1
|
Gong D, Jian N, Zhou YT, Wang J. Proteomic analysis of HeLa cells after stable transfection with the Chlamydia trachomatis CT143 gene. Gene 2024; 933:148982. [PMID: 39374816 DOI: 10.1016/j.gene.2024.148982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/06/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND The CT143 protein of Chlamydia trachomatis (Ct) is a key immunodominant antigen and candidate type-III secretion substrate. Although CT143 expression has not been detected in the cytosol of infected cells, it is known to interfere with the physiological behavior of HeLa cells. This study aims to investigate how the CT143 protein affects the protein expression profile of HeLa cells, providing a basis for further research into Ct's pathogenic mechanisms. METHODS We constructed a stably transfected HeLa cell line, pCD513B-1-CT143-HeLa, and a control cell line, pCD513B-1-HeLa. Protein expression profiles of these cell lines were determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Differentially expressed proteins were identified, constructed into a database, and verified using parallel reaction monitoring (PRM). Bioinformatics software facilitated the preliminary analysis of the biological functions of these differential proteins. RESULTS A total of 221 host proteins were differentially expressed, with 68 upregulated and 153 downregulated. These variations influence the regulation of peptidase activity and are crucial in biological processes such as cell secretion and protease activity. Significant changes were noted in protein processing, alcohol dehydrogenase activity, Aldo-Keto reductase activity, and peptidase regulator activity. Furthermore, alterations were observed in cellular components like the plasma membrane and cell periphery. Pathways involving the hematopoietic system, glycosaminoglycan degradation, retinol metabolism, and cytochrome P450-mediated exogenous drug metabolism were notably affected. Indirect interactions among differentially expressed proteins included three key nodal proteins: C3, IFIT3, and IFIT1. CONCLUSION The successful construction of a host differential protein expression profile was achieved through stable transfection of HeLa cells with the CT143 gene. The differential proteins identified are implicated in regulating various biological processes such as intracellular signal transduction, cell secretion, protein processing, hydrolysis, and enzyme activity. These findings suggest that the CT143 protein may influence the host cell's biological behavior by altering host protein expression, potentially hindering Ct growth and development.
Collapse
Affiliation(s)
- Ding Gong
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ni Jian
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Yu-Tong Zhou
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Jie Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China.
| |
Collapse
|
2
|
Aranjuez GF, Patel O, Patel D, Jewett TJ. The N-terminus of the Chlamydia trachomatis effector Tarp engages the host Hippo pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612603. [PMID: 39314337 PMCID: PMC11419093 DOI: 10.1101/2024.09.12.612603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Chlamydia trachomatis is an obligate, intracellular Gram-negative bacteria and the leading bacterial STI in the United States. Chlamydia's developmental cycle involves host cell entry, replication within a parasitophorous vacuole called an inclusion, and induction of host cell lysis to release new infectious particles. During development, Chlamydia manipulates the host cell biology using various secreted bacterial effectors. The early effector Tarp is important for Chlamydia entry via its well-characterized C-terminal region which can polymerize and bundle F-actin. In contrast, not much is known about the function of Tarp's N-terminus (N-Tarp), though this N-terminal region is present in many Chlamydia species. To address this, we use Drosophila melanogaster as an in vivo cell biology platform to study N-Tarp-host interactions. Drosophila development is well-characterized such that developmental phenotypes can be traced back to the perturbed molecular pathway. Transgenic expression of N-Tarp in Drosophila tissues results in phenotypes consistent with altered host Hippo signaling. The Salvador-Warts-Hippo pathway is a conserved signaling cascade that regulates host cell proliferation and survival during normal animal development. We studied N-Tarp function in larval imaginal wing discs, which are sensitive to perturbations in Hippo signaling. N-Tarp causes wing disc overgrowth and a concomitant increase in adult wing size, phenocopying overexpression of the Hippo co-activator Yorkie. N-Tarp also causes upregulation of Hippo target genes. Last, N-Tarp-induced phenotypes can be rescued by reducing the levels of Yorkie, or the Hippo target genes CycE and Diap1. Thus, we provide the first evidence that the N-terminal region of the Chlamydia effector Tarp is sufficient to alter host Hippo signaling and acts upstream of the co-activator Yorkie. Chlamydia alters host cell apoptosis during infection, though the exact mechanism remains unknown. Our findings implicate the N-terminal region of Tarp as a way to manipulate the host Hippo signaling pathway, which directly influences cell survival.
Collapse
Affiliation(s)
- George F Aranjuez
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA
| | - Om Patel
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA
| | - Dev Patel
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA
| | - Travis J Jewett
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA
| |
Collapse
|
3
|
Höhler M, Alcázar-Román AR, Schenk K, Aguirre-Huamani MP, Braun C, Zrieq R, Mölleken K, Hegemann JH, Fleig U. Direct targeting of host microtubule and actin cytoskeletons by a chlamydial pathogenic effector protein. J Cell Sci 2024; 137:jcs263450. [PMID: 39099397 PMCID: PMC11444262 DOI: 10.1242/jcs.263450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024] Open
Abstract
To propagate within a eukaryotic cell, pathogenic bacteria hijack and remodulate host cell functions. The Gram-negative obligate intracellular Chlamydiaceae, which pose a serious threat to human and animal health, attach to host cells and inject effector proteins that reprogram host cell machineries. Members of the conserved chlamydial TarP family have been characterized as major early effectors that bind to and remodel the host actin cytoskeleton. We now describe a new function for the Chlamydia pneumoniae TarP member CPn0572, namely the ability to bind and alter the microtubule cytoskeleton. Thus, CPn0572 is unique in being the only prokaryotic protein that directly modulates both dynamic cytoskeletons of a eukaryotic cell. Ectopically expressed GFP-CPn0572 associates in a dose-independent manner with either cytoskeleton singly or simultaneously. In vitro, CPn0572 binds directly to microtubules. Expression of a microtubule-only CPn0572 variant resulted in the formation of an aberrantly thick, stabilized microtubule network. Intriguingly, during infection, secreted CPn0572 also colocalized with altered microtubules, suggesting that this protein also affects microtubule dynamics during infection. Our analysis points to a crosstalk between actin and microtubule cytoskeletons via chlamydial CPn0572.
Collapse
Affiliation(s)
- Mona Höhler
- Eukaryotic Microbiology, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | | | - Katharina Schenk
- Eukaryotic Microbiology, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | | | - Corinna Braun
- Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Rafat Zrieq
- Department of Public Health, College of Public Health and Health Informatics, University of Ha'il, Ha'il City 2440, Saudi Arabia
- Applied Science Research Centre, Applied Science Private University, Amman 11931, Jordan
| | - Katja Mölleken
- Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Johannes H Hegemann
- Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Ursula Fleig
- Eukaryotic Microbiology, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Bastidas RJ, Valdivia RH. The emerging complexity of Chlamydia trachomatis interactions with host cells as revealed by molecular genetic approaches. Curr Opin Microbiol 2023; 74:102330. [PMID: 37247566 PMCID: PMC10988583 DOI: 10.1016/j.mib.2023.102330] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
Chlamydia trachomatis (Ct) is an intracellular bacterial pathogen that relies on the activity of secreted proteins known as effectors to promote replication and avoidance of immune clearance. Understanding the contribution of Ct effectors to pathogenesis has proven to be challenging, given that these proteins often perform multiple functions during intracellular infection. Recent advances in molecular genetic analysis of Ct have provided valuable insights into the multifaceted nature of secreted effector proteins and their impact on the interaction between Ct and host cells and tissues. This review highlights significant findings from genetic analysis of Ct effector functions, shedding light on their diverse roles. We also discuss the challenges faced in this field of study and explore potential opportunities for further research.
Collapse
Affiliation(s)
- Robert J Bastidas
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Raphael H Valdivia
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
5
|
Collingro A, Köstlbacher S, Siegl A, Toenshoff ER, Schulz F, Mitchell SO, Weinmaier T, Rattei T, Colquhoun DJ, Horn M. The Fish Pathogen "Candidatus Clavichlamydia salmonicola"-A Missing Link in the Evolution of Chlamydial Pathogens of Humans. Genome Biol Evol 2023; 15:evad147. [PMID: 37615694 PMCID: PMC10448858 DOI: 10.1093/gbe/evad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2023] [Indexed: 08/25/2023] Open
Abstract
Chlamydiae like Chlamydia trachomatis and Chlamydia psittaci are well-known human and animal pathogens. Yet, the chlamydiae are a much larger group of evolutionary ancient obligate intracellular bacteria that includes predominantly symbionts of protists and diverse animals. This makes them ideal model organisms to study evolutionary transitions from symbionts in microbial eukaryotes to pathogens of humans. To this end, comparative genome analysis has served as an important tool. Genome sequence data for many chlamydial lineages are, however, still lacking, hampering our understanding of their evolutionary history. Here, we determined the first high-quality draft genome sequence of the fish pathogen "Candidatus Clavichlamydia salmonicola", representing a separate genus within the human and animal pathogenic Chlamydiaceae. The "Ca. Clavichlamydia salmonicola" genome harbors genes that so far have been exclusively found in Chlamydia species suggesting that basic mechanisms important for the interaction with chordate hosts have evolved stepwise in the history of chlamydiae. Thus, the genome sequence of "Ca. Clavichlamydia salmonicola" allows to constrain candidate genes to further understand the evolution of chlamydial virulence mechanisms required to infect mammals.
Collapse
Affiliation(s)
- Astrid Collingro
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Stephan Köstlbacher
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Alexander Siegl
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Elena R Toenshoff
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich (ETH), Zürich, Switzerland
| | - Frederik Schulz
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- DOE Joint Genome Institute, Berkeley, California, USA
| | | | - Thomas Weinmaier
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | | | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Zhang Q, Wan M, Kudryashova E, Kudryashov DS, Mao Y. Membrane-dependent actin polymerization mediated by the Legionella pneumophila effector protein MavH. PLoS Pathog 2023; 19:e1011512. [PMID: 37463171 PMCID: PMC10381072 DOI: 10.1371/journal.ppat.1011512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
L. pneumophila propagates in eukaryotic cells within a specialized niche, the Legionella-containing vacuole (LCV). The infection process is controlled by over 330 effector proteins delivered through the type IV secretion system. In this study, we report that the Legionella MavH effector localizes to endosomes and remodels host actin cytoskeleton in a phosphatidylinositol 3-phosphate (PI(3)P) dependent manner when ectopically expressed. We show that MavH recruits host actin capping protein (CP) and actin to the endosome via its CP-interacting (CPI) motif and WH2-like actin-binding domain, respectively. In vitro assays revealed that MavH stimulates actin assembly on PI(3)P-containing liposomes causing their tubulation. In addition, the recruitment of CP by MavH negatively regulates F-actin density at the membrane. We further show that, in L. pneumophila-infected cells, MavH appears around the LCV at the very early stage of infection and facilitates bacterium entry into the host. Together, our results reveal a novel mechanism of membrane tubulation induced by membrane-dependent actin polymerization catalyzed by MavH that contributes to the early stage of L. pneumophila infection by regulating host actin dynamics.
Collapse
Affiliation(s)
- Qing Zhang
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Min Wan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Dmitri S Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Yuxin Mao
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
7
|
Scanlon KR, Keb G, Wolf K, Jewett TJ, Fields KA. Chlamydia trachomatis TmeB antagonizes actin polymerization via direct interference with Arp2/3 activity. Front Cell Infect Microbiol 2023; 13:1232391. [PMID: 37483386 PMCID: PMC10360934 DOI: 10.3389/fcimb.2023.1232391] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen that actively promotes invasion of epithelial cells. A virulence-associated type III secretion system contributes to chlamydial entry and at least four effectors have been described that are deployed during this time. Two of these invasion-related effectors, the translocated membrane-associated effectors A and B (TmeA and TmeB), are encoded in a bi-cistronic operon. TmeA directly activates host N-WASP to stimulate Arp2/3-dependent actin polymerization. According to current working models, TmeA-mediated N-WASP activation contributes to invasion. TmeB has not been functionally characterized. Unlike a tmeA null strain, loss of tmeB does not impact invasion efficiency of C. trachomatis. Using strains deficient for multiple genes, we provide evidence that TmeA is dispensable for invasion in the absence of TmeB. Our data indicate that overabundance of TmeB interferes with invasion and that this activity requires active Arp2/3 complex. We further show that TmeB is capable of interfering with Arp2/3-mediated actin polymerization. In aggregate, these data point to opposing functions for TmeA and TmeB that manifest during the invasion process. These studies raise intriguing questions regarding the dynamic interplay between TmeA, TmeB, and branched actin polymerization during chlamydial entry.
Collapse
Affiliation(s)
- Kaylyn R. Scanlon
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Gabrielle Keb
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Katerina Wolf
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Travis J. Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Kenneth A. Fields
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
8
|
Spona D, Hanisch PT, Hegemann JH, Mölleken K. A single chlamydial protein reshapes the plasma membrane and serves as recruiting platform for central endocytic effector proteins. Commun Biol 2023; 6:520. [PMID: 37179401 PMCID: PMC10182996 DOI: 10.1038/s42003-023-04913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Uptake of obligate intracellular bacterial pathogens into mammalian epithelial cells is critically dependent on modulation of the host's endocytic machinery. It is an open question how the invading pathogens generate a membrane-bound vesicle appropriate to their size. This requires extensive deformation of the host plasma membrane itself by pathogen-derived membrane-binding proteins, accompanied by substantial F-actin-based forces to further expand and finally pinch off the vesicle. Here we show that upon adhesion to the host cell, the human pathogenic bacterium Chlamydia pneumoniae secretes the scaffolding effector protein CPn0677, which binds to the inner leaflet of the invaginating host's PM, induces inwardly directed, negative membrane curvature, and forms a recruiting platform for the membrane-deforming BAR-domain containing proteins Pacsin and SNX9. In addition, while bound to the membrane, CPn0677 recruits monomeric G-actin, and its C-terminal region binds and activates N-WASP, which initiates branching actin polymerization via the Arp2/3 complex. Together, these membrane-bound processes enable the developing endocytic vesicle to engulf the infectious elementary body, while the associated actin network generates the forces required to reshape and detach the nascent vesicle from the PM. Thus, Cpn0677 (now renamed SemD) acts as recruiting platform for central components of the endocytic machinery during uptake of chlamydia.
Collapse
Affiliation(s)
- Dominik Spona
- Institute for Functional Microbial Genomics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Philipp T Hanisch
- Institute for Functional Microbial Genomics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Johannes H Hegemann
- Institute for Functional Microbial Genomics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Katja Mölleken
- Institute for Functional Microbial Genomics, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
9
|
Intracellular lifestyle of Chlamydia trachomatis and host-pathogen interactions. Nat Rev Microbiol 2023:10.1038/s41579-023-00860-y. [PMID: 36788308 DOI: 10.1038/s41579-023-00860-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 02/16/2023]
Abstract
In recent years, substantial progress has been made in the understanding of the intracellular lifestyle of Chlamydia trachomatis and how the bacteria establish themselves in the human host. As an obligate intracellular pathogenic bacterium with a strongly reduced coding capacity, C. trachomatis depends on the provision of nutrients from the host cell. In this Review, we summarize the current understanding of how C. trachomatis establishes its intracellular replication niche, how its metabolism functions in the host cell, how it can defend itself against the cell autonomous and innate immune response and how it overcomes adverse situations through the transition to a persistent state. In particular, we focus on those processes for which a mechanistic understanding has been achieved.
Collapse
|
10
|
Fields KA, Bodero MD, Scanlon KR, Jewett TJ, Wolf K. A Minimal Replicon Enables Efficacious, Species-Specific Gene Deletion in Chlamydia and Extension of Gene Knockout Studies to the Animal Model of Infection Using Chlamydia muridarum. Infect Immun 2022; 90:e0045322. [PMID: 36350146 PMCID: PMC9753632 DOI: 10.1128/iai.00453-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022] Open
Abstract
The genus Chlamydia consists of diverse, obligate intracellular bacteria that infect various animals, including humans. Although chlamydial species share many aspects of the typical intracellular lifestyle, such as the biphasic developmental cycle and the preference for invasion of epithelial cells, each chlamydial strain also employs sophisticated species-specific strategies that contribute to an extraordinary diversity in organ and/or tissue tropism and disease manifestation. In order to discover and understand the mechanisms underlying how these pathogens infect particular hosts and cause specific diseases, it is imperative to develop a mutagenesis approach that would be applicable to every chlamydial species. We present functional evidence that the region between Chlamydia trachomatis and Chlamydia muridarum pgp6 and pgp7, containing four 22-bp tandem repeats that are present in all chlamydial endogenous plasmids, represents the plasmid origin of replication. Furthermore, by introducing species-specific ori regions into an engineered 5.45-kb pUC19-based plasmid, we generated vectors that can be successfully transformed into and propagated under selective pressure by C. trachomatis serovars L2 and D, as well as C. muridarum. Conversely, these vectors were rapidly lost upon removal of the selective antibiotic. This conditionally replicating system was used to generate a tarP deletion mutant by fluorescence-reported allelic exchange mutagenesis in both C. trachomatis serovar D and C. muridarum. The strains were analyzed using in vitro invasion and fitness assays. The virulence of the C. muridarum strains was then assessed in a murine infection model. Our approach represents a novel and efficient strategy for targeted genetic manipulation in Chlamydia beyond C. trachomatis L2. This advance will support comparative studies of species-specific infection biology and enable studies in a well-established murine model of chlamydial pathogenesis.
Collapse
Affiliation(s)
- Kenneth A. Fields
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Maria D. Bodero
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Kaylyn R. Scanlon
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Travis J. Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Katerina Wolf
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
11
|
Dolat L, Carpenter VK, Chen YS, Suzuki M, Smith EP, Kuddar O, Valdivia RH. Chlamydia repurposes the actin-binding protein EPS8 to disassemble epithelial tight junctions and promote infection. Cell Host Microbe 2022; 30:1685-1700.e10. [PMID: 36395759 PMCID: PMC9793342 DOI: 10.1016/j.chom.2022.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/08/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022]
Abstract
Invasive microbial pathogens often disrupt epithelial barriers, yet the mechanisms used to dismantle tight junctions are poorly understood. Here, we show that the obligate pathogen Chlamydia trachomatis uses the effector protein TepP to transiently disassemble tight junctions early during infection. TepP alters the tyrosine phosphorylation status of host proteins involved in cytoskeletal regulation, including the filamentous actin-binding protein EPS8. We determined that TepP and EPS8 are necessary and sufficient to remodel tight junctions and that the ensuing disruption of epithelial barrier function promotes secondary invasion events. The genetic deletion of EPS8 renders epithelial cells and endometrial organoids resistant to TepP-mediated tight junction remodeling. Finally, TepP and EPS8 promote infection in murine models of infections, with TepP mutants displaying defects in ascension to the upper genital tract. These findings reveal a non-canonical function of EPS8 in the disassembly of epithelial junctions and an important role for Chlamydia pathogenesis.
Collapse
Affiliation(s)
- Lee Dolat
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Victoria K Carpenter
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yi-Shan Chen
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michitaka Suzuki
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Erin P Smith
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ozge Kuddar
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Raphael H Valdivia
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
12
|
Alqassim SS. Functional Mimicry of Eukaryotic Actin Assembly by Pathogen Effector Proteins. Int J Mol Sci 2022; 23:ijms231911606. [PMID: 36232907 PMCID: PMC9569871 DOI: 10.3390/ijms231911606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
The actin cytoskeleton lies at the heart of many essential cellular processes. There are hundreds of proteins that cells use to control the size and shape of actin cytoskeletal networks. As such, various pathogens utilize different strategies to hijack the infected eukaryotic host actin dynamics for their benefit. These include the control of upstream signaling pathways that lead to actin assembly, control of eukaryotic actin assembly factors, encoding toxins that distort regular actin dynamics, or by encoding effectors that directly interact with and assemble actin filaments. The latter class of effectors is unique in that, quite often, they assemble actin in a straightforward manner using novel sequences, folds, and molecular mechanisms. The study of these mechanisms promises to provide major insights into the fundamental determinants of actin assembly, as well as a deeper understanding of host-pathogen interactions in general, and contribute to therapeutic development efforts targeting their respective pathogens. This review discusses mechanisms and highlights shared and unique features of actin assembly by pathogen effectors that directly bind and assemble actin, focusing on eukaryotic actin nucleator functional mimics Rickettsia Sca2 (formin mimic), Burkholderia BimA (Ena/VASP mimic), and Vibrio VopL (tandem WH2-motif mimic).
Collapse
Affiliation(s)
- Saif S Alqassim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Building 14, Dubai Health Care City, Dubai P.O. Box 505055, United Arab Emirates
| |
Collapse
|
13
|
Romero MD, Carabeo RA. Distinct roles of the Chlamydia trachomatis effectors TarP and TmeA in the regulation of formin and Arp2/3 during entry. J Cell Sci 2022; 135:jcs260185. [PMID: 36093837 PMCID: PMC9659389 DOI: 10.1242/jcs.260185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/05/2022] [Indexed: 12/13/2022] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis manipulates the host actin cytoskeleton to assemble actin-rich structures that drive pathogen entry. The recent discovery of TmeA, which, like TarP, is an invasion-associated type III effector implicated in actin remodeling, raised questions regarding the nature of their functional interaction. Quantitative live-cell imaging of actin remodeling at invasion sites revealed differences in recruitment and turnover kinetics associated with the TarP and TmeA pathways, with the former accounting for most of the robust actin dynamics at invasion sites. TarP-mediated recruitment of actin nucleators, i.e. formins and the Arp2/3 complex, was crucial for rapid actin kinetics, generating a collaborative positive feedback loop that enhanced their respective actin-nucleating activities within invasion sites. In contrast, the formin Fmn1 was not recruited to invasion sites and did not collaborate with Arp2/3 within the context of TmeA-associated actin recruitment. Although the TarP-Fmn1-Arp2/3 signaling axis is responsible for the majority of actin dynamics, its inhibition had similar effects as the deletion of TmeA on invasion efficiency, consistent with the proposed model that TarP and TmeA act on different stages of the same invasion pathway.
Collapse
Affiliation(s)
- Matthew D. Romero
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Rey A. Carabeo
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| |
Collapse
|
14
|
Aranjuez GF, Kim J, Jewett TJ. The Chlamydia trachomatis Early Effector Tarp Outcompetes Fascin in Forming F-Actin Bundles In Vivo. Front Cell Infect Microbiol 2022; 12:811407. [PMID: 35300377 PMCID: PMC8921475 DOI: 10.3389/fcimb.2022.811407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
The intracellular pathogen Chlamydia trachomatis secretes multiple early effectors into the host cell to promote invasion. A key early effector during host cell entry, Tarp (translocated actin-recruiting phosphoprotein) is comprised of multiple protein domains known to have roles in cell signaling, G-actin nucleation and F-actin bundle formation. In vitro, the actin bundles generated by Tarp are uncharacteristically flexible, however, in vivo, the biological significance of Tarp-mediated actin bundles remains unknown. We hypothesize that Tarp's ability to generate unique actin bundles, in part, facilitates chlamydial entry into epithelial cells. To study the in vivo interaction between Tarp and F-actin, we transgenically expressed Tarp in Drosophila melanogaster tissues. Tarp expressed in Drosophila is phosphorylated and forms F-actin-enriched aggregates in tissues. To gain insight into the significance of Tarp actin bundles in vivo, we utilized the well-characterized model system of mechanosensory bristle development in Drosophila melanogaster. Tarp expression in wild type flies produced curved bristles, indicating a perturbation in F-actin dynamics during bristle development. Two F-actin bundlers, Singed/Fascin and Forked/Espin, are important for normal bristle shape. Surprisingly, Tarp expression in the bristles displaced Singed/Fascin away from F-actin bundles. Tarp's competitive behavior against Fascin during F-actin bundling was confirmed in vitro. Loss of either singed or forked in flies leads to highly deformed bristles. Strikingly, Tarp partially rescued the loss of singed, reducing the severity of the bristle morphology defect. This work provides in vivo confirmation of Tarp's F-actin bundling activity and further uncovers a competitive behavior against the host bundler Singed/Fascin during bundle assembly. Also, we demonstrate the utility of Drosophila melanogaster as an in vivo cell biological platform to study bacterial effector function.
Collapse
Affiliation(s)
- George F. Aranjuez
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | | | | |
Collapse
|
15
|
Role of ARP2/3 Complex-Driven Actin Polymerization in RSV Infection. Pathogens 2021; 11:pathogens11010026. [PMID: 35055974 PMCID: PMC8781601 DOI: 10.3390/pathogens11010026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/30/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading viral agent causing bronchiolitis and pneumonia in children under five years old worldwide. The RSV infection cycle starts with macropinocytosis-based entry into the host airway epithelial cell membrane, followed by virus transcription, replication, assembly, budding, and spread. It is not surprising that the host actin cytoskeleton contributes to different stages of the RSV replication cycle. RSV modulates actin-related protein 2/3 (ARP2/3) complex-driven actin polymerization for a robust filopodia induction on the infected lung epithelial A549 cells, which contributes to the virus’s budding, and cell-to-cell spread. Thus, a comprehensive understanding of RSV-induced cytoskeletal modulation and its role in lung pathobiology may identify novel intervention strategies. This review will focus on the role of the ARP2/3 complex in RSV’s pathogenesis and possible therapeutic targets to the ARP2/3 complex for RSV.
Collapse
|
16
|
Cross Talk between ARF1 and RhoA Coordinates the Formation of Cytoskeletal Scaffolds during Chlamydia Infection. mBio 2021; 12:e0239721. [PMID: 34903051 PMCID: PMC8669492 DOI: 10.1128/mbio.02397-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterium that has developed sophisticated mechanisms to survive inside its infectious compartment, the inclusion. Notably, Chlamydia weaves an extensive network of microtubules (MTs) and actin filaments to enable interactions with host organelles and enhance its stability. Despite the global health and economic burden caused by this sexually transmitted pathogen, little is known about how actin and MT scaffolds are integrated into an increasingly complex virulence system. Previously, we established that the chlamydial effector InaC interacts with ARF1 to stabilize MTs. We now demonstrate that InaC regulates RhoA to control actin scaffolds. InaC relies on cross talk between ARF1 and RhoA to coordinate MTs and actin, where the presence of RhoA downregulates stable MT scaffolds and ARF1 activation inhibits actin scaffolds. Understanding how Chlamydia hijacks complex networks will help elucidate how this clinically significant pathogen parasitizes its host and reveal novel cellular signaling pathways.
Collapse
|
17
|
Vaughn B, Abu Kwaik Y. Idiosyncratic Biogenesis of Intracellular Pathogens-Containing Vacuoles. Front Cell Infect Microbiol 2021; 11:722433. [PMID: 34858868 PMCID: PMC8632064 DOI: 10.3389/fcimb.2021.722433] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
While most bacterial species taken up by macrophages are degraded through processing of the bacteria-containing vacuole through the endosomal-lysosomal degradation pathway, intravacuolar pathogens have evolved to evade degradation through the endosomal-lysosomal pathway. All intra-vacuolar pathogens possess specialized secretion systems (T3SS-T7SS) that inject effector proteins into the host cell cytosol to modulate myriad of host cell processes and remodel their vacuoles into proliferative niches. Although intravacuolar pathogens utilize similar secretion systems to interfere with their vacuole biogenesis, each pathogen has evolved a unique toolbox of protein effectors injected into the host cell to interact with, and modulate, distinct host cell targets. Thus, intravacuolar pathogens have evolved clear idiosyncrasies in their interference with their vacuole biogenesis to generate a unique intravacuolar niche suitable for their own proliferation. While there has been a quantum leap in our knowledge of modulation of phagosome biogenesis by intravacuolar pathogens, the detailed biochemical and cellular processes affected remain to be deciphered. Here we discuss how the intravacuolar bacterial pathogens Salmonella, Chlamydia, Mycobacteria, Legionella, Brucella, Coxiella, and Anaplasma utilize their unique set of effectors injected into the host cell to interfere with endocytic, exocytic, and ER-to-Golgi vesicle traffic. However, Coxiella is the main exception for a bacterial pathogen that proliferates within the hydrolytic lysosomal compartment, but its T4SS is essential for adaptation and proliferation within the lysosomal-like vacuole.
Collapse
Affiliation(s)
- Bethany Vaughn
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States.,Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, KY, United States
| |
Collapse
|
18
|
Pei G, Dorhoi A. NOD-Like Receptors: Guards of Cellular Homeostasis Perturbation during Infection. Int J Mol Sci 2021; 22:ijms22136714. [PMID: 34201509 PMCID: PMC8268748 DOI: 10.3390/ijms22136714] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/30/2022] Open
Abstract
The innate immune system relies on families of pattern recognition receptors (PRRs) that detect distinct conserved molecular motifs from microbes to initiate antimicrobial responses. Activation of PRRs triggers a series of signaling cascades, leading to the release of pro-inflammatory cytokines, chemokines and antimicrobials, thereby contributing to the early host defense against microbes and regulating adaptive immunity. Additionally, PRRs can detect perturbation of cellular homeostasis caused by pathogens and fine-tune the immune responses. Among PRRs, nucleotide binding oligomerization domain (NOD)-like receptors (NLRs) have attracted particular interest in the context of cellular stress-induced inflammation during infection. Recently, mechanistic insights into the monitoring of cellular homeostasis perturbation by NLRs have been provided. We summarize the current knowledge about the disruption of cellular homeostasis by pathogens and focus on NLRs as innate immune sensors for its detection. We highlight the mechanisms employed by various pathogens to elicit cytoskeleton disruption, organelle stress as well as protein translation block, point out exemplary NLRs that guard cellular homeostasis during infection and introduce the concept of stress-associated molecular patterns (SAMPs). We postulate that integration of information about microbial patterns, danger signals, and SAMPs enables the innate immune system with adequate plasticity and precision in elaborating responses to microbes of variable virulence.
Collapse
Affiliation(s)
- Gang Pei
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
- Correspondence: (G.P.); (A.D.)
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, 17489 Greifswald, Germany
- Correspondence: (G.P.); (A.D.)
| |
Collapse
|
19
|
Shehat MG, Aranjuez GF, Kim J, Jewett TJ. The Chlamydia trachomatis Tarp effector targets the Hippo pathway. Biochem Biophys Res Commun 2021; 562:133-138. [PMID: 34052658 DOI: 10.1016/j.bbrc.2021.05.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/18/2022]
Abstract
Chlamydia trachomatis injects bacterial effector proteins into human epithelial cells to facilitate the establishment of new infections. The chlamydial type III secreted effector translocated actin recruiting phosphoprotein (Tarp) has been shown to nucleate and bundle actin filaments. It is also believed to initiate new signaling pathways via an N-terminal phosphorylation domain. A comprehensive understanding of the host pathways that are controlled by Tarp to aid in the establishment of a successful infection remains incomplete. To gain further insight into the cell signaling regulated by Tarp, we generated transgenic fruit flies engineered to express the N-terminal domain of Tarp. As many signaling pathways are conserved between flies and mammals, we hypothesized that expression of the Tarp N-domain in the fruit fly might disrupt key pathways, resulting in developmental defects. Tarp N-domain expression in the fruit fly resulted in a mechanosensory bristle duplication phenotype similar to a previously characterized fly phenotype found to be a consequence of defects in the Hippo pathway. Tarp-dependent disruption of the Hippo pathway was confirmed in a C. trachomatis tissue culture infection model. The capability of Tarp to alter Hippo pathway signaling in infected epithelial cells is a previously unrecognized pathway commandeered by chlamydia and likely contributes to the establishment of chlamydia's intracellular niche.
Collapse
Affiliation(s)
- Michael G Shehat
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida, College of Medicine, Orlando, FL, 32827, USA; Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - George F Aranjuez
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida, College of Medicine, Orlando, FL, 32827, USA
| | - Jongeon Kim
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida, College of Medicine, Orlando, FL, 32827, USA
| | - Travis J Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida, College of Medicine, Orlando, FL, 32827, USA.
| |
Collapse
|
20
|
Hajra D, Nair AV, Chakravortty D. An elegant nano-injection machinery for sabotaging the host: Role of Type III secretion system in virulence of different human and animal pathogenic bacteria. Phys Life Rev 2021; 38:25-54. [PMID: 34090822 DOI: 10.1016/j.plrev.2021.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 01/22/2023]
Abstract
Various Gram-negative bacteria possess a specialized membrane-bound protein secretion system known as the Type III secretion system (T3SS), which transports the bacterial effector proteins into the host cytosol thereby helping in bacterial pathogenesis. The T3SS has a special needle-like translocon that can sense the contact with the host cell membrane and translocate effectors. The export apparatus of T3SS recognizes these effector proteins bound to chaperones and translocates them into the host cell. Once in the host cell cytoplasm, these effector proteins result in modulation of the host system and promote bacterial localization and infection. Using molecular biology, bioinformatics, genetic techniques, electron microscopic studies, and mathematical modeling, the structure and function of the T3SS and the corresponding effector proteins in various bacteria have been studied. The strategies used by different human pathogenic bacteria to modulate the host system and thereby enhance their virulence mechanism using T3SS have also been well studied. Here we review the history, evolution, and general structure of the T3SS, highlighting the details of its comparison with the flagellar export machinery. Also, this article provides mechanistic details about the common role of T3SS in subversion and manipulation of host cellular processes. Additionally, this review describes specific T3SS apparatus and the role of their specific effectors in bacterial pathogenesis by considering several human and animal pathogenic bacteria.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Abhilash Vijay Nair
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | | |
Collapse
|
21
|
Chang YY, Enninga J, Stévenin V. New methods to decrypt emerging macropinosome functions during the host-pathogen crosstalk. Cell Microbiol 2021; 23:e13342. [PMID: 33848057 PMCID: PMC8365644 DOI: 10.1111/cmi.13342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/18/2022]
Abstract
Large volumes of liquid and other materials from the extracellular environment are internalised by eukaryotic cells via an endocytic process called macropinocytosis. It is now recognised that this fundamental and evolutionarily conserved pathway is hijacked by numerous intracellular pathogens as an entry portal to the host cell interior. Yet, an increasing number of additional cellular functions of macropinosomes in pathologic processes have been reported beyond this role for fluid internalisation. It emerges that the identity of macropinosomes can vary hugely and change rapidly during their lifetime. A deeper understanding of this important multi-faceted compartment is based on novel methods for their investigation. These methods are either imaging-based for the tracking of macropinosome dynamics, or they provide the means to extract macropinosomes at high purity for comprehensive proteomic analyses. Here, we portray these new approaches for the investigation of macropinosomes. We document how these method developments have provided insights for a new understanding of the intracellular lifestyle of the bacterial pathogens Shigella and Salmonella. We suggest that a systematic complete characterisation of macropinosome subversion with these approaches during other infection processes and pathologies will be highly beneficial for our understanding of the underlying cellular and molecular processes.
Collapse
Affiliation(s)
- Yuen-Yan Chang
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit and CNRS UMR 3691, Paris, France.,Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Jost Enninga
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit and CNRS UMR 3691, Paris, France
| | - Virginie Stévenin
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit and CNRS UMR 3691, Paris, France.,Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.,Université Paris Diderot, Ecole doctorale BioSPC, Paris, France
| |
Collapse
|
22
|
Andersen SE, Bulman LM, Steiert B, Faris R, Weber MM. Got mutants? How advances in chlamydial genetics have furthered the study of effector proteins. Pathog Dis 2021; 79:ftaa078. [PMID: 33512479 PMCID: PMC7862739 DOI: 10.1093/femspd/ftaa078] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Chlamydia trachomatis is the leading cause of infectious blindness and a sexually transmitted infection. All chlamydiae are obligate intracellular bacteria that replicate within a membrane-bound vacuole termed the inclusion. From the confines of the inclusion, the bacteria must interact with many host organelles to acquire key nutrients necessary for replication, all while promoting host cell viability and subverting host defense mechanisms. To achieve these feats, C. trachomatis delivers an arsenal of virulence factors into the eukaryotic cell via a type 3 secretion system (T3SS) that facilitates invasion, manipulation of host vesicular trafficking, subversion of host defense mechanisms and promotes bacteria egress at the conclusion of the developmental cycle. A subset of these proteins intercalate into the inclusion and are thus referred to as inclusion membrane proteins. Whereas others, referred to as conventional T3SS effectors, are released into the host cell where they localize to various eukaryotic organelles or remain in the cytosol. Here, we discuss the functions of T3SS effector proteins with a focus on how advances in chlamydial genetics have facilitated the identification and molecular characterization of these important factors.
Collapse
Affiliation(s)
- Shelby E Andersen
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Lanci M Bulman
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Brianna Steiert
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Robert Faris
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Mary M Weber
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
23
|
Keb G, Ferrell J, Scanlon KR, Jewett TJ, Fields KA. Chlamydia trachomatis TmeA Directly Activates N-WASP To Promote Actin Polymerization and Functions Synergistically with TarP during Invasion. mBio 2021; 12:e02861-20. [PMID: 33468693 PMCID: PMC7845632 DOI: 10.1128/mbio.02861-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Chlamydia trachomatis is a medically significant human pathogen and is an epithelial-tropic obligate intracellular parasite. Invasion of nonprofessional phagocytes represents a crucial step in the infection process and has likely promoted the evolution of a redundant mechanism and routes of entry. Like many other viral and invasive bacterial pathogens, manipulation of the host cell cytoskeleton represents a focal point in Chlamydia entry. The advent of genetic techniques in C. trachomatis, such as creation of complete gene deletions via fluorescence-reported allelic exchange mutagenesis (FRAEM), is providing important tools to unravel the contributions of bacterial factors in these complex pathways. The type III secretion chaperone Slc1 directs delivery of at least four effectors during the invasion process. Two of these, TarP and TmeA, have been associated with manipulation of actin networks and are essential for normal levels of invasion. The functions of TarP are well established, whereas TmeA is less well characterized. We leverage chlamydial genetics and proximity labeling here to provide evidence that TmeA directly targets host N-WASP to promote Arp2/3-dependent actin polymerization. Our work also shows that TmeA and TarP influence separate, yet synergistic pathways to accomplish chlamydial entry. These data further support an appreciation that a pathogen, confined by a reductionist genome, retains the ability to commit considerable resources to accomplish bottle-neck steps during the infection process.IMPORTANCE The increasing genetic tractability of Chlamydia trachomatis is accelerating the ability to characterize the unique infection biology of this obligate intracellular parasite. These efforts are leading to a greater understanding of the molecular events associated with key virulence requirements. Manipulation of the host actin cytoskeleton plays a pivotal role throughout Chlamydia infection, yet a thorough understanding of the molecular mechanisms initiating and orchestrating actin rearrangements has lagged. Our work highlights the application of genetic manipulation to address open questions regarding chlamydial invasion, a process essential to survival. We provide definitive insight regarding the role of the type III secreted effector TmeA and how that activity relates to another prominent effector, TarP. In addition, our data implicate at least one source that contributes to the functional divergence of entry mechanisms among chlamydial species.
Collapse
Affiliation(s)
- Gabrielle Keb
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Joshua Ferrell
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Kaylyn R Scanlon
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Travis J Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Kenneth A Fields
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
24
|
Sigma 54-Regulated Transcription Is Associated with Membrane Reorganization and Type III Secretion Effectors during Conversion to Infectious Forms of Chlamydia trachomatis. mBio 2020; 11:mBio.01725-20. [PMID: 32900805 PMCID: PMC7482065 DOI: 10.1128/mbio.01725-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The factors that control the growth and infectious processes for Chlamydia are still poorly understood. This study used recently developed genetic tools to determine the regulon for one of the key transcription factors encoded by Chlamydia, sigma 54. Surrogate and computational analyses provide additional support for the hypothesis that sigma 54 plays a key role in controlling the expression of many components critical to converting and enabling the infectious capability of Chlamydia. These components include those that remodel the membrane for the extracellular environment and incorporation of an arsenal of type III secretion effectors in preparation for infecting new cells. Chlamydia bacteria are obligate intracellular organisms with a phylum-defining biphasic developmental cycle that is intrinsically linked to its ability to cause disease. The progression of the chlamydial developmental cycle is regulated by the temporal expression of genes predominantly controlled by RNA polymerase sigma (σ) factors. Sigma 54 (σ54) is one of three sigma factors encoded by Chlamydia for which the role and regulon are unknown. CtcC is part of a two-component signal transduction system that is requisite for σ54 transcriptional activation. CtcC activation of σ54 requires phosphorylation, which relieves inhibition by the CtcC regulatory domain and enables ATP hydrolysis by the ATPase domain. Prior studies with CtcC homologs in other organisms have shown that expression of the ATPase domain alone can activate σ54 transcription. Biochemical analysis of CtcC ATPase domain supported the idea of ATP hydrolysis occurring in the absence of the regulatory domain, as well as the presence of an active-site residue essential for ATPase activity (E242). Using recently developed genetic approaches in Chlamydia to induce expression of the CtcC ATPase domain, a transcriptional profile was determined that is expected to reflect the σ54 regulon. Computational evaluation revealed that the majority of the differentially expressed genes were preceded by highly conserved σ54 promoter elements. Reporter gene analyses using these putative σ54 promoters reinforced the accuracy of the model of the proposed regulon. Investigation of the gene products included in this regulon supports the idea that σ54 controls expression of genes that are critical for conversion of Chlamydia from replicative reticulate bodies into infectious elementary bodies.
Collapse
|
25
|
Faris R, McCullough A, Andersen SE, Moninger TO, Weber MM. The Chlamydia trachomatis secreted effector TmeA hijacks the N-WASP-ARP2/3 actin remodeling axis to facilitate cellular invasion. PLoS Pathog 2020; 16:e1008878. [PMID: 32946535 PMCID: PMC7526919 DOI: 10.1371/journal.ppat.1008878] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/30/2020] [Accepted: 08/12/2020] [Indexed: 11/19/2022] Open
Abstract
As an obligate intracellular pathogen, host cell invasion is paramount to Chlamydia trachomatis proliferation. While the mechanistic underpinnings of this essential process remain ill-defined, it is predicted to involve delivery of prepackaged effector proteins into the host cell that trigger plasma membrane remodeling and cytoskeletal reorganization. The secreted effector proteins TmeA and TarP, have risen to prominence as putative key regulators of cellular invasion and bacterial pathogenesis. Although several studies have begun to unravel molecular details underlying the putative function of TarP, the physiological function of TmeA during host cell invasion is unknown. Here, we show that TmeA employs molecular mimicry to bind to the GTPase binding domain of N-WASP, which results in recruitment of the actin branching ARP2/3 complex to the site of chlamydial entry. Electron microscopy revealed that TmeA mutants are deficient in filopodia capture, suggesting that TmeA/N-WASP interactions ultimately modulate host cell plasma membrane remodeling events necessary for chlamydial entry. Importantly, while both TmeA and TarP are necessary for effective host cell invasion, we show that these effectors target distinct pathways that ultimately converge on activation of the ARP2/3 complex. In line with this observation, we show that a double mutant suffers from a severe entry defect nearly identical to that observed when ARP3 is chemically inhibited or knocked down. Collectively, our study highlights both TmeA and TarP as essential regulators of chlamydial invasion that modulate the ARP2/3 complex through distinct signaling platforms, resulting in plasma membrane remodeling events that are essential for pathogen uptake.
Collapse
Affiliation(s)
- Robert Faris
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Alix McCullough
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Shelby E. Andersen
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Thomas O. Moninger
- Central Microscopy Research Facility, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Mary M. Weber
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| |
Collapse
|
26
|
Pedrosa AT, Murphy KN, Nogueira AT, Brinkworth AJ, Thwaites TR, Aaron J, Chew TL, Carabeo RA. A post-invasion role for Chlamydia type III effector TarP in modulating the dynamics and organization of host cell focal adhesions. J Biol Chem 2020; 295:14763-14779. [PMID: 32843479 PMCID: PMC7586217 DOI: 10.1074/jbc.ra120.015219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Indexed: 01/09/2023] Open
Abstract
The human pathogen Chlamydia trachomatis targets epithelial cells lining the genital mucosa. We observed that infection of various cell types, including fibroblasts and epithelial cells resulted in the formation of unusually stable and mature focal adhesions that resisted disassembly induced by the myosin II inhibitor, blebbistatin. Superresolution microscopy revealed in infected cells the vertical displacement of paxillin and focal adhesion kinase from the signaling layer of focal adhesions, whereas vinculin remained in its normal position within the force transduction layer. The candidate type III effector TarP, which localized to focal adhesions during infection and when expressed ectopically, was sufficient to mimic both the reorganization and blebbistatin-resistant phenotypes. These effects of TarP, including its localization to focal adhesions, required a post-invasion interaction with the host protein vinculin through a specific domain at the C terminus of TarP. This interaction is repurposed from an actin-recruiting and -remodeling complex to one that mediates nanoarchitectural and dynamic changes of focal adhesions. The consequence of Chlamydia-stabilized focal adhesions was restricted cell motility and enhanced attachment to the extracellular matrix. Thus, via a novel mechanism, Chlamydia inserts TarP within focal adhesions to alter their organization and stability.
Collapse
Affiliation(s)
- António T Pedrosa
- Bacteriology Section, Programme in Microbiology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Korinn N Murphy
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA; School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Ana T Nogueira
- Bacteriology Section, Programme in Microbiology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Amanda J Brinkworth
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA; School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Tristan R Thwaites
- Bacteriology Section, Programme in Microbiology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jesse Aaron
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Rey A Carabeo
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
27
|
Thapa J, Hashimoto K, Sugawara S, Tsujikawa R, Okubo T, Nakamura S, Yamaguchi H. Hypoxia promotes Chlamydia trachomatis L2/434/Bu growth in immortal human epithelial cells via activation of the PI3K-AKT pathway and maintenance of a balanced NAD +/NADH ratio. Microbes Infect 2020; 22:441-450. [PMID: 32442683 DOI: 10.1016/j.micinf.2020.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 01/09/2023]
Abstract
Chlamydia trachomatis LGV (CtL2) causes systemic infection and proliferates in lymph nodes as well as genital tract or rectum producing a robust inflammatory response, presumably leading to a low oxygen environment. We therefore assessed how CtL2 growth in immortal human epithelial cells adapts to hypoxic conditions. Assessment of inclusion forming units, the quantity of chlamydial 16S rDNA, and inclusion size showed that hypoxia promotes CtL2 growth. Under hypoxia, HIF-1α was stabilized and p53 was degraded in infected cells. Moreover, AKT was strongly phosphorylated at S473 by CtL2 infection. This activation was significantly diminished by LY-294002, a PI3K-AKT inhibitor, which decreased the number of CtL2 progeny. HIF-1α stabilizers (CoCl2, desferrioxamine) had no effect on increasing CtL2 growth, indicating no autocrine impact of growth factors produced by HIF-1α stabilization. Furthermore, in normoxia, CtL2 infection changed the NAD+/NADH ratio of cells with increased gapdh expression; in contrast, under hypoxia, the NAD+/NADH ratio was the same in infected and uninfected cells with high and stable expression of gapdh, suggesting that CtL2-infected cells adapted better to hypoxia. Together, these data indicate that hypoxia promotes CtL2 growth in immortal human epithelial cells by activating the PI3K-AKT pathway and maintaining the NAD+/NADH ratio with stably activated glycolysis.
Collapse
Affiliation(s)
- Jeewan Thapa
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Kent Hashimoto
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Saori Sugawara
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Ryoya Tsujikawa
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Torahiko Okubo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Shinji Nakamura
- Division of Biomedical Imaging Research, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
28
|
Fluorescence-Reported Allelic Exchange Mutagenesis-Mediated Gene Deletion Indicates a Requirement for Chlamydia trachomatis Tarp during In Vivo Infectivity and Reveals a Specific Role for the C Terminus during Cellular Invasion. Infect Immun 2020; 88:IAI.00841-19. [PMID: 32152196 DOI: 10.1128/iai.00841-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/03/2020] [Indexed: 02/04/2023] Open
Abstract
The translocated actin recruiting phosphoprotein (Tarp) is a multidomain type III secreted effector used by Chlamydia trachomatis In aggregate, existing data suggest a role of this effector in initiating new infections. As new genetic tools began to emerge to study chlamydial genes in vivo, we speculated as to what degree Tarp function contributes to Chlamydia's ability to parasitize mammalian host cells. To address this question, we generated a complete tarP deletion mutant using the fluorescence-reported allelic exchange mutagenesis (FRAEM) technique and complemented the mutant in trans with wild-type tarP or mutant tarP alleles engineered to harbor in-frame domain deletions. We provide evidence for the significant role of Tarp in C. trachomatis invasion of host cells. Complementation studies indicate that the C-terminal filamentous actin (F-actin)-binding domains are responsible for Tarp-mediated invasion efficiency. Wild-type C. trachomatis entry into HeLa cells resulted in host cell shape changes, whereas the tarP mutant did not. Finally, using a novel cis complementation approach, C. trachomatis lacking tarP demonstrated significant attenuation in a murine genital tract infection model. Together, these data provide definitive genetic evidence for the critical role of the Tarp F-actin-binding domains in host cell invasion and for the Tarp effector as a bona fide C. trachomatis virulence factor.
Collapse
|
29
|
Monteiro-Brás T, Wesolowski J, Paumet F. Depletion of SNAP-23 and Syntaxin 4 alters lipid droplet homeostasis during Chlamydia infection. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 7:46-58. [PMID: 32025513 PMCID: PMC6993123 DOI: 10.15698/mic2020.02.707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/18/2019] [Accepted: 11/27/2019] [Indexed: 12/26/2022]
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen that replicates inside a parasitic vacuole called the inclusion. The nascent inclusion is derived from the host plasma membrane and serves as a platform from which Chlamydia controls interactions with the host microenvironment. To survive inside the host cell, Chlamydia scavenges for nutrients and lipids by recruiting and/or fusing with various cellular compartments. The mechanisms by which these events occur are poorly understood but require host proteins such as the SNARE proteins (SNAP (Soluble N-ethylmaleimide-sensitive factor attachment protein) Receptor). Here, we show that SNAP-23 and Syntaxin 4, two plasma membrane SNAREs, are recruited to the inclusion and play an important role in Chlamydia development. Knocking down SNAP-23 and Syntaxin 4 by CRISPR-Cas9 reduces the amount of infectious progeny. We then demonstrate that the loss of both of these SNARE proteins results in the dysregulation of Chlamydia-induced lipid droplets, indicating that both SNAP-23 and Syntaxin 4 play a critical role in lipid droplet homeostasis during Chlamydia infection. Ultimately, our data highlights the importance of lipid droplets and their regulation in Chlamydia development.
Collapse
Affiliation(s)
- Tiago Monteiro-Brás
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA 19107
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
| | - Jordan Wesolowski
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA 19107
| | - Fabienne Paumet
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA 19107
| |
Collapse
|
30
|
Gitsels A, Sanders N, Vanrompay D. Chlamydial Infection From Outside to Inside. Front Microbiol 2019; 10:2329. [PMID: 31649655 PMCID: PMC6795091 DOI: 10.3389/fmicb.2019.02329] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022] Open
Abstract
Chlamydia are obligate intracellular bacteria, characterized by a unique biphasic developmental cycle. Specific interactions with the host cell are crucial for the bacteria’s survival and amplification because of the reduced chlamydial genome. At the start of infection, pathogen-host interactions are set in place in order for Chlamydia to enter the host cell and reach the nutrient-rich peri-Golgi region. Once intracellular localization is established, interactions with organelles and pathways of the host cell enable the necessary hijacking of host-derived nutrients. Detailed information on the aforementioned processes will increase our understanding on the intracellular pathogenesis of chlamydiae and hence might lead to new strategies to battle chlamydial infection. This review summarizes how chlamydiae generate their intracellular niche in the host cell, acquire host-derived nutrients in order to enable their growth and finally exit the host cell in order to infect new cells. Moreover, the evolution in the development of molecular genetic tools, necessary for studying the chlamydial infection biology in more depth, is discussed in great detail.
Collapse
Affiliation(s)
- Arlieke Gitsels
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Niek Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daisy Vanrompay
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
31
|
Bugalhão JN, Mota LJ. The multiple functions of the numerous Chlamydia trachomatis secreted proteins: the tip of the iceberg. MICROBIAL CELL 2019; 6:414-449. [PMID: 31528632 PMCID: PMC6717882 DOI: 10.15698/mic2019.09.691] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chlamydia trachomatis serovars are obligate intracellular bacterial pathogens mainly causing ocular and urogenital infections that affect millions of people worldwide and which can lead to blindness or sterility. They reside and multiply intracellularly within a membrane-bound vacuolar compartment, known as inclusion, and are characterized by a developmental cycle involving two morphologically and physiologically distinct chlamydial forms. Completion of the developmental cycle involves the secretion of > 70 C. trachomatis proteins that function in the host cell cytoplasm and nucleus, in the inclusion membrane and lumen, and in the extracellular milieu. These proteins can, for example, interfere with the host cell cytoskeleton, vesicular and non-vesicular transport, metabolism, and immune signalling. Generally, this promotes C. trachomatis invasion into, and escape from, host cells, the acquisition of nutrients by the chlamydiae, and evasion of cell-autonomous, humoral and cellular innate immunity. Here, we present an in-depth review on the current knowledge and outstanding questions about these C. trachomatis secreted proteins.
Collapse
Affiliation(s)
- Joana N Bugalhão
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Luís Jaime Mota
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
32
|
CPn0572, the C. pneumoniae ortholog of TarP, reorganizes the actin cytoskeleton via a newly identified F-actin binding domain and recruitment of vinculin. PLoS One 2019; 14:e0210403. [PMID: 30629647 PMCID: PMC6328165 DOI: 10.1371/journal.pone.0210403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/21/2018] [Indexed: 11/19/2022] Open
Abstract
Chlamydia pneumoniae is one of the two major species of the Chlamydiaceae family that have a profound effect on human health. C. pneumoniae is linked to a number of severe acute and chronic diseases of the upper and lower respiratory tract including pneumonia, asthma, bronchitis and infection by the pathogen might play a role in lung cancer. Following adhesion, Chlamydiae secrete effector proteins into the host cytoplasm that modulate the actin cytoskeleton facilitating internalization and infection. Members of the conserved TarP protein family comprise such effector proteins that polymerize actin, and in the case of the C. trachomatis TarP protein, has been shown to play a critical role in pathogenesis. In a previous study, we demonstrated that, upon bacterial invasion, the C. pneumoniae TarP family member CPn0572 is secreted into the host cytoplasm and recruits and associates with actin via an actin-binding domain conserved in TarP proteins. We have now extended our analysis of CPn0572 and found that the CPn0572 actin binding and modulating capability is more complex. With the help of the fission yeast system, a second actin modulating domain was identified independent of the actin binding domain. Microscopic analysis of HEp-2 cells expressing different CPn0572 deletion variants mapped this domain to the C-terminal part of the protein as CPn0572536-755 binds F-actin in vitro and colocalizes with aberrantly thickened actin cables in vivo. Finally, microscopic and bioinformatic analysis revealed the existence of a vinculin binding sequence in CPn0572. Our findings contribute to the understanding of the function of the TarP family and underscore the existence of several actin binding domains and a vinculin binding site for host actin modulation.
Collapse
|
33
|
George Z, Omosun Y, Azenabor AA, Goldstein J, Partin J, Joseph K, Ellerson D, He Q, Eko F, McDonald MA, Reed M, Svoboda P, Stuchlik O, Pohl J, Lutter E, Bandea C, Black CM, Igietseme JU. The molecular mechanism of induction of unfolded protein response by Chlamydia. Biochem Biophys Res Commun 2019; 508:421-429. [PMID: 30503337 PMCID: PMC6343654 DOI: 10.1016/j.bbrc.2018.11.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 11/21/2022]
Abstract
The unfolded protein response (UPR) contributes to chlamydial pathogenesis, as a source of lipids and ATP during replication, and for establishing the initial anti-apoptotic state of host cell that ensures successful inclusion development. The molecular mechanism(s) of UPR induction by Chlamydia is unknown. Chlamydia use type III secretion system (T3SS) effector proteins (e.g, the Translocated Actin-Recruiting Phosphoprotein (Tarp) to stimulate host cell's cytoskeletal reorganization that facilitates invasion and inclusion development. We investigated the hypothesis that T3SS effector-mediated assembly of myosin-II complex produces activated non-muscle myosin heavy chain II (NMMHC-II), which then binds the UPR master regulator (BiP) and/or transducers to induce UPR. Our results revealed the interaction of the chlamydial effector proteins (CT228 and Tarp) with components of the myosin II complex and UPR regulator and transducer during infection. These interactions caused the activation and binding of NMMHC-II to BiP and IRE1α leading to UPR induction. In addition, specific inhibitors of myosin light chain kinase, Tarp oligomerization and myosin ATPase significantly reduced UPR activation and Chlamydia replication. Thus, Chlamydia induce UPR through T3SS effector-mediated activation of NMMHC-II components of the myosin complex to facilitate infectivity. The finding provides greater insights into chlamydial pathogenesis with the potential to identify therapeutic targets and formulations.
Collapse
Affiliation(s)
- Zenas George
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Yusuf Omosun
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA; Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Jason Goldstein
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - James Partin
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Kahaliah Joseph
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Debra Ellerson
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Qing He
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA; Morehouse School of Medicine, Atlanta, GA, USA
| | - Francis Eko
- Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Matthew Reed
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Pavel Svoboda
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Olga Stuchlik
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Jan Pohl
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | | | - Claudiu Bandea
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Carolyn M Black
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Joseph U Igietseme
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA; Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
34
|
Park JS, Helble JD, Lazarus JE, Yang G, Blondel CJ, Doench JG, Starnbach MN, Waldor MK. A FACS-Based Genome-wide CRISPR Screen Reveals a Requirement for COPI in Chlamydia trachomatis Invasion. iScience 2018; 11:71-84. [PMID: 30590252 PMCID: PMC6308251 DOI: 10.1016/j.isci.2018.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/20/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022] Open
Abstract
The invasion of Chlamydia trachomatis, an obligate intracellular bacterium, into epithelial cells is driven by a complex interplay of host and bacterial factors. To comprehensively define the host genes required for pathogen invasion, we undertook a fluorescence-activated cell sorting (FACS)-based CRISPR screen in human cells. A genome-wide loss-of-function library was infected with fluorescent C. trachomatis and then sorted to enrich for invasion-deficient mutants. The screen identified heparan sulfate, a known pathogen receptor, as well as coatomer complex I (COPI). We found that COPI, through a previously unappreciated role, promotes heparan sulfate cell surface presentation, thereby facilitating C. trachomatis attachment. The heparan sulfate defect does not fully account for the resistance of COPI mutants. COPI also promotes the activity of the pathogen's type III secretion system. Together, our findings establish the requirement for COPI in C. trachomatis invasion and the utility of FACS-based CRISPR screening for the elucidation of host factors required for pathogen invasion. FACS-based CRISPR screen to identify host factors required for C. trachomatis invasion Candidate genes comprise heparan sulfate biosynthesis, actin remodeling, and COPI COPI regulates heparan sulfate cell surface presentation and C. trachomatis attachment COPI is also required for efficient C. trachomatis T3SS translocation
Collapse
Affiliation(s)
- Joseph S Park
- Howard Hughes Medical Institute, Boston, MA 02215, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham & Women's Hospital, Boston 02115, MA, USA; Boston University School of Medicine, Boston, MA 02120, USA
| | - Jennifer D Helble
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jacob E Lazarus
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham & Women's Hospital, Boston 02115, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Guanhua Yang
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston 02115, MA, USA
| | - Carlos J Blondel
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston 02115, MA, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael N Starnbach
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew K Waldor
- Howard Hughes Medical Institute, Boston, MA 02215, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham & Women's Hospital, Boston 02115, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
35
|
Subtle changes in host cell density cause a serious error in monitoring of the intracellular growth of Chlamydia trachomatis in a low-oxygen environment: Proposal for a standardized culture method. J Microbiol Methods 2018; 153:84-91. [DOI: 10.1016/j.mimet.2018.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 11/19/2022]
|
36
|
Chlamydia exploits filopodial capture and a macropinocytosis-like pathway for host cell entry. PLoS Pathog 2018; 14:e1007051. [PMID: 29727463 PMCID: PMC5955597 DOI: 10.1371/journal.ppat.1007051] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 05/16/2018] [Accepted: 04/21/2018] [Indexed: 01/08/2023] Open
Abstract
Pathogens hijack host endocytic pathways to force their own entry into eukaryotic target cells. Many bacteria either exploit receptor-mediated zippering or inject virulence proteins directly to trigger membrane reorganisation and cytoskeletal rearrangements. By contrast, extracellular C. trachomatis elementary bodies (EBs) apparently employ facets of both the zipper and trigger mechanisms and are only ~400 nm in diameter. Our cryo-electron tomography of C. trachomatis entry revealed an unexpectedly diverse array of host structures in association with invading EBs, suggesting internalisation may progress by multiple, potentially redundant routes or several sequential events within a single pathway. Here we performed quantitative analysis of actin organisation at chlamydial entry foci, highlighting filopodial capture and phagocytic cups as dominant and conserved morphological structures early during internalisation. We applied inhibitor-based screening and employed reporters to systematically assay and visualise the spatio-temporal contribution of diverse endocytic signalling mediators to C. trachomatis entry. In addition to the recognised roles of the Rac1 GTPase and its associated nucleation-promoting factor (NPF) WAVE, our data revealed an additional unrecognised pathway sharing key hallmarks of macropinocytosis: i) amiloride sensitivity, ii) fluid-phase uptake, iii) recruitment and activity of the NPF N-WASP, and iv) the localised generation of phosphoinositide-3-phosphate (PI3P) species. Given their central role in macropinocytosis and affinity for PI3P, we assessed the role of SNX-PX-BAR family proteins. Strikingly, SNX9 was specifically and transiently enriched at C. trachomatis entry foci. SNX9-/- cells exhibited a 20% defect in EB entry, which was enhanced to 60% when the cells were infected without sedimentation-induced EB adhesion, consistent with a defect in initial EB-host interaction. Correspondingly, filopodial capture of C. trachomatis EBs was specifically attenuated in SNX9-/- cells, implicating SNX9 as a central host mediator of filopodial capture early during chlamydial entry. Our findings identify an unanticipated complexity of signalling underpinning cell entry by this major human pathogen, and suggest intriguing parallels with viral entry mechanisms. Chlamydia trachomatis remains the leading bacterial agent of sexually transmitted disease worldwide and causes a form of blindness called trachoma in Developing nations, which is recognised by the World Health Organisation as a neglected tropical disease. Despite this burden, we know comparatively little about how it causes disease at a molecular level. Chlamydia must live inside human cells to survive, and here we study the mechanism of how it enters cells, which is critical to the lifecycle. We study how the bacterium exploits signalling pathways inside the cell to its own advantage to deform the cell membrane by reorganising the underlying cell skeleton, and identify new factors involved in this process. Our findings suggest intriguing similarities with how some viruses enter cells. A better understanding of these processes may help to develop future vaccines and new treatments.
Collapse
|
37
|
Ghosh S, Park J, Thomas M, Cruz E, Cardona O, Kang H, Jewett T. Biophysical characterization of actin bundles generated by the Chlamydia trachomatis Tarp effector. Biochem Biophys Res Commun 2018; 500:423-428. [PMID: 29660331 DOI: 10.1016/j.bbrc.2018.04.093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 11/24/2022]
Abstract
Chlamydia trachomatis entry into host cells is mediated by pathogen-directed remodeling of the actin cytoskeleton. The chlamydial type III secreted effector, translocated actin recruiting phosphoprotein (Tarp), has been implicated in the recruitment of actin to the site of internalization. Tarp harbors G-actin binding and proline rich domains required for Tarp-mediated actin nucleation as well as unique F-actin binding domains implicated in the formation of actin bundles. Little is known about the mechanical properties of actin bundles generated by Tarp or the mechanism by which Tarp mediates actin bundle formation. In order to characterize the actin bundles and elucidate the role of different Tarp domains in the bundling process, purified Tarp effectors and Tarp truncation mutants were analyzed using Total Internal Reflection Fluorescence (TIRF) microscopy. Our data indicate that Tarp mediated actin bundling is independent of actin nucleation and the F-actin binding domains are sufficient to bundle actin filaments. Additionally, Tarp-mediated actin bundles demonstrate distinct bending stiffness compared to those crosslinked by the well characterized actin bundling proteins fascin and alpha-actinin, suggesting Tarp may employ a novel actin bundling strategy. The capacity of the Tarp effector to generate novel actin bundles likely contributes to chlamydia's efficient mechanism of entry into human cells.
Collapse
Affiliation(s)
- Susmita Ghosh
- Division of Immunity and Pathogenesis, College of Medicine, University of Central Florida, United States
| | - Jinho Park
- NanoScience Technology Center, University of Central Florida, United States; Depatrment of Materials Science and Engineering, University of Central Florida, United States
| | - Mitchell Thomas
- Division of Immunity and Pathogenesis, College of Medicine, University of Central Florida, United States
| | - Edgar Cruz
- NanoScience Technology Center, University of Central Florida, United States
| | - Omar Cardona
- Division of Immunity and Pathogenesis, College of Medicine, University of Central Florida, United States
| | - Hyeran Kang
- NanoScience Technology Center, University of Central Florida, United States; Department of Physics, University of Central Florida, United States
| | - Travis Jewett
- Division of Immunity and Pathogenesis, College of Medicine, University of Central Florida, United States.
| |
Collapse
|
38
|
Tolchard J, Walpole SJ, Miles AJ, Maytum R, Eaglen LA, Hackstadt T, Wallace BA, Blumenschein TMA. The intrinsically disordered Tarp protein from chlamydia binds actin with a partially preformed helix. Sci Rep 2018; 8:1960. [PMID: 29386631 PMCID: PMC5792643 DOI: 10.1038/s41598-018-20290-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/16/2018] [Indexed: 12/02/2022] Open
Abstract
Tarp (translocated actin recruiting phosphoprotein) is an effector protein common to all chlamydial species that functions to remodel the host-actin cytoskeleton during the initial stage of infection. In C. trachomatis, direct binding to actin monomers has been broadly mapped to a 100-residue region (726-825) which is predicted to be predominantly disordered, with the exception of a ~10-residue α-helical patch homologous to other WH2 actin-binding motifs. Biophysical investigations demonstrate that a Tarp726-825 construct behaves as a typical intrinsically disordered protein; within it, NMR relaxation measurements and chemical shift analysis identify the ten residue WH2-homologous region to exhibit partial α-helix formation. Isothermal titration calorimetry experiments on the same construct in the presence of monomeric G-actin show a well defined binding event with a 1:1 stoichiometry and Kd of 102 nM, whilst synchrotron radiation circular dichroism spectroscopy suggests the binding is concomitant with an increase in helical secondary structure. Furthermore, NMR experiments in the presence of G-actin indicate this interaction affects the proposed WH2-like α-helical region, supporting results from in silico docking calculations which suggest that, when folded, this α-helix binds within the actin hydrophobic cleft as seen for other actin-associated proteins.
Collapse
Affiliation(s)
- James Tolchard
- Center for Molecular and Structural Biology, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Samuel J Walpole
- Center for Molecular and Structural Biology, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Andrew J Miles
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, WC1E 7HX, UK
| | - Robin Maytum
- School of Life Sciences, University of Bedfordshire, Park Square, Luton, LU1 3JU, UK
| | - Lawrence A Eaglen
- Center for Molecular and Structural Biology, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Ted Hackstadt
- Host-parasite Interactions Section, Laboratory of Intracellular Parasites, NIAID, NIH, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - B A Wallace
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, WC1E 7HX, UK
| | - Tharin M A Blumenschein
- Center for Molecular and Structural Biology, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
39
|
Zrieq R, Braun C, Hegemann JH. The Chlamydia pneumoniae Tarp Ortholog CPn0572 Stabilizes Host F-Actin by Displacement of Cofilin. Front Cell Infect Microbiol 2017; 7:511. [PMID: 29376031 PMCID: PMC5770662 DOI: 10.3389/fcimb.2017.00511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 11/27/2017] [Indexed: 01/09/2023] Open
Abstract
Pathogenic Chlamydia species force entry into human cells via specific adhesin-receptor interactions and subsequently secrete effector proteins into the host cytoplasm, which in turn modulate host-cell processes to promote infection. One such effector, the C. trachomatis Tarp factor, nucleates actin polymerization in vitro. Here we show that its C. pneumoniae ortholog, CPn0572, associates with actin patches upon bacterial invasion. GFP-CPn0572 ectopically expressed in yeast and human cells co-localizes with actin patches and distinctly aberrantly thickened and extended actin cables. A 59-aa DUF 1547 (DUF) domain, which overlaps with the minimal actin-binding and protein oligomerization fragment required for actin nucleation in other Tarp orthologs, is responsible for the aberrant actin phenotype in yeast. Interestingly, GFP-CPn0572 in human cells associated with and led to the formation of non-actin microfilaments. This phenotype is strongly enhanced in human cells expressing the GFP-tagged DUF deletion variant (GFP-ΔDUF). Finally ectopic CPn0572 expression in yeast and in-vitro actin filament binding assays, demonstrated that CPn0572 stabilizes pre-assembled F-actin by displacing and/or inhibiting binding of the actin-severing protein cofilin. Remarkably, the DUF domain suffices to displace cofilin from F actin. Thus, in addition to its actin-nucleating activities, the C. pneumoniae CPn0572 also stabilizes preformed host actin filaments.
Collapse
Affiliation(s)
- Rafat Zrieq
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Ha' il, Ha' il, Saudi Arabia.,Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Corinna Braun
- Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Johannes H Hegemann
- Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
40
|
McKuen MJ, Mueller KE, Bae YS, Fields KA. Fluorescence-Reported Allelic Exchange Mutagenesis Reveals a Role for Chlamydia trachomatis TmeA in Invasion That Is Independent of Host AHNAK. Infect Immun 2017; 85:e00640-17. [PMID: 28970272 PMCID: PMC5695130 DOI: 10.1128/iai.00640-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/21/2017] [Indexed: 01/05/2023] Open
Abstract
Development of approaches to genetically manipulate Chlamydia is fostering important advances in understanding pathogenesis. Fluorescence-reported allelic exchange mutagenesis (FRAEM) now enables the complete deletion of specific genes in C. trachomatis L2. We have leveraged this technology to delete the coding sequences for a known type III effector. The evidence provided here indicates that CT694/CTL0063 is a virulence protein involved in chlamydial invasion. Based on our findings, we designate the gene product corresponding to ct694-ctl0063translocated membrane-associated effector A (TmeA). Deletion of tmeA did not impact development of intracellular chlamydiae. However, the absence of TmeA manifested as a decrease in infectivity in both tissue culture and murine infection models. The in vitro defect was reflected by impaired invasion of host cells. TmeA binds human AHNAK, and we demonstrate here that AHNAK is transiently recruited by invading chlamydiae. TmeA, however, is not required for endogenous AHNAK recruitment. TmeA also impairs AHNAK-dependent actin bundling activity. This TmeA-mediated effect likely does not explain impaired invasion displayed by the tmeA strain of Chlamydia, since AHNAK-deficient cells revealed no invasion phenotype. Overall, our data indicate the efficacy of FRAEM and reveal a role of TmeA during chlamydial invasion that manifests independently of effects on AHNAK.
Collapse
Affiliation(s)
- M J McKuen
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - K E Mueller
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Y S Bae
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - K A Fields
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
41
|
Abstract
Both actin and microtubules are major cytoskeletal elements in eukaryotic cells that participate in many cellular processes, including cell division and motility, vesicle and organelle movement, and the maintenance of cell shape. Inside its host cell, the human pathogen Chlamydia trachomatis manipulates the cytoskeleton to promote its survival and enhance its pathogenicity. In particular, Chlamydia induces the drastic rearrangement of both actin and microtubules, which is vital for its entry, inclusion structure and development, and host cell exit. As significant progress in Chlamydia genetics has greatly enhanced our understanding of how this pathogen co-opts the host cytoskeleton, we will discuss the machinery used by Chlamydia to coordinate the reorganization of actin and microtubules.
Collapse
Affiliation(s)
- Jordan Wesolowski
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Fabienne Paumet
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
42
|
Impact of capsaicin, an active component of chili pepper, on pathogenic chlamydial growth (Chlamydia trachomatis and Chlamydia pneumoniae) in immortal human epithelial HeLa cells. J Infect Chemother 2017; 24:130-137. [PMID: 29132924 DOI: 10.1016/j.jiac.2017.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 11/21/2022]
Abstract
Chlamydia trachomatis is the leading cause of sexually transmitted infections worldwide. Capsaicin, a component of chili pepper, which can stimulate actin remodeling via capsaicin receptor TRPV1 (transient receptor potential vanilloid 1) and anti-inflammatory effects via PPARγ (peroxisome proliferator-activated receptor-γ) and LXRα (liver X receptor α), is a potential candidate to control chlamydial growth in host cells. We examined whether capsaicin could inhibit C. trachomatis growth in immortal human epithelial HeLa cells. Inclusion forming unit and quantitative PCR assays showed that capsaicin significantly inhibited bacterial growth in cells in a dose-dependent manner, even in the presence of cycloheximide, a eukaryotic protein synthesis inhibitor. Confocal microscopic and transmission electron microscopic observations revealed an obvious decrease in bacterial numbers to inclusions bodies formed in the cells. Although capsaicin can stimulate the apoptosis of cells, no increase in cleaved PARP (poly (ADP-ribose) polymerase), an apoptotic indicator, was observed at a working concentration. All of the drugs tested (capsazepine, a TRPV1 antagonist; 5CPPSS-50, an LXRα inhibitor; and T0070907, a PPARγ inhibitor) had no effect on chlamydial inhibition in the presence of capsaicin. In addition, we also confirmed that capsaicin inhibited Chlamydia pneumoniae growth, indicating a phenomena not specific to C. trachomatis. Thus, we conclude that capsaicin can block chlamydial growth without the requirement of host cell protein synthesis, but by another, yet to be defined, mechanism.
Collapse
|
43
|
Häcker G. The role of septins in infections with vacuole-dwelling intracellular bacteria. Int J Med Microbiol 2017; 308:25-31. [PMID: 28784332 DOI: 10.1016/j.ijmm.2017.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/21/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022] Open
Abstract
Septins are a relatively little understood group of GTPases that form large assemblies in cells from all eukaryotes other than plants. Septins were first identified in cell division but have also been implicated in microbial infections. Septins often associate with cytoskeletal proteins - most often described for filamentous (F-) actin - and are considered cytoskeletal components themselves. Septins have increasingly been found to partake in processes that are linked to intracellular membranes, from mitochondria to phagosomes, and evidence is accumulating that septins specifically bind to membranes. Since a number of microorganisms have specialized to live and grow inside membranous vacuoles in the cytosol of mammalian cells, this membrane-association of septins suggests that septins may also be involved in the membranous, vacuolar structures that develop around these microbes. However, data are limited on this issue: septins have been identified by proteome analysis on some microbe-bearing vacuoles, but more extensive experimental data are only available for infections with the obligate intracellular bacterium Chlamydia trachomatis. In this review article I will discuss the available data and speculate about the mechanisms of recruitment and potential functions of septins for vacuole-dwelling microorganisms, which may be peculiar to Chlamydia or may pertain more generally to this class of microbes.
Collapse
Affiliation(s)
- Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center-University of Freiburg, Faculty of Medicine, 79104 Freiburg, Germany.
| |
Collapse
|
44
|
Chlamydia Hijacks ARF GTPases To Coordinate Microtubule Posttranslational Modifications and Golgi Complex Positioning. mBio 2017; 8:mBio.02280-16. [PMID: 28465429 PMCID: PMC5414008 DOI: 10.1128/mbio.02280-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The intracellular bacterium Chlamydia trachomatis develops in a parasitic compartment called the inclusion. Posttranslationally modified microtubules encase the inclusion, controlling the positioning of Golgi complex fragments around the inclusion. The molecular mechanisms by which Chlamydia coopts the host cytoskeleton and the Golgi complex to sustain its infectious compartment are unknown. Here, using a genetically modified Chlamydia strain, we discovered that both posttranslationally modified microtubules and Golgi complex positioning around the inclusion are controlled by the chlamydial inclusion protein CT813/CTL0184/InaC and host ARF GTPases. CT813 recruits ARF1 and ARF4 to the inclusion membrane, where they induce posttranslationally modified microtubules. Similarly, both ARF isoforms are required for the repositioning of Golgi complex fragments around the inclusion. We demonstrate that CT813 directly recruits ARF GTPases on the inclusion membrane and plays a pivotal role in their activation. Together, these results reveal that Chlamydia uses CT813 to hijack ARF GTPases to couple posttranslationally modified microtubules and Golgi complex repositioning at the inclusion. Chlamydia trachomatis is an important cause of morbidity and a significant economic burden in the world. However, how Chlamydia develops its intracellular compartment, the so-called inclusion, is poorly understood. Using genetically engineered Chlamydia mutants, we discovered that the effector protein CT813 recruits and activates host ADP-ribosylation factor 1 (ARF1) and ARF4 to regulate microtubules. In this context, CT813 acts as a molecular platform that induces the posttranslational modification of microtubules around the inclusion. These cages are then used to reposition the Golgi complex during infection and promote the development of the inclusion. This study provides the first evidence that ARF1 and ARF4 play critical roles in controlling posttranslationally modified microtubules around the inclusion and that Chlamydia trachomatis hijacks this novel function of ARF to reposition the Golgi complex.
Collapse
|
45
|
Abstract
Intracellular bacterial pathogens have evolved to exploit the protected niche provided within the boundaries of a eukaryotic host cell. Upon entering a host cell, some bacteria can evade the adaptive immune response of its host and replicate in a relatively nutrient-rich environment devoid of competition from other host flora. Growth within a host cell is not without their hazards, however. Many pathogens enter their hosts through receptor-mediated endocytosis or phagocytosis, two intracellular trafficking pathways that terminate in a highly degradative organelle, the phagolysosome. This usually deadly compartment is maintained at a low pH and contains degradative enzymes and reactive oxygen species, resulting in an environment to which few bacterial species are adapted. Some intracellular pathogens, such as Shigella, Listeria, Francisella, and Rickettsia, escape the phagosome to replicate within the cytosol of the host cell. Bacteria that remain within a vacuole either alter the trafficking of their initial phagosomal compartment or adapt to survive within the harsh environment it will soon become. In this chapter, we focus on the mechanisms by which different vacuolar pathogens either evade lysosomal fusion, as in the case of Mycobacterium and Chlamydia, or allow interaction with lysosomes to varying degrees, such as Brucella and Coxiella, and their specific adaptations to inhabit a replicative niche.
Collapse
|
46
|
Colonne PM, Winchell CG, Voth DE. Hijacking Host Cell Highways: Manipulation of the Host Actin Cytoskeleton by Obligate Intracellular Bacterial Pathogens. Front Cell Infect Microbiol 2016; 6:107. [PMID: 27713866 PMCID: PMC5031698 DOI: 10.3389/fcimb.2016.00107] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/05/2016] [Indexed: 12/31/2022] Open
Abstract
Intracellular bacterial pathogens replicate within eukaryotic cells and display unique adaptations that support key infection events including invasion, replication, immune evasion, and dissemination. From invasion to dissemination, all stages of the intracellular bacterial life cycle share the same three-dimensional cytosolic space containing the host cytoskeleton. For successful infection and replication, many pathogens hijack the cytoskeleton using effector proteins introduced into the host cytosol by specialized secretion systems. A subset of effectors contains eukaryotic-like motifs that mimic host proteins to exploit signaling and modify specific cytoskeletal components such as actin and microtubules. Cytoskeletal rearrangement promotes numerous events that are beneficial to the pathogen, including internalization of bacteria, structural support for bacteria-containing vacuoles, altered vesicular trafficking, actin-dependent bacterial movement, and pathogen dissemination. This review highlights a diverse group of obligate intracellular bacterial pathogens that manipulate the host cytoskeleton to thrive within eukaryotic cells and discusses underlying molecular mechanisms that promote these dynamic host-pathogen interactions.
Collapse
Affiliation(s)
- Punsiri M Colonne
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | - Caylin G Winchell
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | - Daniel E Voth
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| |
Collapse
|
47
|
Choe JE, Welch MD. Actin-based motility of bacterial pathogens: mechanistic diversity and its impact on virulence. Pathog Dis 2016; 74:ftw099. [PMID: 27655913 DOI: 10.1093/femspd/ftw099] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A diverse spectrum of intracellular bacterial pathogens that inhabit the cytosol have evolved the ability to polymerize actin on their surface to power intracellular actin-based motility (ABM). These include species of Listeria, Burkholderia and Rickettsia, as well as Shigella and Mycobacteria Here, we provide an overview of the roles of bacterial ABM in survival and virulence. Moreover, we survey the molecular mechanisms of actin polymerization in host cells and describe how bacterial pathogens mimic or harness the full diversity of these mechanisms for ABM. Finally, we present ABM through a new lens by comparing motility mechanisms between related species of Listeria, Burkholderia, and Rickettsia Through these comparisons, we hope to illuminate how exploitation of different actin polymerization mechanisms influences ABM as well as pathogenicity and virulence in humans and other animals.
Collapse
Affiliation(s)
- Julie E Choe
- Department of Molecular & Cell Biology, University of California, Berkeley CA 94720 USA
| | - Matthew D Welch
- Department of Molecular & Cell Biology, University of California, Berkeley CA 94720 USA
| |
Collapse
|
48
|
Parrett CJ, Lenoci RV, Nguyen B, Russell L, Jewett TJ. Targeted Disruption of Chlamydia trachomatis Invasion by in Trans Expression of Dominant Negative Tarp Effectors. Front Cell Infect Microbiol 2016; 6:84. [PMID: 27602332 PMCID: PMC4993794 DOI: 10.3389/fcimb.2016.00084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/03/2016] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis invasion of eukaryotic host cells is facilitated, in part, by the type III secreted effector protein, Tarp. The role of Tarp in chlamydiae entry of host cells is supported by molecular approaches that examined recombinant Tarp or Tarp effectors expressed within heterologous systems. A major limitation in the ability to study the contribution of Tarp to chlamydial invasion of host cells was the prior absence of genetic tools for chlamydiae. Based on our knowledge of Tarp domain structure and function along with the introduction of genetic approaches in C. trachomatis, we hypothesized that Tarp function could be disrupted in vivo by the introduction of dominant negative mutant alleles. We provide evidence that transformed C. trachomatis produced epitope tagged Tarp, which was secreted into the host cell during invasion. We examined the effects of domain specific Tarp mutations on chlamydial invasion and growth and demonstrate that C. trachomatis clones harboring engineered Tarp mutants lacking either the actin binding domain or the phosphorylation domain had reduced levels of invasion into host cells. These data provide the first in vivo evidence for the critical role of Tarp in C. trachomatis pathogenesis and indicate that chlamydial invasion of host cells can be attenuated via the introduction of engineered dominant negative type three effectors.
Collapse
Affiliation(s)
- Christopher J Parrett
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Robert V Lenoci
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Brenda Nguyen
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Lauren Russell
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Travis J Jewett
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| |
Collapse
|
49
|
Radomski N, Einenkel R, Müller A, Knittler MR. Chlamydia-host cell interaction not only from a bird's eye view: some lessons fromChlamydia psittaci. FEBS Lett 2016; 590:3920-3940. [DOI: 10.1002/1873-3468.12295] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Nadine Radomski
- Friedrich-Loeffler-Institut; Institute of Immunology; Isle of Riems Germany
| | - Rebekka Einenkel
- Friedrich-Loeffler-Institut; Institute of Immunology; Isle of Riems Germany
| | - Anne Müller
- Friedrich-Loeffler-Institut; Institute of Immunology; Isle of Riems Germany
| | - Michael R Knittler
- Friedrich-Loeffler-Institut; Institute of Immunology; Isle of Riems Germany
| |
Collapse
|
50
|
Identification and Characterization of a Candidate Wolbachia pipientis Type IV Effector That Interacts with the Actin Cytoskeleton. mBio 2016; 7:mBio.00622-16. [PMID: 27381293 PMCID: PMC4958246 DOI: 10.1128/mbio.00622-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Many bacteria live as intracellular symbionts, causing persistent infections within insects. One extraordinarily common infection is that of Wolbachia pipientis, which infects 40% of insect species and induces reproductive effects. The bacteria are passed from generation to generation both vertically (through the oocyte) and horizontally (by environmental transmission). Maintenance of the infection within Drosophila melanogaster is sensitive to the regulation of actin, as Wolbachia inefficiently colonizes strains hemizygous for the profilin or villin genes. Therefore, we hypothesized that Wolbachia must depend on the host actin cytoskeleton. In this study, we identify and characterize a Wolbachia protein (WD0830) that is predicted to be secreted by the bacterial parasite. Expression of WD0830 in a model eukaryote (the yeast Saccharomyces cerevisiae) induces a growth defect associated with the appearance of aberrant, filamentous structures which colocalize with rhodamine-phalloidin-stained actin. Purified WD0830 bundles actin in vitro and cosediments with actin filaments, suggesting a direct interaction of the two proteins. We characterized the expression of WD0830 throughout Drosophila development and found it to be upregulated in third-instar larvae, peaking in early pupation, during the critical formation of adult tissues, including the reproductive system. In transgenic flies, heterologously expressed WD0830 localizes to the developing oocyte. Additionally, overexpression of WD0830 results in increased Wolbachia titers in whole flies, in stage 9 and 10 oocytes, and in embryos, compared to controls, suggesting that the protein may facilitate Wolbachia's replication or transmission. Therefore, this candidate secreted effector may play a role in Wolbachia's infection of and persistence within host niches. IMPORTANCE The obligate intracellular Wolbachia pipientis is a ubiquitous alphaproteobacterial symbiont of arthropods and nematodes and is related to the rickettsial pathogens Ehrlichia spp. and Anaplasma spp. Studies of Wolbachia cell biology suggest that this bacterium relies on host actin for efficient proliferation and transmission between generations. Here, we identified and characterized a Wolbachia protein that localizes to and manipulates the eukaryotic actin cytoskeleton, is expressed by Wolbachia during host development, and alters Wolbachia titers and localization in transgenic fruit flies. We hypothesize that WD0830 may be utilized by the bacterium to facilitate replication in or invasion of different niches during host development.
Collapse
|