1
|
Lama-Diaz T, Blanco MG. Alternative translation initiation by ribosomal leaky scanning produces multiple isoforms of the Pif1 helicase. Nucleic Acids Res 2024; 52:6928-6944. [PMID: 38783074 PMCID: PMC11229318 DOI: 10.1093/nar/gkae400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
In budding yeast, the integrity of both the nuclear and mitochondrial genomes relies on dual-targeted isoforms of the conserved Pif1 helicase, generated by alternative translation initiation (ATI) of PIF1 mRNA from two consecutive AUG codons flanking a mitochondrial targeting signal. Here, we demonstrate that ribosomal leaky scanning is the specific ATI mechanism that produces not only these, but also novel, previously uncharacterized Pif1 isoforms. Both in-frame, downstream AUGs as well as near-cognate start codons contribute to the generation of these alternative isoforms. This has crucial implications for the rational design of genuine separation-of-function alleles and provides an explanation for the suboptimal behaviour of the widely employed mitochondrial- (pif1-m1) and nuclear-deficient (pif1-m2) alleles, with mutations in the first or second AUG codon, respectively. We have taken advantage of this refined model to develop improved versions of these alleles, which will serve as valuable tools to elucidate novel functions of this helicase and to disambiguate previously described genetic interactions of PIF1 in the context of nuclear and mitochondrial genome stability.
Collapse
Affiliation(s)
- Tomas Lama-Diaz
- Department of Biochemistry and Molecular Biology, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, A Coruña 15782, Spain
| | - Miguel G Blanco
- Department of Biochemistry and Molecular Biology, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, A Coruña 15782, Spain
| |
Collapse
|
2
|
Wei D, Mai Z, Li X, Yu T, Li J. Poly(G) 7 box: a functional element of mammalian 18S rRNA involved in translation. RNA Biol 2024; 21:8-18. [PMID: 39233564 PMCID: PMC11382726 DOI: 10.1080/15476286.2024.2399310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
In eukaryotes, the ribosomal small subunit (40S) is composed of 18S rRNA and 33 ribosomal proteins. 18S rRNA has a special secondary structure and is an indispensable part of the translation process. Herein, a special sequence located in mammalian 18S rRNA named Poly(G)7box, which is composed of seven guanines, was found. Poly(G)7 can form a special and stable secondary structure by binding to the translation elongation factor subunit eEF1D and the ribosomal protein RPL32. Poly(G)7box was transfected into cells, and the translation efficiency of cells was inhibited. We believe that Poly(G)7box is an important translation-related functional element located on mammalian 18S rRNA, meanwhile the Poly(G)7 located on mRNA 5' and 3' box does not affect mRNA translation.
Collapse
Affiliation(s)
- Dahao Wei
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhangyu Mai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xinan Li
- Laboratory of Oncology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Tianli Yu
- Laboratory of Oncology and Immunology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiangchao Li
- Laboratory of Oncology and Immunology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
3
|
Singh S, Shyamal S, Panda AC. Detecting RNA-RNA interactome. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1715. [PMID: 35132791 DOI: 10.1002/wrna.1715] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The last decade has seen a robust increase in various types of novel RNA molecules and their complexity in gene regulation. RNA molecules play a critical role in cellular events by interacting with other biomolecules, including protein, DNA, and RNA. It has been established that RNA-RNA interactions play a critical role in several biological processes by regulating the biogenesis and function of RNA molecules. Interestingly, RNA-RNA interactions regulate the biogenesis of diverse RNA molecules, including mRNAs, microRNAs, tRNAs, and circRNAs, through splicing or backsplicing. Structured RNAs like rRNA, tRNA, and snRNAs achieve their functional conformation by intramolecular RNA-RNA interactions. In addition, functional consequences of many intermolecular RNA-RNA interactions have been extensively studied in the regulation of gene expression. Hence, it is essential to understand the mechanism and functions of RNA-RNA interactions in eukaryotes. Conventionally, RNA-RNA interactions have been identified through diverse biochemical methods for decades. The advent of high-throughput RNA-sequencing technologies has revolutionized the identification of global RNA-RNA interactome in cells and their importance in RNA structure and function in gene expression regulation. Although these technologies revealed tens of thousands of intramolecular and intermolecular RNA-RNA interactions, we further look forward to future unbiased and quantitative high-throughput technologies for detecting transcriptome-wide RNA-RNA interactions. With the ability to detect RNA-RNA interactome, we expect that future studies will reveal the higher-order structures of RNA molecules and multi-RNA hybrids impacting human health and diseases. This article is categorized under: RNA Methods > RNA Analyses In Vitro and In Silico RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Suman Singh
- Institute of Life Sciences, Nalco Square, Bhubaneswar, India
- Regional Center for Biotechnology, Faridabad, India
| | | | - Amaresh C Panda
- Institute of Life Sciences, Nalco Square, Bhubaneswar, India
| |
Collapse
|
4
|
Eisenhut P, Mebrahtu A, Moradi Barzadd M, Thalén N, Klanert G, Weinguny M, Sandegren A, Su C, Hatton D, Borth N, Rockberg J. Systematic use of synthetic 5'-UTR RNA structures to tune protein translation improves yield and quality of complex proteins in mammalian cell factories. Nucleic Acids Res 2020; 48:e119. [PMID: 33051690 PMCID: PMC7672427 DOI: 10.1093/nar/gkaa847] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/28/2020] [Accepted: 09/22/2020] [Indexed: 12/30/2022] Open
Abstract
Predictably regulating protein expression levels to improve recombinant protein production has become an important tool, but is still rarely applied to engineer mammalian cells. We therefore sought to set-up an easy-to-implement toolbox to facilitate fast and reliable regulation of protein expression in mammalian cells by introducing defined RNA hairpins, termed 'regulation elements (RgE)', in the 5'-untranslated region (UTR) to impact translation efficiency. RgEs varying in thermodynamic stability, GC-content and position were added to the 5'-UTR of a fluorescent reporter gene. Predictable translation dosage over two orders of magnitude in mammalian cell lines of hamster and human origin was confirmed by flow cytometry. Tuning heavy chain expression of an IgG with the RgEs to various levels eventually resulted in up to 3.5-fold increased titers and fewer IgG aggregates and fragments in CHO cells. Co-expression of a therapeutic Arylsulfatase-A with RgE-tuned levels of the required helper factor SUMF1 demonstrated that the maximum specific sulfatase activity was already attained at lower SUMF1 expression levels, while specific production rates steadily decreased with increasing helper expression. In summary, we show that defined 5'-UTR RNA-structures represent a valid tool to systematically tune protein expression levels in mammalian cells and eventually help to optimize recombinant protein expression.
Collapse
Affiliation(s)
- Peter Eisenhut
- ACIB Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
- BOKU University of Natural Resources and Life Sciences, Department of Biotechnology, Vienna 1190, Austria
| | - Aman Mebrahtu
- KTH Royal Institute of Technology, Department of Protein Science, 10691 Stockholm, Sweden
| | - Mona Moradi Barzadd
- KTH Royal Institute of Technology, Department of Protein Science, 10691 Stockholm, Sweden
| | - Niklas Thalén
- KTH Royal Institute of Technology, Department of Protein Science, 10691 Stockholm, Sweden
| | - Gerald Klanert
- ACIB Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
| | - Marcus Weinguny
- ACIB Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
- BOKU University of Natural Resources and Life Sciences, Department of Biotechnology, Vienna 1190, Austria
| | - Anna Sandegren
- Affibody Medical AB, Scheeles väg 2, SE-171 65 Solna, Sweden
| | - Chao Su
- SOBI AB, Tomtebodavägen 23A, Stockholm, Sweden
| | - Diane Hatton
- AstraZeneca, Biopharmaceutical Development, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| | - Nicole Borth
- ACIB Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
- BOKU University of Natural Resources and Life Sciences, Department of Biotechnology, Vienna 1190, Austria
| | - Johan Rockberg
- KTH Royal Institute of Technology, Department of Protein Science, 10691 Stockholm, Sweden
| |
Collapse
|
5
|
Lahey HG, Webber CJ, Golebiowski D, Izzo CM, Horn E, Taghian T, Rodriguez P, Batista AR, Ellis LE, Hwang M, Martin DR, Gray-Edwards H, Sena-Esteves M. Pronounced Therapeutic Benefit of a Single Bidirectional AAV Vector Administered Systemically in Sandhoff Mice. Mol Ther 2020; 28:2150-2160. [PMID: 32592687 DOI: 10.1016/j.ymthe.2020.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/06/2020] [Accepted: 06/15/2020] [Indexed: 11/25/2022] Open
Abstract
The GM2 gangliosidoses, Tay-Sachs disease (TSD) and Sandhoff disease (SD), are fatal lysosomal storage disorders caused by mutations in the HEXA and HEXB genes, respectively. These mutations cause dysfunction of the lysosomal enzyme β-N-acetylhexosaminidase A (HexA) and accumulation of GM2 ganglioside (GM2) with ensuing neurodegeneration, and death by 5 years of age. Until recently, the most successful therapy was achieved by intracranial co-delivery of monocistronic adeno-associated viral (AAV) vectors encoding Hex alpha and beta-subunits in animal models of SD. The blood-brain barrier crossing properties of AAV9 enables systemic gene therapy; however, the requirement of co-delivery of two monocistronic AAV vectors to overexpress the heterodimeric HexA protein has prevented the use of this approach. To address this need, we developed multiple AAV constructs encoding simultaneously HEXA and HEXB using AAV9 and AAV-PHP.B and tested their therapeutic efficacy in 4- to 6-week-old SD mice after systemic administration. Survival and biochemical outcomes revealed superiority of the AAV vector design using a bidirectional CBA promoter with equivalent dose-dependent outcomes for both capsids. AAV-treated mice performed normally in tests of motor function, CNS GM2 ganglioside levels were significantly reduced, and survival increased by >4-fold with some animals surviving past 2 years of age.
Collapse
Affiliation(s)
- Hannah G Lahey
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Chelsea J Webber
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Diane Golebiowski
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Cassandra M Izzo
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Erin Horn
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Toloo Taghian
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Paola Rodriguez
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ana Rita Batista
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lauren E Ellis
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Misako Hwang
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL, USA; Department of Anatomy, Physiology & Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Heather Gray-Edwards
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Miguel Sena-Esteves
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
6
|
Koley S, Rozenbaum M, Fainzilber M, Terenzio M. Translating regeneration: Local protein synthesis in the neuronal injury response. Neurosci Res 2019; 139:26-36. [DOI: 10.1016/j.neures.2018.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/13/2018] [Accepted: 10/02/2018] [Indexed: 12/21/2022]
|
7
|
The functional role of polyamines in eukaryotic cells. Int J Biochem Cell Biol 2018; 107:104-115. [PMID: 30578954 DOI: 10.1016/j.biocel.2018.12.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/15/2018] [Accepted: 12/19/2018] [Indexed: 11/22/2022]
Abstract
Polyamines, consisting of putrescine, spermidine and spermine are essential for normal cell growth and viability in eukaryotic cells. Since polyamines are cations, they interact with DNA, ATP, phospholipids, specific kinds of proteins, and especially with RNA. Consequently, the functions of these acidic compounds and some proteins are modified by polyamines. In this review, the functional modifications of these molecules by polyamines are presented. Structural change of specific mRNAs by polyamines causes the stimulation of the synthesis of several different proteins, which are important for cell growth and viability. eIF5 A, the only known protein containing a spermidine derivative, i.e. hypusine, also functions at the level of translation. Experimental results thus far obtained strongly suggest that the most important function of polyamines is at the level of translation.
Collapse
|
8
|
Interaction of rRNA with mRNA and tRNA in Translating Mammalian Ribosome: Functional Implications in Health and Disease. Biomolecules 2018; 8:biom8040100. [PMID: 30261607 PMCID: PMC6316650 DOI: 10.3390/biom8040100] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/31/2018] [Accepted: 09/13/2018] [Indexed: 01/01/2023] Open
Abstract
RNA-RNA interaction slowly emerges as a critical component for the smooth functioning of gene expression processes, in particular in translation where the central actor is an RNA powered molecular machine. Overall, ribosome dynamic results from sequential interactions between three main RNA species: ribosomal, transfer and messenger RNA (rRNA, tRNA and mRNA). In recent decades, special attention has been paid to the physical principles governing codon-anticodon pairing, whereas individual RNA positioning mostly relies on ribosomal RNA framework. Here, we provide a brief overview on the actual knowledge of RNA infrastructure throughout the process of translation in mammalian cells: where and how do these physical contacts occur? What are their potential roles and functions? Are they involved in disease development? What will be the main challenges ahead?
Collapse
|
9
|
Mauro VP, Chappell SA. Considerations in the Use of Codon Optimization for Recombinant Protein Expression. Methods Mol Biol 2018; 1850:275-288. [PMID: 30242693 DOI: 10.1007/978-1-4939-8730-6_18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Codon optimization is a gene engineering approach that is commonly used for enhancing recombinant protein expression. This approach is possible because (1) degeneracy of the genetic code enables most amino acids to be encoded by multiple codons and (2) different mRNAs encoding the same protein can vary dramatically in the amount of protein expressed. However, because codon optimization potentially disrupts overlapping information encoded in mRNA coding regions, protein structure and function may be altered. This chapter discusses the use of codon optimization for various applications in mammalian cells as well as potential consequences, so that informed decisions can be made on the appropriateness of using this approach in each case.
Collapse
|
10
|
Martin F, Ménétret JF, Simonetti A, Myasnikov AG, Vicens Q, Prongidi-Fix L, Natchiar SK, Klaholz BP, Eriani G. Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation. Nat Commun 2016; 7:12622. [PMID: 27554013 PMCID: PMC4999511 DOI: 10.1038/ncomms12622] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/18/2016] [Indexed: 02/07/2023] Open
Abstract
Eukaryotic mRNAs often contain a Kozak sequence that helps tether the ribosome to the AUG start codon. The mRNA of histone H4 (h4) does not undergo classical ribosome scanning but has evolved a specific tethering mechanism. The cryo-EM structure of the rabbit ribosome complex with mouse h4 shows that the mRNA forms a folded, repressive structure at the mRNA entry site on the 40S subunit next to the tip of helix 16 of 18S ribosomal RNA (rRNA). Toe-printing and mutational assays reveal that an interaction exists between a purine-rich sequence in h4 mRNA and a complementary UUUC sequence of helix h16. Together the present data establish that the h4 mRNA harbours a sequence complementary to an 18S rRNA sequence which tethers the mRNA to the ribosome to promote proper start codon positioning, complementing the interactions of the 40S subunit with the Kozak sequence that flanks the AUG start codon. Prokaryotic translation initiation involves mRNA-ribosomal RNA base pairing interactions. Here, the authors provide evidence for a similar base pairing interactions occurring between the human h4 mRNA and helix 16 of the small subunit rRNA to position the correct AUG codon in the decoding site.
Collapse
Affiliation(s)
- Franck Martin
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique (CNRS) UPR9002, Institute of Molecular and Cellular Biology (IBMC), Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Jean-François Ménétret
- Department of Integrated Structural Biology, Centre for Integrative Biology (CBI), IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France.,CNRS UMR 7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, 67404 Illkirch, France.,Université de Strasbourg, 67081 Strasbourg, France
| | - Angelita Simonetti
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique (CNRS) UPR9002, Institute of Molecular and Cellular Biology (IBMC), Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Alexander G Myasnikov
- Department of Integrated Structural Biology, Centre for Integrative Biology (CBI), IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France.,CNRS UMR 7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, 67404 Illkirch, France.,Université de Strasbourg, 67081 Strasbourg, France
| | - Quentin Vicens
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique (CNRS) UPR9002, Institute of Molecular and Cellular Biology (IBMC), Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Lydia Prongidi-Fix
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique (CNRS) UPR9002, Institute of Molecular and Cellular Biology (IBMC), Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - S Kundhavai Natchiar
- Department of Integrated Structural Biology, Centre for Integrative Biology (CBI), IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France.,CNRS UMR 7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, 67404 Illkirch, France.,Université de Strasbourg, 67081 Strasbourg, France
| | - Bruno P Klaholz
- Department of Integrated Structural Biology, Centre for Integrative Biology (CBI), IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France.,CNRS UMR 7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, 67404 Illkirch, France.,Université de Strasbourg, 67081 Strasbourg, France
| | - Gilbert Eriani
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique (CNRS) UPR9002, Institute of Molecular and Cellular Biology (IBMC), Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| |
Collapse
|
11
|
Hinnebusch AG, Ivanov IP, Sonenberg N. Translational control by 5'-untranslated regions of eukaryotic mRNAs. Science 2016; 352:1413-6. [PMID: 27313038 DOI: 10.1126/science.aad9868] [Citation(s) in RCA: 697] [Impact Index Per Article: 87.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The eukaryotic 5' untranslated region (UTR) is critical for ribosome recruitment to the messenger RNA (mRNA) and start codon choice and plays a major role in the control of translation efficiency and shaping the cellular proteome. The ribosomal initiation complex is assembled on the mRNA via a cap-dependent or cap-independent mechanism. We describe various mechanisms controlling ribosome scanning and initiation codon selection by 5' upstream open reading frames, translation initiation factors, and primary and secondary structures of the 5'UTR, including particular sequence motifs. We also discuss translational control via phosphorylation of eukaryotic initiation factor 2, which is implicated in learning and memory, neurodegenerative diseases, and cancer.
Collapse
Affiliation(s)
- Alan G Hinnebusch
- Group on Cell Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivaylo P Ivanov
- Group on Cell Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, Quebec H3A 1A3, Canada.
| |
Collapse
|
12
|
Green KM, Linsalata AE, Todd PK. RAN translation-What makes it run? Brain Res 2016; 1647:30-42. [PMID: 27060770 DOI: 10.1016/j.brainres.2016.04.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/24/2016] [Accepted: 04/01/2016] [Indexed: 12/14/2022]
Abstract
Nucleotide-repeat expansions underlie a heterogeneous group of neurodegenerative and neuromuscular disorders for which there are currently no effective therapies. Recently, it was discovered that such repetitive RNA motifs can support translation initiation in the absence of an AUG start codon across a wide variety of sequence contexts, and that the products of these atypical translation initiation events contribute to neuronal toxicity. This review examines what we currently know and do not know about repeat associated non-AUG (RAN) translation in the context of established canonical and non-canonical mechanisms of translation initiation. We highlight recent findings related to RAN translation in three repeat expansion disorders: CGG repeats in fragile X-associated tremor ataxia syndrome (FXTAS), GGGGCC repeats in C9orf72 associated amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) and CAG repeats in Huntington disease. These studies suggest that mechanistic differences may exist for RAN translation dependent on repeat type, repeat reading frame, and the surrounding sequence context, but that for at least some repeats, RAN translation retains a dependence on some of the canonical translational initiation machinery. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease.
Collapse
Affiliation(s)
- Katelyn M Green
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Alexander E Linsalata
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Peter K Todd
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Veterans Affairs Medical Center, Ann Arbor, MI, United States.
| |
Collapse
|
13
|
Abstract
Two studies by Meyer et al. and Wang et al. demonstrate a role for m(6)A modification of mRNA in stimulating translation initiation. These findings add to the growing number of diverse mechanisms for translation initiation in eukaryotes.
Collapse
|
14
|
Gan R, Jewett MC. Evolution of translation initiation sequences using in vitro yeast ribosome display. Biotechnol Bioeng 2016; 113:1777-86. [PMID: 26757179 DOI: 10.1002/bit.25933] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 12/13/2015] [Accepted: 01/07/2016] [Indexed: 11/08/2022]
Abstract
We report a novel in vitro yeast ribosome display method based on cell-free protein synthesis (CFPS) using linear DNA templates. We demonstrate that our platform can enrich a target gene from a model library by 100-fold per round of selection. We demonstrate the utility of our approach by evolving cap-independent translation initiation (CITI) sequences, which result in a 13-fold increase in CFPS yields after four rounds of selection, and a threefold further increase by placing the beneficial short sequences in tandem. We also show that 12 of the selected CITI sequences permit precise control of gene expression in vitro over a range of up to 80-fold by enhancing translation (and not as cryptic promoters). These 12 sequences are then shown to tune protein expression in vivo, though likely due to a different mechanism. Looking forward, yeast ribosome display holds promise for evolving libraries of proteins and DNA regulatory parts for protein engineering and synthetic biology. Biotechnol. Bioeng. 2016;113: 1777-1786. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rui Gan
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208. .,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois. .,Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois. .,Simpson Querrey Institute, Northwestern University, Evanston, Illinois.
| |
Collapse
|
15
|
Kumar M, Srinivas V, Patankar S. Upstream AUGs and upstream ORFs can regulate the downstream ORF in Plasmodium falciparum. Malar J 2015; 14:512. [PMID: 26692187 PMCID: PMC4687322 DOI: 10.1186/s12936-015-1040-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 12/08/2015] [Indexed: 11/10/2022] Open
Abstract
Background Upstream open reading frames (uORFs) and upstream AUGs (uAUGs) can regulate the translation of downstream ORFs. The AT rich genome of Plasmodium falciparum, due to the higher AT content of start and stop codons, has the potential to give rise to a large number of uORFs and uAUGs that may affect expression of their flanking ORFs. Methods A bioinformatics approach was used to detect uATGs associated with different genes in the parasite. To study the effect of some of these uAUGs on the expression of the downstream ORF, promoters and 5′ leaders containing uAUGs and uORFs were cloned upstream of a luciferase reporter gene. Luciferase assays were carried out in transient transfection experiments to assess the effects of uAUGs and mutations on reporter expression. Results The average number of uATGs and uORFs seen in P. falciparum coding sequences (CDS) is expectedly high compared to other less biased genomes. Certain genes, including the var gene family contain the maximum number of uATGs and uORFs in the parasite. They possess ~5 times more uORFs and ~4.5 times more uAUGs within 100 bases upstream of the start codons than other CDS of the parasite. A 60 bp upstream region containing three ORFs and five ATGs from var gene PF3D7_0400100 and a gene of unknown function (PF3D7_0517100) when cloned upstream of the luciferase start codon, driven by the hsp86 promoter, resulted in loss of luciferase activity. This was restored when all the ATGs present in the −60 bp were mutated to TTGs. Point mutations in the ATGs showed that even one AUG was sufficient to repress the luciferase gene. Conclusions Overall, this work indicates that the P. falciparum genome has a large number of uATGs and uORFs that can repress the expression of flanking ORFs. The role of AUGs in translation initiation suggests that this repression is mediated by preventing the translation initiation complex from reaching the main AUG of the downstream ORF. How the P. falciparum ribosome is able to bypass these uAUGs and uORFs for highly expressed genes remains a question for future research. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-1040-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mayank Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - Vivek Srinivas
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
16
|
Mauro VP, Matsuda D. Translation regulation by ribosomes: Increased complexity and expanded scope. RNA Biol 2015; 13:748-55. [PMID: 26513496 DOI: 10.1080/15476286.2015.1107701] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The primary function of ribosomes is to decode mRNAs into polypeptide chains; however, this description is overly simplistic. Accumulating evidence shows that ribosomes themselves can affect the relative efficiency with which various mRNAs are translated and indicates that these effects can be modulated by ribosome heterogeneity. The notion that ribosomes have regulatory capabilities was elaborated more than a decade ago in the ribosome filter hypothesis. Various lines of evidence support this idea and have shown that the translation of some mRNAs is affected by discrete binding interactions with rRNA or ribosomal proteins. Recent work from our laboratory has demonstrated that base-pairing of the Hepatitis C Virus (HCV) internal ribosome entry site (IRES) to 18S rRNA is required for IRES function, but only in the context of more complex ribosomal interactions. The HCV IRES provides an example of the ribosome filter that involves multiple binding interactions between mRNAs and ribosomal subunits.
Collapse
Affiliation(s)
- Vincent P Mauro
- a Promosome, LLC , San Diego , CA , USA.,b The Scripps Research Institute , La Jolla , CA , USA
| | - Daiki Matsuda
- b The Scripps Research Institute , La Jolla , CA , USA
| |
Collapse
|
17
|
Haimov O, Sinvani H, Dikstein R. Cap-dependent, scanning-free translation initiation mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1313-8. [PMID: 26381322 DOI: 10.1016/j.bbagrm.2015.09.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 12/11/2022]
Abstract
Eukaryotic translation initiation is an intricate and multi-step process that includes 43S Pre-Initiation Complex (PIC) assembly, attachment of the PIC to the mRNA, scanning, start codon selection and 60S subunit joining. Translation initiation of most mRNAs involves recognition of a 5'end m7G cap and ribosomal scanning in which the 5' UTR is checked for complementarity with the AUG. There is however an increasing number of mRNAs directing translation initiation that deviate from the predominant mechanism. In this review we summarize the canonical translation initiation process and describe non-canonical mechanisms that are cap-dependent but operate without scanning. In particular we focus on several examples of translation initiation driven either by mRNAs with extremely short 5' leaders or by highly complex 5' UTRs that promote ribosome shunting.
Collapse
Affiliation(s)
- Ora Haimov
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hadar Sinvani
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rivka Dikstein
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
18
|
Igarashi K, Kashiwagi K. Modulation of protein synthesis by polyamines. IUBMB Life 2015; 67:160-9. [PMID: 25906835 DOI: 10.1002/iub.1363] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/02/2015] [Indexed: 11/09/2022]
Abstract
Polyamines are ubiquitous small basic molecules that play important roles in cell growth and viability. Since polyamines mainly exist as a polyamine-RNA complex, we looked for proteins whose synthesis is preferentially stimulated by polyamines at the level of translation, and thus far identified 17 proteins in Escherichia coli and 6 proteins in eukaryotes. The mechanisms of polyamine stimulation of synthesis of these proteins were investigated. In addition, the role of eIF5A, containing hypusine formed from spermidine, on protein synthesis is described. These results clearly indicate that polyamines and eIF5A contribute to cell growth and viability through modulation of protein synthesis.
Collapse
Affiliation(s)
- Kazuei Igarashi
- Department of Clinical Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-Ku, Chiba, Japan; Amine Pharma Research Institute, Chuo-Ku, Chiba, Japan
| | | |
Collapse
|
19
|
Terui Y, Sakamoto A, Yoshida T, Kasahara T, Tomitori H, Higashi K, Igarashi K, Kashiwagi K. Polyamine stimulation of eEF1A synthesis based on the unusual position of a complementary sequence to 18S rRNA in eEF1A mRNA. Amino Acids 2014; 47:345-56. [PMID: 25425115 DOI: 10.1007/s00726-014-1867-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/02/2014] [Indexed: 01/11/2023]
Abstract
It is thought that Shine-Dalgarno-like sequences, which exhibit complementarity to the nucleotide sequences at the 3'-end of 18S rRNA, are not present in eukaryotic mRNAs. However, complementary sequences consisting of more than 5 nucleotides to the 3'-end of 18S rRNA, i.e., a CR sequence, are present at -17 to -32 upstream from the initiation codon AUG in 18 mRNAs involved in protein synthesis except eEF1A mRNA. Thus, effects of the CR sequence in mRNAs and polyamines on protein synthesis were examined using control and polyamine-reduced FM3A and NIH3T3 cells. Polyamines did not stimulate protein synthesis encoded by 18 mRNAs possessing a normal CR sequence. When the CR sequence was deleted, protein synthetic activities decreased to less than 70% of intact mRNAs. In eEF1A mRNA, the CR sequence was located at -33 to -39 upstream from the initiation codon AUG, and polyamines stimulated eEF1A synthesis about threefold. When the CR sequence was shifted to -22 to -28 upstream from the AUG, eEF1A synthesis increased in polyamine-reduced cells and the degree of polyamine stimulation decreased greatly. The results indicate that the CR sequence exists in many eukaryotic mRNAs, and the location of a CR sequence in mRNAs influences polyamine stimulation of protein synthesis.
Collapse
Affiliation(s)
- Yusuke Terui
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba, 288-0025, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Base pairing between hepatitis C virus RNA and 18S rRNA is required for IRES-dependent translation initiation in vivo. Proc Natl Acad Sci U S A 2014; 111:15385-9. [PMID: 25313046 DOI: 10.1073/pnas.1413472111] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Degeneracy in eukaryotic translation initiation is evident in the initiation strategies of various viruses. Hepatitis C virus (HCV) provides an exceptional example--translation of the HCV RNA is facilitated by an internal ribosome entry site (IRES) that can autonomously bind a 40S ribosomal subunit and accurately position it at the initiation codon. This binding involves both ribosomal protein and 18S ribosomal RNA (rRNA) interactions. In this study, we evaluate the functional significance of the rRNA interaction and show that HCV IRES activity requires a 3-nt Watson-Crick base-pairing interaction between the apical loop of subdomain IIId in the IRES and helix 26 in 18S rRNA. Mutations of these nucleotides in either RNA dramatically disrupted IRES activity. The activities of the mutated HCV IRESs could be restored by compensatory mutations in the 18S rRNA. The effects of the 18S rRNA mutations appeared to be specific inasmuch as ribosomes containing these mutations did not support translation mediated by the wild-type HCV IRES, but did not block translation mediated by the cap structure or other viral IRESs. The present study provides, to our knowledge, the first functional demonstration of mRNA-rRNA base pairing in mammalian cells. By contrast with other rRNA-binding sites in mRNAs that can enhance translation as independent elements, e.g., the Shine-Dalgarno sequence in prokaryotes, the rRNA-binding site in the HCV IRES functions as an essential component of a more complex interaction.
Collapse
|
21
|
A critical analysis of codon optimization in human therapeutics. Trends Mol Med 2014; 20:604-13. [PMID: 25263172 DOI: 10.1016/j.molmed.2014.09.003] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 02/01/2023]
Abstract
Codon optimization describes gene engineering approaches that use synonymous codon changes to increase protein production. Applications for codon optimization include recombinant protein drugs and nucleic acid therapies, including gene therapy, mRNA therapy, and DNA/RNA vaccines. However, recent reports indicate that codon optimization can affect protein conformation and function, increase immunogenicity, and reduce efficacy. We critically review this subject, identifying additional potential hazards including some unique to nucleic acid therapies. This analysis highlights the evolved complexity of codon usage and challenges the scientific bases for codon optimization. Consequently, codon optimization may not provide the optimal strategy for increasing protein production and may decrease the safety and efficacy of biotech therapeutics. We suggest that the use of this approach is reconsidered, particularly for in vivo applications.
Collapse
|
22
|
Luttermann C, Meyers G. Two alternative ways of start site selection in human norovirus reinitiation of translation. J Biol Chem 2014; 289:11739-11754. [PMID: 24599949 PMCID: PMC4002083 DOI: 10.1074/jbc.m114.554030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/03/2014] [Indexed: 01/09/2023] Open
Abstract
The calicivirus minor capsid protein VP2 is expressed via termination/reinitiation. This process depends on an upstream sequence element denoted termination upstream ribosomal binding site (TURBS). We have shown for feline calicivirus and rabbit hemorrhagic disease virus that the TURBS contains three sequence motifs essential for reinitiation. Motif 1 is conserved among caliciviruses and is complementary to a sequence in the 18 S rRNA leading to the model that hybridization between motif 1 and 18 S rRNA tethers the post-termination ribosome to the mRNA. Motif 2 and motif 2* are proposed to establish a secondary structure positioning the ribosome relative to the start site of the terminal ORF. Here, we analyzed human norovirus (huNV) sequences for the presence and importance of these motifs. The three motifs were identified by sequence analyses in the region upstream of the VP2 start site, and we showed that these motifs are essential for reinitiation of huNV VP2 translation. More detailed analyses revealed that the site of reinitiation is not fixed to a single codon and does not need to be an AUG, even though this codon is clearly preferred. Interestingly, we were able to show that reinitiation can occur at AUG codons downstream of the canonical start/stop site in huNV and feline calicivirus but not in rabbit hemorrhagic disease virus. Although reinitiation at the original start site is independent of the Kozak context, downstream initiation exhibits requirements for start site sequence context known for linear scanning. These analyses on start codon recognition give a more detailed insight into this fascinating mechanism of gene expression.
Collapse
Affiliation(s)
- Christine Luttermann
- Institut für Immunologie, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Insel Riems, Germany.
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Insel Riems, Germany.
| |
Collapse
|
23
|
A non-canonical initiation site is required for efficient translation of the dendritically localized Shank1 mRNA. PLoS One 2014; 9:e88518. [PMID: 24533096 PMCID: PMC3922875 DOI: 10.1371/journal.pone.0088518] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/06/2014] [Indexed: 11/19/2022] Open
Abstract
Local protein synthesis in dendrites enables neurons to selectively change the protein complement of individual postsynaptic sites. Though it is generally assumed that this mechanism requires tight translational control of dendritically transported mRNAs, it is unclear how translation of dendritic mRNAs is regulated. We have analyzed here translational control elements of the dendritically localized mRNA coding for the postsynaptic scaffold protein Shank1. In its 5′ region, the human Shank1 mRNA exhibits two alternative translation initiation sites (AUG+1 and AUG+214), three canonical upstream open reading frames (uORFs1-3) and a high GC content. In reporter assays, fragments of the 5′UTR with high GC content inhibit translation, suggesting a contribution of secondary structures. uORF3 is most relevant to translation control as it overlaps with the first in frame start codon (AUG+1), directing translation initiation to the second in frame start codon (AUG+214). Surprisingly, our analysis points to an additional uORF initiated at a non-canonical ACG start codon. Mutation of this start site leads to an almost complete loss of translation initiation at AUG+1, demonstrating that this unconventional uORF is required for Shank1 synthesis. Our data identify a novel mechanism whereby initiation at a non-canonical site allows for translation of the main Shank1 ORF despite a highly structured 5′UTR.
Collapse
|
24
|
Koh DC, Edelman GM, Mauro VP. Physical evidence supporting a ribosomal shunting mechanism of translation initiation for BACE1 mRNA. ACTA ACUST UNITED AC 2013; 1:e24400. [PMID: 26824018 PMCID: PMC4718059 DOI: 10.4161/trla.24400] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 03/06/2013] [Accepted: 03/21/2013] [Indexed: 12/22/2022]
Abstract
In Alzheimer disease, elevated levels of the BACE1 enzyme are correlated with increased production of amyloid peptides and disease pathology. The increase in BACE1 levels is post-transcriptional and may involve altered translation efficiency. Earlier studies have indicated that translation of BACE1 mRNA is cap-dependent. As ribosomal subunits move from the cap-structure to the initiation codon, they fail to recognize several AUG codons in the 5′ leader. In this study, we looked for physical evidence of the mechanism underlying ribosomal scanning or shunting along the BACE1 5′ leader by investigating structural stability in the 5′ leaders of endogenous mRNAs in vivo. To perform this analysis, we probed RNAs using lead(II) acetate, a cell-permeable chemical that induces cleavage of unpaired nucleotides having conformational flexibility. The data revealed that the ≈440-nt 5′ leader was generally resistant to cleavage except for a region upstream of the initiation codon. Cleavage continued into the coding region, consistent with destabilization of secondary structures by translating ribosomes. Evidence that a large segment of the BACE1 5′ leader was not cleaved indicates that this region is structurally stable and suggests that it is not scanned. The data support a mechanism of translation initiation in which ribosomal subunits bypass (shunt) part of the BACE1 5′ leader to reach the initiation codon. We suggest that a nucleotide bias in the 5′ leader may predispose the initiation codon to be more accessible than other AUG codons in the 5′ leader, leading to an increase in its relative utilization.
Collapse
Affiliation(s)
- Dora C Koh
- Department of Cell and Molecular Biology; The Scripps Research Institute; La Jolla, CA USA
| | - Gerald M Edelman
- Department of Cell and Molecular Biology; The Scripps Research Institute; La Jolla, CA USA
| | - Vincent P Mauro
- Department of Cell and Molecular Biology; The Scripps Research Institute; La Jolla, CA USA
| |
Collapse
|
25
|
Zhigailov AV, Babaylova ES, Polimbetova NS, Graifer DM, Karpova GG, Iskakov BK. Fragment of mRNA coding part complementary to region 1638–1650 of wheat 18S RNA functions as a translational enhancer. Mol Biol 2012. [DOI: 10.1134/s0026893312040164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Veo BL, Krushel LA. Secondary RNA structure and nucleotide specificity contribute to internal initiation mediated by the human tau 5' leader. RNA Biol 2012; 9:1344-60. [PMID: 22995835 DOI: 10.4161/rna.22181] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mechanisms by which eukaryotic internal ribosomal entry sites (IRESs) initiate translation have not been well described. Viral IRESs utilize a combination of secondary/tertiary structure concomitant with sequence specific elements to initiate translation. Eukaryotic IRESs are proposed to utilize the same components, although it appears that short sequence specific elements are more common. In this report we perform an extensive analysis of the IRES in the human tau mRNA. We demonstrate that the tau IRES exhibits characteristics similar to viral IRESs. It contains two main structural domains that exhibit secondary interactions, which are essential for internal initiation. Moreover, the tau IRES is extremely sensitive to small nucleotide substitutions. Our data also indicates that the 40S ribosome is recruited to the middle of the IRES, but whether it scans to the initiation codon in a linear fashion is questioned. Overall, these results identify structural and sequence elements critical for tau IRES activity and consequently, provide a novel target to regulate tau protein expression in disease states including Alzheimer disease and other tauopathies.
Collapse
Affiliation(s)
- Bethany L Veo
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | | |
Collapse
|
27
|
Before It Gets Started: Regulating Translation at the 5' UTR. Comp Funct Genomics 2012; 2012:475731. [PMID: 22693426 PMCID: PMC3368165 DOI: 10.1155/2012/475731] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 02/22/2012] [Accepted: 03/11/2012] [Indexed: 12/21/2022] Open
Abstract
Translation regulation plays important roles in both normal physiological conditions and diseases states. This regulation requires cis-regulatory elements located mostly in 5' and 3' UTRs and trans-regulatory factors (e.g., RNA binding proteins (RBPs)) which recognize specific RNA features and interact with the translation machinery to modulate its activity. In this paper, we discuss important aspects of 5' UTR-mediated regulation by providing an overview of the characteristics and the function of the main elements present in this region, like uORF (upstream open reading frame), secondary structures, and RBPs binding motifs and different mechanisms of translation regulation and the impact they have on gene expression and human health when deregulated.
Collapse
|
28
|
A new framework for understanding IRES-mediated translation. Gene 2012; 502:75-86. [PMID: 22555019 DOI: 10.1016/j.gene.2012.04.039] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/23/2012] [Accepted: 04/17/2012] [Indexed: 01/08/2023]
Abstract
Studies over the past 5 or so years have indicated that the traditional clustering of mechanisms for translation initiation in eukaryotes into cap-dependent and cap-independent (or IRES-mediated) is far too narrow. From individual studies of a number of mRNAs encoding proteins that are regulatory in nature (i.e. likely to be needed in small amounts such as transcription factors, protein kinases, etc.), it is now evident that mRNAs exist that blur these boundaries. This review seeks to set the basic ground rules for the analysis of different initiation pathways that are associated with these new mRNAs as well as related to the more traditional mechanisms, especially the cap-dependent translational process that is the major route of initiation of mRNAs for housekeeping proteins and thus, the bulk of protein synthesis in most cells. It will become apparent that a mixture of descriptions is likely to become the norm in the near future (i.e. m(7)G-assisted internal initiation).
Collapse
|
29
|
Silver JT, Noble EG. Regulation of survival gene hsp70. Cell Stress Chaperones 2012; 17:1-9. [PMID: 21874533 PMCID: PMC3227850 DOI: 10.1007/s12192-011-0290-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/15/2011] [Accepted: 08/16/2011] [Indexed: 12/31/2022] Open
Abstract
Rapid expression of the survival gene, inducible heat shock protein 70 (hsp70), is critical for mounting cytoprotection against severe cellular stress, like elevated temperature. Hsp70 protein chaperones the refolding of heat-denatured peptides to minimize proteolytic degradation as a part of an eukaryotically conserved phenomenon referred to as the heat shock response. The physiologic stress associated with exercise, which can include elevated temperature, mechanical damage, hypoxia, lowered pH, and reactive oxygen species generation, may promote protein unfolding, leading to hsp70 gene expression in skeletal myofibers. Although the pre-transcriptional activation of hsp70 gene expression has been thoroughly reviewed, discussion of downstream hsp70 gene regulation is less extensive. The purpose of this brief review was to examine all levels of hsp70 gene regulation in response to heat stress and exercise with a special focus on skeletal myofibers where data are available. In general, while heat stress represses bulk gene expression, hsp70 mRNA expression is enhanced. Post-transcriptionally, intronless hsp70 mRNA circumvents a host of decay pathways, as well as heat stress-repressed pre-mRNA splicing and nuclear export. Pre-translationally, hsp70 mRNA is excluded from stress granules and preferentially translated during heat stress-repressed global cap-dependent translation. Post-translationally, nascent Hsp70 protein is thermodynamically stable at elevated temperatures, allowing for the commencement of chaperoning activity early after synthesis to attenuate the heat shock response and protect against subsequent injury. This review demonstrates that hsp70 mRNA expression is closely coupled with functional protein translation.
Collapse
Affiliation(s)
- Jordan Thomas Silver
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON Canada N6A 3K7
| | - Earl G. Noble
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON Canada N6A 3K7
- Lawson Health Research Institute, The University of Western Ontario, London, ON Canada N6A 3K7
| |
Collapse
|
30
|
Abstract
Polyamines are essential for normal cell growth and exist mainly as RNA-polyamine complexes in cells. Thus, effects of polyamines on protein synthesis have been studied. It was found that several kinds of protein synthesis, which are important for cell growth, were enhanced by polyamines at the level of translation. We proposed that a group of genes whose expression is enhanced by polyamines at the level of translation be referred to as a "polyamine modulon." In Escherichia coli, most members of the polyamine modulon thus far identified were transcription factors. These transcription factors enhanced the synthesis of several kinds of mRNA and tRNA, and also rRNA. In this way, polyamines enhanced growth of E. coli. We also succeeded in identifying three kinds of "polyamine modulon" in mammalian cells. One of the mechanisms of polyamine stimulation at the molecular level was due to the stabilization of the bulged-out region of double-stranded RNA in mRNA. The procedures used to identify components of the polyamine modulon are described in this chapter.
Collapse
Affiliation(s)
- Kazuei Igarashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| | | |
Collapse
|
31
|
Racine T, Duncan R. Facilitated leaky scanning and atypical ribosome shunting direct downstream translation initiation on the tricistronic S1 mRNA of avian reovirus. Nucleic Acids Res 2010; 38:7260-72. [PMID: 20610435 PMCID: PMC2978376 DOI: 10.1093/nar/gkq611] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The S1 mRNA of avian reovirus is functionally tricistronic, encoding three unrelated proteins, p10, p17 and σC, from three sequential, partially overlapping open reading frames (ORFs). The mechanism of translation initiation at the 3'-proximal σC ORF is currently unknown. Transient RNA transfections using Renilla luciferase reporter constructs revealed only a modest reduction in reporter expression upon optimization of either the p10 or p17 start sites. Insertion of multiple upstream AUG (uAUG) codons in a preferred start codon sequence context resulted in a substantial retention of downstream translation initiation on the S1 mRNA, but not on a heterologous mRNA. The S1 mRNA therefore facilitates leaky scanning to promote ribosome access to the σC start codon. Evidence also indicates that σC translation is mediated by a second scanning-independent mechanism capable of bypassing upstream ORFs. This alternate mechanism is cap-dependent and requires a sequence-dependent translation enhancer element that is complementary to 18S rRNA. Downstream translation initiation of the tricistronic S1 mRNA is therefore made possible by two alternate mechanisms, facilitated leaky scanning and an atypical form of ribosome shunting. This dual mechanism of downstream translation initiation ensures sufficient expression of the σC cell attachment protein that is essential for infectious progeny virus production.
Collapse
Affiliation(s)
- Trina Racine
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada B3H1X5
| | | |
Collapse
|
32
|
Fitzgerald KD, Semler BL. Bridging IRES elements in mRNAs to the eukaryotic translation apparatus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:518-28. [PMID: 19631772 DOI: 10.1016/j.bbagrm.2009.07.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Revised: 07/10/2009] [Accepted: 07/14/2009] [Indexed: 02/07/2023]
Abstract
IRES elements are highly structured RNA sequences that function to recruit ribosomes for the initiation of translation. In contrast to the canonical cap-binding, ribosome-scanning model, the mechanism of IRES-mediated translation initiation is not well understood. IRES elements, first discovered in viral RNA genomes, were subsequently found in a subset of cellular RNAs as well. Interestingly, these cellular IRES-containing mRNAs appear to play important roles during conditions of cellular stress, development, and disease (e.g., cancer). It has been shown for viral IRESes that some require specific IRES trans-acting factors (ITAFs), while others require few if any additional proteins and can bind ribosomes directly. Current studies are aimed at elucidating the mechanism of IRES-mediated translation initiation and features that may be common or differ greatly among cellular and viral IRESes. This review will explore IRES elements as important RNA structures that function in both cellular and viral RNA translation and the significance of these structures in providing an alternative mechanism of eukaryotic translation initiation.
Collapse
Affiliation(s)
- Kerry D Fitzgerald
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
33
|
Nishimura K, Okudaira H, Ochiai E, Higashi K, Kaneko M, Ishii I, Nishimura T, Dohmae N, Kashiwagi K, Igarashi K. Identification of proteins whose synthesis is preferentially enhanced by polyamines at the level of translation in mammalian cells. Int J Biochem Cell Biol 2009; 41:2251-61. [PMID: 19427401 DOI: 10.1016/j.biocel.2009.04.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 04/25/2009] [Accepted: 04/29/2009] [Indexed: 11/17/2022]
Abstract
In Escherichia coli, several proteins whose synthesis is enhanced by polyamines at the level of translation have been identified. We looked for proteins that are similarly regulated in eukaryotes using a mouse mammary carcinoma FM3A cell culture system. Polyamine deficiency was induced by adding an inhibitor of ornithine decarboxylase, alpha-difluoromethylornithine, to the medium. Proteins enhanced by polyamines were determined by comparison of protein levels in control and polyamine-deficient cells using two-dimensional gel electrophoresis, and were identified by Edman degradation and/or LC/MALDI-TOF/TOF tandem mass spectrometry. Polyamine stimulation of the synthesis of these proteins at the level of translation was confirmed by measuring levels of the corresponding mRNAs and proteins, and levels of the [(35)S]methionine pulse-labeled proteins. The proteins identified in this way were T-complex protein 1, beta subunit (Cct2); heterogeneous nuclear ribonucleoprotein L (Hnrpl); and phosphoglycerate mutase 1 (Pgam1). Since Cct2 was most strongly enhanced by polyamines among three proteins, the mechanism of polyamine stimulation of Cct2 synthesis was studied using NIH3T3 cells transiently transfected with genes encoding Cct2-EGFP fusion mRNA with normal or mutated 5'-untranslated region (5'-UTR) of Cct2 mRNA. Polyamines most likely enhanced ribosome shunting on the 5'-UTR of Cct2 mRNA.
Collapse
Affiliation(s)
- Kazuhiro Nishimura
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
The importance of inter- and intramolecular base pairing for translation reinitiation on a eukaryotic bicistronic mRNA. Genes Dev 2009; 23:331-44. [PMID: 19204118 DOI: 10.1101/gad.507609] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Calicivirus structure proteins are expressed from a subgenomic mRNA with two overlapping cistrons. The first ORF of this RNA codes for the viral major capsid protein VP1, and the second for the minor capsid protein VP2. Translation of VP2 is mediated by a termination/reinitiation mechanism, which depends on an upstream sequence element of approximately 70 nucleotides denoted "termination upstream ribosomal binding site" (TURBS). Two short sequence motifs within the TURBS were found to be essential for reinitiation. By a whole set of single site mutations and reciprocal base exchanges we demonstrate here for the first time conclusive evidence for the necessity of mRNA/18S rRNA hybridization for translation reinitiation in an eukaryotic system. Moreover, we show that motif 2 exhibits intramolecular hybridization with a complementary region upstream of motif 1, thus forming a secondary structure that positions post-termination ribosomes in an optimal distance to the VP2 start codon. Analysis of the essential elements of the TURBS led to a better understanding of the requirements for translation termination/reinitiation in eukaryotes.
Collapse
|
35
|
Xing C, Bitzer DL, Alexander WE, Vouk MA, Stomp AM. Identification of protein-coding sequences using the hybridization of 18S rRNA and mRNA during translation. Nucleic Acids Res 2008; 37:591-601. [PMID: 19073698 PMCID: PMC2632891 DOI: 10.1093/nar/gkn917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We introduce a new approach in this article to distinguish protein-coding sequences from non-coding sequences utilizing a period-3, free energy signal that arises from the interactions of the 3′-terminal nucleotides of the 18S rRNA with mRNA. We extracted the special features of the amplitude and the phase of the period-3 signal in protein-coding regions, which is not found in non-coding regions, and used them to distinguish protein-coding sequences from non-coding sequences. We tested on all the experimental genes from Saccharomyces cerevisiae and Schizosaccharomyces pombe. The identification was consistent with the corresponding information from GenBank, and produced better performance compared to existing methods that use a period-3 signal. The primary tests on some fly, mouse and human genes suggests that our method is applicable to higher eukaryotic genes. The tests on pseudogenes indicated that most pseudogenes have no period-3 signal. Some exploration of the 3′-tail of 18S rRNA and pattern analysis of protein-coding sequences supported further our assumption that the 3′-tail of 18S rRNA has a role of synchronization throughout translation elongation process. This, in turn, can be utilized for the identification of protein-coding sequences.
Collapse
Affiliation(s)
- Chuanhua Xing
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695-7911, USA.
| | | | | | | | | |
Collapse
|
36
|
Panopoulos P, Mauro VP. Antisense masking reveals contributions of mRNA-rRNA base pairing to translation of Gtx and FGF2 mRNAs. J Biol Chem 2008; 283:33087-93. [PMID: 18832380 DOI: 10.1074/jbc.m804904200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously showed that a 9-nucleotide sequence from the 5' leader of the Gtx homeodomain mRNA facilitates translation initiation by base pairing to 18S rRNA. These earlier studies tested the Gtx element in isolation; we now assess the physiological relevance of this element in the context of two natural mRNAs that contain this sequence in their 5' leaders, Gtx itself and FGF2 (fibroblast growth factor 2). 2'-O-Methyl-modified RNA oligonucleotides were employed to block mRNA-rRNA base pairing by targeting either the Gtx-binding site in 18S rRNA or Gtx elements in recombinant mRNAs containing the Gtx or FGF2 5' leaders linked to a reporter cistron. Studies in cell-free lysates and transfected COS-7 cells showed that translation of mRNAs containing the Gtx or FGF2 5' leaders was decreased by > 50% when oligonucleotides targeting either the rRNA or mRNA were used. Specificity was demonstrated by showing that translation of the recombinant mRNAs was unaffected by control oligonucleotides. In addition, the specific oligonucleotides did not affect the translation of recombinant mRNAs in which the Gtx elements were mutated. Experiments performed using constructs containing Gtx and FGF2 5' leader and coding sequences ruled out possible effects of the reporter cistron. Furthermore, two-dimensional gel electrophoresis revealed that the oligonucleotides used in this study had little overall effect on the proteomes of cells transfected with these oligonucleotides. This study demonstrates that mRNA-rRNA base pairing affects the expression of two cellular mRNAs and describes a new approach for investigating putative mRNA-rRNA base pairing interactions in mammalian cells.
Collapse
Affiliation(s)
- Panagiotis Panopoulos
- Department of Neurobiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
37
|
Wills NM, O'Connor M, Nelson CC, Rettberg CC, Huang WM, Gesteland RF, Atkins JF. Translational bypassing without peptidyl-tRNA anticodon scanning of coding gap mRNA. EMBO J 2008; 27:2533-44. [PMID: 18772887 DOI: 10.1038/emboj.2008.170] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 08/06/2008] [Indexed: 11/09/2022] Open
Abstract
Half the ribosomes translating the mRNA for phage T4 gene 60 topoisomerase subunit bypass a 50 nucleotide coding gap between codons 46 and 47. The pairing of codon 46 with its cognate peptidyl-tRNA anticodon dissociates, and following mRNA slippage, peptidyl-tRNA re-pairs to mRNA at a matched triplet 5' adjacent to codon 47, where translation resumes. Here, in studies with gene 60 cassettes, it is shown that the peptidyl-tRNA anticodon does not scan the intervening sequence for potential complementarity. However, certain coding gap mutants allow peptidyl-tRNA to scan sequences in the bypassed segment. A model is proposed in which the coding gap mRNA enters the ribosomal A-site and forms a structure that precludes peptidyl-tRNA scanning of its sequence. Dissipation of this RNA structure, together with the contribution of 16S rRNA anti-Shine-Dalgarno sequence pairing with GAG, facilitates peptidyl-tRNA re-pairing to mRNA.
Collapse
Affiliation(s)
- Norma M Wills
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Belsham GJ, Nielsen I, Normann P, Royall E, Roberts LO. Monocistronic mRNAs containing defective hepatitis C virus-like picornavirus internal ribosome entry site elements in their 5' untranslated regions are efficiently translated in cells by a cap-dependent mechanism. RNA (NEW YORK, N.Y.) 2008; 14:1671-1680. [PMID: 18567818 PMCID: PMC2491466 DOI: 10.1261/rna.1039708] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 05/07/2008] [Indexed: 05/26/2023]
Abstract
The initiation of protein synthesis on mRNAs within eukaryotic cells is achieved either by a 5' cap-dependent mechanism or through internal initiation directed by an internal ribosome entry site (IRES). Picornavirus IRES elements, located in the 5' untranslated region (5'UTR), contain extensive secondary structure and multiple upstream AUG codons. These features can be expected to inhibit cap-dependent initiation of translation. However, we have now shown that certain mutant hepatitis C virus-like picornavirus IRES elements (from porcine teschovirus-1 and avian encephalomyelitis virus), which are unable to direct internal initiation, are not significant barriers to efficient translation of capped monocistronic mRNAs that contain these defective elements within their 5'UTRs. Moreover, the translation of these mRNAs is highly sensitive to the expression of an enterovirus 2A protease (which induces cleavage of eIF4G) and is also inhibited by hippuristanol, a specific inhibitor of eIF4A function, in contrast to their parental wild-type IRES elements. These results provide a possible basis for the evolution of viral IRES elements within the context of functional mRNAs that are translated by a cap-dependent mechanism.
Collapse
Affiliation(s)
- Graham J Belsham
- National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771, Kalvehave, Denmark.
| | | | | | | | | |
Collapse
|
39
|
DeGracia DJ, Jamison JT, Szymanski JJ, Lewis MK. Translation arrest and ribonomics in post-ischemic brain: layers and layers of players. J Neurochem 2008; 106:2288-301. [PMID: 18627434 DOI: 10.1111/j.1471-4159.2008.05561.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A persistent translation arrest (TA) correlates precisely with the selective vulnerability of post-ischemic neurons. Mechanisms of post-ischemic TA that have been assessed include ribosome biochemistry, the link between TA and stress responses, and the inactivation of translational components via sequestration in subcellular structures. Each of these approaches provides a perspective on post-ischemic TA. Here, we develop the notion that mRNA regulation via RNA-binding proteins, or ribonomics, also contributes to post-ischemic TA. We describe the ribonomic network, or structures involved in mRNA regulation, including nuclear foci, polysomes, stress granules, embryonic lethal abnormal vision/Hu granules, processing bodies, exosomes, and RNA granules. Transcriptional, ribonomic, and ribosomal regulation together provide multiple layers mediating cell reprogramming. Stress gene induction via the heat-shock response, immediate early genes, and endoplasmic reticulum stress represents significant reprogramming of post-ischemic neurons. We present a model of post-ischemic TA in ischemia-resistant neurons that incorporates ribonomic considerations. In this model, selective translation of stress-induced mRNAs contributes to translation recovery. This model provides a basis to study dysfunctional stress responses in vulnerable neurons, with a key focus on the inability of vulnerable neurons to selectively translate stress-induced mRNAs. We suggest a ribonomic approach will shed new light on the roles of mRNA regulation in persistent TA in vulnerable post-ischemic neurons.
Collapse
Affiliation(s)
- Donald J DeGracia
- Department of Physiology, Wayne State University, Detroit, Michigan, USA.
| | | | | | | |
Collapse
|
40
|
Morley SJ, Coldwell MJ. A cunning stunt: an alternative mechanism of eukaryotic translation initiation. Sci Signal 2008; 1:32. [PMID: 18577757 DOI: 10.1126/scisignal.125pe32] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cell stress activates signaling pathways, allowing cells to choose between survival and apoptosis. Translation plays a critical role in balancing this choice by allowing for rapid and physiologically responsive changes in de novo gene expression. The steady-state abundance of cellular inhibitor of apoptosis 2 (cIAP2) is increased in response to various cell stresses. This modular protein contains baculoviral IAP repeat (BIR) motifs and ubiquitin protein ligase (E3) activity, which allows it to bind directly to caspases and to modulate activation of the transcription factor, nuclear factor kappaB (NF-kappaB). The messenger RNA (mRNA) encoding cIAP2 is a large 5.5-kb transcript, with a highly structured 5' untranslated region (5'UTR) also containing 64 upstream initiation codons ahead of the true start codon. cIAP2 employs an unusual cap-dependent mechanism of ribosome shunting to bypass the majority of the inhibitory elements in the 5'UTR, a mechanism first described for plant pararetroviruses. Furthermore, in mammalian cells, this poorly understood mechanism of translation for cIAP2 is enhanced during mild stress in the absence of pararetrovirus-encoded proteins known to be essential for this process in plant cells. Here, we discuss how cIAP2 might utilize the stress-mediated shunt process in the absence of viral proteins, which suggests a more widespread role for canonical initiation factors, internal ribosome entry sequence-specific trans-acting factors, and mRNA structure in translational control during stress.
Collapse
Affiliation(s)
- Simon J Morley
- Department of Biochemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.
| | | |
Collapse
|
41
|
Pooggin MM, Fütterer J, Hohn T. Cross-species functionality of pararetroviral elements driving ribosome shunting. PLoS One 2008; 3:e1650. [PMID: 18286203 PMCID: PMC2241666 DOI: 10.1371/journal.pone.0001650] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Accepted: 01/29/2008] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cauliflower mosaic virus (CaMV) and Rice tungro bacilliform virus (RTBV) belong to distinct genera of pararetroviruses infecting dicot and monocot plants, respectively. In both viruses, polycistronic translation of pregenomic (pg) RNA is initiated by shunting ribosomes that bypass a large region of the pgRNA leader with several short (s)ORFs and a stable stem-loop structure. The shunt requires translation of a 5'-proximal sORF terminating near the stem. In CaMV, mutations knocking out this sORF nearly abolish shunting and virus viability. METHODOLOGY/PRINCIPAL FINDINGS Here we show that two distant regions of the CaMV leader that form a minimal shunt configuration comprising the sORF, a bottom part of the stem, and a shunt landing sequence can be replaced by heterologous sequences that form a structurally similar configuration in RTBV without any dramatic effect on shunt-mediated translation and CaMV infectivity. The CaMV-RTBV chimeric leader sequence was largely stable over five viral passages in turnip plants: a few alterations that did eventually occur in the virus progenies are indicative of fine tuning of the chimeric sequence during adaptation to a new host. CONCLUSIONS/SIGNIFICANCE Our findings demonstrate cross-species functionality of pararetroviral cis-elements driving ribosome shunting and evolutionary conservation of the shunt mechanism. We are grateful to Matthias Müller and Sandra Pauli for technical assistance. This work was initiated at Friedrich Miescher Institute (Basel, Switzerland). We thank Prof. Thomas Boller for hosting the group at the Institute of Botany.
Collapse
|
42
|
Mauro VP, Chappell SA, Dresios J. Analysis of ribosomal shunting during translation initiation in eukaryotic mRNAs. Methods Enzymol 2007; 429:323-54. [PMID: 17913630 DOI: 10.1016/s0076-6879(07)29015-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
In eukaryotes, translation initiation involves recruitment of ribosomal subunits at either the 5' m7G cap structure or at an internal ribosome entry site (IRES). For most mRNAs, the initiation codon is located some distance downstream, necessitating ribosomal movement to this site. Although the mechanistic details of this movement remain to be fully resolved, it appears to be nonlinear for some mRNAs (i.e., ribosomal subunits appear to bypass [shunt] segments of the 5' leader as they move to the initiation codon). This chapter describes various experimental approaches to assess ribosomal shunting and to identify mRNA elements (shunt sites) that facilitate shunting. In addition, we provide an overview of approaches that can be used to investigate the mechanism used by individual shunt sites, along with a detailed protocol for investigating putative base pairing interactions between shunt sites and 18S rRNA.
Collapse
Affiliation(s)
- Vincent P Mauro
- Department of Neurobiology, The Scripps Research Institute, La Jolla, California, USA
| | | | | |
Collapse
|
43
|
Zhou X, Tarver MR, Scharf ME. Hexamerin-based regulation of juvenile hormone-dependent gene expression underlies phenotypic plasticity in a social insect. Development 2007; 134:601-10. [PMID: 17215309 DOI: 10.1242/dev.02755] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Worker termites of the genus Reticulitermes are temporally-arrested juvenile forms that can terminally differentiate into adultsoldier- or reproductive-caste phenotypes. Soldier-caste differentiation is a developmental transition that is induced by high juvenile hormone (JH) titers. Recently, a status quo hexamerin mechanism was identified, which reduces JH efficacy and maximizes colony fitness via the maintenance of high worker-caste proportions. Our goal in these studies was to investigate more thoroughly the influences of the hexamerins on JH-dependent gene expression in termite workers. Our approach involved RNA interference (RNAi), bioassays and quantification of gene expression. We first investigated the expression of 17 morphogenesis-associated genes in response to RNAi-based hexamerin silencing. Hexamerin silencing resulted in significant downstream impacts on 15 out of the 17 genes, suggesting that these genes are members of a JH-responsive genomic network. Next, we compared gene-expression profiles in workers after RNAi-based hexamerin silencing to that of (i) untreated workers that were held away from the colony; and (ii) workers that were also held away from the colony, but with ectopic JH. Here, although there was no correlation between hexamerin silencing and colony-release effects, we observed a significant correlation between hexamerin silencing and JH-treatment effects. These findings provide further evidence supporting the hypothesis that the hexamerins modulate JH availability, thus limiting the impacts of JH on termite caste polyphenism. Results are discussed in a context relative to outstanding questions on termite developmental biology, particularly on regulatory gene networks that respond to JH-, colony- and environmental-cues.
Collapse
Affiliation(s)
- Xuguo Zhou
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611-0620, USA
| | | | | |
Collapse
|
44
|
Ivanov IP, Atkins JF. Ribosomal frameshifting in decoding antizyme mRNAs from yeast and protists to humans: close to 300 cases reveal remarkable diversity despite underlying conservation. Nucleic Acids Res 2007; 35:1842-58. [PMID: 17332016 PMCID: PMC1874602 DOI: 10.1093/nar/gkm035] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The protein antizyme is a negative regulator of intracellular polyamine levels. Ribosomes synthesizing antizyme start in one ORF and at the codon 5′ adjacent to its stop codon, shift +1 to a second and partially overlapping ORF which encodes most of the protein. The ribosomal frameshifting is a sensor and effector of an autoregulatory circuit which is conserved in animals, fungi and protists. Stimulatory signals encoded 5′ and 3′ of the shift site act to program the frameshifting. Despite overall conservation, many individual branches have evolved specific features surrounding the frameshift site. Among these are RNA pseudoknots, RNA stem-loops, conserved primary RNA sequences, nascent peptide sequences and branch-specific ‘shifty’ codons.
Collapse
Affiliation(s)
- Ivaylo P. Ivanov
- Biosciences Institute, University College Cork, Cork, Ireland and Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
- *Correspondence may be addressed to either author at +1-353 21 490 1313+1-353 23 55147 and
| | - John F. Atkins
- Biosciences Institute, University College Cork, Cork, Ireland and Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
- *Correspondence may be addressed to either author at +1-353 21 490 1313+1-353 23 55147 and
| |
Collapse
|
45
|
Luttermann C, Meyers G. A bipartite sequence motif induces translation reinitiation in feline calicivirus RNA. J Biol Chem 2007; 282:7056-65. [PMID: 17213194 DOI: 10.1074/jbc.m608948200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism leading to reinitiation of translation after termination of protein synthesis in eukaryotes has not yet been resolved in detail. One open question concerns the way the post-termination ribosome is tethered to the mRNA to allow binding of the necessary initiation factors. In caliciviruses, a family of positive strand RNA viruses, the capsid protein VP2 is translated via a termination/reinitiation process. VP2 of the feline calicivirus is encoded in the 3'-terminal open reading frame 3 (ORF3) that overlaps with the preceding ORF2 by four nucleotides. In transient expression studies, the efficiency of VP2 expression was 20 times lower than that of the ORF2 proteins. The close vicinity of the ORF2 termination signal and the ORF3 AUG codon was crucial, whereas the AUG could be replaced by alternative codons. Deletion mapping revealed that the 3'-terminal 69 nucleotides of ORF2 are crucial for VP2 expression. This sequence contains two essential sequence motifs. The first motif is conserved among caliciviruses and complementary to part of the 18 S rRNA. In conclusion, VP2 is expressed in a translation termination/reinitiation process that is special because it requires a sequence element that could prevent dissociation of post-termination ribosomes via hybridization with 18 S rRNA.
Collapse
Affiliation(s)
- Christine Luttermann
- Institut für Immunologie, Friedrich-Loeffler-Institut, D-72001 Tübingen, Germany
| | | |
Collapse
|
46
|
Chappell SA, Edelman GM, Mauro VP. Ribosomal tethering and clustering as mechanisms for translation initiation. Proc Natl Acad Sci U S A 2006; 103:18077-82. [PMID: 17110442 PMCID: PMC1838709 DOI: 10.1073/pnas.0608212103] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic mRNAs often recruit ribosomal subunits some distance upstream of the initiation codon; however, the mechanisms by which they reach the initiation codon remain to be fully elucidated. Although scanning is a widely accepted model, evidence for alternative mechanisms has accumulated. We previously suggested that this process may involve tethering of ribosomal complexes to the mRNA, in which the intervening mRNA is bypassed, or clustering, in which the initiation codon is reached by dynamic binding and release of ribosomal subunits at internal sites. The present studies tested the feasibility of these ideas by using model mRNAs and revealed that translation efficiency varied with the distance between the site of ribosomal recruitment and the initiation codon. The present studies also showed that translation could initiate efficiently at AUG codons located upstream of an internal site. These observations are consistent with ribosomal tethering at the cap structure and clustering at internal sites.
Collapse
Affiliation(s)
- Stephen A. Chappell
- Department of Neurobiology, The Scripps Research Institute, and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Gerald M. Edelman
- Department of Neurobiology, The Scripps Research Institute, and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037
- *To whom correspondence may be addressed. E-mail: or
| | - Vincent P. Mauro
- Department of Neurobiology, The Scripps Research Institute, and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037
- *To whom correspondence may be addressed. E-mail: or
| |
Collapse
|