retargeted oncolytic herpes simplex virus. Mol Ther 2012; 21:561-9. [PMID: 23070115 DOI: 10.1038/mt.2012.211] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Glioblastoma multiforme (GBM) remains an untreatable human brain malignancy. Despite promising preclinical studies using oncolytic herpes simplex virus (oHSV) vectors, efficacy in patients has been limited by inefficient virus replication in tumor cells. This disappointing outcome can be attributed in part to attenuating mutations engineered into these viruses to prevent replication in normal cells. Alternatively, retargeting of fully replication-competent HSV to tumor-associated receptors has the potential to achieve tumor specificity without impairment of oncolytic activity. Here, we report the establishment of an HSV retargeting system that relies on the combination of two engineered viral glycoproteins, gD and gB, to mediate highly efficient HSV infection exclusively through recognition of the abundantly expressed epidermal growth factor receptor (EGFR) on glioblastoma cells. We demonstrate efficacy in vitro and in a heterotopic tumor model in mice. Evidence for systemically administered virus homing to the tumor mass is presented. Treatment of orthotopic primary human GBM xenografts demonstrated prolonged survival with up to 73% of animals showing a complete response as confirmed by magnetic resonance imaging. Our study describes an approach to HSV retargeting that is effective in a glioma model and may be applicable to the treatment of a broad range of tumor types.
Collapse
|
39
|
Ou W, Marino MP, Suzuki A, Joshi B, Husain SR, Maisner A, Galanis E, Puri RK, Reiser J. Specific targeting of human interleukin (IL)-13 receptor α2-positive cells with lentiviral vectors displaying IL-13. Hum Gene Ther Methods 2012; 23:137-47. [PMID: 22612657 PMCID: PMC3848083 DOI: 10.1089/hgtb.2012.054] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/16/2012] [Indexed: 11/13/2022] Open
Abstract
The ability to selectively and efficiently target transgene delivery to specific cell types in vitro and in vivo remains one of the formidable challenges in gene therapy. Lentiviral vectors have several advantages that make them attractive as gene delivery vehicles and their tropism can be altered through pseudotyping, allowing transgene delivery to specific populations of cells. The human interleukin-13 receptor α2 (IL-13Rα2) is uniquely overexpressed in many different human tumors, making it an attractive target for cancer therapy. In this study, we examined whether IL-13Rα2-positive tumor cells can be specifically targeted with lentiviral vector pseudotypes containing a truncated fusion (F) protein derived from measles virus (MV) and a tail-truncated and receptor-blind MV hemagglutinin (H) protein bearing IL-13 at the C terminus. The retargeted lentiviral vector efficiently transduced cells that express high levels of IL-13Rα2, but not cells expressing low levels of IL-13Rα2 in vitro. In vivo, it specifically targeted IL-13Rα2-positive glioma cell xenografts in immunodeficient mice in the context of subcutaneous and intracranial glioma models. Similar lentiviral vectors may be developed for targeting other tumors expressing specific cell surface receptors.
Collapse
Affiliation(s)
- Wu Ou
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD, 20892
| | - Michael P. Marino
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD, 20892
| | - Akiko Suzuki
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD, 20892
| | - Bharat Joshi
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD, 20892
| | - Syed R. Husain
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD, 20892
| | - Andrea Maisner
- Institute of Virology, Philipps University of Marburg, 35043 Marburg, Germany
| | | | - Raj K. Puri
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD, 20892
| | - Jakob Reiser
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD, 20892
| |
Collapse
|
40
|
Replication-competent herpes simplex virus retargeted to HER2 as therapy for high-grade glioma. Mol Ther 2012; 20:994-1001. [PMID: 22354378 DOI: 10.1038/mt.2012.22] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Oncolytic herpes simplex viruses (HSVs) represent a novel frontier against tumors resistant to standard therapies, like glioblastoma (GBM). The oncolytic HSVs that entered clinical trials so far showed encouraging results; however, they are marred by the fact that they are highly attenuated. We engineered HSVs that maintain unimpaired lytic efficacy and specifically target cells that express tumor-specific receptors, thus limiting the cytotoxicity only to cancer cells, and leaving unharmed the neighboring tissues. We report on the safety and efficacy in a high-grade glioma (HGG) model of R-LM113, an HSV recombinant retargeted to human epidermal growth factor receptor 2 (HER2), frequently expressed in GBMs. We demonstrated that R-LM113 is safe in vivo as it does not cause encephalitis when intracranially injected in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice, extremely sensitive to wild-type HSV. The efficacy of R-LM113 was assessed in a platelet-derived growth factor (PDGF)-induced infiltrative glioma model engineered to express HER2 and transplanted intracranially in adult NOD/SCID mice. Mice injected with HER2-engineered glioma cells infected with R-LM113 showed a doubled survival time compared with mice injected with uninfected cells. A doubling in survival time from the beginning of treatment was obtained also when R-LM113 was administered into already established tumors. These data demonstrate the efficacy of R-LM113 in thwarting tumor growth.
Collapse
|
41
|
Viral and cellular contributions to herpes simplex virus entry into the cell. Curr Opin Virol 2012; 2:28-36. [DOI: 10.1016/j.coviro.2011.12.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 12/19/2022]
|
42
|
Campadelli-Fiume G, De Giovanni C, Gatta V, Nanni P, Lollini PL, Menotti L. Rethinking herpes simplex virus: the way to oncolytic agents. Rev Med Virol 2011; 21:213-26. [PMID: 21626603 DOI: 10.1002/rmv.691] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 12/22/2022]
Abstract
Oncolytic viruses infect, replicate in and kill cancer cells. HSV has emerged as a most promising candidate because it exerts a generally moderate pathogenicity in humans; it is amenable to attenuation and tropism retargeting; the ample genome provides space for heterologous genes; specific antiviral therapy is available in a worst case scenario. The first strategy to convert HSV into an oncolytic agent consisted in deletion of the γ(1) 34.5 gene which counteracts the protein kinase R (PKR) response, and of the UL39 gene which encodes the large ribonucleotide reductase subunit. Tumor specificity resided in low PKR activity, and high deoxyribonucleotides content of cancer cells. These highly attenuated viruses have been and presently are in clinical trials with encouraging results. The preferred route of administration has been intratumor or in tissues adjacent to resected tumors. Although the general population has a high seroprevalence of antibodies to HSV, studies in animals and humans demonstrate that prior immunity is not an obstacle to systemic routes of administration, and that oncolytic HSV (o-HSVs) do populate tumors. As the attenuated viruses undergo clinical experimentation, the research pipeline is developing novel, more potent and highly tumor-specific o-HSVs. These include viruses which overcome tumor heterogeneity in PKR level by insertion of anti-PKR genes, viruses which reinforce the host tumor clearance capacity by encoding immune cytokines (IL-12 or granulocyte-macrophage colony-stimulating factor), and non-attenuated viruses fully retargeted to tumor specific receptors. A strategy to generate o-HSVs fully retargeted to human epidermal growth factor receptor-2 (HER-2) or other cancer-specific surface receptors is detailed.
Collapse
Affiliation(s)
- Gabriella Campadelli-Fiume
- Department of Experimental Pathology, Section on Microbiology and Virology, Alma Mater Studiorum - University of Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
43
|
Nakano K, Kobayashi M, Nakamura KI, Nakanishi T, Asano R, Kumagai I, Tahara H, Kuwano M, Cohen JB, Glorioso JC. Mechanism of HSV infection through soluble adapter-mediated virus bridging to the EGF receptor. Virology 2011; 413:12-8. [PMID: 21382632 DOI: 10.1016/j.virol.2011.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 12/13/2010] [Accepted: 02/11/2011] [Indexed: 12/19/2022]
Abstract
Herpes simplex virus entry into cells requires the binding of envelope glycoprotein D (gD) to an entry receptor. Depending on the cell, entry occurs by different mechanisms, including fusion at the cell surface or endocytosis. Here we examined the entry mechanism through a non-HSV receptor mediated by a soluble bi-specific adapter protein composed of recognition elements for gD and the EGF receptor (EGFR). Virus entered into endosomes using either EGF or an EGFR-specific single chain antibody (scFv) for receptor recognition. Infection was less efficient with the EGF adapter which could be attributed to its weaker binding to a viral gD. Infection mediated by the scFv adapter was pH sensitive, indicating that gD-EGFR bridging alone was insufficient for capsid release from endosomes. We also show that the scFv adapter enhanced infection of EGFR-expressing tumor tissue in vivo. Our results indicate that adapters may retarget HSV infection without drastically changing the entry mechanism.
Collapse
Affiliation(s)
- Kenji Nakano
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gaston DC, Whitley RJ, Parker JN. Engineered herpes simplex virus vectors for antitumor therapy and vaccine delivery. Future Virol 2011. [DOI: 10.2217/fvl.11.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Genetically modified herpes simplex viruses (HSVs) have been exploited for both antitumor therapy and vaccine delivery. These mutant viruses retain their ability to replicate and lyse permissive cells, including many tumor types, and are referred to as oncolytic HSVs. In addition, deletion of nonessential genes permits the introduction of foreign genes to augment the antitumor effect by either immune stimulation, targeting for select tumors, or expression of tumor or vaccine antigens. This article reviews the development of oncolytic HSVs as an anticancer therapy, as well as the application of HSV-1 vectors for delivery of targeted antigens or as vaccine adjuvants. The impact of these novel vectors with respect to enhanced antitumor activity and development of antitumor vaccination strategies is discussed.
Collapse
Affiliation(s)
- David C Gaston
- Medical Scientist Training Program, Department of Cell Biology, CHB 130, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Richard J Whitley
- Departments of Pediatrics, Microbiology, Medicine & Neurosurgery, CHB 303, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jacqueline N Parker
- Departments of Pediatrics & Cell Biology, CHB 118B, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
45
|
Baek H, Uchida H, Jun K, Kim JH, Kuroki M, Cohen JB, Glorioso JC, Kwon H. Bispecific adapter-mediated retargeting of a receptor-restricted HSV-1 vector to CEA-bearing tumor cells. Mol Ther 2010; 19:507-14. [PMID: 20924362 DOI: 10.1038/mt.2010.207] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The safety and efficacy of viral therapies for solid tumors can be enhanced by redirecting the virus infection to tumor-specific cell-surface markers. Successful retargeting of herpes simplex virus type 1 (HSV-1) has been achieved using vectors that carry a modified envelope glycoprotein D (gD) engineered to interact directly with novel receptors. In addition, soluble bridging molecules (adapters) have been used to link gD indirectly to cell-specific receptors. Here, we describe the development of an adapter connecting gD to the common tumor antigen carcinoembryonic antigen (CEA). The adapter consisted of a CEA-specific single-chain antibody fused to the gD-binding region of the gD receptor, herpes virus entry mediator (HVEM). We used this adapter in combination with a vector that is detargeted for recognition of the widely expressed gD receptor nectin-1, but retains an intact binding region for the less common HVEM. We show that the adapter enabled infection of HSV-resistant Chinese hamster ovary (CHO) cells expressing ectopic CEA and nectin-1/CEA-bearing human gastric carcinoma cells that are resistant to the vector alone. We observed cell-to-cell spread following adapter-mediated infection in vitro and reduced tumor growth in vivo, indicating that this method of vector retargeting may provide a novel strategy for tumor-specific delivery of tumoricidal HSV.
Collapse
Affiliation(s)
- Hyunjung Baek
- Division of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
46
|
A double mutation in glycoprotein gB compensates for ineffective gD-dependent initiation of herpes simplex virus type 1 infection. J Virol 2010; 84:12200-9. [PMID: 20861246 DOI: 10.1128/jvi.01633-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Herpes simplex virus (HSV) entry into cells is triggered by the binding of envelope glycoprotein D (gD) to a specific receptor, such as nectin-1 or herpesvirus entry mediator (HVEM), resulting in activation of the fusion effectors gB and gH and virus penetration. Here we report the identification of a hyperactive gB allele, D285N/A549T, selected by repeat passage of a gD mutant virus defective for nectin-1 binding through cells that express a gD-binding-impaired mutant nectin-1. The gB allele in a wild-type virus background enabled the use of other nectins as virus entry receptors. In addition, combination of the mutant allele with an epidermal growth factor receptor (EGFR)-retargeted gD gene yielded dramatically increased EGFR-specific virus entry compared to retargeted virus carrying wild-type gB. Entry of the gB mutant virus into nectin-1-bearing cells was markedly accelerated compared to that of wild-type virus, suggesting that the gB mutations affect a rate-limiting step in entry. Our observations indicate that ineffective gD activation can be complemented by hypersensitization of a downstream component of the entry cascade to gD signaling.
Collapse
|
47
|
Marconi P, Argnani R, Epstein AL, Manservigi R. HSV as a vector in vaccine development and gene therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 655:118-44. [PMID: 20047039 DOI: 10.1007/978-1-4419-1132-2_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), major human pathogen whose lifestyle is based on a long-term dual interaction with the infected host characterized by the existence of lytic and latent infections, has allowed the development of potential vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous system, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases and targeted infection of specific tissues or organs. Three different classes of vectors can be derived from HSV-1: replication-competent attenuated vectors, replication-incompetent recombinant vectors and defective helper-dependent vectors known as amplicons. This chapter highlights the current knowledge concerning design, construction and recent applications, as well as the potential and current limitations of the three different classes of HSV-1-based vectors.
Collapse
Affiliation(s)
- Peggy Marconi
- Department of Experimental and Diagnostic Medicine-Section of Microbiology, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44100, Italy.
| | | | | | | |
Collapse
|
48
|
Hukkanen V, Paavilainen H, Mattila RK. Host responses to herpes simplex virus and herpes simplex virus vectors. Future Virol 2010. [DOI: 10.2217/fvl.10.35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herpes simplex virus (HSV) is a well-known, ubiquitous pathogen of humans. Engineered mutants of HSV can also be exploited as vectors in gene therapy or for virotherapy of tumors. HSV has multiple abilities to evade and modulate the innate and adaptive responses of the host. The increasing knowledge on the mutual interactions of the invading HSV with the host defenses will contribute to our deeper understanding of the relationship between HSV and the host, and thereby lead to future development of more effective and specific HSV vectors for treatment of human diseases. The future advances of HSV vaccines and vaccine vectors are based on the knowlegde of the complex interplay between HSV and the host defenses.
Collapse
Affiliation(s)
| | - Henrik Paavilainen
- Department of Virology, University of Turku, Kiinamyllynkatu 13, FIN-20520 Turku, Finland
| | - Riikka K Mattila
- Institute of Diagnostics, University of Oulu, Aapistie 5A, FIN-90014, Finland
| |
Collapse
|
49
|
Cassady KA, Parker JN. Herpesvirus vectors for therapy of brain tumors. Open Virol J 2010; 4:103-8. [PMID: 20811578 DOI: 10.2174/1874357901004030103] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 01/07/2010] [Accepted: 01/07/2010] [Indexed: 11/22/2022] Open
Abstract
Genetically modified, conditionally-replicating Herpes Simplex Virus Type 1 (HSV-1) vectors for the treatment of malignant glioma have provided encouraging results in the handful of Phase I and Phase II clinical trials conducted to date. In recent years, a number of new strategies have been developed to improve anti-tumor activity of these attenuated vectors, through either introduction of foreign gene inserts to enhance tumor killing through a variety of mechanisms, or through combination with existing treatment regimens, including radiation and/or chemotherapeutics. Another promising new approach has been the engineering of novel oncolytic HSV vectors that retain wildtype replication, but are targeted to tumor cells through a variety of mechanisms. This review summarizes the latest advances in herpesvirus-mediated oncolytic therapies from both preclinical results and clinical trials with oncolytic HSV vectors in patients, and their implication for design of future trials.
Collapse
Affiliation(s)
- Kevin A Cassady
- Department of Pediatrics, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL 35294-0011, USA
| | | |
Collapse
|
50
|
A herpes simplex virus vector system for expression of complex cellular cDNA libraries. J Virol 2010; 84:7360-8. [PMID: 20463073 DOI: 10.1128/jvi.02388-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral vector-based gene expression libraries from normal or diseased tissues offer opportunities to interrogate cellular functions that influence or participate directly in specific biological processes. Here we report the creation and characterization of a herpes simplex virus (HSV)-based expression library consisting of cDNAs derived from PC12 pheochromocytoma cells. A replication-defective HSV vector backbone was engineered to contain both a bacterial artificial chromosome (BAC) and the Invitrogen in vitro Gateway recombination system, creating DBAC-GW. A cDNA library was produced and transferred into the DBAC-GW genome by in vitro recombination and selection in bacteria to produce DBAC-L. DBAC-L contained at least 15,000 unique cDNAs, as shown by DNA array analysis of PCR-amplified cDNA inserts, representing a wide range of cancer- and neuron-related cellular functions. Transfection of the recombinant DBAC-L DNA into complementing animal cells produced more than 1 million DBAC-L virus particles representing the library genes. By microarray analysis of vector-infected cells, we observed that individual members of this vector population expressed unique PC12 cDNA-derived mRNA, demonstrating the power of this system to transfer and express a variety of gene activities. We discuss the potential utility of this and similarly derived expression libraries for genome-wide approaches to identify cellular functions that participate in complex host-pathogen interactions or processes related to disease and to cell growth and development.
Collapse
|