1
|
Shukla VK, Siemons L, Hansen DF. Intrinsic structural dynamics dictate enzymatic activity and inhibition. Proc Natl Acad Sci U S A 2023; 120:e2310910120. [PMID: 37782780 PMCID: PMC10576142 DOI: 10.1073/pnas.2310910120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/14/2023] [Indexed: 10/04/2023] Open
Abstract
Enzymes are known to sample various conformations, many of which are critical for their biological function. However, structural characterizations of enzymes predominantly focus on the most populated conformation. As a result, single-point mutations often produce structures that are similar or essentially identical to those of the wild-type enzyme despite large changes in enzymatic activity. Here, we show for mutants of a histone deacetylase enzyme (HDAC8) that reduced enzymatic activities, reduced inhibitor affinities, and reduced residence times are all captured by the rate constants between intrinsically sampled conformations that, in turn, can be obtained independently by solution NMR spectroscopy. Thus, for the HDAC8 enzyme, the dynamic sampling of conformations dictates both enzymatic activity and inhibitor potency. Our analysis also dissects the functional role of the conformations sampled, where specific conformations distinct from those in available structures are responsible for substrate and inhibitor binding, catalysis, and product dissociation. Precise structures alone often do not adequately explain the effect of missense mutations on enzymatic activity and drug potency. Our findings not only assign functional roles to several conformational states of HDAC8 but they also underscore the paramount role of dynamics, which will have general implications for characterizing missense mutations and designing inhibitors.
Collapse
Affiliation(s)
- Vaibhav Kumar Shukla
- Division of Biosciences, Department of Structural and Molecular Biology, University College London, LondonWC1E 6BT, United Kingdom
| | - Lucas Siemons
- Division of Biosciences, Department of Structural and Molecular Biology, University College London, LondonWC1E 6BT, United Kingdom
| | - D. Flemming Hansen
- Division of Biosciences, Department of Structural and Molecular Biology, University College London, LondonWC1E 6BT, United Kingdom
| |
Collapse
|
2
|
Lee E, McLeod MJ, Redzic JS, Marcolin B, Thorne RE, Agarwal P, Eisenmesser EZ. Identifying structural and dynamic changes during the Biliverdin Reductase B catalytic cycle. Front Mol Biosci 2023; 10:1244587. [PMID: 37645217 PMCID: PMC10461185 DOI: 10.3389/fmolb.2023.1244587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Biliverdin Reductase B (BLVRB) is an NADPH-dependent reductase that catalyzes the reduction of multiple substrates and is therefore considered a critical cellular redox regulator. In this study, we sought to address whether both structural and dynamics changes occur between different intermediates of the catalytic cycle and whether these were relegated to just the active site or the entirety of the enzyme. Through X-ray crystallography, we determined the apo BLVRB structure for the first time, revealing subtle global changes compared to the holo structure and identifying the loss of a critical hydrogen bond that "clamps" the R78-loop over the coenzyme. Amide and Cα chemical shift perturbations were used to identify environmental and secondary structural changes between intermediates, with more distant global changes observed upon coenzyme binding compared to substrate interactions. NMR relaxation rate measurements provided insights into the dynamic behavior of BLVRB during the catalytic cycle. Specifically, the inherently dynamic R78-loop that becomes ordered upon coenzyme binding persists through the catalytic cycle while similar regions experience dynamic exchange. However, the dynamic exchange processes were found to differ through the catalytic cycle with several groups of residues exhibiting similar dynamic responses. Finally, both local and distal structural and dynamic changes occur within BLVRB that are dependent solely on the oxidative state of the coenzyme. Thus, through a comprehensive analysis here, this study revealed structural and dynamic alterations in BLVRB through its catalytic cycle that are not simply relegated to the active site, but instead, are allosterically coupled throughout the enzyme.
Collapse
Affiliation(s)
- Eunjeong Lee
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Matthew J. McLeod
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY, United States
| | - Jasmina S. Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Barbara Marcolin
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Robert E. Thorne
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY, United States
| | - Pratul Agarwal
- Department of Physiological Sciences and High Performance Computing Center, Oklahoma State University, Stillwater, OK, United States
| | - Elan Zohar Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
3
|
Koehler Leman J, Künze G. Recent Advances in NMR Protein Structure Prediction with ROSETTA. Int J Mol Sci 2023; 24:ijms24097835. [PMID: 37175539 PMCID: PMC10178863 DOI: 10.3390/ijms24097835] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful method for studying the structure and dynamics of proteins in their native state. For high-resolution NMR structure determination, the collection of a rich restraint dataset is necessary. This can be difficult to achieve for proteins with high molecular weight or a complex architecture. Computational modeling techniques can complement sparse NMR datasets (<1 restraint per residue) with additional structural information to elucidate protein structures in these difficult cases. The Rosetta software for protein structure modeling and design is used by structural biologists for structure determination tasks in which limited experimental data is available. This review gives an overview of the computational protocols available in the Rosetta framework for modeling protein structures from NMR data. We explain the computational algorithms used for the integration of different NMR data types in Rosetta. We also highlight new developments, including modeling tools for data from paramagnetic NMR and hydrogen-deuterium exchange, as well as chemical shifts in CS-Rosetta. Furthermore, strategies are discussed to complement and improve structure predictions made by the current state-of-the-art AlphaFold2 program using NMR-guided Rosetta modeling.
Collapse
Affiliation(s)
- Julia Koehler Leman
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Georg Künze
- Institute for Drug Discovery, Medical Faculty, University of Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| |
Collapse
|
4
|
Gopalan AB, Yuwen T, Kay LE, Vallurupalli P. A methyl 1H double quantum CPMG experiment to study protein conformational exchange. JOURNAL OF BIOMOLECULAR NMR 2018; 72:79-91. [PMID: 30276607 DOI: 10.1007/s10858-018-0208-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/01/2018] [Indexed: 05/24/2023]
Abstract
Protein conformational changes play crucial roles in enabling function. The Carr-Purcell-Meiboom-Gill (CPMG) experiment forms the basis for studying such dynamics when they involve the interconversion between highly populated and sparsely formed states, the latter having lifetimes ranging from ~ 0.5 to ~ 5 ms. Among the suite of experiments that have been developed are those that exploit methyl group probes by recording methyl 1H single quantum (Tugarinov and Kay in J Am Chem Soc 129:9514-9521, 2007) and triple quantum (Yuwen et al. in Angew Chem Int Ed Engl 55:11490-11494, 2016) relaxation dispersion profiles. Here we build upon these by developing a third experiment in which methyl 1H double quantum coherences evolve during a CPMG relaxation element. By fitting single, double, and triple quantum datasets, akin to recording the single quantum dataset at static magnetic fields of Bo, 2Bo and 3Bo, we show that accurate exchange values can be obtained even in cases where exchange rates exceed 10,000 s-1. The utility of the double quantum experiment is demonstrated with a pair of cavity mutants of T4 lysozyme (T4L) with ground and excited states interchanged and with exchange rates differing by fourfold (~ 900 s-1 and ~ 3600 s-1), as well as with a fast-folding domain where the unfolded state lifetime is ~ 80 µs.
Collapse
Affiliation(s)
- Anusha B Gopalan
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana, 500107, India
| | - Tairan Yuwen
- Departments of Molecular Genetics, Biochemistry and Chemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Lewis E Kay
- Departments of Molecular Genetics, Biochemistry and Chemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
| | - Pramodh Vallurupalli
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana, 500107, India.
| |
Collapse
|
5
|
Gopalan AB, Hansen DF, Vallurupalli P. CPMG Experiments for Protein Minor Conformer Structure Determination. Methods Mol Biol 2018; 1688:223-242. [PMID: 29151212 DOI: 10.1007/978-1-4939-7386-6_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
CPMG relaxation dispersion NMR experiments have emerged as a powerful method to characterize protein minor states that are in exchange with a visible dominant conformation, and have lifetimes between ~0.5 and 5 milliseconds (ms) and populations greater than 0.5%. The structure of the minor state can, in favorable cases, be determined from the parameters provided by the CPMG relaxation dispersion experiments. Here, we go through the intricacies of setting up these powerful CPMG experiments.
Collapse
Affiliation(s)
- Anusha B Gopalan
- TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad, 500075, India.
| | - D Flemming Hansen
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Pramodh Vallurupalli
- TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad, 500075, India.
| |
Collapse
|
6
|
Mayzel M, Ahlner A, Lundström P, Orekhov VY. Measurement of protein backbone 13CO and 15N relaxation dispersion at high resolution. JOURNAL OF BIOMOLECULAR NMR 2017; 69:1-12. [PMID: 28864905 PMCID: PMC5626786 DOI: 10.1007/s10858-017-0127-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/26/2017] [Indexed: 05/31/2023]
Abstract
Peak overlap in crowded regions of two-dimensional spectra prevents characterization of dynamics for many sites of interest in globular and intrinsically disordered proteins. We present new three-dimensional pulse sequences for measurement of Carr-Purcell-Meiboom-Gill relaxation dispersions at backbone nitrogen and carbonyl positions. To alleviate increase in the measurement time associated with the additional spectral dimension, we use non-uniform sampling in combination with two distinct methods of spectrum reconstruction: compressed sensing and co-processing with multi-dimensional decomposition. The new methodology was validated using disordered protein CD79A from B-cell receptor and an SH3 domain from Abp1p in exchange between its free form and bound to a peptide from the protein Ark1p. We show that, while providing much better resolution, the 3D NUS experiments give the similar accuracy and precision of the dynamic parameters to ones obtained using traditional 2D experiments. Furthermore, we show that jackknife resampling of the spectra yields robust estimates of peak intensities errors, eliminating the need for recording duplicate data points.
Collapse
Affiliation(s)
- Maxim Mayzel
- The Swedish NMR Centre, University of Gothenburg, Box 465, 40530, Göteborg, Sweden
| | - Alexandra Ahlner
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, 58183, Linköping, Sweden
| | - Patrik Lundström
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, 58183, Linköping, Sweden
| | - Vladislav Y Orekhov
- The Swedish NMR Centre, University of Gothenburg, Box 465, 40530, Göteborg, Sweden.
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 465, 40530, Göteborg, Sweden.
| |
Collapse
|
7
|
Csizmok V, Follis AV, Kriwacki RW, Forman-Kay JD. Dynamic Protein Interaction Networks and New Structural Paradigms in Signaling. Chem Rev 2016; 116:6424-62. [PMID: 26922996 DOI: 10.1021/acs.chemrev.5b00548] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Understanding signaling and other complex biological processes requires elucidating the critical roles of intrinsically disordered proteins (IDPs) and regions (IDRs), which represent ∼30% of the proteome and enable unique regulatory mechanisms. In this review, we describe the structural heterogeneity of disordered proteins that underpins these mechanisms and the latest progress in obtaining structural descriptions of conformational ensembles of disordered proteins that are needed for linking structure and dynamics to function. We describe the diverse interactions of IDPs that can have unusual characteristics such as "ultrasensitivity" and "regulated folding and unfolding". We also summarize the mounting data showing that large-scale assembly and protein phase separation occurs within a variety of signaling complexes and cellular structures. In addition, we discuss efforts to therapeutically target disordered proteins with small molecules. Overall, we interpret the remodeling of disordered state ensembles due to binding and post-translational modifications within an expanded framework for allostery that provides significant insights into how disordered proteins transmit biological information.
Collapse
Affiliation(s)
- Veronika Csizmok
- Molecular Structure & Function, The Hospital for Sick Children , Toronto, ON M5G 0A4, Canada
| | - Ariele Viacava Follis
- Department of Structural Biology, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center , Memphis, Tennessee 38163, United States
| | - Julie D Forman-Kay
- Molecular Structure & Function, The Hospital for Sick Children , Toronto, ON M5G 0A4, Canada.,Department of Biochemistry, University of Toronto , Toronto, ON M5S 1A8, Canada
| |
Collapse
|
8
|
Sekhar A, Rumfeldt JAO, Broom HR, Doyle CM, Bouvignies G, Meiering EM, Kay LE. Thermal fluctuations of immature SOD1 lead to separate folding and misfolding pathways. eLife 2015; 4:e07296. [PMID: 26099300 PMCID: PMC4475725 DOI: 10.7554/elife.07296] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/04/2015] [Indexed: 01/08/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease involving cytotoxic conformations of Cu, Zn superoxide dismutase (SOD1). A major challenge in understanding ALS disease pathology has been the identification and atomic-level characterization of these conformers. Here, we use a combination of NMR methods to detect four distinct sparsely populated and transiently formed thermally accessible conformers in equilibrium with the native state of immature SOD1 (apoSOD1(2SH)). Structural models of two of these establish that they possess features present in the mature dimeric protein. In contrast, the other two are non-native oligomers in which the native dimer interface and the electrostatic loop mediate the formation of aberrant intermolecular interactions. Our results show that apoSOD1(2SH) has a rugged free energy landscape that codes for distinct kinetic pathways leading to either maturation or non-native association and provide a starting point for a detailed atomic-level understanding of the mechanisms of SOD1 oligomerization.
Collapse
Affiliation(s)
- Ashok Sekhar
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | | | - Helen R Broom
- Department of Chemistry, University of Waterloo, Waterloo, Canada
| | - Colleen M Doyle
- Department of Chemistry, University of Waterloo, Waterloo, Canada
| | | | | | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
9
|
Abstract
Myriad biological processes proceed through states that defy characterization by conventional atomic-resolution structural biological methods. The invisibility of these 'dark' states can arise from their transient nature, low equilibrium population, large molecular weight, and/or heterogeneity. Although they are invisible, these dark states underlie a range of processes, acting as encounter complexes between proteins and as intermediates in protein folding and aggregation. New methods have made these states accessible to high-resolution analysis by nuclear magnetic resonance (NMR) spectroscopy, as long as the dark state is in dynamic equilibrium with an NMR-visible species. These methods - paramagnetic NMR, relaxation dispersion, saturation transfer, lifetime line broadening, and hydrogen exchange - allow the exploration of otherwise invisible states in exchange with a visible species over a range of timescales, each taking advantage of some unique property of the dark state to amplify its effect on a particular NMR observable. In this review, we introduce these methods and explore two specific techniques - paramagnetic relaxation enhancement and dark state exchange saturation transfer - in greater detail.
Collapse
Affiliation(s)
- Nicholas J. Anthis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| |
Collapse
|
10
|
Gagné D, Narayanan C, Doucet N. Network of long-range concerted chemical shift displacements upon ligand binding to human angiogenin. Protein Sci 2014; 24:525-33. [PMID: 25450558 DOI: 10.1002/pro.2613] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/25/2014] [Indexed: 11/11/2022]
Abstract
Molecular recognition models of both induced fit and conformational selection rely on coupled networks of flexible residues and/or structural rearrangements to promote protein function. While the atomic details of these motional events still remain elusive, members of the pancreatic ribonuclease superfamily were previously shown to depend on subtle conformational heterogeneity for optimal catalytic function. Human angiogenin, a structural homologue of bovine pancreatic RNase A, induces blood vessel formation and relies on a weak yet functionally mandatory ribonucleolytic activity to promote neovascularization. Here, we use the NMR chemical shift projection analysis (CHESPA) to clarify the mechanism of ligand binding in human angiogenin, further providing information on long-range intramolecular residue networks potentially involved in the function of this enzyme. We identify two main clusters of residue networks displaying correlated linear chemical shift trajectories upon binding of substrate fragments to the purine- and pyrimidine-specific subsites of the catalytic cleft. A large correlated residue network clusters in the region corresponding to the V1 domain, a site generally associated with the angiogenic response and structural stability of the enzyme. Another correlated network (residues 40-42) negatively affects the catalytic activity but also increases the angiogenic activity. (15) N-CPMG relaxation dispersion experiments could not reveal the existence of millisecond timescale conformational exchange in this enzyme, a lack of flexibility supported by the very low-binding affinities and catalytic activity of angiogenin. Altogether, the current report potentially highlights the existence of long-range dynamic reorganization of the structure upon distinct subsite binding events in human angiogenin.
Collapse
Affiliation(s)
- Donald Gagné
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | | | | |
Collapse
|
11
|
Xu A, Li F, Robinson H, Yeung ES. Can Protein Conformers Be Fractionated by Crystallization? Anal Chem 2013; 85:6372-7. [DOI: 10.1021/ac400762x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aoshuang Xu
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Fenglei Li
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Howard Robinson
- Biology Department, 463, Brookhaven National Laboratory,
Upton, New York 11973-5000, United States
| | - Edward S. Yeung
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
12
|
A single-molecule dissection of ligand binding to a protein with intrinsic dynamics. Nat Chem Biol 2013; 9:313-8. [DOI: 10.1038/nchembio.1213] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 02/21/2013] [Indexed: 01/12/2023]
|
13
|
Schrank TP, Wrabl JO, Hilser VJ. Conformational heterogeneity within the LID domain mediates substrate binding to Escherichia coli adenylate kinase: function follows fluctuations. Top Curr Chem (Cham) 2013; 337:95-121. [PMID: 23543318 DOI: 10.1007/128_2012_410] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteins exist as dynamic ensembles of molecules, implying that protein amino acid sequences evolved to code for both the ground state structure as well as the entire energy landscape of excited states. Accumulating theoretical and experimental evidence suggests that enzymes use such conformational fluctuations to facilitate allosteric processes important for substrate binding and possibly catalysis. This phenomenon can be clearly demonstrated in Escherichia coli adenylate kinase, where experimentally observed local unfolding of the LID subdomain, as opposed to a more commonly postulated rigid-body opening motion, is related to substrate binding. Because "entropy promoting" glycine mutations designed to increase specifically the local unfolding of the LID domain also affect substrate binding, changes in the excited energy landscape effectively tune the function of this enzyme without changing the ground state structure or the catalytic site. Thus, additional thermodynamic information, above and beyond the single folded structure of an enzyme-substrate complex, is likely required for a full and quantitative understanding of how enzymes work.
Collapse
Affiliation(s)
- Travis P Schrank
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555-1068, USA,
| | | | | |
Collapse
|
14
|
Kleckner IR, Foster MP. GUARDD: user-friendly MATLAB software for rigorous analysis of CPMG RD NMR data. JOURNAL OF BIOMOLECULAR NMR 2012; 52:11-22. [PMID: 22160811 PMCID: PMC3593345 DOI: 10.1007/s10858-011-9589-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/25/2011] [Indexed: 05/20/2023]
Abstract
Molecular dynamics are essential for life, and nuclear magnetic resonance (NMR) spectroscopy has been used extensively to characterize these phenomena since the 1950s. For the past 15 years, the Carr-Purcell Meiboom-Gill relaxation dispersion (CPMG RD) NMR experiment has afforded advanced NMR labs access to kinetic, thermodynamic, and structural details of protein and RNA dynamics in the crucial μs-ms time window. However, analysis of RD data is challenging because datasets are often large and require many non-linear fitting parameters, thereby confounding assessment of accuracy. Moreover, novice CPMG experimentalists face an additional barrier because current software options lack an intuitive user interface and extensive documentation. Hence, we present the open-source software package GUARDD (Graphical User-friendly Analysis of Relaxation Dispersion Data), which is designed to organize, automate, and enhance the analytical procedures which operate on CPMG RD data ( http://code.google.com/p/guardd/). This MATLAB-based program includes a graphical user interface, permits global fitting to multi-field, multi-temperature, multi-coherence data, and implements χ (2)-mapping procedures, via grid-search and Monte Carlo methods, to enhance and assess fitting accuracy. The presentation features allow users to seamlessly traverse the large amount of results, and the RD Simulator feature can help design future experiments as well as serve as a teaching tool for those unfamiliar with RD phenomena. Based on these innovative features, we expect that GUARDD will fill a well-defined gap in service of the RD NMR community.
Collapse
Affiliation(s)
- Ian R. Kleckner
- Biophysics Program, The Ohio State University, 484 West 12th Ave Room 776, Columbus, OH 43210, USA,
| | - Mark P. Foster
- Biochemistry Department, The Ohio State University, 484 West 12th Ave Room 776, Columbus, OH 43210, USA,
| |
Collapse
|
15
|
Luo G, Karplus M. Determining the conformational change that accompanies donor-acceptor distance fluctuations: an umbrella sampling analysis. J Phys Chem B 2011; 115:7991-5. [PMID: 21619043 PMCID: PMC3131181 DOI: 10.1021/jp201998c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The response of a protein to variation of a specific coordinate can provide insights into the role of the overall architecture in the structural change. Given that the calculated potential of mean force governing the fluctuation of an electron transfer donor-acceptor distance in the NAD(P)H:Flavin oxidoreductase (Fre)/FAD complex was shown to agree with experiment, an analysis of the structural response of the rest of the protein to that distance change was made. Significant displacements are found throughout much of the protein, and the coupling pathway resulting in the structural changes was determined. A covariance analysis based on the quasiharmonic modes of the unperturbed protein was used to provide information concerning how the residue motions are correlated. It is found that, of the three regions identified as moving together in an NMR study, two undergo significant structural changes when the electron donor-acceptor distance is varied, and the third does not.
Collapse
Affiliation(s)
- Guobin Luo
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts02138 U.S.A
| | - Martin Karplus
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts02138 U.S.A
- Laboratoire de Chimie Biophysique, ISIS, Université de Strasbourg, 67000 Strasbourg France
| |
Collapse
|
16
|
de Paula VS, Razzera G, Barreto-Bergter E, Almeida FCL, Valente AP. Portrayal of complex dynamic properties of sugarcane defensin 5 by NMR: multiple motions associated with membrane interaction. Structure 2011; 19:26-36. [PMID: 21220113 DOI: 10.1016/j.str.2010.11.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/16/2010] [Accepted: 11/17/2010] [Indexed: 10/18/2022]
Abstract
Defensins are essentially ancient natural antibiotics with potent activity extending from lower organisms to humans. Sd5 is a recently described antifungal defensin that appears to be the result of a recent gain of function. We reported here the solution NMR structure of Sd5 and characterized the backbone dynamics in the free state and in the presence of membrane models. (15)N relaxation dispersion measurements indicate intrinsic conformational exchange processes, showing two clear distinct k(ex), 490 and 1800 s(-1). These multiple motions may be related to transient twisting or breathing of the α helix and β sheet. The stages of membrane recognition and disruption by Sd5 over a large timescale range were mapped and demonstrated that Sd5 in solution sampled an ensemble of different conformations, of which a subset is selected upon membrane binding. Defensins share similar structures, but we demonstrated here that their dynamics can be extremely diverse.
Collapse
Affiliation(s)
- Viviane Silva de Paula
- Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas, Instituto de Bioquímica Médica, Rio de Janeiro, RJ 21941-902, Brazil
| | | | | | | | | |
Collapse
|
17
|
Otten R, Villali J, Kern D, Mulder FAA. Probing microsecond time scale dynamics in proteins by methyl (1)H Carr-Purcell-Meiboom-Gill relaxation dispersion NMR measurements. Application to activation of the signaling protein NtrC(r). J Am Chem Soc 2010; 132:17004-14. [PMID: 21058670 PMCID: PMC2991065 DOI: 10.1021/ja107410x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Indexed: 11/29/2022]
Abstract
To study microsecond processes by relaxation dispersion NMR spectroscopy, low power deposition and short pulses are crucial and encourage the development of experiments that employ (1)H Carr-Purcell-Meiboom-Gill (CPMG) pulse trains. Herein, a method is described for the comprehensive study of microsecond to millisecond time scale dynamics of methyl groups in proteins, exploiting their high abundance and favorable relaxation properties. In our approach, protein samples are produced using [(1)H, (13)C]-d-glucose in ∼100% D(2)O, which yields CHD(2) methyl groups for alanine, valine, threonine, isoleucine, leucine, and methionine residues with high abundance, in an otherwise largely deuterated background. Methyl groups in such samples can be sequence-specifically assigned to near completion, using (13)C TOCSY NMR spectroscopy, as was recently demonstrated (Otten, R.; et al. J. Am. Chem. Soc. 2010, 132, 2952-2960). In this Article, NMR pulse schemes are presented to measure (1)H CPMG relaxation dispersion profiles for CHD(2) methyl groups, in a vein similar to that of backbone relaxation experiments. Because of the high deuteration level of methyl-bearing side chains, artifacts arising from proton scalar coupling during the CPMG pulse train are negligible, with the exception of Ile-δ1 and Thr-γ2 methyl groups, and a pulse scheme is described to remove the artifacts for those residues. Strong (13)C scalar coupling effects, observed for several leucine residues, are removed by alternative biochemical and NMR approaches. The methodology is applied to the transcriptional activator NtrC(r), for which an inactive/active state transition was previously measured and the motions in the microsecond time range were estimated through a combination of backbone (15)N CPMG dispersion NMR spectroscopy and a collection of experiments to determine the exchange-free component to the transverse relaxation rate. Exchange contributions to the (1)H line width were detected for 21 methyl groups, and these probes were found to collectively report on a local structural rearrangement around the phosphorylation site, with a rate constant of (15.5 ± 0.5) × 10(3) per second (i.e., τ(ex) = 64.7 ± 1.9 μs). The affected methyl groups indicate that, already before phosphorylation, a substantial, transient rearrangement takes place between helices 3 and 4 and strands 4 and 5. This conformational equilibrium allows the protein to gain access to the active, signaling state in the absence of covalent modification through a shift in a pre-existing dynamic equilibrium. Moreover, the conformational switching maps exactly to the regions that differ between the solution NMR structures of the fully inactive and active states. These results demonstrate that a cost-effective and quantitative study of protein methyl group dynamics by (1)H CPMG relaxation dispersion NMR spectroscopy is possible and can be applied to study functional motions on the microsecond time scale that cannot be accessed by backbone (15)N relaxation dispersion NMR. The use of methyl groups as dynamics probes extends such applications also to larger proteins.
Collapse
|
18
|
Kleckner IR, Foster MP. An introduction to NMR-based approaches for measuring protein dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:942-68. [PMID: 21059410 DOI: 10.1016/j.bbapap.2010.10.012] [Citation(s) in RCA: 349] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/27/2010] [Accepted: 10/29/2010] [Indexed: 01/15/2023]
Abstract
Proteins are inherently flexible at ambient temperature. At equilibrium, they are characterized by a set of conformations that undergo continuous exchange within a hierarchy of spatial and temporal scales ranging from nanometers to micrometers and femtoseconds to hours. Dynamic properties of proteins are essential for describing the structural bases of their biological functions including catalysis, binding, regulation and cellular structure. Nuclear magnetic resonance (NMR) spectroscopy represents a powerful technique for measuring these essential features of proteins. Here we provide an introduction to NMR-based approaches for studying protein dynamics, highlighting eight distinct methods with recent examples, contextualized within a common experimental and analytical framework. The selected methods are (1) Real-time NMR, (2) Exchange spectroscopy, (3) Lineshape analysis, (4) CPMG relaxation dispersion, (5) Rotating frame relaxation dispersion, (6) Nuclear spin relaxation, (7) Residual dipolar coupling, (8) Paramagnetic relaxation enhancement. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
Affiliation(s)
- Ian R Kleckner
- The Ohio State University Biophysics Program, 484 West 12th Ave Room 776, Columbus, OH 43210, USA
| | | |
Collapse
|
19
|
Abstract
Molecular dynamics are essential for protein function. In some cases these dynamics involve the interconversion between ground state, highly populated conformers and less populated higher energy structures ('excited states') that play critical roles in biochemical processes. Here we describe recent advances in NMR spectroscopy methods that enable studies of these otherwise invisible excited states at an atomic level and that help elucidate their important relation to function. We discuss a range of examples from molecular recognition, ligand binding, enzyme catalysis and protein folding that illustrate the role that motion plays in 'funneling' conformers along preferred pathways that facilitate their biological function.
Collapse
Affiliation(s)
- Andrew J Baldwin
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
20
|
Hansen DF, Vallurupalli P, Kay LE. Measurement of methyl group motional parameters of invisible, excited protein states by NMR spectroscopy. J Am Chem Soc 2009; 131:12745-54. [PMID: 19685870 DOI: 10.1021/ja903897e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An understanding of many biological processes can only be achieved through studies of the structure (enthalpy) and motions (entropy) of the key molecules that are involved, including those that are formed only transiently and with low population. These transiently formed, low populated states are invisible to most biophysical techniques but in many cases they can be studied in detail using relaxation dispersion NMR spectroscopy. Relaxation dispersion methodology has recently been described for the measurement of protein backbone excited state chemical shifts as well as bond vector orientations, which form the basis for structural studies of these invisible conformers. It is of interest to extend such studies by quantifying motional parameters of the excited state, providing a more complete description of the energy landscape that drives the biochemical event in question. Herein we describe a relaxation dispersion method for measuring site-specific motional parameters of methyl containing residues in the excited state. The approach is applied to the invisible unfolded state of the G48M Fyn SH3 domain that is in exchange with the folded conformation. Not surprisingly, the degree of disorder is in general higher in the unfolded state than in the folded conformer, although there is some ordering of side-chains in the unfolded state toward the C-terminal region of the domain. The development of the present methodology provides the first step toward characterizing the motional properties of invisible conformers, complementing the structural information that is already available from relaxation dispersion studies.
Collapse
Affiliation(s)
- D Flemming Hansen
- Departments of Molecular Genetics, Biochemistry, and Chemistry, The University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | |
Collapse
|
21
|
Hansen DF, Feng H, Zhou Z, Bai Y, Kay LE. Selective characterization of microsecond motions in proteins by NMR relaxation. J Am Chem Soc 2009; 131:16257-65. [PMID: 19842628 PMCID: PMC7386800 DOI: 10.1021/ja906842s] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The three-dimensional structures of macromolecules fluctuate over a wide range of time-scales. Separating the individual dynamic processes according to frequency is of importance in relating protein motions to biological function and stability. We present here a general NMR method for the specific characterization of microsecond motions at backbone positions in proteins even in the presence of other dynamics such as large-amplitude nanosecond motions and millisecond chemical exchange processes. The method is based on measurement of relaxation rates of four bilinear coherences and relies on the ability of strong continuous radio frequency fields to quench millisecond chemical exchange. The utility of the methodology is demonstrated and validated through two specific examples focusing on the thermo-stable proteins, ubiquitin and protein L, where it is found that small-amplitude microsecond dynamics are more pervasive than previously thought. Specifically, these motions are localized to alpha helices, loop regions, and regions along the rim of beta sheets in both of the proteins examined. A third example focuses on a 28 kDa ternary complex of the chaperone Chz1 and the histones H2A.Z/H2B, where it is established that pervasive microsecond motions are localized to a region of the chaperone that is important for stabilizing the complex. It is further shown that these motions can be well separated from extensive millisecond dynamics that are also present and that derive from exchange of Chz1 between bound and free states. The methodology is straightforward to implement, and data recorded at only a single static magnetic field are required.
Collapse
Affiliation(s)
- D Flemming Hansen
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | | | | | | | | |
Collapse
|
22
|
Lundström P, Vallurupalli P, Hansen DF, Kay LE. Isotope labeling methods for studies of excited protein states by relaxation dispersion NMR spectroscopy. Nat Protoc 2009; 4:1641-8. [PMID: 19876024 DOI: 10.1038/nprot.2009.118] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The utility of nuclear magnetic resonance (NMR) spectroscopy as a tool for the study of biomolecular structure and dynamics has benefited from the development of facile labeling methods that incorporate NMR active probes at key positions in the molecule. Here we describe a protocol for the labeling of proteins that facilitates their study using a technique that is sensitive to millisecond conformational exchange processes. The samples necessary for an analysis of exchange dynamics are discussed, using the Abp1p SH3 domain from Saccharomyces cerevisiae as an example. For this system, the time frame for production of each sample, including in vitro refolding, is about 80 h. The samples so produced facilitate the measurement of accurate chemical shifts of low populated, invisible conformers that are part of the exchange pathway. The accuracy of the methodology has been established experimentally and the chemical shifts that are obtained provide important restraints in structure calculations of the excited state.
Collapse
Affiliation(s)
- Patrik Lundström
- Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | | | | | | |
Collapse
|
23
|
Vallurupalli P, Hansen DF, Lundström P, Kay LE. CPMG relaxation dispersion NMR experiments measuring glycine 1H alpha and 13C alpha chemical shifts in the 'invisible' excited states of proteins. JOURNAL OF BIOMOLECULAR NMR 2009; 45:45-55. [PMID: 19319480 DOI: 10.1007/s10858-009-9310-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 02/18/2009] [Accepted: 02/26/2009] [Indexed: 05/15/2023]
Abstract
Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion NMR experiments are extremely powerful for characterizing millisecond time-scale conformational exchange processes in biomolecules. A large number of such CPMG experiments have now emerged for measuring protein backbone chemical shifts of sparsely populated (>0.5%), excited state conformers that cannot be directly detected in NMR spectra and that are invisible to most other biophysical methods as well. A notable deficiency is, however, the absence of CPMG experiments for measurement of (1)H(alpha) and (13)C(alpha) chemical shifts of glycine residues in the excited state that reflects the fact that in this case the (1)H(alpha), (13)C(alpha) spins form a three-spin system that is more complex than the AX (1)H(alpha)-(13)C(alpha) spin systems in the other amino acids. Here pulse sequences for recording (1)H(alpha) and (13)C(alpha) CPMG relaxation dispersion profiles derived from glycine residues are presented that provide information from which (1)H(alpha), (13)C(alpha) chemical shifts can be obtained. The utility of these experiments is demonstrated by an application to a mutant of T4 lysozyme that undergoes a millisecond time-scale exchange process facilitating the binding of hydrophobic ligands to an internal cavity in the protein.
Collapse
Affiliation(s)
- Pramodh Vallurupalli
- Departments of Molecular Genetics, Biochemistry and Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
24
|
Lundström P, Lin H, Kay LE. Measuring 13Cbeta chemical shifts of invisible excited states in proteins by relaxation dispersion NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2009; 44:139-155. [PMID: 19448976 DOI: 10.1007/s10858-009-9321-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 04/20/2009] [Indexed: 05/26/2023]
Abstract
A labeling scheme is introduced that facilitates the measurement of accurate (13)C(beta) chemical shifts of invisible, excited states of proteins by relaxation dispersion NMR spectroscopy. The approach makes use of protein over-expression in a strain of E. coli in which the TCA cycle enzyme succinate dehydrogenase is knocked out, leading to the production of samples with high levels of (13)C enrichment (30-40%) at C(beta) side-chain carbon positions for 15 of the amino acids with little (13)C label at positions one bond removed (approximately 5%). A pair of samples are produced using [1-(13)C]-glucose/NaH(12)CO(3) or [2-(13)C]-glucose as carbon sources with isolated and enriched (>30%) (13)C(beta) positions for 11 and 4 residues, respectively. The efficacy of the labeling procedure is established by NMR spectroscopy. The utility of such samples for measurement of (13)C(beta) chemical shifts of invisible, excited states in exchange with visible, ground conformations is confirmed by relaxation dispersion studies of a protein-ligand binding exchange reaction in which the extracted chemical shift differences from dispersion profiles compare favorably with those obtained directly from measurements on ligand free and fully bound protein samples.
Collapse
Affiliation(s)
- Patrik Lundström
- Molecular Biotechnology/IFM, Linköping University, 581 83, Linköping, Sweden
| | | | | |
Collapse
|
25
|
Lundström P, Hansen DF, Vallurupalli P, Kay LE. Accurate measurement of alpha proton chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy. J Am Chem Soc 2009; 131:1915-26. [PMID: 19152327 DOI: 10.1021/ja807796a] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carr-Purcell-Meiboom-Gill relaxation dispersion NMR spectroscopy can provide detailed information about low populated, invisible states of protein molecules, including backbone chemical shifts of the invisible conformer and bond vector orientations that can be used as structural constraints. Notably, the measurement of 1Halpha chemical shifts in excited protein states has not been possible to date because, in the absence of suitable labeling, the homonuclear proton scalar coupling network in side chains of proteins leads to a significant degradation in the performance of proton-based relaxation dispersion experiments. Here we have overcome this problem through a labeling scheme in which proteins are prepared with U-2H glucose and 50% D2O/50% H2O that results in deuteration levels of between 50-88% at the Cbeta carbon. Effects from residual 1Halpha-1Hbeta scalar couplings can be suppressed through a new NMR experiment that is presented here. The utility of the methodology is demonstrated on a ligand binding exchanging system and it is shown that 1Halpha chemical shifts extracted from dispersion profiles are, on average, accurate to 0.03 ppm, an order of magnitude better than they can be predicted from structure using a database approach. The ability to measure 1Halpha chemical shifts of invisible conformers is particularly important because such shifts are sensitive to both secondary and tertiary structure. Thus, the methodology presented is a valuable addition to a growing list of experiments for characterizing excited protein states that are difficult to study using the traditional techniques of structural biology.
Collapse
Affiliation(s)
- Patrik Lundström
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | | | | | | |
Collapse
|
26
|
Jiménez A, Clapés P, Crehuet R. Protein flexibility and metal coordination changes in DHAP-dependent aldolases. Chemistry 2009; 15:1422-8. [PMID: 19115296 DOI: 10.1002/chem.200801223] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mobility of rhamnulose-1-phosphate aldolase (RhuA) was analysed with a normal mode description and high level calculations on models of the active site. We report the connection between the mobility and the chemical properties of the active site, and compare them to a closely related enzyme, fuculose-1-phosphate aldolase (FucA). Calculations show that the different coordination number for the zinc ion, reported in the crystal structures of RhuA and FucA, was due to a different spatial arrangement of the residues, not to their different chemical nature. Moreover, the metal coordination change is correlated with activity. The domain mobility of the enzyme can reshape the active site of RhuA into the arrangement found in the FucA structure, and vice-versa. This has a direct influence on the energy barrier for the aldol reaction catalyzed by these enzymes, thus showing a coupling of the domain movements and the catalytic effects. Hence domain movements and the coordination chemistry of the active site metal suggest an explanation of why these enzymes have similar experimental turnover rates.
Collapse
Affiliation(s)
- Aurora Jiménez
- Institut de Química Avançada de Catalunya IQAC-CSIC c/Jordi Girona 18-26, 08034, Barcelona, Catalonia, Spain
| | | | | |
Collapse
|
27
|
Lundström P, Hansen DF, Kay LE. Measurement of carbonyl chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy: comparison between uniformly and selectively (13)C labeled samples. JOURNAL OF BIOMOLECULAR NMR 2008; 42:35-47. [PMID: 18762869 DOI: 10.1007/s10858-008-9260-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 07/18/2008] [Accepted: 07/18/2008] [Indexed: 05/26/2023]
Abstract
Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion nuclear magnetic resonance (NMR) spectroscopy has emerged as a powerful method for quantifying chemical shifts of excited protein states. For many applications of the technique that involve the measurement of relaxation rates of carbon magnetization it is necessary to prepare samples with isolated (13)C spins so that experiments do not suffer from magnetization transfer between coupled carbon spins that would otherwise occur during the CPMG pulse train. In the case of (13)CO experiments however the large separation between (13)CO and (13)C(alpha) chemical shifts offers hope that robust (13)CO dispersion profiles can be recorded on uniformly (13)C labeled samples, leading to the extraction of accurate (13)CO chemical shifts of the invisible, excited state. Here we compare such chemical shifts recorded on samples that are selectively labeled, prepared using [1-(13)C]-pyruvate and NaH(13)CO(3,) or uniformly labeled, generated from (13)C-glucose. Very similar (13)CO chemical shifts are obtained from analysis of CPMG experiments recorded on both samples, and comparison with chemical shifts measured using a second approach establishes that the shifts measured from relaxation dispersion are very accurate.
Collapse
Affiliation(s)
- Patrik Lundström
- Department of Medical Genetics, The University of Toronto, Toronto, ON, Canada, M5S 1A8
| | | | | |
Collapse
|
28
|
Chaudhury S, Chatterjee D, Cherayil BJ. The dynamics of single enzyme reactions: A reconsideration of Kramers' model for colored noise processes. J Chem Phys 2008; 129:075104. [DOI: 10.1063/1.2969767] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Hansen DF, Vallurupalli P, Kay LE. Using relaxation dispersion NMR spectroscopy to determine structures of excited, invisible protein states. JOURNAL OF BIOMOLECULAR NMR 2008; 41:113-20. [PMID: 18574698 DOI: 10.1007/s10858-008-9251-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 05/26/2008] [Indexed: 05/12/2023]
Abstract
Currently the main focus of structural biology is the determination of static three-dimensional representations of biomolecules that for the most part correspond to low energy (ground state) conformations. However, it is becoming increasingly well recognized that higher energy structures often play important roles in function as well. Because these conformers are populated to only low levels and are often only transiently formed their study is not amenable to many of the tools of structural biology. In this perspective we discuss the role of CPMG-based relaxation dispersion NMR spectroscopy in characterizing these low populated, invisible states. It is shown that robust methods for measuring both backbone chemical shifts and residual anisotropic interactions in the excited state are in place and that these data provide valuable restraints for structural studies of invisible conformers.
Collapse
Affiliation(s)
- D Flemming Hansen
- Departments of Molecular Genetics, Biochemistry and Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
30
|
Lundström P, Vallurupalli P, Religa TL, Dahlquist FW, Kay LE. A single-quantum methyl 13C-relaxation dispersion experiment with improved sensitivity. JOURNAL OF BIOMOLECULAR NMR 2007; 38:79-88. [PMID: 17464570 DOI: 10.1007/s10858-007-9149-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 02/07/2007] [Accepted: 02/12/2007] [Indexed: 05/15/2023]
Abstract
A pulse sequence is described for recording single-quantum (13)C-methyl relaxation dispersion profiles of (13)C-selectively labeled methyl groups in proteins that offers significant improvements in sensitivity relative to existing approaches where initial magnetization derives from (13)C polarization. Sensitivity gains in the new experiment are achieved by making use of polarization from (1)H spins and (1)H --> (13)C --> (1)H type magnetization transfers. Its utility has been established by applications involving three different protein systems ranging in molecular weight from 8 to 28 kDa, produced using a number of different selective labeling approaches. In all cases exchange parameters from both (13)C-->(1)H and (1)H --> (13)C --> (1)H classes of experiment are in good agreement, with gains in sensitivity of between 1.7 and 4-fold realized using the new scheme.
Collapse
Affiliation(s)
- Patrik Lundström
- Department of Medical Genetics, The University of Toronto, Toronto, ON, Canada, M5S 1A8
| | | | | | | | | |
Collapse
|
31
|
Labeikovsky W, Eisenmesser EZ, Bosco DA, Kern D. Structure and dynamics of pin1 during catalysis by NMR. J Mol Biol 2007; 367:1370-81. [PMID: 17316687 PMCID: PMC2975599 DOI: 10.1016/j.jmb.2007.01.049] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 01/16/2007] [Accepted: 01/19/2007] [Indexed: 11/21/2022]
Abstract
The link between internal enzyme motions and catalysis is poorly understood. Correlated motions in the microsecond-to-millisecond timescale may be critical for enzyme function. We have characterized the backbone dynamics of the peptidylprolyl isomerase (Pin1) catalytic domain in the free state and during catalysis. Pin1 is a prolyl isomerase of the parvulin family and specifically catalyzes the isomerization of phosphorylated Ser/Thr-Pro peptide bonds. Pin1 has been shown to be essential for cell-cycle progression and to interact with the neuronal tau protein inhibiting its aggregation into fibrillar tangles as found in Alzheimer's disease. (15)N relaxation dispersion measurements performed on Pin1 during catalysis reveal conformational exchange processes in the microsecond timescale. A subset of active site residues undergo kinetically similar exchange processes even in the absence of a substrate, suggesting that this area is already "primed" for catalysis. Furthermore, structural data of the turning-over enzyme were obtained through inter- and intramolecular nuclear Overhauser enhancements. This analysis together with a characterization of the substrate concentration dependence of the conformational exchange allowed the distinguishing of regions of the enzyme active site that are affected primarily by substrate binding versus substrate isomerization. Together these data suggest a model for the reaction trajectory of Pin1 catalysis.
Collapse
Affiliation(s)
| | | | | | - Dorothee Kern
- To whom correspondence should be directed. (Dorothee Kern)
| |
Collapse
|