1
|
Upendra N, Kavya KM, Krishnaveni S. Molecular dynamics simulation study on Bacillus subtilis EngA: the presence of Mg 2+ at the active-sites promotes the functionally important conformation. J Biomol Struct Dyn 2023; 41:9219-9231. [PMID: 36444972 DOI: 10.1080/07391102.2022.2151513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/20/2022] [Indexed: 11/30/2022]
Abstract
EngA, a GTPase contains two GTP binding domains [GD1, GD2], and the C-terminal KH domain shown to be involved in the later stages of ribosome maturation. Association of EngA to the ribosomal subunit in the intermediate stage of maturation is essential for complete ribosome maturation. However, this association was shown to be dependent on the nucleotide bound combinations. This nucleotide dependent association tendency is attributed to the conformational changes that occur among different nucleotide bound combinations. Therefore, to explore the conformational changes, all-atom molecular dynamics simulations for Bacillus subtilis EngA in different nucleotide bound combinations along with the presence or absence of Mg2+ in the active-sites were carried out. The presence of Mg2+ along with the bound nucleotide at the GD2 active-site dictates the GD2-Sw-II mobility, but the GD1-Sw-II mobility has not shown any nucleotide or Mg2+ dependent movement. However, the GD1-Sw-II secondary conformations are shown to be influenced by the GD2 nucleotide bound state. This allosteric connection between the GD2 active-site and the GD1-Sw-II is also observed through the dynamic network analysis. Further, the exploration of the GD1-KH interface interactions exhibited a more attractive tendency when GD1 is bound to GTP-Mg2+. In addition, the presence of Mg2+ stabilizes active-site water and also increases the distances between the α- and γ- phosphates of the bound GTP. Curiously, three water molecules in the GD1 active-site and only one water molecule in the GD2 active-site are stabilized. This indicates that the probability of GTP hydrolysis is more in GD1 compared to GD2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- N Upendra
- Department of Studies in Physics, University of Mysore, Mysuru, India
| | - K M Kavya
- Department of Studies in Physics, University of Mysore, Mysuru, India
| | - S Krishnaveni
- Department of Studies in Physics, University of Mysore, Mysuru, India
| |
Collapse
|
2
|
Characterizing a novel CMK-EngA fusion protein from Bifidobacterium: Implications for inter-domain regulation. Biochem Biophys Rep 2022; 33:101410. [PMID: 36578527 PMCID: PMC9791819 DOI: 10.1016/j.bbrep.2022.101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
EngA is an essential and unique bacterial GTPase involved in ribosome biogenesis. The essentiality and species-specific variations among EngA homologues make the protein a potential target for future drug development. In this aspect, it is important to understand the variations of EngA among probiotic organisms and non-probiotic bacteria to understand species specificity. The search for variations among EngA homologues revealed a unique variant, exclusively found in Bifidobacterium and a few Actinobacteria species. Bifidobacterium possesses a multifunctional fusion protein, wherein EngA is fused with an N-terminal CMK (Cytidylate Monophosphate Kinase) domain. The resulting protein is therefore a large (70kDa size) with 3 consecutive P-loops and a 50 amino acid long linker connecting the EngA and CMK domains. EngA is known to regulate ribosome biogenesis via nucleotide-dependent conformational changes. The additional domain may introduce further intricate regulation in ribosome biogenesis or participate in newer biological processes. This study is the first attempt to characterise this novel class of bacterial EngA found in the Genus of Bifidobacteria.
Collapse
|
3
|
Jerez C, Salinas P, Llop A, Cantos R, Espinosa J, Labella JI, Contreras A. Regulatory Connections Between the Cyanobacterial Factor PipX and the Ribosome Assembly GTPase EngA. Front Microbiol 2021; 12:781760. [PMID: 34956147 PMCID: PMC8696166 DOI: 10.3389/fmicb.2021.781760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria, phototrophic organisms performing oxygenic photosynthesis, must adapt their metabolic processes to important environmental challenges, like those imposed by the succession of days and nights. Not surprisingly, certain regulatory proteins are found exclusively in this phylum. One of these unique proteins, PipX, provides a mechanistic link between signals of carbon/nitrogen and of energy, transduced by the signaling protein PII, and the control of gene expression by the global nitrogen regulator NtcA. PII, required for cell survival unless PipX is inactivated or downregulated, functions by protein-protein interactions with transcriptional regulators, transporters, and enzymes. PipX also functions by protein-protein interactions, and previous studies suggested the existence of additional interacting partners or included it into a relatively robust six-node synteny network with proteins apparently unrelated to the nitrogen regulation system. To investigate additional functions of PipX while providing a proof of concept for the recently developed cyanobacterial linkage network, here we analyzed the physical and regulatory interactions between PipX and an intriguing component of the PipX synteny network, the essential ribosome assembly GTPase EngA. The results provide additional insights into the functions of cyanobacterial EngA and of PipX, showing that PipX interacts with the GD1 domain of EngA in a guanosine diphosphate-dependent manner and interferes with EngA functions in Synechococcus elongatus at a low temperature, an environmentally relevant context. Therefore, this work expands the PipX interaction network and establishes a possible connection between nitrogen regulation and the translation machinery. We discuss a regulatory model integrating previous information on PII-PipX with the results presented in this work.
Collapse
Affiliation(s)
- Carmen Jerez
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Paloma Salinas
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Antonio Llop
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Raquel Cantos
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Javier Espinosa
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Jose I Labella
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| |
Collapse
|
4
|
N U, S K. Molecular dynamics simulation study on Thermotoga maritima EngA: GTP/GDP bound state of the second G-domain influences the domain-domain interface interactions. J Biomol Struct Dyn 2020; 40:1387-1399. [PMID: 33016853 DOI: 10.1080/07391102.2020.1826359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
EngA, a GTPase involved in the late steps of ribosome maturation, consists of two GTP binding domains (G-domains) [GD1, GD2] and a C-terminal domain. The combination of GTP/GDP in G-domains dictates its binding to the ribosomal subunits by altering its conformation. Studies and comparisons on the available structures of EngA enable us to understand the correlation between nucleotide bound states and its conformation. Using all-atom molecular dynamics (MD) simulations, we have explored the conformational behavior of EngA from Thermotoga maritima (TmDer) upon binding the various combinations of GTP and GDP. Analyses of Root Mean Square Deviation (RMSD), Radius of Gyration (Rg) and Root Mean Square Fluctuation (RMSF) emphasize the importance of the second G-domain nucleotide bound state. RMSD and Rg exhibit slightly lower values when GTP is embedded in GD2 compared to GDP. These lower values are due to Sw-II of GD2, which has been observed from RMSF plot. Further investigation on the effects of GD2 nucleotide bound state using Principal Component Analysis (PCA) and Free Energy Landscape (FEL) analysis manifests an allosteric connection between GD2 nucleotide bound state and the GD1-KH interface. This is further validated by extracting electrostatic interactions and H-bonds at the GD1-KH interface. In silico mutations at the GD1 interface of KH domain affect the Sw-II mobility of GD2 by showing inverted behavior. This suggests using the second G-domain as an antibacterial target and further simulation studies on different species of EngA are to be explored.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Upendra N
- Department of Studies in Physics, Manasagangotri, University of Mysore, Mysuru, India
| | - Krishnaveni S
- Department of Studies in Physics, Manasagangotri, University of Mysore, Mysuru, India
| |
Collapse
|
5
|
da Silveira Tomé C, Foucher AE, Jault JM, Housset D. High concentrations of GTP induce conformational changes in the essential bacterial GTPase EngA and enhance its binding to the ribosome. FEBS J 2017; 285:160-177. [PMID: 29148177 DOI: 10.1111/febs.14333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/28/2017] [Accepted: 11/13/2017] [Indexed: 11/28/2022]
Abstract
EngA is a conserved bacterial GTPase involved in ribosome biogenesis. While essential in bacteria, EngA does not have any human orthologue and can thus be an interesting target for new antibacterial compounds. EngA is the only known GTPase bearing two G domains, making unique its catalytic cycle and the induced modulation of its conformation and interaction with the ribosome. We have investigated nucleotide-induced conformational changes in EngA in order to unveil their role in ribosome binding. SAXS and limited proteolysis were used to probe EngA conformational changes, and revealed a change in protein structure and a distinct rate of proteolysis induced by GTP. Structure analysis showed that the conformation adopted in solution in the presence of GTP does not match any known EngA structure, while the SAXS data measured in the presence of GDP are in perfect agreement with two crystal structures (i.e. 2HGJ and 4DCU). Combination of mass spectrometry and N-terminal sequencing for the analysis of the fragmentation pattern upon proteolytic cleavage gave insights into which regions become more or less accessible in the different nucleotide-bound states. Interactions studies confirmed a stronger binding of EngA to the bacterial ribosome in the presence of GTP and suggest that the induced change in conformation of EngA plays a key role for ribosome binding.
Collapse
Affiliation(s)
| | | | - Jean-Michel Jault
- UMR5086 "Molecular Microbiology and Structural Biochemistry", CNRS, Univ. Lyon 1, France
| | | |
Collapse
|
6
|
Majumdar S, Acharya A, Tomar SK, Prakash B. Disrupting domain-domain interactions is indispensable for EngA-ribosome interactions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:289-303. [PMID: 27979707 DOI: 10.1016/j.bbapap.2016.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/06/2016] [Accepted: 12/10/2016] [Indexed: 11/24/2022]
Abstract
EngA consists of two tandem GTPase-domains-GD1 and GD2-followed by a KH-domain. EngA was considered to be a 50S assembly factor since it was shown to bind 50S and its deletion leads to the accumulation of immature 45S ribosomal subunits. Subsequently, we demonstrated an additional ribosome bound state of EngA bound to 50S, 30S, and 70S. While the former (50S binding) is achieved upon GTP binding at both GD1 and GD2, the latter is formed upon GTP hydrolysis at GD1, which is believed to trigger a large conformational change in the protein. The present study brings out two key aspects of EngA regulation: First, that distinctly stabilized GD1-KH interfaces allows EngA to exist in different ribosome bound states, and second is the importance of these states to ribosome assembly. Our analyses suggest that distinct inter-domain (GD-KH) interfaces are stabilized by interactions arising from unique sets of motifs, conserved across EngA homologues, and seem to be mechanistically linked to GTP/GDP binding. By experimentally measuring binding affinities for several interface mutants, we show that disrupting the interface interactions is necessary to realize EngA-ribosome binding. These findings are also supported by a recent cryo-EM structure of EngA bound to 50S, wherein the GD1-KH interface is completely disrupted leading to an 'extended' or 'open state' of the protein. Overall, it appears that the transition of EngA from a 'closed state' with GD1-KH forming a tight interface, to an 'open state' mediates interaction with ribosomal subunits.
Collapse
Affiliation(s)
- Soneya Majumdar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Abhishek Acharya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Sushil Kumar Tomar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Balaji Prakash
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysore 570020, India.
| |
Collapse
|
7
|
Heterologous Expression of Der Homologs in an Escherichia coli der Mutant and Their Functional Complementation. J Bacteriol 2016; 198:2284-96. [PMID: 27297882 DOI: 10.1128/jb.00384-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/03/2016] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED The unique Escherichia coli GTPase Der (double Era-like GTPase), which contains tandemly repeated GTP-binding domains, has been shown to play an essential role in 50S ribosomal subunit biogenesis. The depletion of Der results in the accumulation of precursors of 50S ribosomal subunits that are structurally unstable at low Mg(2+) concentrations. Der homologs are ubiquitously found in eubacteria. Conversely, very few are conserved in eukaryotes, and none is conserved in archaea. In the present study, to verify their conserved role in bacterial 50S ribosomal subunit biogenesis, we cloned Der homologs from two gammaproteobacteria, Klebsiella pneumoniae and Salmonella enterica serovar Typhimurium; two pathogenic bacteria, Staphylococcus aureus and Neisseria gonorrhoeae; and the extremophile Deinococcus radiodurans and then evaluated whether they could functionally complement the E. coli der-null phenotype. Only K. pneumoniae and S Typhimurium Der proteins enabled the E. coli der-null strain to grow under nonpermissive conditions. Sucrose density gradient experiments revealed that the expression of K. pneumoniae and S Typhimurium Der proteins rescued the structural instability of 50S ribosomal subunits, which was caused by E. coli Der depletion. To determine what allows their complementation, we constructed Der chimeras. We found that only Der chimeras harboring both the linker and long C-terminal regions could reverse the growth defects of the der-null strain. Our findings suggest that ubiquitously conserved essential GTPase Der is involved in 50S ribosomal subunit biosynthesis in various bacteria and that the linker and C-terminal regions may participate in species-specific recognition or interaction with the 50S ribosomal subunit. IMPORTANCE In Escherichia coli, Der (double Era-like GTPase) is an essential GTPase that is important for the production of mature 50S ribosomal subunits. However, to date, its precise role in ribosome biogenesis has not been clarified. In this study, we used five Der homologs from gammaproteobacteria, pathogenic bacteria, and an extremophile to elucidate their conserved function in 50S ribosomal subunit biogenesis. Among them, Klebsiella pneumoniae and Salmonella enterica serovar Typhimurium Der homologs implicated the participation of Der in ribosome assembly in E. coli Our results show that the linker and C-terminal regions of Der homologs are correlated with its functional complementation in E. coli der mutants, suggesting that they are involved in species-specific recognition or interaction with 50S ribosomal subunits.
Collapse
|
8
|
Zhang X, Yan K, Zhang Y, Li N, Ma C, Li Z, Zhang Y, Feng B, Liu J, Sun Y, Xu Y, Lei J, Gao N. Structural insights into the function of a unique tandem GTPase EngA in bacterial ribosome assembly. Nucleic Acids Res 2014; 42:13430-9. [PMID: 25389271 PMCID: PMC4245960 DOI: 10.1093/nar/gku1135] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Many ribosome-interacting GTPases, with proposed functions in ribosome biogenesis, are also implicated in the cellular regulatory coupling between ribosome assembly process and various growth control pathways. EngA is an essential GTPase in bacteria, and intriguingly, it contains two consecutive GTPase domains (GD), being one-of-a-kind among all known GTPases. EngA is required for the 50S subunit maturation. However, its molecular role remains elusive. Here, we present the structure of EngA bound to the 50S subunit. Our data show that EngA binds to the peptidyl transferase center (PTC) and induces dramatic conformational changes on the 50S subunit, which virtually returns the 50S subunit to a state similar to that of the late-stage 50S assembly intermediates. Very interestingly, our data show that the two GDs exhibit a pseudo-two-fold symmetry in the 50S-bound conformation. Our results indicate that EngA recognizes certain forms of the 50S assembly intermediates, and likely facilitates the conformational maturation of the PTC of the 23S rRNA in a direct manner. Furthermore, in a broad context, our data also suggest that EngA might be a sensor of the cellular GTP/GDP ratio, endowed with multiple conformational states, in response to fluctuations in cellular nucleotide pool, to facilitate and regulate ribosome assembly.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kaige Yan
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yixiao Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ningning Li
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chengying Ma
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhifei Li
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanqing Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Boya Feng
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jing Liu
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yadong Sun
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanji Xu
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ning Gao
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Webb LMC, Pascall JC, Hepburn L, Carter C, Turner M, Butcher GW. Generation and characterisation of mice deficient in the multi-GTPase domain containing protein, GIMAP8. PLoS One 2014; 9:e110294. [PMID: 25329815 PMCID: PMC4201521 DOI: 10.1371/journal.pone.0110294] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/17/2014] [Indexed: 02/06/2023] Open
Abstract
Background GTPases of the immunity-associated protein family (GIMAPs) are predominantly expressed in mature lymphocytes. Studies of rodents deficient in GIMAP1, GIMAP4, or GIMAP5 have demonstrated that these GTPases regulate lymphocyte survival. In contrast to the other family members, GIMAP8 contains three potential GTP-binding domains (G-domains), a highly unusual feature suggesting a novel function for this protein. To examine a role for GIMAP8 in lymphocyte biology we examined GIMAP8 expression during lymphocyte development. We also generated a mouse deficient in GIMAP8 and examined lymphocyte development and function. Principal Findings We show that GIMAP8 is expressed in the very early and late stages of T cell development in the thymus, at late stages during B cell development, and peripheral T and B cells. We find no defects in T or B lymphocyte development in the absence of GIMAP8. A marginal decrease in the number of recirculating bone marrow B cells suggests that GIMAP8 is important for the survival of mature B cells within the bone marrow niche. We also show that deletion of GIMAP8 results in a delay in apoptotic death of mature T cell in vitro in response to dexamethasone or γ-irradiation. However, despite these findings we find that GIMAP8-deficient mice mount normal primary and secondary responses to a T cell dependent antigen. Conclusions Despite its unique structure, GIMAP8 is not required for lymphocyte development but appears to have a minor role in maintaining recirculating B cells in the bone marrow niche and a role in regulating apoptosis of mature T cells.
Collapse
Affiliation(s)
- Louise M. C. Webb
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
- * E-mail:
| | - John C. Pascall
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Lucy Hepburn
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Christine Carter
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Geoffrey W. Butcher
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
10
|
Jeon Y, Ahn CS, Jung HJ, Kang H, Park GT, Choi Y, Hwang J, Pai HS. DER containing two consecutive GTP-binding domains plays an essential role in chloroplast ribosomal RNA processing and ribosome biogenesis in higher plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:117-30. [PMID: 24272962 PMCID: PMC3883289 DOI: 10.1093/jxb/ert360] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This study investigated protein characteristics and physiological functions of DER (Double Era-like GTPase) of higher plants. Nicotiana benthamiana DER (NbDER) contained two tandemly repeated GTP-binding domains (GD) and a C-terminal domain (CTD) that was similar to the K-homology domain involved in RNA binding. Both GDs possessed GTPase activity and contributed to the maximum GTPase activity of NbDER. NbDER fused to green fluorescent protein was localized primarily to chloroplast nucleoids. Arabidopsis der null mutants exhibited an embryonic lethal phenotype, indicating an essential function of DER during plant embryogenesis. Virus-induced gene silencing of NbDER resulted in a leaf-yellowing phenotype caused by disrupted chloroplast biogenesis. NbDER was associated primarily with the chloroplast 50S ribosomal subunit in vivo, and both the CTD and the two GD contributed to the association. Recombinant proteins of NbDER and its CTD could bind to 23S and 16S ribosomal RNAs in vitro. Depletion of NbDER impaired processing of plastid-encoded ribosomal RNAs, resulting in accumulation of the precursor rRNAs in the chloroplasts. NbDER-deficient chloroplasts contained significantly reduced levels of mature 23S and 16S rRNAs and diverse mRNAs in the polysomal fractions, suggesting decreased translation in chloroplasts. These results suggest that DER is involved in chloroplast rRNA processing and ribosome biogenesis in higher plants.
Collapse
Affiliation(s)
- Young Jeon
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Chang Sook Ahn
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hyun Ju Jung
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea
| | - Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea
| | - Guen Tae Park
- School of Biological Sciences, Seoul National University, Seoul 151-;747, Korea
| | - Yeonhee Choi
- School of Biological Sciences, Seoul National University, Seoul 151-;747, Korea
| | - Jihwan Hwang
- Department of Microbiology, Pusan National University, Busan 609-735, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
11
|
Jain N, Vithani N, Rafay A, Prakash B. Identification and characterization of a hitherto unknown nucleotide-binding domain and an intricate interdomain regulation in HflX-a ribosome binding GTPase. Nucleic Acids Res 2013; 41:9557-69. [PMID: 23956218 PMCID: PMC3814362 DOI: 10.1093/nar/gkt705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A role for HflX in 50S-biogenesis was suggested based on its similarity to other GTPases involved in this process. It possesses a G-domain, flanked by uncharacterized N- and C-terminal domains. Intriguingly, Escherichia coli HflX was shown to hydrolyze both GTP and adenosine triphosphate (ATP), and it was unclear whether G-domain alone would explain ATP hydrolysis too. Here, based on structural bioinformatics analysis, we suspected the possible existence of an additional nucleotide-binding domain (ND1) at the N-terminus. Biochemical studies affirm that this domain is capable of hydrolyzing ATP and GTP. Surprisingly, not only ND1 but also the G-domain (ND2) can hydrolyze GTP and ATP too. Further; we recognize that ND1 and ND2 influence each other’s hydrolysis activities via two salt bridges, i.e. E29-R257 and Q28-N207. It appears that the salt bridges are important in clamping the two NTPase domains together; disrupting these unfastens ND1 and ND2 and invokes domain movements. Kinetic studies suggest an important but complex regulation of the hydrolysis activities of ND1 and ND2. Overall, we identify, two separate nucleotide-binding domains possessing both ATP and GTP hydrolysis activities, coupled with an intricate inter-domain regulation for Escherichia coli HflX.
Collapse
Affiliation(s)
- Nikhil Jain
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208106, India
| | | | | | | |
Collapse
|
12
|
Crippling the essential GTPase Der causes dependence on ribosomal protein L9. J Bacteriol 2013; 195:3682-91. [PMID: 23772068 DOI: 10.1128/jb.00464-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribosomal protein L9 is a component of all eubacterial ribosomes, yet deletion strains display only subtle growth defects. Although L9 has been implicated in helping ribosomes maintain translation reading frame and in regulating translation bypass, no portion of the ribosome-bound protein seems capable of contacting either the peptidyltransferase center or the decoding center, so it is a mystery how L9 can influence these important processes. To reveal the physiological roles of L9 that have maintained it in evolution, we identified mutants of Escherichia coli that depend on L9 for fitness. In this report, we describe a class of L9-dependent mutants in the ribosome biogenesis GTPase Der (EngA/YphC). Purified mutant proteins were severely compromised in their GTPase activities, despite the fact that the mutations are not present in GTP hydrolysis sites. Moreover, although L9 and YihI complemented the slow-growth der phenotypes, neither factor could rescue the GTPase activities in vitro. Complementation studies revealed that the N-terminal domain of L9 is necessary and sufficient to improve the fitness of these Der mutants, suggesting that this domain may help stabilize compromised ribosomes that accumulate when Der is defective. Finally, we employed a targeted degradation system to rapidly deplete L9 from a highly compromised der mutant strain and show that the L9-dependent phenotype coincides with a cell division defect.
Collapse
|
13
|
Abstract
The ribosome is an RNA- and protein-based macromolecule having multiple functional domains to facilitate protein synthesis, and it is synthesized through multiple steps including transcription, stepwise cleavages of the primary transcript, modifications of ribosomal proteins and RNAs and assemblies of ribosomal proteins with rRNAs. This process requires dozens of trans-acting factors including GTP- and ATP-binding proteins to overcome several energy-consuming steps. Despite accumulation of genetic, biochemical and structural data, the entire process of bacterial ribosome synthesis remains elusive. Here, we review GTPases involved in bacterial ribosome maturation.
Collapse
Affiliation(s)
- Simon Goto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | | | | |
Collapse
|
14
|
Gulati M, Jain N, Anand B, Prakash B, Britton RA. Mutational analysis of the ribosome assembly GTPase RbgA provides insight into ribosome interaction and ribosome-stimulated GTPase activation. Nucleic Acids Res 2013; 41:3217-27. [PMID: 23325847 PMCID: PMC3597669 DOI: 10.1093/nar/gks1475] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ribosome biogenesis GTPase A protein (RbgA) is an essential GTPase required for the biogenesis of the 50S subunit in Bacillus subtilis. Homologs of RbgA are widely distributed in bacteria and eukaryotes and are implicated in ribosome assembly in the mitochondria, chloroplast and cytoplasm. Cells depleted of RbgA accumulate an immature large subunit that is missing key ribosomal proteins. RbgA, unlike many members of the Ras superfamily of GTPases, lacks a defined catalytic residue for carrying out guanosine triphosphate (GTP) hydrolysis. To probe RbgA function in ribosome assembly, we used a combined bioinformatics, genetic and biochemical approach. We identified a RNA-binding domain within the C-terminus of RbgA that is structurally similar to AmiR–NasR Transcription Anti-termination Regulator (ANTAR) domains, which are known to bind structured RNA. Mutation of key residues in the ANTAR domain altered RbgA association with the ribosome. We identified a putative catalytic residue within a highly conserved region of RbgA, His9, which is contained within a similar PGH motif found in elongation factor Tu (EF-Tu) that is required for GTP hydrolysis on interaction with the ribosome. Finally, our results support a model in which the GTPase activity of RbgA directly participates in the maturation of the large subunit rather than solely promoting dissociation of RbgA from the 50S subunit.
Collapse
Affiliation(s)
- Megha Gulati
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48823, USA
| | | | | | | | | |
Collapse
|
15
|
Foucher AE, Reiser JB, Ebel C, Housset D, Jault JM. Potassium acts as a GTPase-activating element on each nucleotide-binding domain of the essential Bacillus subtilis EngA. PLoS One 2012; 7:e46795. [PMID: 23056455 PMCID: PMC3466195 DOI: 10.1371/journal.pone.0046795] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 09/07/2012] [Indexed: 12/28/2022] Open
Abstract
EngA proteins form a unique family of bacterial GTPases with two GTP-binding domains in tandem, namely GD1 and GD2, followed by a KH (K-homology) domain. They have been shown to interact with the bacterial ribosome and to be involved in its biogenesis. Most prokaryotic EngA possess a high GTPase activity in contrast to eukaryotic GTPases that act mainly as molecular switches. Here, we have purified and characterized the GTPase activity of the Bacillus subtilis EngA and two shortened EngA variants that only contain GD1 or GD2-KH. Interestingly, the GTPase activity of GD1 alone is similar to that of the whole EngA, whereas GD2-KH has a 150-fold lower GTPase activity. At physiological concentration, potassium strongly stimulates the GTPase activity of each protein construct. Interestingly, it affects neither the affinities for nucleotides nor the monomeric status of EngA or the GD1 domain. Thus, potassium likely acts as a chemical GTPase-activating element as proposed for another bacterial GTPase like MnmE. However, unlike MnmE, potassium does not promote dimerization of EngA. In addition, we solved two crystal structures of full-length EngA. One of them contained for the first time a GTP-like analogue bound to GD2 while GD1 was free. Surprisingly, its overall fold was similar to a previously solved structure with GDP bound to both sites. Our data indicate that a significant structural change must occur upon K+ binding to GD2, and a comparison with T. maritima EngA and MnmE structures allowed us to propose a model explaining the chemical basis for the different GTPase activities of GD1 and GD2.
Collapse
Affiliation(s)
- Anne-Emmanuelle Foucher
- Institut de Biologie Structurale, Université Joseph Fourier Grenoble 1, Grenoble, France
- UMR 5075 CNRS, Grenoble, France
- CEA, Grenoble, France
| | - Jean-Baptiste Reiser
- Institut de Biologie Structurale, Université Joseph Fourier Grenoble 1, Grenoble, France
- UMR 5075 CNRS, Grenoble, France
- CEA, Grenoble, France
| | - Christine Ebel
- Institut de Biologie Structurale, Université Joseph Fourier Grenoble 1, Grenoble, France
- UMR 5075 CNRS, Grenoble, France
- CEA, Grenoble, France
| | - Dominique Housset
- Institut de Biologie Structurale, Université Joseph Fourier Grenoble 1, Grenoble, France
- UMR 5075 CNRS, Grenoble, France
- CEA, Grenoble, France
| | - Jean-Michel Jault
- Institut de Biologie Structurale, Université Joseph Fourier Grenoble 1, Grenoble, France
- UMR 5075 CNRS, Grenoble, France
- CEA, Grenoble, France
- * E-mail:
| |
Collapse
|
16
|
Tomar SK, Kumar P, Majumdar S, Bhaskar V, Dutta P, Prakash B. Extended C-terminus and length of the linker connecting the G-domains are species-specific variations in the EngA family of GTPases. FEBS Open Bio 2012; 2:191-5. [PMID: 23650599 PMCID: PMC3642160 DOI: 10.1016/j.fob.2012.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/22/2012] [Accepted: 07/24/2012] [Indexed: 11/18/2022] Open
Abstract
EngA is an essential protein involved in ribosome biogenesis. It is an unique GTPase, possessing two consecutive G-domains. Using sequence and phylogenetic analysis, we found two intriguing variants among EngA homologues - one with a shorter linker joining the G-domains and another with a longer linker, which additionally possesses an extended C-terminus. Interestingly, while the former variant is mainly restricted to firmicutes, the latter is found in nonfirmicutes. Chimeric proteins with interchanged linkers and extensions were generated to gauge the importance of these elements. Ribosome interaction experiments employing the chimeric proteins suggest that a precise combination of the linker and C-terminal extension are important features regulating EngA ribosome interactions in a variant-specific manner.
Collapse
|
17
|
Rafay A, Majumdar S, Prakash B. Exploring potassium-dependent GTP hydrolysis in TEES family GTPases. FEBS Open Bio 2012; 2:173-7. [PMID: 23650596 PMCID: PMC3642159 DOI: 10.1016/j.fob.2012.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/05/2012] [Accepted: 07/24/2012] [Indexed: 01/29/2023] Open
Abstract
GTPases are important regulatory proteins that hydrolyze GTP to GDP. A novel GTP-hydrolysis mechanism is employed by MnmE, YqeH and FeoB, where a potassium ion plays a role analogous to the Arginine finger of the Ras-RasGAP system, to accelerate otherwise slow GTP hydrolysis rates. In these proteins, two conserved asparagines and a ‘K-loop’ present in switch-I, were suggested as attributes of GTPases employing a K+-mediated mechanism. Based on their conservation, a similar mechanism was suggested for TEES family GTPases. Recently, in Dynamin, Fzo1 and RbgA, which also conserve these attributes, a similar mechanism was shown to be operative. Here, we probe K+-activated GTP hydrolysis in TEES (TrmE-Era-EngA-YihA-Septin) GTPases – Era, EngB and the two contiguous G-domains, GD1 and GD2 of YphC (EngA homologue) – and also in HflX, another GTPase that also conserves the same attributes. While GD1-YphC and Era exhibit a K+-mediated activation of GTP hydrolysis, surprisingly GD2-YphC, EngB and HflX do not. Therefore, the attributes identified thus far, do not necessarily predict a K+-mechanism in GTPases and hence warrant extensive structural investigations.
Collapse
Affiliation(s)
- Abu Rafay
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | | | | |
Collapse
|
18
|
Agarwal N, Pareek M, Thakur P, Pathak V. Functional characterization of EngA(MS), a P-loop GTPase of Mycobacterium smegmatis. PLoS One 2012; 7:e34571. [PMID: 22506030 PMCID: PMC3323550 DOI: 10.1371/journal.pone.0034571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 03/06/2012] [Indexed: 11/19/2022] Open
Abstract
Bacterial P-loop GTPases belong to a family of proteins that selectively hydrolyze a small molecule guanosine tri-phosphate (GTP) to guanosine di-phosphate (GDP) and inorganic phosphate, and regulate several essential cellular activities such as cell division, chromosomal segregation and ribosomal assembly. A comparative genome sequence analysis of different mycobacterial species indicates the presence of multiple P-loop GTPases that exhibit highly conserved motifs. However, an exact function of most of these GTPases in mycobacteria remains elusive. In the present study we characterized the function of a P-loop GTPase in mycobacteria by employing an EngA homologue from Mycobacterium smegmatis, encoded by an open reading frame, designated as MSMEG_3738. Amino acid sequence alignment and phylogenetic analysis suggest that MSMEG_3738 (termed as EngA(MS)) is highly conserved in mycobacteria. Homology modeling of EngA(MS) reveals a cloverleaf structure comprising of α/β fold typical to EngA family of GTPases. Recombinant EngA(MS) purified from E. coli exhibits a GTP hydrolysis activity which is inhibited by the presence of GDP. Interestingly, the EngA(MS) protein is co-eluted with 16S and 23S ribosomal RNA during purification and exhibits association with 30S, 50S and 70S ribosomal subunits. Further studies demonstrate that GTP is essential for interaction of EngA(MS) with 50S subunit of ribosome and specifically C-terminal domains of EngA(MS) are required to facilitate this interaction. Moreover, EngA(MS) devoid of N-terminal region interacts well with 50S even in the absence of GTP, indicating a regulatory role of the N-terminal domain in EngA(MS)-50S interaction.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/metabolism
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/metabolism
- Guanosine Diphosphate/genetics
- Guanosine Diphosphate/metabolism
- Guanosine Triphosphate/genetics
- Guanosine Triphosphate/metabolism
- Hydrolysis
- Molecular Sequence Data
- Mycobacterium smegmatis/genetics
- Mycobacterium smegmatis/metabolism
- Phylogeny
- Protein Structure, Tertiary
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
- Sequence Alignment/methods
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Nisheeth Agarwal
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Gurgaon, Haryana, India.
| | | | | | | |
Collapse
|
19
|
Hwang J, Tseitin V, Ramnarayan K, Shenderovich MD, Inouye M. Structure-based design and screening of inhibitors for an essential bacterial GTPase, Der. J Antibiot (Tokyo) 2012; 65:237-43. [PMID: 22377538 DOI: 10.1038/ja.2012.9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Der is an essential and widely conserved GTPase that assists assembly of a large ribosomal subunit in bacteria. Der associates specifically with the 50S subunit in a GTP-dependent manner and the cells depleted of Der accumulate the structurally unstable 50S subunit, which dissociates into an aberrant subunit at a lower Mg(2+) concentration. As Der is an essential and ubiquitous protein in bacteria, it may prove to be an ideal cellular target against which new antibiotics can be developed. In the present study, we describe our attempts to identify novel antibiotics specifically targeting Der GTPase. We performed the structure-based design of Der inhibitors using the X-ray crystal structure of Thermotoga maritima Der (TmDer). Virtual screening of commercially available chemical library retrieved 257 small molecules that potentially inhibit Der GTPase activity. These 257 chemicals were tested for their in vitro effects on TmDer GTPase and in vivo antibacterial activities. We identified three structurally diverse compounds, SBI-34462, -34566 and -34612, that are both biologically active against bacterial cells and putative enzymatic inhibitors of Der GTPase homologs. We also presented the possible interactions of each compound with the Der GTP-binding site to understand the mechanism of inhibition. Therefore, our lead compounds inhibiting Der GTPase provide scaffolds for the development of novel antibiotics against antibiotic-resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Jihwan Hwang
- Department of Biochemistry, Center for Advanced Biotechnology and Medicine, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
20
|
The universally conserved prokaryotic GTPases. Microbiol Mol Biol Rev 2012; 75:507-42, second and third pages of table of contents. [PMID: 21885683 DOI: 10.1128/mmbr.00009-11] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Members of the large superclass of P-loop GTPases share a core domain with a conserved three-dimensional structure. In eukaryotes, these proteins are implicated in various crucial cellular processes, including translation, membrane trafficking, cell cycle progression, and membrane signaling. As targets of mutation and toxins, GTPases are involved in the pathogenesis of cancer and infectious diseases. In prokaryotes also, it is hard to overestimate the importance of GTPases in cell physiology. Numerous papers have shed new light on the role of bacterial GTPases in cell cycle regulation, ribosome assembly, the stress response, and other cellular processes. Moreover, bacterial GTPases have been identified as high-potential drug targets. A key paper published over 2 decades ago stated that, "It may never again be possible to capture [GTPases] in a family portrait" (H. R. Bourne, D. A. Sanders, and F. McCormick, Nature 348:125-132, 1990) and indeed, the last 20 years have seen a tremendous increase in publications on the subject. Sequence analysis identified 13 bacterial GTPases that are conserved in at least 75% of all bacterial species. We here provide an overview of these 13 protein subfamilies, covering their cellular functions as well as cellular localization and expression levels, three-dimensional structures, biochemical properties, and gene organization. Conserved roles in eukaryotic homologs will be discussed as well. A comprehensive overview summarizing current knowledge on prokaryotic GTPases will aid in further elucidating the function of these important proteins.
Collapse
|
21
|
Wittinghofer A, Vetter IR. Structure-function relationships of the G domain, a canonical switch motif. Annu Rev Biochem 2011; 80:943-71. [PMID: 21675921 DOI: 10.1146/annurev-biochem-062708-134043] [Citation(s) in RCA: 339] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
GTP-binding (G) proteins constitute a class of P-loop (phosphate-binding loop) proteins that work as molecular switches between the GDP-bound OFF and the GTP-bound ON state. The common principle is the 160-180-residue G domain with an α,β topology that is responsible for nucleotide-dependent conformational changes and drives many biological functions. Although the G domain uses a universally conserved switching mechanism, its structure, function, and GTPase reaction are modified for many different pathways and processes.
Collapse
|
22
|
Assembling the archaeal ribosome: roles for translation-factor-related GTPases. Biochem Soc Trans 2011; 39:45-50. [PMID: 21265745 DOI: 10.1042/bst0390045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The assembly of ribosomal subunits from their individual components (rRNA and ribosomal proteins) requires the assistance of a multitude of factors in order to control and increase the efficiency of the assembly process. GTPases of the TRAFAC (translation-factor-related) class constitute a major type of ribosome-assembly factor in Eukaryota and Bacteria. They are thought to aid the stepwise assembly of ribosomal subunits through a 'molecular switch' mechanism that involves conformational changes in response to GTP hydrolysis. Most conserved TRAFAC GTPases are involved in ribosome assembly or other translation-associated processes. They typically interact with ribosomal subunits, but in many cases, the exact role that these GTPases play remains unclear. Previous studies almost exclusively focused on the systems of Bacteria and Eukaryota. Archaea possess several conserved TRAFAC GTPases as well, with some GTPase families being present only in the archaeo-eukaryotic lineage. In the present paper, we review the occurrence of TRAFAC GTPases with translation-associated functions in Archaea.
Collapse
|
23
|
Lee R, Aung-Htut MT, Kwik C, March PE. Expression phenotypes suggest that Der participates in a specific, high affinity interaction with membranes. Protein Expr Purif 2011; 78:102-12. [PMID: 21354313 DOI: 10.1016/j.pep.2011.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/16/2011] [Accepted: 02/22/2011] [Indexed: 11/28/2022]
Abstract
The GTPase Der is universally conserved in bacteria and is structurally unique as it consists of two GTP-binding domains in tandem (G-domain 1 and G-domain 2) whereas all the other GTPases posses a single GTPase domain. In order to assess the function of Der we have fractionated whole cell lysates containing over expressed Der. This analysis indicated that Der was present in sucrose gradient fractions containing membrane proteins. The interaction with the membrane fraction was specific for Der, since the related GTPase, Era, did not form the membrane complex. In addition, three independent criteria suggested a high affinity interaction; (1) the interaction can be detected under partially denaturing conditions using a gel electrophoresis co-migration assay, (2) the interaction survived 16 h sucrose gradient centrifugation, and (3) the complex could be efficiently reconstituted from purified components. Microscopic examination of cells containing over expressed Der showed that the cell wall structure was disrupted at both cell poles. This phenotype required Der domain three since domain deletion mutations showed no affect on cell wall structure. Surprisingly point mutations that ablate nucleotide binding of either GTP binding domain result in a defect in cell wall structure at only a single cell pole. The data reported here were considered together with results presented previously to suggest that Der may engage in a functional cyclic interaction between ribosomes and the membrane in Escherichia coli.
Collapse
Affiliation(s)
- Ryan Lee
- The University of Sydney Medical School, Edward Ford Building, Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|
24
|
Im CH, Hwang SM, Son YS, Heo JB, Bang WY, Suwastika IN, Shiina T, Bahk JD. Nuclear/nucleolar GTPase 2 proteins as a subfamily of YlqF/YawG GTPases function in pre-60S ribosomal subunit maturation of mono- and dicotyledonous plants. J Biol Chem 2011; 286:8620-8632. [PMID: 21205822 DOI: 10.1074/jbc.m110.200816] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The YlqF/YawG families are important GTPases involved in ribosome biogenesis, cell proliferation, or cell growth, however, no plant homologs have yet to be characterized. Here we isolated rice (Oryza sativa) and Arabidopsis nuclear/nucleolar GTPase 2 (OsNug2 and AtNug2, respectively) that belong to the YawG subfamily and characterized them for pre-60S ribosomal subunit maturation. They showed typical intrinsic YlqF/YawG family GTPase activities in bacteria and yeasts with k(cat) values 0.12 ± 0.007 min(-1) (n = 6) and 0.087 ± 0.002 min(-1) (n = 4), respectively, and addition of 60S ribosomal subunits stimulated their activities in vitro. In addition, OsNug2 rescued the lethality of the yeast nug2 null mutant through recovery of 25S pre-rRNA processing. By yeast two-hybrid screening five clones, including a putative one of 60S ribosomal proteins, OsL10a, were isolated. Subcellular localization and pulldown assays resulted in that the N-terminal region of OsNug2 is sufficient for nucleolar/nuclear targeting and association with OsL10a. OsNug2 is physically associated with pre-60S ribosomal complexes highly enriched in the 25S, 5.8S, and 5S rRNA, and its interaction was stimulated by exogenous GTP. Furthermore, the AtNug2 knockdown mutant constructed by the RNAi method showed defective growth on the medium containing cycloheximide. Expression pattern analysis revealed that the distribution of AtNug2 mainly in the meristematic region underlies its potential role in active plant growth. Finally, it is concluded that Nug2/Nog2p GTPase from mono- and didicotyledonous plants is linked to the pre-60S ribosome complex and actively processed 27S into 25S during the ribosomal large subunit maturation process, i.e. prior to export to the cytoplasm.
Collapse
Affiliation(s)
- Chak Han Im
- From the Division of Applied Life Sciences (BK21), Graduate School of Gyeongsang National University, Jinju 660-701, Korea
| | - Sung Min Hwang
- From the Division of Applied Life Sciences (BK21), Graduate School of Gyeongsang National University, Jinju 660-701, Korea
| | - Young Sim Son
- From the Division of Applied Life Sciences (BK21), Graduate School of Gyeongsang National University, Jinju 660-701, Korea
| | - Jae Bok Heo
- From the Division of Applied Life Sciences (BK21), Graduate School of Gyeongsang National University, Jinju 660-701, Korea
| | - Woo Young Bang
- From the Division of Applied Life Sciences (BK21), Graduate School of Gyeongsang National University, Jinju 660-701, Korea
| | - I Nengah Suwastika
- the Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan, and
| | - Takashi Shiina
- the Graduate School of Human and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Jeong Dong Bahk
- From the Division of Applied Life Sciences (BK21), Graduate School of Gyeongsang National University, Jinju 660-701, Korea,.
| |
Collapse
|
25
|
Hwang J, Inouye M. A Bacterial GAP-Like Protein, YihI, Regulating the GTPase of Der, an Essential GTP-Binding Protein in Escherichia coli. J Mol Biol 2010; 399:759-72. [DOI: 10.1016/j.jmb.2010.04.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/21/2010] [Accepted: 04/22/2010] [Indexed: 11/16/2022]
|
26
|
Wu H, Sun L, Blombach F, Brouns SJJ, Snijders APL, Lorenzen K, van den Heuvel RHH, Heck AJR, Fu S, Li X, Zhang XC, Rao Z, van der Oost J. Structure of the ribosome associating GTPase HflX. Proteins 2010; 78:705-13. [PMID: 19787775 DOI: 10.1002/prot.22599] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The HflX-family is a widely distributed but poorly characterized family of translation factor-related guanosine triphosphatases (GTPases) that interact with the large ribosomal subunit. This study describes the crystal structure of HflX from Sulfolobus solfataricus solved to 2.0-A resolution in apo- and GDP-bound forms. The enzyme displays a two-domain architecture with a novel "HflX domain" at the N-terminus, and a classical G-domain at the C-terminus. The HflX domain is composed of a four-stranded parallel beta-sheet flanked by two alpha-helices on either side, and an anti-parallel coiled coil of two long alpha-helices that lead to the G-domain. The cleft between the two domains accommodates the nucleotide binding site as well as the switch II region, which mediates interactions between the two domains. Conformational changes of the switch regions are therefore anticipated to reposition the HflX-domain upon GTP-binding. Slow GTPase activity has been confirmed, with an HflX domain deletion mutant exhibiting a 24-fold enhanced turnover rate, suggesting a regulatory role for the HflX domain. The conserved positively charged surface patches of the HflX-domain may mediate interaction with the large ribosomal subunit. The present study provides a structural basis to uncover the functional role of this GTPases family whose function is largely unknown.
Collapse
Affiliation(s)
- Hao Wu
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Interaction of an essential Escherichia coli GTPase, Der, with the 50S ribosome via the KH-like domain. J Bacteriol 2010; 192:2277-83. [PMID: 20172997 DOI: 10.1128/jb.00045-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Der, an essential Escherichia coli tandem GTPase, has been implicated in 50S subunit biogenesis. The rrmJ gene encodes a methyltransferase that modifies the U2552 residue of 23S rRNA, and its deletion causes a severe growth defect. Peculiarly, overexpression of Der suppresses growth impairment. In this study, using an rrmJ-deletion strain, we demonstrated that two GTPase domains of Der regulate its association with 50S subunit via the KH-like domain. We also identified a region of Der that is critical for its specific interaction with 50S subunit.
Collapse
|
28
|
Abstract
The assembly of the ribosome, a complex molecular machine composed of RNA and protein, is a poorly understood process. Recent work has demonstrated that GTPases are likely to play key roles in the assembly of ribosomes in bacteria and eukaryotes. This review highlights several bacterial ribosome assembly GTPases (RA-GTPases) and discusses possible functions for these proteins in the biogenesis of individual ribosomal subunits and subunit joining. RA-GTPases appear to link various aspects of the cell cycle and metabolism with translation. How these RA-GTPases may coordinate these connections are discussed.
Collapse
Affiliation(s)
- Robert A Britton
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA.
| |
Collapse
|
29
|
Tomar SK, Dhimole N, Chatterjee M, Prakash B. Distinct GDP/GTP bound states of the tandem G-domains of EngA regulate ribosome binding. Nucleic Acids Res 2009; 37:2359-70. [PMID: 19246542 PMCID: PMC2673443 DOI: 10.1093/nar/gkp107] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
EngA, a unique GTPase containing a KH-domain preceded by two consecutive G-domains, displays distinct nucleotide binding and hydrolysis activities. So far, Escherichia coli EngA is reported to bind the 50S ribosomal subunit in the guanosine-5'-trihosphate (GTP) bound state. Here, for the first time, using mutations that allow isolating the activities of the two G-domains, GD1 and GD2, we show that apart from 50S, EngA also binds the 30S and 70S subunits. We identify that the key requirement for any EngA-ribosome association is GTP binding to GD2. In this state, EngA displays a weak 50S association, which is further stabilized when GD1 too binds GTP. Exchanging bound GTP with guanosine-5'-diphosphate (GDP), at GD1, results in interactions with 50S, 30S and 70S. Therefore, it appears that GD1 employs GTP hydrolysis as a means to regulate the differential specificity of EngA to either 50S alone or to 50S, 30S and 70S subunits. Furthermore, using constructs lacking either GD1 or both GD1 and GD2, we infer that GD1, when bound to GTP and GDP, adopts distinct conformations to mask or unmask the 30S binding site on EngA. Our results suggest a model where distinct nucleotide-bound states of the two G-domains regulate formation of specific EngA-ribosome complexes.
Collapse
Affiliation(s)
- Sushil Kumar Tomar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | | | | | | |
Collapse
|
30
|
RelA functionally suppresses the growth defect caused by a mutation in the G domain of the essential Der protein. J Bacteriol 2008; 190:3236-43. [PMID: 18296517 DOI: 10.1128/jb.01758-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A unique bacterial GTPase, Der, containing two tandem GTP-binding domains, is essential for cell growth and plays a crucial role in a large ribosomal subunit in Escherichia coli. The depletion of Der resulted in accumulation of both large and small ribosomal subunits and also affected the stability of large ribosomal subunits. However, its exact cellular function still remains elusive. Previously, we have shown that two G domain mutants, DerN118D and DerN321D, cannot support cell growth at low temperatures, suggesting that both GTP-binding domains are indispensable. In this study, we show that both Der variants are defective in ribosome biogenesis. Genetic screening of an E. coli genomic library was performed to identify the genes which, when expressed from a multicopy plasmid, can restore the growth defect of the DerN321D mutant at restrictive temperatures. Among seven suppressors isolated, four were located at 62.7 min on the E. coli genomic map, and the gene responsible for the suppression of DerN321D was identified as the relA gene which encodes a ribosome-associated (p)ppGpp synthetase. The synthetic activity of RelA was found to be essential for its DerN321D suppressor activity. Overexpression of RelA in a suppressor strain did not affect the expression of DerN321D but suppressed the polysome defects caused by the DerN321D mutant. This is the first demonstration of suppression of impaired function of Der by a functional enzyme. A possible mechanism of the suppression of DerN321D by RelA overproduction is discussed.
Collapse
|
31
|
Lamb HK, Thompson P, Elliott C, Charles IG, Richards J, Lockyer M, Watkins N, Nichols C, Stammers DK, Bagshaw CR, Cooper A, Hawkins AR. Functional analysis of the GTPases EngA and YhbZ encoded by Salmonella typhimurium. Protein Sci 2007; 16:2391-402. [PMID: 17905831 PMCID: PMC2211706 DOI: 10.1110/ps.072900907] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The S. typhimurium genome encodes proteins, designated EngA and YhbZ, which have a high sequence identity with the GTPases EngA/Der and ObgE/CgtAE of Escherichia coli. The wild-type activity of the E. coli proteins is essential for normal ribosome maturation and cell viability. In order to characterize the potential involvement of the Salmonella typhimurium EngA and YhbZ proteins in ribosome biology, we used high stringency affinity chromatography experiments to identify strongly binding ribosomal partner proteins. A combination of biochemical and microcalorimetric analysis was then used to characterize these protein:protein interactions and quantify nucleotide binding affinities. These experiments show that YhbZ specifically interacts with the pseudouridine synthase RluD (KD=2 microM and 1:1 stoichiometry), and we show for the first time that EngA can interact with the ribosomal structural protein S7. Thermodynamic analysis shows both EngA and YhbZ bind GDP with a higher affinity than GTP (20-fold difference for EngA and 3.8-fold for YhbZ), and that the two nucleotide binding sites in EngA show a 5.3-fold difference in affinity for GDP. We report a fluorescence assay for nucleotide binding to EngA and YhbZ, which is suitable for identifying inhibitors specific for this ligand-binding site, which would potentially inhibit their biological functions. The interactions of YhbZ with ribosome structural proteins that we identify may demonstrate a previously unreported additional function for this class of GTPase: that of ensuring delivery of rRNA modifying enzymes to the appropriate region of the ribosome.
Collapse
Affiliation(s)
- Heather K Lamb
- Institute of Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wilson DN, Nierhaus KH. The weird and wonderful world of bacterial ribosome regulation. Crit Rev Biochem Mol Biol 2007; 42:187-219. [PMID: 17562451 DOI: 10.1080/10409230701360843] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In every organism, translation of the genetic information into functional proteins is performed on the ribosome. In Escherichia coli up to 40% of the cell's total energy turnover is channelled toward the ribosome and protein synthesis. Thus, elaborate networks of translation regulation pathways have evolved to modulate gene expression in response to growth rate and external factors, ranging from nutrient deprivation, to chemical (pH, ionic strength) and physical (temperature) fluctuations. Since the fundamental players involved in regulation of the different phases of translation have already been extensively reviewed elsewhere, this review focuses on lesser known and characterized factors that regulate the ribosome, ranging from processing, modification and assembly factors, unusual initiation and elongation factors, to a variety of stress response proteins.
Collapse
Affiliation(s)
- Daniel N Wilson
- Gene Center and Department of Chemistry and Biochemistry, University of Munich, Munich, Germany.
| | | |
Collapse
|
33
|
Matsuo Y, Oshima T, Loh PC, Morimoto T, Ogasawara N. Isolation and characterization of a dominant negative mutant of Bacillus subtilis GTP-binding protein, YlqF, essential for biogenesis and maintenance of the 50 S ribosomal subunit. J Biol Chem 2007; 282:25270-7. [PMID: 17613524 DOI: 10.1074/jbc.m703894200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The circularly permuted GTPase YlqF is essential for cell viability and is broadly conserved from Gram-positive bacteria to eukaryotes. We previously reported that YlqF participates in the late step of 50 S ribosomal subunit assembly in Bacillus subtilis. Here, we demonstrate that an N-terminal deletion mutant of YlqF (YlqFDeltaN10) inhibits cell growth even in the presence of wild-type YlqF. In contrast to the wild-type protein, the GTPase activity of this mutant was not stimulated by the 50 S subunit and did not dissociate from the premature 50 S subunit. Thus, YlqFDeltaN10 acts as a competitive inhibitor of wild-type YlqF. Premature 50 S subunit lacking ribosomal protein L27 and with a reduced amount of L16 accumulated in YlqFDeltaN10-overexpressing cells and in YlqF-depleted cells, suggesting that YlqFDeltaN10 binds to the premature 50 S subunit. Moreover, premature 50 S subunit from both YlqFDeltaN10-overexpressing and YlqF-depleted cells more strongly enhanced the GTPase activity of YlqF than the mature 50 S subunit of the 70 S ribosome. Collectively, our results indicate that YlqF is targeted to the premature 50 S subunit lacking ribosomal proteins L16 and L27 to assemble functional 50 S subunit through a GTPase activity-dependent conformational change of 23 S rRNA.
Collapse
Affiliation(s)
- Yoshitaka Matsuo
- Department of Bioinformatics and Genomics, Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
34
|
Bharat A, Jiang M, Sullivan SM, Maddock JR, Brown ED. Cooperative and critical roles for both G domains in the GTPase activity and cellular function of ribosome-associated Escherichia coli EngA. J Bacteriol 2006; 188:7992-6. [PMID: 16963571 PMCID: PMC1636305 DOI: 10.1128/jb.00959-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To probe the cellular phenotype and biochemical function associated with the G domains of Escherichia coli EngA (YfgK, Der), mutations were created in the phosphate binding loop of each. Neither an S16A nor an S217A variant of G domain 1 or 2, respectively, was able to support growth of an engA conditional null. Polysome profiles of EngA-depleted cells were significantly altered, and His(6)-EngA was found to cofractionate with the 50S ribosomal subunit. The variants were unable to complement the abnormal polysome profile and were furthermore significantly impacted with respect to in vitro GTPase activity. Together, these observations suggest that the G domains have a cooperative function in ribosome stability and/or biogenesis.
Collapse
Affiliation(s)
- Amrita Bharat
- Antimicrobial Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | | | |
Collapse
|