1
|
Jana B, Kaczmarek MM, Całka J, Romaniewicz M, Palus K. Profile of mRNA expression in the myometrium after intrauterine Escherichia coli injections in pigs. Theriogenology 2024; 228:93-103. [PMID: 39128182 DOI: 10.1016/j.theriogenology.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
Endometritis and metritis are common reproductive diseases in domestic animals, causing a reduction in reproductive performance and economic losses. A previous study revealed the alterations in the transcriptome of the inflamed porcine endometrium. Data on molecular signatures in the myometrium under inflammatory conditions are limited. The current study analyzed the transcriptomic profile of porcine myometrium after intrauterine Escherichia coli (E.coli) administration. On day 3 of the estrous cycle (Day 0 of the study), 50 ml of either saline (group CON, n = 7) or E. coli suspension (109 colony-forming units/ml, group E. coli, n = 5) were injected into each uterine horn. After eight days, the gilts were euthanized, and the uteri were removed for further analysis. In the myometrium of the CON group versus the E. coli group, microarray analysis revealed 167 differentially expressed genes (DEGs, 78 up- and 89 down-regulated). After intrauterine E. coli administration, among the DEGs of the inflammatory response set, the highest expressed were mRNA for CXCL6, S100A8, S100A12, SLC11A1, S100A9, CCL15, CCR1, CD163, THBS1 and SOCS3, while the most suppressed was mRNA expression for FFAR4, KL, SLC7A2 and MOAB. Furthermore, a comparison of the present results on myometrial transcriptome with the authors' earlier published data on the endometrial transcriptome shows the partial differences in mRNA expression between both layers after intrauterine E.coli injections. This study, for the first time, presents changes in the transcriptome of porcine myometrium after intrauterine E.coli administration, which may be important for myometrial homeostasis and functions and, as a result, for the uterine inflammation course. Data provide a valuable resource for further studies on genes and pathways regulating uterine inflammation and functions.
Collapse
Affiliation(s)
- Barbara Jana
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | - Monika M Kaczmarek
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-718, Olsztyn, Poland
| | - Marta Romaniewicz
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Katarzyna Palus
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-718, Olsztyn, Poland
| |
Collapse
|
2
|
Shao L, Yang M, Sun T, Xia H, Du D, Li X, Jie Z. Role of solute carrier transporters in regulating dendritic cell maturation and function. Eur J Immunol 2024; 54:e2350385. [PMID: 38073515 DOI: 10.1002/eji.202350385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 02/27/2024]
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that initiate and regulate innate and adaptive immune responses. Solute carrier (SLC) transporters mediate diverse physiological functions and maintain cellular metabolite homeostasis. Recent studies have highlighted the significance of SLCs in immune processes. Notably, upon activation, immune cells undergo rapid and robust metabolic reprogramming, largely dependent on SLCs to modulate diverse immunological responses. In this review, we explore the central roles of SLC proteins and their transported substrates in shaping DC functions. We provide a comprehensive overview of recent studies on amino acid transporters, metal ion transporters, and glucose transporters, emphasizing their essential contributions to DC homeostasis under varying pathological conditions. Finally, we propose potential strategies for targeting SLCs in DCs to bolster immunotherapy for a spectrum of human diseases.
Collapse
Affiliation(s)
- Lin Shao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Mengxin Yang
- School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Tao Sun
- Department of Laboratory Medicine, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Haotang Xia
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Dan Du
- Department of Stomatology, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xun Li
- Department of Laboratory Medicine, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zuliang Jie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
3
|
You S, Han X, Xu Y, Yao Q. Research progress on the role of cationic amino acid transporter (CAT) family members in malignant tumors and immune microenvironment. Amino Acids 2023; 55:1213-1222. [PMID: 37572157 DOI: 10.1007/s00726-023-03313-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Amino acids are essential for the survival of all living organisms and living cells. Amino acid transporters mediate the transport and absorption of amino acids, and the dysfunction of these proteins can induce human diseases. Cationic amino acid transporters (CAT family, SLC7A1-4, and SLC7A14) are considered to be a group of transmembrane transporters, of which SLC7A1-3 are essential for arginine transport in mammals. Numerous studies have shown that CAT family-mediated arginine transport is involved in signal crosstalk between malignant tumor cells and immune cells, especially T cells. The modulation of extracellular arginine concentration has entered a number of clinical trials and achieved certain therapeutic effects. Here, we review the role of CAT family on tumor cells and immune infiltrating cells in malignant tumors and explore the therapeutic strategies to interfere with extracellular arginine concentration, to elaborate its application prospects. CAT family members may be used as biomarkers for certain cancer entities and might be included in new ideas for immunotherapy of malignant tumors.
Collapse
Affiliation(s)
- Shijing You
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Xiahui Han
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Yuance Xu
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Qin Yao
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China.
| |
Collapse
|
4
|
Spears E, Stanley JE, Shou M, Yin L, Li X, Dai C, Bradley A, Sellick K, Poffenberger G, Coate KC, Shrestha S, Jenkins R, Sloop KW, Wilson KT, Attie AD, Keller MP, Chen W, Powers AC, Dean ED. Pancreatic islet α cell function and proliferation requires the arginine transporter SLC7A2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552656. [PMID: 37645716 PMCID: PMC10461917 DOI: 10.1101/2023.08.10.552656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Interrupting glucagon signaling decreases gluconeogenesis and the fractional extraction of amino acids by liver from blood resulting in lower glycemia. The resulting hyperaminoacidemia stimulates α cell proliferation and glucagon secretion via a liver-α cell axis. We hypothesized that α cells detect and respond to circulating amino acids levels via a unique amino acid transporter repertoire. We found that Slc7a2ISLC7A2 is the most highly expressed cationic amino acid transporter in α cells with its expression being three-fold greater in α than β cells in both mouse and human. Employing cell culture, zebrafish, and knockout mouse models, we found that the cationic amino acid arginine and SLC7A2 are required for α cell proliferation in response to interrupted glucagon signaling. Ex vivo and in vivo assessment of islet function in Slc7a2-/- mice showed decreased arginine-stimulated glucagon and insulin secretion. We found that arginine activation of mTOR signaling and induction of the glutamine transporter SLC38A5 was dependent on SLC7A2, showing that both's role in α cell proliferation is dependent on arginine transport and SLC7A2. Finally, we identified single nucleotide polymorphisms in SLC7A2 associated with HbA1c. Together, these data indicate a central role for SLC7A2 in amino acid-stimulated α cell proliferation and islet hormone secretion.
Collapse
Affiliation(s)
- Erick Spears
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Biology, Belmont University, Nashville, TN
| | - Jade E. Stanley
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN
| | - Matthew Shou
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Linlin Yin
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN
| | - Xuan Li
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN
| | - Chunhua Dai
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Amber Bradley
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Katelyn Sellick
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Greg Poffenberger
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Katie C. Coate
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Shristi Shrestha
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Regina Jenkins
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Kyle W. Sloop
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Keith T. Wilson
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin, Madison, WI
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin, Madison, WI
| | - Wenbiao Chen
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN
| | - Alvin C. Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| | - E. Danielle Dean
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN
| |
Collapse
|
5
|
Zhang J, Wang S, Guo X, Lu Y, Liu X, Jiang M, Li X, Qin B, Luo Z, Liu H, Li Q, Du YZ, Luo L, You J. Arginine Supplementation Targeting Tumor-Killing Immune Cells Reconstructs the Tumor Microenvironment and Enhances the Antitumor Immune Response. ACS NANO 2022; 16:12964-12978. [PMID: 35968927 DOI: 10.1021/acsnano.2c05408] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The tumor microenvironment (TME) is characterized by several immunosuppressive factors, of which weak acidity and l-arginine (l-arg) deficiency are two common features. A weak acidic environment threatens the survival of immune cells, and insufficient l-arg will severely restrain the effect of antitumor immune responses, both of which affect the efficiency of cancer treatments (especially immunotherapy). Meanwhile, l-arg is essential for tumor progression. Thus, two strategies, l-arg supplementation and l-arg deprivation, are developed for cancer treatment. However, these strategies have the potential risk of promoting tumor growth and impairing immune responses, which might lead to a paradoxical therapeutic effect. It is optimal to limit the l-arg availability of tumor cells from the microenvironment while supplying l-arg for immune cells. In this study, we designed a multivesicular liposome technology to continuously supply alkaline l-arg, which simultaneously changed the acidity and l-arg deficiency in the TME, and by selectively knocking down the CAT-2 transporter, l-arg starvation of tumors was maintained while tumor-killing immune cells were enriched in the TME. The results showed that our strategy promoted the infiltration and activation of CD8+ T cells in tumor, increased the proportion of M1 macrophages, inhibited melanoma growth, and prolonged survival. In combination with anti-PD-1 antibody, our strategy reversed the low tumor response to immune checkpoint blockade therapy, showing a synergistic antitumor effect. Our work provided a reference for improving the TME combined with regulating nutritional competitiveness to achieve the sensitization of immunotherapy.
Collapse
Affiliation(s)
- Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Mengshi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Bing Qin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Huihui Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Qingpo Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Yong-Zhong Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
6
|
Sheng L, Luo Q, Chen L. Amino Acid Solute Carrier Transporters in Inflammation and Autoimmunity. Drug Metab Dispos 2022; 50:DMD-AR-2021-000705. [PMID: 35152203 DOI: 10.1124/dmd.121.000705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/14/2022] [Accepted: 01/27/2022] [Indexed: 02/21/2024] Open
Abstract
The past decade exposed the importance of many homeostasis and metabolism related proteins in autoimmunity disease and inflammation. Solute carriers (SLCs) are a group of membrane channels that can transport amino acids, the building blocks of proteins, nutrients, and neurotransmitters. This review summarizes the role of SLCs amino acid transporters in inflammation and autoimmunity disease. In detail, the importance of Glutamate transporters SLC1A1, SLC1A2, and SLC1A3, mainly expressed in the brain where they help prevent glutamate excitotoxicity, is discussed in the context of central nervous system disorders such as multiple sclerosis. Similarly, the cationic amino acid transporter SLC7A1 (CAT1), which is an important arginine transporter for T cells, and SLC7A2 (CAT2), essential for innate immunity. SLC3 family proteins, which bind with light chains from the SLC7 family (SLC7A5, SLC7A7 and SLC7A11) to form heteromeric amino acid transporters, are also explored to describe their roles in T cells, NK cells, macrophages and tumor immunotherapies. Altogether, the link between SLC amino acid transporters with inflammation and autoimmunity may contribute to a better understanding of underlying mechanism of disease and provide novel potential therapeutic avenues. Significance Statement SIGNIFICANCE STATEMENT In this review, we summarize the link between SLC amino acid transporters and inflammation and immune responses, specially SLC1 family members and SLC7 members. Studying the link may contribute to a better understanding of related diseases and provide potential therapeutic targets and useful to the researchers who have interest in the involvement of amino acids in immunity.
Collapse
Affiliation(s)
| | - Qi Luo
- Tsinghua University, China
| | | |
Collapse
|
7
|
Abstract
Amino acids perform a variety of functions in cells and organisms, particularly in the synthesis of proteins, as energy metabolites, neurotransmitters, and precursors for many other molecules. Amino acid transport plays a key role in all these functions. Inhibition of amino acid transport is pursued as a therapeutic strategy in several areas, such as diabetes and related metabolic disorders, neurological disorders, cancer, and stem cell biology. The role of amino acid transporters in these disorders and processes is well established, but the implementation of amino acid transporters as drug targets is still in its infancy. This is at least in part due to the underdeveloped pharmacology of this group of membrane proteins. Recent advances in structural biology, membrane protein expression, and inhibitor screening methodology will see an increased number of improved and selective inhibitors of amino acid transporters that can serve as tool compounds for further studies.
Collapse
Affiliation(s)
- Stefan Bröer
- 1 Research School of Biology, College of Science, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
8
|
Abstract
Arginine is derived from dietary intake, body protein breakdown, or endogenous de novo arginine production. Arginine methylation of non-histone proteins is used in transcriptional regulation. Protein-arginine methylation is used for regulation of transcriptional and various physiological pathological processes. Protein methylation may affect protein-protein, protein-DNA, or protein-RNA interaction. Arginine has an effect on the DNA-binding activity of NF-κB, a dominant transcriptional factor in inflammation. Adduct formation results in increased secretion of messenger molecules such as cytokines and chemokines that mediate communication among cells and promote inflammation. Arginine and lysine amino acid-rich histones in nucleosomes on modification by environmental agents form histone-DNA adducts, making it immunogenic. Alteration of DNA resulting from photomodification could lead to the development of antibodies or mutations to modified DNA. Lysine and arginine-rich histones in nucleosomes on modification by environmental agents form histone-DNA adducts, making it immunogenic. Alteration of DNA resulting from photomodification could lead to the development of antibodies or mutations to modified DNA. Therefore, the DNA-arginine photoadduct and modified photoadduct could have important implications in various pathophysiological conditions such as toxicology, carcinogenesis, and autoimmune phenomena. Abbreviations: Arg: Arginine; SLE: systemic lupus erythematosus; UV: ultraviolet; Tm: thermal melting temperature; NO: nitric oxide; O2.-: superoxide anion.
Collapse
Affiliation(s)
- Haseeb Ahsan
- a Department of Biochemistry, Faculty of Dentistry , Jamia Millia Islamia , New Delhi , India
| |
Collapse
|
9
|
Jungnickel KEJ, Parker JL, Newstead S. Structural basis for amino acid transport by the CAT family of SLC7 transporters. Nat Commun 2018; 9:550. [PMID: 29416041 PMCID: PMC5803215 DOI: 10.1038/s41467-018-03066-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/17/2018] [Indexed: 12/12/2022] Open
Abstract
Amino acids play essential roles in cell biology as regulators of metabolic pathways. Arginine in particular is a major signalling molecule inside the cell, being a precursor for both l-ornithine and nitric oxide (NO) synthesis and a key regulator of the mTORC1 pathway. In mammals, cellular arginine availability is determined by members of the solute carrier (SLC) 7 family of cationic amino acid transporters. Whereas CAT-1 functions to supply cationic amino acids for cellular metabolism, CAT-2A and -2B are required for macrophage activation and play important roles in regulating inflammation. Here, we present the crystal structure of a close homologue of the mammalian CAT transporters that reveals how these proteins specifically recognise arginine. Our structural and functional data provide a model for cationic amino acid transport in mammalian cells and reveals mechanistic insights into proton-coupled, sodium-independent amino acid transport in the wider APC superfamily. Cationic amino acid transporters (CATs) belong to the physiologically important solute carrier (SLC) 7 family. Here, the authors present the structure of the mammalian CAT transporter homologue Geobacillus kaustophilus GkApcT, which reveals how arginine is recognized, and propose a model for proton-coupled amino acid transport.
Collapse
Affiliation(s)
| | - Joanne L Parker
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
10
|
Cloots RHE, Sankaranarayanan S, Poynter ME, Terwindt E, van Dijk P, Lamers WH, Eleonore Köhler S. Arginase 1 deletion in myeloid cells affects the inflammatory response in allergic asthma, but not lung mechanics, in female mice. BMC Pulm Med 2017; 17:158. [PMID: 29183288 PMCID: PMC5706166 DOI: 10.1186/s12890-017-0490-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND (Over-)expression of arginase may limit local availability of arginine for nitric oxide synthesis. We investigated the significance of arginase1 (ARG1) for the development of airway hyperresponsiveness (AHR) and lung inflammation in female mice with ovalbumin (OVA)-induced allergic asthma. METHODS Arg1 was ablated in the lung by crossing Arg1 fl/fl and Tie2Cre tg/- mice. OVA sensitization and challenge were conducted, and AHR to methacholine was determined using the Flexivent system. Changes in gene expression, chemokine and cytokine secretion, plasma IgE, and lung histology were quantified using RT-qPCR, ELISA, and immunohistochemistry, respectively. RESULTS Arg1 ablation had no influence on the development of OVA-induced AHR, but attenuated OVA-induced increases in expression of Arg2 and Nos2, Slc7a1, Slc7a2, and Slc7a7 (arginine transporters), Il4, Il5 and Il13 (TH2-type cytokines), Ccl2 and Ccl11 (chemokines), Ifng (TH1-type cytokine), Clca3 and Muc5ac (goblet cell markers), and OVA-specific IgE. Pulmonary IL-10 protein content increased, but IL-4, IL-5, IL-13, TNFα and IFNγ content, and lung histopathology, were not affected. Arg1 elimination also decreased number and tightness of correlations between adaptive changes in lung function and inflammatory parameters in OVA/OVA-treated female mice. OVA/OVA-treated female mice mounted a higher OVA-IgE response than males, but the correlation between lung function and inflammation was lower. Arg1-deficient OVA/OVA-treated females differed from males in a more pronounced decline of arginine-metabolizing and -transporting genes, higher plasma arginine levels, a smaller OVA-specific IgE response, and no improvement of peripheral lung function. CONCLUSION Complete ablation of Arg1 in the lung affects mRNA abundance of arginine-transporting and -metabolizing genes, and pro-inflammatory genes, but not methacholine responsiveness or accumulation of inflammatory cells.
Collapse
Affiliation(s)
- Roy H. E. Cloots
- Department of Anatomy & Embryology and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Selvakumari Sankaranarayanan
- Department of Anatomy & Embryology and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Matthew E. Poynter
- Division of Pulmonary Disease and Critical Care, Department of Medicine, College of Medicine, University of Vermont, Burlington, VT USA
| | - Els Terwindt
- Department of Anatomy & Embryology and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Paul van Dijk
- Department of Anatomy & Embryology and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Wouter H. Lamers
- Department of Anatomy & Embryology and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - S. Eleonore Köhler
- Department of Anatomy & Embryology and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
11
|
Xu W, Ghosh S, Comhair SAA, Asosingh K, Janocha AJ, Mavrakis DA, Bennett CD, Gruca LL, Graham BB, Queisser KA, Kao CC, Wedes SH, Petrich JM, Tuder RM, Kalhan SC, Erzurum SC. Increased mitochondrial arginine metabolism supports bioenergetics in asthma. J Clin Invest 2016; 126:2465-81. [PMID: 27214549 DOI: 10.1172/jci82925] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 04/05/2016] [Indexed: 12/16/2022] Open
Abstract
High levels of arginine metabolizing enzymes, including inducible nitric oxide synthase (iNOS) and arginase (ARG), are typical in asthmatic airway epithelium; however, little is known about the metabolic effects of enhanced arginine flux in asthma. Here, we demonstrated that increased metabolism sustains arginine availability in asthmatic airway epithelium with consequences for bioenergetics and inflammation. Expression of iNOS, ARG2, arginine synthetic enzymes, and mitochondrial respiratory complexes III and IV was elevated in asthmatic lung samples compared with healthy controls. ARG2 overexpression in a human bronchial epithelial cell line accelerated oxidative bioenergetic pathways and suppressed hypoxia-inducible factors (HIFs) and phosphorylation of the signal transducer for atopic Th2 inflammation STAT6 (pSTAT6), both of which are implicated in asthma etiology. Arg2-deficient mice had lower mitochondrial membrane potential and greater HIF-2α than WT animals. In an allergen-induced asthma model, mice lacking Arg2 had greater Th2 inflammation than WT mice, as indicated by higher levels of pSTAT6, IL-13, IL-17, eotaxin, and eosinophils and more mucus metaplasia. Bone marrow transplants from Arg2-deficient mice did not affect airway inflammation in recipient mice, supporting resident lung cells as the drivers of elevated Th2 inflammation. These data demonstrate that arginine flux preserves cellular respiration and suppresses pathological signaling events that promote inflammation in asthma.
Collapse
|
12
|
Wang Y, Jin TH, Farhana A, Freeman J, Estell K, Zmijewski JW, Gaggar A, Thannickal VJ, Schwiebert LM, Steyn AJC, Deshane JS. Exposure to cigarette smoke impacts myeloid-derived regulatory cell function and exacerbates airway hyper-responsiveness. J Transl Med 2014; 94:1312-25. [PMID: 25365203 PMCID: PMC4245361 DOI: 10.1038/labinvest.2014.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/08/2014] [Accepted: 09/12/2014] [Indexed: 01/26/2023] Open
Abstract
Cigarette smoking enhances oxidative stress and airway inflammation in asthma, the mechanisms of which are largely unknown. Myeloid-derived regulatory cells (MDRC) are free radical producing immature myeloid cells with immunoregulatory properties that have recently been demonstrated as critical regulators of allergic airway inflammation. NO (nitric oxide)-producing immunosuppressive MDRC suppress T-cell proliferation and airway-hyper responsiveness (AHR), while the O2(•-) (superoxide)-producing MDRC are proinflammatory. We hypothesized that cigarette smoke (CS) exposure may impact MDRC function and contribute to exacerbations in asthma. Exposure of bone marrow (BM)-derived NO-producing MDRC to CS reduced the production of NO and its metabolites and inhibited their potential to suppress T-cell proliferation. Production of immunoregulatory cytokine IL-10 was significantly inhibited, while proinflammatory cytokines IL-6, IL-1β, TNF-α and IL-33 were enhanced in CS-exposed BM-MDRC. Additionally, CS exposure increased NF-κB activation and induced BM-MDRC-mediated production of O2(•-), via NF-κB-dependent pathway. Intratracheal transfer of smoke-exposed MDRC-producing proinflammatory cytokines increased NF-κB activation, reactive oxygen species and mucin production in vivo and exacerbated AHR in C57BL/6 mice, mice deficient in Type I IFNR and MyD88, both with reduced numbers of endogenous MDRC. Thus CS exposure modulates MDRC function and contributes to asthma exacerbation and identifies MDRC as potential targets for asthma therapy.
Collapse
Affiliation(s)
- Yong Wang
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tong Huan Jin
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aisha Farhana
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jason Freeman
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kim Estell
- Department of Cell Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jaroslaw W Zmijewski
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amit Gaggar
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor J Thannickal
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lisa M Schwiebert
- Department of Cell Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adrie J C Steyn
- 1] Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA [2] KwaZulu-Natal Research Institute for Tuberculosis and HIV, Durban, South Africa
| | - Jessy S Deshane
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
13
|
Rath M, Müller I, Kropf P, Closs EI, Munder M. Metabolism via Arginase or Nitric Oxide Synthase: Two Competing Arginine Pathways in Macrophages. Front Immunol 2014; 5:532. [PMID: 25386178 PMCID: PMC4209874 DOI: 10.3389/fimmu.2014.00532] [Citation(s) in RCA: 809] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/09/2014] [Indexed: 12/23/2022] Open
Abstract
Macrophages play a major role in the immune system, both as antimicrobial effector cells and as immunoregulatory cells, which induce, suppress or modulate adaptive immune responses. These key aspects of macrophage biology are fundamentally driven by the phenotype of macrophage arginine metabolism that is prevalent in an evolving or ongoing immune response. M1 macrophages express the enzyme nitric oxide synthase, which metabolizes arginine to nitric oxide (NO) and citrulline. NO can be metabolized to further downstream reactive nitrogen species, while citrulline might be reused for efficient NO synthesis via the citrulline–NO cycle. M2 macrophages are characterized by expression of the enzyme arginase, which hydrolyzes arginine to ornithine and urea. The arginase pathway limits arginine availability for NO synthesis and ornithine itself can further feed into the important downstream pathways of polyamine and proline syntheses, which are important for cellular proliferation and tissue repair. M1 versus M2 polarization leads to opposing outcomes of inflammatory reactions, but depending on the context, M1 and M2 macrophages can be both pro- and anti-inflammatory. Notably, M1/M2 macrophage polarization can be driven by microbial infection or innate danger signals without any influence of adaptive immune cells, secondarily driving the T helper (Th)1/Th2 polarization of the evolving adaptive immune response. Since both arginine metabolic pathways cross-inhibit each other on the level of the respective arginine break-down products and Th1 and Th2 lymphocytes can drive or amplify macrophage M1/M2 dichotomy via cytokine activation, this forms the basis of a self-sustaining M1/M2 polarization of the whole immune response. Understanding the arginine metabolism of M1/M2 macrophage phenotypes is therefore central to find new possibilities to manipulate immune responses in infection, autoimmune diseases, chronic inflammatory conditions, and cancer.
Collapse
Affiliation(s)
- Meera Rath
- Department of Pharmacology, Institute of Medical Sciences, Faculty of Medical Sciences, Siksha 'O' Anusandhan University , Bhubaneshwar , India
| | - Ingrid Müller
- Section of Immunology, Department of Medicine, Imperial College London , London , UK
| | - Pascale Kropf
- Section of Immunology, Department of Medicine, Imperial College London , London , UK
| | - Ellen I Closs
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University , Mainz , Germany
| | - Markus Munder
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center, Johannes Gutenberg University , Mainz , Germany ; Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University , Mainz , Germany
| |
Collapse
|
14
|
Oyanagi M, Kaneko K, Kaneko Y, Sasaki M, Nishida C, Matsuda Y, Mitsui T. Proteomic analysis of Nipponia nippon (ID#162). Anim Sci J 2014; 85:814-32. [PMID: 24961376 DOI: 10.1111/asj.12214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 01/28/2014] [Indexed: 11/28/2022]
Abstract
We investigated the proteome of a female Crested Ibis (Nipponia nippon, ID#162) that died on March 10, 2010 at the Sado Japanese Crested Ibis Conservation Center. Protein preparations from the brain, trachea, liver, heart, lung, proventriculus, muscular stomach, small intestine, duodenum, ovary and neck muscle were subjected to in-solution shotgun mass spectrometry (MS)/MS analyses using an LTQ Orbitrap XL mass spectrometer. A search of the National Center for Biotechnology Information Gallus gallus databases revealed 4253 GI (GenInfo Identifier) numbers with the sum of the same 11 tissues examined in the Crested Ibis. To interpret the obtained proteomics data, it was verified in detail with the data obtained from the brain of the Crested Ibis. It has been reported that drebrin A is specifically expressed in adult chicken brain. In the shotgun proteomic analyses of the Crested Ibis, we identified drebrin A as a brain-specific protein. Furthermore, Western blotting analysis of the protein preparations from 10 tissues of the Crested Ibis and 150-day-old hens using anti-drebrin antibodies showed intensive expression of approximately 110 kDa polypeptides of drebrin in both brains. We believe firmly that the present data will contribute to initial and fundamental steps toward understanding the Crested Ibis proteome.
Collapse
Affiliation(s)
- Mitsuru Oyanagi
- Genome Research Center, Faculty of Agriculture, Niigata University, Niigata, Japan; Graduate School of Science and Technology, Niigata University, Niigata, Japan; Center for Toki and Ecological Restoration, Niigata University, Niigata, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Yokota N, Zarpellon A, Chakrabarty S, Bogdanov VY, Gruber A, Castellino FJ, Mackman N, Ellies LG, Weiler H, Ruggeri ZM, Ruf W. Contributions of thrombin targets to tissue factor-dependent metastasis in hyperthrombotic mice. J Thromb Haemost 2014; 12:71-81. [PMID: 24175924 PMCID: PMC3947224 DOI: 10.1111/jth.12442] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Tumor cell tissue factor (TF)-initiated coagulation supports hematogenous metastasis by fibrin formation, platelet activation and monocyte/macrophage recruitment. Recent studies identified host anticoagulant mechanisms as a major impediment to successful hematogenous tumor cell metastasis. OBJECTIVE Here we address mechanisms that contribute to enhanced metastasis in hyperthrombotic mice with functional thrombomodulin deficiency (TM(Pro) mice). METHODS Pharmacological and genetic approaches were combined to characterize relevant thrombin targets in a mouse model of experimental hematogenous metastasis. RESULTS TF-dependent, but contact pathway-independent, syngeneic breast cancer metastasis was associated with marked platelet hyperreactivity and formation of leukocyte-platelet aggregates in immune-competent TM(Pro) mice. Blockade of CD11b or genetic deletion of platelet glycoprotein Ibα excluded contributions of these receptors to enhanced platelet-dependent metastasis in hyperthrombotic mice. Mice with very low levels of the endothelial protein C receptor (EPCR) did not phenocopy the enhanced metastasis seen in TM(Pro) mice. Genetic deletion of the thrombin receptor PAR1 or endothelial thrombin signaling targets alone did not diminish enhanced metastasis in TM(Pro) mice. Combined deficiency of PAR1 on tumor cells and the host reduced metastasis in TM(Pro) mice. CONCLUSIONS Metastasis in the hyperthrombotic TM(Pro) mouse model is mediated by platelet hyperreactivity and contributions of PAR1 signaling on tumor and host cells.
Collapse
Affiliation(s)
- Naho Yokota
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| | - Alessandro Zarpellon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA
| | - Sagarika Chakrabarty
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| | - Vladimir Y. Bogdanov
- Division of Hematology/Oncology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - András Gruber
- Departments of Biomedical Engineering and Medicine, Oregon Health and Science University, Portland, OR
| | | | - Nigel Mackman
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Lesley G. Ellies
- Department of Pathology, University of California San Diego, La Jolla, CA
| | - Hartmut Weiler
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI
| | - Zaverio M. Ruggeri
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA
| | - Wolfram Ruf
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
16
|
The SLC3 and SLC7 families of amino acid transporters. Mol Aspects Med 2013; 34:139-58. [PMID: 23506863 DOI: 10.1016/j.mam.2012.10.007] [Citation(s) in RCA: 479] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/15/2012] [Indexed: 01/18/2023]
Abstract
Amino acids are necessary for all living cells and organisms. Specialized transporters mediate the transfer of amino acids across plasma membranes. Malfunction of these proteins can affect whole-body homoeostasis giving raise to diverse human diseases. Here, we review the main features of the SLC3 and SLC7 families of amino acid transporters. The SLC7 family is divided into two subfamilies, the cationic amino acid transporters (CATs), and the L-type amino acid transporters (LATs). The latter are the light or catalytic subunits of the heteromeric amino acid transporters (HATs), which are associated by a disulfide bridge with the heavy subunits 4F2hc or rBAT. These two subunits are glycoproteins and form the SLC3 family. Most CAT subfamily members were functionally characterized and shown to function as facilitated diffusers mediating the entry and efflux of cationic amino acids. In certain cells, CATs play an important role in the delivery of L-arginine for the synthesis of nitric oxide. HATs are mostly exchangers with a broad spectrum of substrates and are crucial in renal and intestinal re-absorption and cell redox balance. Furthermore, the role of the HAT 4F2hc/LAT1 in tumor growth and the application of LAT1 inhibitors and PET tracers for reduction of tumor progression and imaging of tumors are discussed. Finally, we describe the link between specific mutations in HATs and the primary inherited aminoacidurias, cystinuria and lysinuric protein intolerance.
Collapse
|
17
|
Role of arginase 1 from myeloid cells in th2-dominated lung inflammation. PLoS One 2013; 8:e61961. [PMID: 23637937 PMCID: PMC3634833 DOI: 10.1371/journal.pone.0061961] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 03/16/2013] [Indexed: 12/18/2022] Open
Abstract
Th2-driven lung inflammation increases Arginase 1 (Arg1) expression in alternatively-activated macrophages (AAMs). AAMs modulate T cell and wound healing responses and Arg1 might contribute to asthma pathogenesis by inhibiting nitric oxide production, regulating fibrosis, modulating arginine metabolism and restricting T cell proliferation. We used mice lacking Arg1 in myeloid cells to investigate the contribution of Arg1 to lung inflammation and pathophysiology. In six model systems encompassing acute and chronic Th2-mediated lung inflammation we observed neither a pathogenic nor protective role for myeloid-expressed Arg1. The number and composition of inflammatory cells in the airways and lungs, mucus secretion, collagen deposition, airway hyper-responsiveness, and T cell cytokine production were not altered if AAMs were deficient in Arg1 or simultaneously in both Arg1 and NOS2. Our results argue that Arg1 is a general feature of alternative activation but only selectively regulates Th2 responses. Therefore, attempts to experimentally or therapeutically inhibit arginase activity in the lung should be examined with caution.
Collapse
|
18
|
Van Dyken SJ, Locksley RM. Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annu Rev Immunol 2013; 31:317-43. [PMID: 23298208 DOI: 10.1146/annurev-immunol-032712-095906] [Citation(s) in RCA: 520] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The macrophage, a versatile cell type prominently involved in host defense and immunity, assumes a distinct state of alternative activation in the context of polarized type 2 immune responses such as allergic inflammation and helminth infection. This alternatively activated phenotype is induced by the canonical type 2 cytokines interleukin (IL)-4 and IL-13, which mediate expression of several characteristic markers along with a dramatic shift in macrophage metabolic pathways that influence surrounding cells and tissues. We discuss recent advances in the understanding of IL-4- and IL-13-mediated alternatively activated macrophages and type 2 immune responses; such advances have led to an expanded appreciation for functions of these cells beyond immunity, including maintenance of physiologic homeostasis and tissue repair.
Collapse
Affiliation(s)
- Steven J Van Dyken
- Departments of Medicine and Microbiology & Immunology, Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA
| | | |
Collapse
|
19
|
Cationic amino acid transporter 2 enhances innate immunity during Helicobacter pylori infection. PLoS One 2011; 6:e29046. [PMID: 22194986 PMCID: PMC3237590 DOI: 10.1371/journal.pone.0029046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/18/2011] [Indexed: 01/19/2023] Open
Abstract
Once acquired, Helicobacter pylori infection is lifelong due to an inadequate innate and adaptive immune response. Our previous studies indicate that interactions among the various pathways of arginine metabolism in the host are critical determinants of outcomes following infection. Cationic amino acid transporter 2 (CAT2) is essential for transport of L-arginine (L-Arg) into monocytic immune cells during H. pylori infection. Once within the cell, this amino acid is utilized by opposing pathways that lead to elaboration of either bactericidal nitric oxide (NO) produced from inducible NO synthase (iNOS), or hydrogen peroxide, which causes macrophage apoptosis, via arginase and the polyamine pathway. Because of its central role in controlling L-Arg availability in macrophages, we investigated the importance of CAT2 in vivo during H. pylori infection. CAT2(-/-) mice infected for 4 months exhibited decreased gastritis and increased levels of colonization compared to wild type mice. We observed suppression of gastric macrophage levels, macrophage expression of iNOS, dendritic cell activation, and expression of granulocyte-colony stimulating factor in CAT2(-/-) mice suggesting that CAT2 is involved in enhancing the innate immune response. In addition, cytokine expression in CAT2(-/-) mice was altered from an antimicrobial Th1 response to a Th2 response, indicating that the transporter has downstream effects on adaptive immunity as well. These findings demonstrate that CAT2 is an important regulator of the immune response during H. pylori infection.
Collapse
|
20
|
Das P, Lahiri A, Lahiri A, Sen M, Iyer N, Kapoor N, Balaji KN, Chakravortty D. Cationic amino acid transporters and Salmonella Typhimurium ArgT collectively regulate arginine availability towards intracellular Salmonella growth. PLoS One 2010; 5:e15466. [PMID: 21151933 PMCID: PMC2997073 DOI: 10.1371/journal.pone.0015466] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 09/24/2010] [Indexed: 11/25/2022] Open
Abstract
Cationic amino acid transporters (mCAT1 and mCAT2B) regulate the arginine availability in macrophages. How in the infected cell a pathogen can alter the arginine metabolism of the host remains to be understood. We reveal here a novel mechanism by which Salmonella exploit mCAT1 and mCAT2B to acquire host arginine towards its own intracellular growth within antigen presenting cells. We demonstrate that Salmonella infected bone marrow derived macrophages and dendritic cells show enhanced arginine uptake and increased expression of mCAT1 and mCAT2B. We show that the mCAT1 transporter is in close proximity to Salmonella containing vacuole (SCV) specifically by live intracellular Salmonella in order to access the macrophage cytosolic arginine pool. Further, Lysosome associated membrane protein 1, a marker of SCV, also was found to colocalize with mCAT1 in the Salmonella infected cell. The intra vacuolar Salmonella then acquire the host arginine via its own arginine transporter, ArgT for growth. The argT knockout strain was unable to acquire host arginine and was attenuated in growth in both macrophages and in mice model of infection. Together, these data reveal survival strategies by which virulent Salmonella adapt to the harsh conditions prevailing in the infected host cells.
Collapse
Affiliation(s)
- Priyanka Das
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Amit Lahiri
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Ayan Lahiri
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Minakshi Sen
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Namrata Iyer
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Nisha Kapoor
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Kithiganahalli Narayanaswamy Balaji
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
21
|
Doedens AL, Stockmann C, Rubinstein MP, Liao D, Zhang N, DeNardo DG, Coussens LM, Karin M, Goldrath AW, Johnson RS. Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res 2010; 70:7465-75. [PMID: 20841473 DOI: 10.1158/0008-5472.can-10-1439] [Citation(s) in RCA: 498] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
T cells can inhibit tumor growth, but their function in the tumor microenvironment is often suppressed. Many solid tumors exhibit abundant macrophage infiltration and low oxygen tension, yet how hypoxic conditions may affect innate immune cells and their role in tumor progression is poorly understood. Targeted deletion of the hypoxia-responsive transcription factor hypoxia-inducible factor-1α (HIF-1α) in macrophages in a progressive murine model of breast cancer resulted in reduced tumor growth, although vascular endothelial growth factor-A levels and vascularization were unchanged. Tumor-associated macrophages can suppress tumor-infiltrating T cells by several mechanisms, and we found that hypoxia powerfully augmented macrophage-mediated T-cell suppression in vitro in a manner dependent on macrophage expression of HIF-1α. Our findings link the innate immune hypoxic response to tumor progression through induction of T-cell suppression in the tumor microenvironment.
Collapse
Affiliation(s)
- Andrew L Doedens
- Division of Biological Sciences, School of Medicine, University of California at San Diego, CA 92093, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Niese KA, Chiaramonte MG, Ellies LG, Rothenberg ME, Zimmermann N. The cationic amino acid transporter 2 is induced in inflammatory lung models and regulates lung fibrosis. Respir Res 2010; 11:87. [PMID: 20576117 PMCID: PMC2906447 DOI: 10.1186/1465-9921-11-87] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 06/24/2010] [Indexed: 11/30/2022] Open
Abstract
Background Arginine is an amino acid that serves as a substrate for the enzymes nitric oxide synthase (NOS) and arginase, leading to synthesis of NO and ornithine, respectively. As such, arginine has the potential to influence diverse fundamental processes in the lung. Methods We used mice deficient in cationic amino acid transporter (CAT) 2 in models of allergic airway inflammation and pulmonary fibrosis. Results We report that the arginine transport protein CAT2 was over-expressed in the lung during the induction of allergic airway inflammation. Furthermore, CAT2 mRNA was strongly induced by transgenically over-expressed IL-4, and allergen-induced expression was dependent upon signal-transducer-and-activator-of-transcription (STAT) 6. In situ mRNA hybridization demonstrated marked staining of CAT2, predominantly in scattered mononuclear cells. Analysis of allergic airway inflammation and bleomycin-induced inflammation in CAT2-deficient mice revealed that while inflammation was independent of CAT2 expression, bleomycin-induced fibrosis was dependent upon CAT2. Mechanistic analysis revealed that arginase activity in macrophages was partly dependent on CAT2. Conclusion Taken together, these results identify CAT2 as a regulator of fibrotic responses in the lung.
Collapse
Affiliation(s)
- Kathryn A Niese
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, Ohio 45229, USA
| | | | | | | | | |
Collapse
|
23
|
Niese KA, Collier AR, Hajek AR, Cederbaum SD, O'Brien WE, Wills-Karp M, Rothenberg ME, Zimmermann N. Bone marrow cell derived arginase I is the major source of allergen-induced lung arginase but is not required for airway hyperresponsiveness, remodeling and lung inflammatory responses in mice. BMC Immunol 2009; 10:33. [PMID: 19486531 PMCID: PMC2697973 DOI: 10.1186/1471-2172-10-33] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 06/01/2009] [Indexed: 12/29/2022] Open
Abstract
Background Arginase is significantly upregulated in the lungs in murine models of asthma, as well as in human asthma, but its role in allergic airway inflammation has not been fully elucidated in mice. Results In order to test the hypothesis that arginase has a role in allergic airway inflammation we generated arginase I-deficient bone marrow (BM) chimeric mice. Following transfer of arginase I-deficient BM into irradiated recipient mice, arginase I expression was not required for hematopoietic reconstitution and baseline immunity. Arginase I deficiency in bone marrow-derived cells decreased allergen-induced lung arginase by 85.8 ± 5.6%. In contrast, arginase II-deficient mice had increased lung arginase activity following allergen challenge to a similar level to wild type mice. BM-derived arginase I was not required for allergen-elicited sensitization, recruitment of inflammatory cells in the lung, and proliferation of cells. Furthermore, allergen-induced airway hyperresponsiveness and collagen deposition were similar in arginase-deficient and wild type mice. Additionally, arginase II-deficient mice respond similarly to their control wild type mice with allergen-induced inflammation, airway hyperresponsiveness, proliferation and collagen deposition. Conclusion Bone marrow cell derived arginase I is the predominant source of allergen-induced lung arginase but is not required for allergen-induced inflammation, airway hyperresponsiveness or collagen deposition.
Collapse
Affiliation(s)
- Kathryn A Niese
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Genomic analysis of mucosal immunobiology in the porcine small intestine. Vet Immunol Immunopathol 2009; 128:119-25. [DOI: 10.1016/j.vetimm.2008.10.304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Okabe TA, Hattori M, Yuan Z, Kishimoto C. L-arginine ameliorates experimental autoimmune myocarditis by maintaining extracellular matrix and reducing cytotoxic activity of lymphocytes. Int J Exp Pathol 2008; 89:382-8. [PMID: 18808530 DOI: 10.1111/j.1365-2613.2008.00609.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
It was previously shown that administration of the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) aggravated murine viral myocarditis by increasing myocardial virus titres. Experimental autoimmune myocarditis in mice and rats mimics human fulminant myocarditis. The effects of L-arginine, a precursor of nitric oxide, upon heart failure in experimental autoimmune myocarditis were evaluated. Dietary L-arginine (L-arginine group) and L-arginine plus N(G)-nitro-L-arginine methyl ester (L-arginine + l-NAME group) were administered to C57BL/6 mice immunized with porcine cardiac myosin over 3 weeks. An untreated myocarditis group was prepared. Cardiac damage was less in the L-arginine group compared with the other two groups, as was incidence of heart failure. In addition, extracellular matrix change was less prominent in the L-arginine group. Plasma concentrations of nitric oxide were elevated in the L-arginine group. Cytotoxic activities of lymphocytes were lower in L-arginine group than in other two groups. L-arginine treatment may be effective in preventing the development of heart failure in experimental myocarditis by maintaining extracellular matrix and reducing the cytotoxic activity of lymphocytes.
Collapse
Affiliation(s)
- Taka-aki Okabe
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
26
|
Humphrey BD, Kirsch S, Morris D. Molecular cloning and characterization of the chicken cationic amino acid transporter-2 gene. Comp Biochem Physiol B Biochem Mol Biol 2008; 150:301-11. [DOI: 10.1016/j.cbpb.2008.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/24/2008] [Accepted: 03/31/2008] [Indexed: 11/26/2022]
|
27
|
Rothenberg ME. 2007 E. Mead Johnson award: scientific pursuit of the allergy problem. Pediatr Res 2008; 64:110-5. [PMID: 18414146 DOI: 10.1203/pdr.0b013e3181794507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
My research has focused on elucidating the allergy problem over the past two decades. The primary approach has been to uncover critical mechanisms of allergic inflammation, with particular focus on eosinophils, a hallmark cellular constituent of allergic responses. Molecular processes that bridge T helper cell type 2 (TH2) immunity with eosinophilia and key checkpoints for regulating eosinophilia have been uncovered. Notably, interleukin (IL)-5 (derived from TH2 cells) has been identified as the chief hematopoietin responsible for eosinophil expansion in the circulation. Pathways for selective eosinophil mobilization from the blood stream to the tissue have been uncovered by defining the role of the eotaxin subfamily of chemokines in eosinophil chemoattraction and activation. Finally, TH2 cell derived IL-4 and IL-13 have been defined as chief inducers of the eotaxins, and upstream orchestrators of eosinophilic inflammation. These translational studies have formulated novel therapeutic strategies (currently being tested) for a variety of eosinophilic conditions, with particular attention on hypereosinophilic syndromes and eosinophil-associated gastrointestinal disorders such as eosinophilic esophagitis.
Collapse
Affiliation(s)
- Marc E Rothenberg
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA.
| |
Collapse
|
28
|
Maarsingh H, Zaagsma J, Meurs H. Arginine homeostasis in allergic asthma. Eur J Pharmacol 2008; 585:375-84. [PMID: 18410920 DOI: 10.1016/j.ejphar.2008.02.096] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2008] [Revised: 02/15/2008] [Accepted: 02/20/2008] [Indexed: 11/16/2022]
Abstract
Allergic asthma is a chronic disease characterized by early and late asthmatic reactions, airway hyperresponsiveness, airway inflammation and airway remodelling. Changes in l-arginine homeostasis may contribute to all these features of asthma by decreased nitric oxide (NO) production and increased formation of peroxynitrite, polyamines and l-proline. Intracellular l-arginine levels are regulated by at least three distinct mechanisms: (i) cellular uptake by cationic amino acid (CAT) transporters, (ii) metabolism by NO-synthase (NOS) and arginase, and (iii) recycling from l-citrulline. Ex vivo studies using animal models of allergic asthma have indicated that attenuated l-arginine bioavailability to NOS causes deficiency of bronchodilating NO and increased production of procontractile peroxynitrite, which importantly contribute to allergen-induced airway hyperresponsiveness after the early and late asthmatic reaction, respectively. Decreased cellular uptake of l-arginine, due to (eosinophil-derived) polycations inhibiting CATs, as well as increased consumption by increased arginase activity are major causes of substrate limitation to NOS. Increasing substrate availability to NOS by administration of l-arginine, l-citrulline, the polycation scavenger heparin, or an arginase inhibitor alleviates allergen-induced airway hyperresponsiveness by restoring the production of bronchodilating NO. In addition, reduced l-arginine levels may contribute to the airway inflammation associated with the development of airway hyperresponsiveness, which similarly may involve decreased NO synthesis and increased peroxynitrite formation. Increased arginase activity could also contribute to airway remodelling and persistent airway hyperresponsiveness in chronic asthma via increased synthesis of l-ornithine, the precursor of polyamines and l-proline. Drugs that increase the bioavailability of l-arginine in the airways - particularly arginase inhibitors - may have therapeutic potential in allergic asthma.
Collapse
Affiliation(s)
- Harm Maarsingh
- Department of Molecular Pharmacology, University Centre for Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | |
Collapse
|
29
|
Thompson RW, Pesce JT, Ramalingam T, Wilson MS, White S, Cheever AW, Ricklefs SM, Porcella SF, Li L, Ellies LG, Wynn TA. Cationic amino acid transporter-2 regulates immunity by modulating arginase activity. PLoS Pathog 2008; 4:e1000023. [PMID: 18369473 PMCID: PMC2265428 DOI: 10.1371/journal.ppat.1000023] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 02/05/2008] [Indexed: 11/18/2022] Open
Abstract
Cationic amino acid transporters (CAT) are important regulators of NOS2 and ARG1 activity because they regulate L-arginine availability. However, their role in the development of Th1/Th2 effector functions following infection has not been investigated. Here we dissect the function of CAT2 by studying two infectious disease models characterized by the development of polarized Th1 or Th2-type responses. We show that CAT2(-/-) mice are significantly more susceptible to the Th1-inducing pathogen Toxoplasma gondii. Although T. gondii infected CAT2(-/-) mice developed stronger IFN-gamma responses, nitric oxide (NO) production was significantly impaired, which contributed to their enhanced susceptibility. In contrast, CAT2(-/-) mice infected with the Th2-inducing pathogen Schistosoma mansoni displayed no change in susceptibility to infection, although they succumbed to schistosomiasis at an accelerated rate. Granuloma formation and fibrosis, pathological features regulated by Th2 cytokines, were also exacerbated even though their Th2 response was reduced. Finally, while IL-13 blockade was highly efficacious in wild-type mice, the development of fibrosis in CAT2(-/-) mice was largely IL-13-independent. Instead, the exacerbated pathology was associated with increased arginase activity in fibroblasts and alternatively activated macrophages, both in vitro and in vivo. Thus, by controlling NOS2 and arginase activity, CAT2 functions as a potent regulator of immunity.
Collapse
Affiliation(s)
- Robert W. Thompson
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John T. Pesce
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thirumalai Ramalingam
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mark S. Wilson
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Biomedical Research Institute, Rockville, Maryland, United States of America
- Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
- Centocor Inc., Malvern, Pennsylvania, United States of America
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California United States of America
| | - Sandy White
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Allen W. Cheever
- Biomedical Research Institute, Rockville, Maryland, United States of America
| | - Stacy M. Ricklefs
- Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Stephen F. Porcella
- Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Lili Li
- Centocor Inc., Malvern, Pennsylvania, United States of America
| | - Lesley G. Ellies
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California United States of America
| | - Thomas A. Wynn
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
30
|
Yeo TW, Lampah DA, Gitawati R, Tjitra E, Kenangalem E, McNeil YR, Darcy CJ, Granger DL, Weinberg JB, Lopansri BK, Price RN, Duffull SB, Celermajer DS, Anstey NM. Impaired nitric oxide bioavailability and L-arginine reversible endothelial dysfunction in adults with falciparum malaria. ACTA ACUST UNITED AC 2007; 204:2693-704. [PMID: 17954570 PMCID: PMC2118490 DOI: 10.1084/jem.20070819] [Citation(s) in RCA: 246] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Severe falciparum malaria (SM) is associated with tissue ischemia related to cytoadherence of parasitized erythrocytes to microvascular endothelium and reduced levels of NO and its precursor, l-arginine. Endothelial function has not been characterized in SM but can be improved by l-arginine in cardiovascular disease. In an observational study in Indonesia, we measured endothelial function using reactive hyperemia-peripheral arterial tonometry (RH-PAT) in 51 adults with SM, 48 patients with moderately severe falciparum malaria (MSM), and 48 controls. The mean RH-PAT index was lower in SM (1.41; 95% confidence interval [CI] = 1.33-1.47) than in MSM (1.82; 95% CI = 1.7-2.02) and controls (1.93; 95% CI = 1.8-2.06; P < 0.0001). Endothelial dysfunction was associated with elevated blood lactate and measures of hemolysis. Exhaled NO was also lower in SM relative to MSM and controls. In an ascending dose study of intravenous l-arginine in 30 more patients with MSM, l-arginine increased the RH-PAT index by 19% (95% CI = 6-34; P = 0.006) and exhaled NO by 55% (95% CI = 32-73; P < 0.0001) without important side effects. Hypoargininemia and hemolysis likely reduce NO bioavailability. Endothelial dysfunction in malaria is nearly universal in severe disease, is reversible with l-arginine, and likely contributes to its pathogenesis. Clinical trials in SM of adjunctive agents to improve endothelial NO bioavailability, including l-arginine, are warranted.
Collapse
Affiliation(s)
- Tsin W Yeo
- International Health Division, Menzies School of Health Research and Charles Darwin University, Darwin NT 0810, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Arginine has multiple metabolic fates and thus is one of the most versatile amino acids. Not only is it metabolically interconvertible with the amino acids proline and glutamate, but it also serves as a precursor for synthesis of protein, nitric oxide, creatine, polyamines, agmatine, and urea. These processes do not all occur within each cell but are differentially expressed according to cell type, age and developmental stage, diet, and state of health or disease. Arginine metabolism also is modulated by activities of various transporters that move arginine and its metabolites across the plasma and mitochondrial membranes. Moreover, several key enzymes in arginine metabolism are expressed as multiple isozymes whose expression can change rapidly and dramatically in response to a variety of different stimuli in health and disease. As illustrated by the questions raised in this article, we currently have an imperfect and incomplete picture of arginine metabolism for any mammalian species. It has become clear that a more complete understanding of arginine metabolism will require integration of information obtained from multiple approaches, including genomics, proteomics, and metabolomics.
Collapse
Affiliation(s)
- Sidney M Morris
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
32
|
Closs EI, Boissel JP, Habermeier A, Rotmann A. Structure and Function of Cationic Amino Acid Transporters (CATs). J Membr Biol 2007; 213:67-77. [PMID: 17417706 DOI: 10.1007/s00232-006-0875-7] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Indexed: 11/29/2022]
Abstract
The CAT proteins (CAT for cationic amino acid transporter) are amongst the first mammalian amino acid transporters identified on the molecular level and seem to be the major entry path for cationic amino acids in most cells. However, CAT proteins mediate also efflux of their substrates and thus may also deplete cells from cationic amino acids under certain circumstances. The CAT proteins form a subfamily of the solute carrier family 7 (SLC7) that consists of four confirmed transport proteins for cationic amino acids: CAT-1 (SLC7A1), CAT-2A (SLC7A2A), CAT-2B (SLC7A2B), and CAT-3 (SLC7A3). SLC7A4 and SLC7A14 are two related proteins with yet unknown function. One focus of this review lies on structural and functional differences between the different CAT isoforms. The expression of the CAT proteins is highly regulated on the level of transcription, mRNA stability, translation and subcellular localization. Recent advances toward a better understanding of these mechanisms provide a second focus of this review.
Collapse
Affiliation(s)
- E I Closs
- Department of Pharmacology, Johannes Gutenberg University, Obere Zahlbacher Str. 67, D-55101 Mainz, Germany.
| | | | | | | |
Collapse
|
33
|
Rotoli BM, Dall'asta V, Barilli A, D'Ippolito R, Tipa A, Olivieri D, Gazzola GC, Bussolati O. Alveolar macrophages from normal subjects lack the NOS-related system y+ for arginine transport. Am J Respir Cell Mol Biol 2007; 37:105-12. [PMID: 17363779 DOI: 10.1165/rcmb.2006-0262oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Systems y+ and y+L represent the main routes for arginine transport in mammalian cells. While system y+ activity is needed for the stimulated NO production in rodent alveolar macrophages (AM), no information is yet available about arginine transport in human AM. We study here arginine influx and genes for arginine transporters in AM from bronchoalveolar lavage of normal subjects. These cells express the y+ -related genes SLC7A1/CAT1 and SLC7A2/CAT2B, as well as the y+L genes SLC7A7/y+LAT1 and SLC7A6/y+LAT2. However, compared with human endothelial cells, AM express much less SLC7A2 mRNA and higher levels of SLC7A7 mRNA. Granulocyte macrophage colony-stimulating factor or IFN-gamma do not change the expression of any transporter gene, while lipopolysaccharide induces SLC7A2/CAT2B. Under all the conditions tested, leucine inhibits most of the arginine transport in the presence of Na+ and N-ethylmaleimide, an inhibitor of system y+, is completely ineffective, indicating that system y+L operates most of the arginine influx. Comparable results are obtained in AM from patients with interstitial lung disease, such as Nonspecific Interstitial Pneumonia (NSIP), although these cells have a higher SLC7A1 and a lower SLC7A7 expression than AM from normal subjects. It is concluded that AM from normal subjects or patients with NSIP lack a functional transport system y+, a situation that may limit arginine availability for NO synthesis. Moreover, since mutations of SLC7A7/y+LAT1 cause Lysinuric Protein Intolerance, a disease often associated with AM impairment and alveolar proteinosis, the high SLC7A7 expression observed in human AM suggests that y+LAT1 activity is important for the function of these cells.
Collapse
Affiliation(s)
- Bianca Maria Rotoli
- Sezione di Patologia Generale e Clinica, Dipartimento di Medicina Sperimentale, Università di Parma, Via Volturno 39, 43100 Parma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|