1
|
Lee M, Vetter J, Eichwald C. The influence of the cytoskeleton on the development and behavior of viral factories in mammalian orthoreovirus. Virology 2025; 604:110423. [PMID: 39889480 DOI: 10.1016/j.virol.2025.110423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Cytosolic viral factories (VFs) of mammalian orthoreovirus (MRV) are sites for viral genome replication and assembly of virus progeny. Despite advancements in reverse genetics, the formation and dynamics of VFs still need to be clarified. MRV exploits host cytoskeletal components like microtubules (MTs) throughout its life cycle, including cell entry, replication, and release. MRV VFs, membrane-less cytosolic inclusions, rely on the viral proteins μ2 and μNS for formation. Protein μ2 interacts and stabilizes MTs through acetylation, supporting VF formation and viral replication, while scaffold protein μNS influences cellular components to aid VF maturation. The disruption of the MT network reduces viral replication, underscoring its importance. Additionally, μ2 associates with MT-organizing centers, modulating the MT dynamics to favor viral replication. In summary, MRV subverts the cytoskeleton to facilitate VF dynamics and promote viral replication and assembly to promote VF dynamics, replication, and assembly, highlighting the critical role of the cytoskeleton in viral replication.
Collapse
Affiliation(s)
- Melissa Lee
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Janine Vetter
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
2
|
Jiao M, Danthi P, Yu Y. Cholesterol-Dependent Membrane Deformation by Metastable Viral Capsids Facilitates Entry. ACS Infect Dis 2024; 10:2728-2740. [PMID: 38873897 DOI: 10.1021/acsinfecdis.4c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Nonenveloped viruses employ unique entry mechanisms to breach and infect host cells. Understanding these mechanisms is crucial for developing antiviral strategies. Prevailing perspective suggests that nonenveloped viruses release membrane pore-forming peptides to breach host membranes. However, the precise involvement of the viral capsid in this entry remains elusive. Our study presents direct observations elucidating the dynamically distinctive steps through which metastable reovirus capsids disrupt host lipid membranes as they uncoat into partially hydrophobic intermediate particles. Using both live cells and model membrane systems, our key finding is that reovirus capsids actively deform and permeabilize lipid membranes in a cholesterol-dependent process. Unlike membrane pore-forming peptides, these metastable viral capsids induce more extensive membrane perturbations, including budding, bridging between adjacent membranes, and complete rupture. Notably, cholesterol enhances subviral particle adsorption, resulting in the formation of pores equivalent to the capsid size. This cholesterol dependence is attributed to the lipid condensing effect, particularly prominent at an intermediate cholesterol level. Furthermore, our results reveal a positive correlation between membrane disruption extent and efficiency of viral variants in establishing infection. This study unveils the crucial role of capsid-lipid interaction in nonenveloped virus entry, providing new insights into how cholesterol homeostasis influences virus infection dynamics.
Collapse
Affiliation(s)
- Mengchi Jiao
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Pranav Danthi
- Department of Biology, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
3
|
de Sautu M, Herrmann T, Scanavachi G, Jenni S, Harrison SC. The rotavirus VP5*/VP8* conformational transition permeabilizes membranes to Ca2. PLoS Pathog 2024; 20:e1011750. [PMID: 38574119 PMCID: PMC11020617 DOI: 10.1371/journal.ppat.1011750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/16/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
Rotaviruses infect cells by delivering into the cytosol a transcriptionally active inner capsid particle (a "double-layer particle": DLP). Delivery is the function of a third, outer layer, which drives uptake from the cell surface into small vesicles from which the DLPs escape. In published work, we followed stages of rhesus rotavirus (RRV) entry by live-cell imaging and correlated them with structures from cryogenic electron microscopy and tomography (cryo-EM and cryo-ET). The virus appears to wrap itself in membrane, leading to complete engulfment and loss of Ca2+ from the vesicle produced by the wrapping. One of the outer-layer proteins, VP7, is a Ca2+-stabilized trimer; loss of Ca2+ releases both VP7 and the other outer-layer protein, VP4, from the particle. VP4, activated by cleavage into VP8* and VP5*, is a trimer that undergoes a large-scale conformational rearrangement, reminiscent of the transition that viral fusion proteins undergo to penetrate a membrane. The rearrangement of VP5* thrusts a 250-residue, C-terminal segment of each of the three subunits outward, while allowing the protein to remain attached to the virus particle and to the cell being infected. We proposed that this segment inserts into the membrane of the target cell, enabling Ca2+ to cross. In the work reported here, we show the validity of key aspects of this proposed sequence. By cryo-EM studies of liposome-attached virions ("triple-layer particles": TLPs) and single-particle fluorescence imaging of liposome-attached TLPs, we confirm insertion of the VP4 C-terminal segment into the membrane and ensuing generation of a Ca2+ "leak". The results allow us to formulate a molecular description of early events in entry. We also discuss our observations in the context of other work on double-strand RNA virus entry.
Collapse
Affiliation(s)
- Marilina de Sautu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- Laboratory of Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Tobias Herrmann
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gustavo Scanavachi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen C. Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- Laboratory of Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
Jiao M, Danthi P, Yu Y. Cholesterol-Dependent Membrane Deformation by Metastable Viral Capsids Facilitates Entry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575085. [PMID: 38260524 PMCID: PMC10802578 DOI: 10.1101/2024.01.10.575085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Non-enveloped viruses employ unique entry mechanisms to breach and infect host cells. Understanding these mechanisms is crucial for developing antiviral strategies. Prevailing perspective suggests that non-enveloped viruses release membrane lytic peptides to breach host membranes. However, the precise involvement of the viral capsid in this entry remains elusive. Our study presents direct observations elucidating the dynamically distinctive steps through which metastable reovirus capsids disrupt host lipid membranes as they uncoat into partially hydrophobic intermediate particles. Using both live cells and model membrane systems, our key finding is that reovirus capsids actively deform and permeabilize lipid membranes in a cholesterol-dependent process. Unlike membrane lytic peptides, these metastable viral capsids induce more extensive membrane perturbations, including budding, bridging between adjacent membranes, and complete rupture. Notably, cholesterol enhances subviral particle adsorption, resulting in the formation of pores equivalent to the capsid size. This cholesterol dependence is attributed to the lipid condensing effect, particularly prominent at intermediate cholesterol level. Furthermore, our results reveal a positive correlation between membrane disruption extent and efficiency of viral variants in establishing infection. This study unveils the crucial role of capsid-lipid interaction in non-enveloped virus entry, providing new insights into how cholesterol homeostasis influences virus infection dynamics.
Collapse
Affiliation(s)
- Mengchi Jiao
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
| | - Pranav Danthi
- Department of Biology, Indiana University, Bloomington, IN 47405-7102
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
| |
Collapse
|
5
|
Dhar D, Mehanovic S, Moss W, Miller CL. Sequences at gene segment termini inclusive of untranslated regions and partial open reading frames play a critical role in mammalian orthoreovirus S gene packaging. PLoS Pathog 2024; 20:e1012037. [PMID: 38394338 PMCID: PMC10917250 DOI: 10.1371/journal.ppat.1012037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Mammalian orthoreovirus (MRV) is a prototypic member of the Spinareoviridae family and has ten double-stranded RNA segments. One copy of each segment must be faithfully packaged into the mature virion, and prior literature suggests that nucleotides (nts) at the terminal ends of each gene likely facilitate their packaging. However, little is known about the precise packaging sequences required or how the packaging process is coordinated. Using a novel approach, we have determined that 200 nts at each terminus, inclusive of untranslated regions (UTR) and parts of the open reading frame (ORF), are sufficient for packaging S gene segments (S1-S4) individually and together into replicating virus. Further, we mapped the minimal sequences required for packaging the S1 gene segment into a replicating virus to 25 5' nts and 50 3' nts. The S1 UTRs, while not sufficient, were necessary for efficient packaging, as mutations of the 5' or 3' UTRs led to a complete loss of virus recovery. Using a second novel assay, we determined that 50 5' nts and 50 3' nts of S1 are sufficient to package a non-viral gene segment into MRV. The 5' and 3' termini of the S1 gene are predicted to form a panhandle structure and specific mutations within the stem of the predicted panhandle region led to a significant decrease in viral recovery. Additionally, mutation of six nts that are conserved across the three major serotypes of MRV that are predicted to form an unpaired loop in the S1 3' UTR, led to a complete loss of viral recovery. Overall, our data provide strong experimental proof that MRV packaging signals lie at the terminal ends of the S gene segments and offer support that the sequence requirements for efficient packaging of the S1 segment include a predicted panhandle structure and specific sequences within an unpaired loop in the 3' UTR.
Collapse
Affiliation(s)
- Debarpan Dhar
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, United States of America
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Samir Mehanovic
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Walter Moss
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Cathy L. Miller
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, United States of America
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
6
|
Cristi F, Walters M, Narayan N, Agopsowicz K, Hitt MM, Shmulevitz M. Improved oncolytic activity of a reovirus mutant that displays enhanced virus spread due to reduced cell attachment. Mol Ther Oncolytics 2023; 31:100743. [PMID: 38033400 PMCID: PMC10685048 DOI: 10.1016/j.omto.2023.100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Wild-type reovirus serotype 3 Dearing (T3wt), a non-pathogenic intestinal virus, has shown promise as a cancer therapy in clinical trials, but it would benefit from an increased potency. Given that T3wt is naturally adapted to the intestinal environment (rather than tumors), we genetically modified reovirus to improve its infectivity in cancer cells. Various reovirus mutants were created, and their oncolytic potency was evaluated in vitro using plaque size as a measure of virus fitness in cancer cells. Notably, Super Virus 5 (SV5), carrying five oncolytic mutations, displayed the largest plaques in breast cancer cells among the mutants tested, indicating the potential for enhancing oncolytic potency through the combination of mutations. Furthermore, in a HER2+ murine breast cancer model, mice treated with SV5 exhibited superior tumor reduction and increased survival compared with those treated with PBS or T3wt. Intriguingly, SV5 did not replicate faster than T3wt in cultured cells but demonstrated a farther spread relative to T3wt, attributed to its reduced attachment to cancer cells. These findings highlight the significance of increased virus spread as a crucial mechanism for improving oncolytic virus activity. Thus, genetic modifications of reovirus hold the potential for augmenting its efficacy in cancer therapy.
Collapse
Affiliation(s)
- Francisca Cristi
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton AB T6G 2E1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton AB T6G 2E1, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Maiah Walters
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Nashae Narayan
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Kate Agopsowicz
- Department of Oncology, University of Alberta, Edmonton AB T6G 1Z2, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Mary M. Hitt
- Department of Oncology, University of Alberta, Edmonton AB T6G 1Z2, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton AB T6G 2E1, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Maya Shmulevitz
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton AB T6G 2E1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton AB T6G 2E1, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton AB T6G 2E1, Canada
| |
Collapse
|
7
|
De Sautu M, Herrmann T, Jenni S, Harrison SC. The rotavirus VP5*/VP8* conformational transition permeabilizes membranes to Ca 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.15.562449. [PMID: 37905109 PMCID: PMC10614792 DOI: 10.1101/2023.10.15.562449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Rotaviruses infect cells by delivering into the cytosol a transcriptionally active inner capsid particle (a "double-layer particle": DLP). Delivery is the function of a third, outer layer, which drives uptake from the cell surface into small vesicles from which the DLPs escape. In published work, we followed stages of rhesus rotavirus (RRV) entry by live-cell imaging and correlated them with structures from cryogenic electron microscopy and tomography (cryo-EM and cryo-ET). The virus appears to wrap itself in membrane, leading to complete engulfment and loss of Ca2+ from the vesicle produced by the wrapping. One of the outer-layer proteins, VP7, is a Ca2+-stabilized trimer; loss of Ca2+ releases both outer-layer proteins from the particle. The other outer-layer protein, VP4, activated by cleavage into VP8* and VP5*, is a trimer that undergoes a large-scale conformational rearrangement, reminiscent of the transition that viral fusion proteins undergo to penetrate a membrane. The rearrangement of VP5* thrusts a 250-residue, C-terminal segment of each of the three subunits outward, while allowing the protein to remain attached to the virus particle and to the cell being infected. We proposed that this segment inserts into the membrane of the target cell, enabling Ca2+ to cross. In the work reported here, we show the validity of key aspects of this proposed sequence. By cryo-EM studies of liposome-attached virions ("triple-layer particles": TLPs) and single-particle fluorescence imaging of liposome-attached TLPs, we confirm insertion of the VP4 C-terminal segment into the membrane and ensuing generation of a Ca2+ "leak". The results allow us to formulate a molecular description of early events in entry. We also discuss our observations in the context of other work on double-strand RNA virus entry.
Collapse
Affiliation(s)
- Marilina De Sautu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
- Laboratory of Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Tobias Herrmann
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Stephen C. Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
- Laboratory of Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Garcia ML, Danthi P. The Reovirus σ1 Attachment Protein Influences the Stability of Its Entry Intermediate. J Virol 2023; 97:e0058523. [PMID: 37167564 PMCID: PMC10231251 DOI: 10.1128/jvi.00585-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
Structural metastability of viral capsids is pivotal for viruses to survive in harsh environments and to undergo timely conformational changes required for cell entry. Mammalian orthoreovirus (reovirus) is a model to study capsid metastability. Following initial disassembly of the reovirus particle mediated by proteases, a metastable intermediate called the infectious subvirion particle (ISVP) is generated. Using a σ1 monoreassortant virus, we recently showed that σ1 properties affect its encapsidation on particles and the metastability of ISVPs. How metastability is impacted by σ1 and whether the lower encapsidation level of σ1 is connected to this property is unknown. To define a correlation between encapsidation of σ1 and ISVP stability, we generated mutant viruses with single amino acid polymorphisms in σ1 or those that contain chimeric σ1 molecules composed of σ1 portions from type 1 and type 3 reovirus strains. We found that under most conditions where σ1 encapsidation on the particle was lower, ISVPs displayed lower stability. Characterization of mutant viruses selected for enhanced stability via a forward genetic approach also revealed that in some cases, σ1 properties influence stability without influencing σ1 encapsidation. These data indicate that σ1 can also influence ISVP stability independent of its level of incorporation. Together, our work reveals an underappreciated effect of the σ1 attachment protein on the properties of the reovirus capsid. IMPORTANCE Reovirus particles are comprised of eight proteins. Among them, the reovirus σ1 protein functions engages cellular receptors. σ1 also influences the stability of an entry intermediate called ISVP. Here, we sought to define the basis of the link between σ1 properties and stability of ISVPs. Using variety of mutant strains, we determined that when virus preparations contain particles with a high amount of encapsidated σ1, ISVP stability is higher. Additionally, we identified portions of σ1 that impact its encapsidation and consequently the stability of ISVPs. We also determined that in some cases, σ1 properties alter stability of ISVPs without affecting encapsidation. This work highlights that proteins of these complex particles are arranged in an intricate, interconnected manner such that changing the properties of these proteins has a profound impact on the remainder of the particle.
Collapse
Affiliation(s)
| | - Pranav Danthi
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
9
|
McNamara A, Roebke K, Danthi P. Cell Killing by Reovirus: Mechanisms and Consequences. Curr Top Microbiol Immunol 2023; 442:133-153. [PMID: 32986138 DOI: 10.1007/82_2020_225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Infection of host cells by mammalian reovirus in culture or in tissues of infected animals results in cell death. Cell death of infected neurons and myocytes contributes to the pathogenesis of reovirus-induced encephalitis and myocarditis in a newborn mouse model. Thus, reovirus-induced cell death has been used to investigate the basis of viral disease. Depending on the cell type, infection of host cells by reovirus results in one of two forms of cell death-apoptosis and necroptosis. In addition to the obvious differences in how these two forms of cell death are executed, the mechanisms by which reovirus infection initiates and transduces signals that lead to each of these types of cell death are distinct. In this review, we discuss how apoptosis and necroptosis are triggered by events at different stages of infection. We also describe how innate immune recognition of reovirus genomic material and type I interferon signaling pathways connect with the core components of the apoptosis and necroptosis machinery. The impact of different cell death mediators on viral pathogenesis and the potential of reovirus as an oncolytic vector are also outlined.
Collapse
Affiliation(s)
- Andrew McNamara
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Katherine Roebke
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Pranav Danthi
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
10
|
Protein Myristoylation Plays a Role in the Nuclear Entry of the Parvovirus Minute Virus of Mice. J Virol 2022; 96:e0111822. [PMID: 35950857 PMCID: PMC9472656 DOI: 10.1128/jvi.01118-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Being nonpathogenic to humans, rodent parvoviruses (PVs) are naturally oncolytic viruses with great potential as anti-cancer agents. As these viruses replicate in the host cell nucleus, they must gain access to the nucleus during infection. The PV minute virus of mice (MVM) and several other PVs transiently disrupt the nuclear envelope (NE) and enter the nucleus through the resulting breaks. However, the molecular basis of this unique nuclear entry pathway remains uncharacterized. In this study, we used MVM as a model to investigate the molecular mechanism by which PVs induce NE disruption during viral nuclear entry. By combining bioinformatics analyses, metabolic labeling assays, mutagenesis, and pharmacological inhibition, we identified a functional myristoylation site at the sequence 78GGKVGH83 of the unique portion of the capsid protein VP1 (VP1u) of MVM. Performing proteolytic cleavage studies with a peptide containing this myristoylation site or with purified virions, we found tryptophan at position 77 of MVM VP1u is susceptible to chymotrypsin cleavage, implying this cleavage exposes G (glycine) 78 at the N-terminus of VP1u for myristoylation. Subsequent experiments using inhibitors of myristoylation and cellular proteases with MVM-infected cells, or an imaging-based quantitative NE permeabilization assay, further indicate protein myristoylation and a chymotrypsin-like activity are essential for MVM to locally disrupt the NE during viral nuclear entry. We thus propose a model for the nuclear entry of MVM in which NE disruption is mediated by VP1u myristoylation after the intact capsid undergoes proteolytic processing to expose the required N-terminal G for myristoylation. IMPORTANCE Rodent parvoviruses (PVs), including minute virus of mice (MVM), have the ability to infect and kill cancer cells and thereby possess great potential in anti-cancer therapy. In fact, some of these viruses are currently being investigated in both preclinical studies and clinical trials to treat a wide variety of cancers. However, the detailed mechanism of how PVs enter the cell nucleus remains unknown. In this study, we for the first time demonstrated a chemical modification called "myristoylation" of a MVM protein plays an essential role in the nuclear entry of the virus. We also showed, in addition to protein myristoylation, a chymotrypsin-like activity, which may come from cellular proteasomes, is required for MVM to get myristoylated and enter the nucleus. These findings deepen our understanding on how MVM and other related PVs infect host cells and provide new insights for the development of PV-based anti-cancer therapies.
Collapse
|
11
|
A CRISPR-Cas9 screen reveals a role for WD repeat-containing protein 81 (WDR81) in the entry of late penetrating viruses. PLoS Pathog 2022; 18:e1010398. [PMID: 35320319 PMCID: PMC8942271 DOI: 10.1371/journal.ppat.1010398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/25/2022] [Indexed: 12/02/2022] Open
Abstract
Successful initiation of infection by many different viruses requires their uptake into the endosomal compartment. While some viruses exit this compartment early, others must reach the degradative, acidic environment of the late endosome. Mammalian orthoreovirus (reovirus) is one such late penetrating virus. To identify host factors that are important for reovirus infection, we performed a CRISPR-Cas9 knockout (KO) screen that targets over 20,000 genes in fibroblasts derived from the embryos of C57/BL6 mice. We identified seven genes (WDR81, WDR91, RAB7, CCZ1, CTSL, GNPTAB, and SLC35A1) that were required for the induction of cell death by reovirus. Notably, CRISPR-mediated KO of WD repeat-containing protein 81 (WDR81) rendered cells resistant to reovirus infection. Susceptibility to reovirus infection was restored by complementing KO cells with human WDR81. Although the absence of WDR81 did not affect viral attachment efficiency or uptake into the endosomal compartments for initial disassembly, it reduced viral gene expression and diminished infectious virus production. Consistent with the role of WDR81 in impacting the maturation of endosomes, WDR81-deficiency led to the accumulation of reovirus particles in dead-end compartments. Though WDR81 was dispensable for infection by VSV (vesicular stomatitis virus), which exits the endosomal system at an early stage, it was required for VSV-EBO GP (VSV that expresses the Ebolavirus glycoprotein), which must reach the late endosome to initiate infection. These results reveal a previously unappreciated role for WDR81 in promoting the replication of viruses that transit through late endosomes. Viruses are obligate intracellular parasites that require the contributions of numerous host factors to complete the viral life cycle. Thus, the host-pathogen interaction can regulate cell death signaling and virus entry, replication, assembly, and egress. Functional genetic screens are useful tools to identify host factors that are important for establishing infection. Such information can also be used to understand cell biology. Notably, genome-scale CRISPR-Cas9 knockout screens are robust due to their specificity and the loss of host gene expression. Mammalian orthoreovirus (reovirus) is a tractable model system to investigate the pathogenesis of neurotropic and cardiotropic viruses. Using a CRISPR-Cas9 screen, we identified WD repeat-containing protein 81 (WDR81) as a host factor required for efficient reovirus infection of murine cells. Ablation of WDR81 blocked a late step in the viral entry pathway. Further, our work indicates that WDR81 is required for the entry of vesicular stomatitis virus that expresses the Ebolavirus glycoprotein.
Collapse
|
12
|
Ortega-Gonzalez P, Taylor G, Jangra RK, Tenorio R, Fernandez de Castro I, Mainou BA, Orchard RC, Wilen CB, Brigleb PH, Sojati J, Chandran K, Sachse M, Risco C, Dermody TS. Reovirus infection is regulated by NPC1 and endosomal cholesterol homeostasis. PLoS Pathog 2022; 18:e1010322. [PMID: 35263388 PMCID: PMC8906592 DOI: 10.1371/journal.ppat.1010322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/28/2022] [Indexed: 11/19/2022] Open
Abstract
Cholesterol homeostasis is required for the replication of many viruses, including Ebola virus, hepatitis C virus, and human immunodeficiency virus-1. Niemann-Pick C1 (NPC1) is an endosomal-lysosomal membrane protein involved in cholesterol trafficking from late endosomes and lysosomes to the endoplasmic reticulum. We identified NPC1 in CRISPR and RNA interference screens as a putative host factor for infection by mammalian orthoreovirus (reovirus). Following internalization via clathrin-mediated endocytosis, the reovirus outer capsid is proteolytically removed, the endosomal membrane is disrupted, and the viral core is released into the cytoplasm where viral transcription, genome replication, and assembly take place. We found that reovirus infection is significantly impaired in cells lacking NPC1, but infection is restored by treatment of cells with hydroxypropyl-β-cyclodextrin, which binds and solubilizes cholesterol. Absence of NPC1 did not dampen infection by infectious subvirion particles, which are reovirus disassembly intermediates that bypass the endocytic pathway for infection of target cells. NPC1 is not required for reovirus attachment to the plasma membrane, internalization into cells, or uncoating within endosomes. Instead, NPC1 is required for delivery of transcriptionally active reovirus core particles from endosomes into the cytoplasm. These findings suggest that cholesterol homeostasis, ensured by NPC1 transport activity, is required for reovirus penetration into the cytoplasm, pointing to a new function for NPC1 and cholesterol homeostasis in viral infection.
Collapse
Affiliation(s)
- Paula Ortega-Gonzalez
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
- PhD Program in Molecular Biosciences, Autonoma de Madrid University, Madrid, Spain
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Gwen Taylor
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rohit K. Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Raquel Tenorio
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
| | - Isabel Fernandez de Castro
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
| | - Bernardo A. Mainou
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Robert C. Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Craig B. Wilen
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Pamela H. Brigleb
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jorna Sojati
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Martin Sachse
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
| | - Terence S. Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
13
|
Xia X, Wu W, Cui Y, Roy P, Zhou ZH. Bluetongue virus capsid protein VP5 perforates membranes at low endosomal pH during viral entry. Nat Microbiol 2021; 6:1424-1432. [PMID: 34702979 PMCID: PMC9015746 DOI: 10.1038/s41564-021-00988-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/22/2021] [Indexed: 01/25/2023]
Abstract
Bluetongue virus (BTV) is a non-enveloped virus and causes substantial morbidity and mortality in ruminants such as sheep. Fashioning a receptor-binding protein (VP2) and a membrane penetration protein (VP5) on the surface, BTV releases its genome-containing core (VP3 and VP7) into the host cell cytosol after perforation of the endosomal membrane. Unlike enveloped ones, the entry mechanisms of non-enveloped viruses into host cells remain poorly understood. Here we applied single-particle cryo-electron microscopy, cryo-electron tomography and structure-guided functional assays to characterize intermediate states of BTV cell entry in endosomes. Four structures of BTV at the resolution range of 3.4-3.9 Å show the different stages of structural rearrangement of capsid proteins on exposure to low pH, including conformational changes of VP5, stepwise detachment of VP2 and a small shift of VP7. In detail, sensing of the low-pH condition by the VP5 anchor domain triggers three major VP5 actions: projecting the hidden dagger domain, converting a surface loop to a protonated β-hairpin that anchors VP5 to the core and stepwise refolding of the unfurling domains into a six-helix stalk. Cryo-electron tomography structures of BTV interacting with liposomes show a length decrease of the VP5 stalk from 19.5 to 15.5 nm after its insertion into the membrane. Our structures, functional assays and structure-guided mutagenesis experiments combined indicate that this stalk, along with dagger domain and the WHXL motif, creates a single pore through the endosomal membrane that enables the viral core to enter the cytosol. Our study unveils the detailed mechanisms of BTV membrane penetration and showcases general methods to study cell entry of other non-enveloped viruses.
Collapse
Affiliation(s)
- Xian Xia
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Weining Wu
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Yanxiang Cui
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Polly Roy
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Z Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Inhibition of HIF-1α accumulation in prostate cancer cells is initiated during early stages of mammalian orthoreovirus infection. Virology 2021; 558:38-48. [PMID: 33721728 DOI: 10.1016/j.virol.2021.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 02/08/2023]
Abstract
Mammalian orthoreovirus (MRV) is a safe and effective cancer killing virus that has completed Phase I-III clinical trials against numerous cancer types. While many patients experience benefit from MRV therapy, pre-defined set points necessary for FDA approval have not been reached. Therefore, additional research into MRV biology and the effect of viral therapy on different tumor genetic subtypes and microenvironments is necessary to identify tumors most amenable to MRV virotherapy. In this work we analyzed the stage of viral infection necessary to inhibit HIF-1α, an aggressive cancer activator induced by hypoxia. We demonstrated that two viral capsid proteins were not necessary and that a step parallel with virus core movement across the endosomal membrane was required for this inhibition. Altogether, this work clarifies the mechanisms of MRV-induced HIF-1α inhibition and provides biological relevance for using MRV to inhibit the devastating effects of tumor hypoxia.
Collapse
|
15
|
Reovirus and the Host Integrated Stress Response: On the Frontlines of the Battle to Survive. Viruses 2021; 13:v13020200. [PMID: 33525628 PMCID: PMC7910986 DOI: 10.3390/v13020200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
Cells are continually exposed to stressful events, which are overcome by the activation of a number of genetic pathways. The integrated stress response (ISR) is a large component of the overall cellular response to stress, which ultimately functions through the phosphorylation of the alpha subunit of eukaryotic initiation factor-2 (eIF2α) to inhibit the energy-taxing process of translation. This response is instrumental in the inhibition of viral infection and contributes to evolution in viruses. Mammalian orthoreovirus (MRV), an oncolytic virus that has shown promise in over 30 phase I–III clinical trials, has been shown to induce multiple arms within the ISR pathway, but it successfully evades, modulates, or subverts each cellular attempt to inhibit viral translation. MRV has not yet received Food and Drug Administration (FDA) approval for general use in the clinic; therefore, researchers continue to study virus interactions with host cells to identify circumstances where MRV effectiveness in tumor killing can be improved. In this review, we will discuss the ISR, MRV modulation of the ISR, and discuss ways in which MRV interaction with the ISR may increase the effectiveness of cancer therapeutics whose modes of action are altered by the ISR.
Collapse
|
16
|
Gummersheimer SL, Snyder AJ, Danthi P. Control of Capsid Transformations during Reovirus Entry. Viruses 2021; 13:v13020153. [PMID: 33494426 PMCID: PMC7911961 DOI: 10.3390/v13020153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 02/04/2023] Open
Abstract
Mammalian orthoreovirus (reovirus), a dsRNA virus with a multilayered capsid, serves as a model system for studying the entry of similar viruses. The outermost layer of this capsid undergoes processing to generate a metastable intermediate. The metastable particle undergoes further remodeling to generate an entry-capable form that delivers the genome-containing inner capsid, or core, into the cytoplasm. In this review, we highlight capsid proteins and the intricacies of their interactions that control the stability of the capsid and consequently impact capsid structural changes that are prerequisites for entry. We also discuss a novel proviral role of host membranes in promoting capsid conformational transitions. Current knowledge gaps in the field that are ripe for future investigation are also outlined.
Collapse
|
17
|
Lowell JA, Mah KM, Bixby JL, Lemmon VP. AAV8 transduction capacity is reduced by prior exposure to endosome-like pH conditions. Neural Regen Res 2021; 16:851-855. [PMID: 33229719 PMCID: PMC8178773 DOI: 10.4103/1673-5374.299272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Adeno-associated virus (AAV) is an essential instrument in the neuroscientist's toolkit, which allows delivery of DNA to provide labeling with fluorescent proteins or genetic instructions to regulate gene expression. In the field of neural regeneration, the transduction of neurons enables the observation and regulation of axon growth and regeneration, and in the future will likely be a mechanism for delivering molecular therapies to promote sprouting and regeneration after central nervous system injury. Traditional formulations of AAV preparations permit efficient viral transduction under physiologic conditions, but an improved understanding of the mechanistic limitations of AAV transduction may facilitate production of more resilient AAV strains for investigative and therapeutic purposes. We studied AAV transduction in the context of prior exposure of AAV serotype 8 (AAV8) to environmental pH within the range encountered during endosomal endocytosis (pH 7.4 to pH 4.4), during which low pH-triggered structural and autoproteolytic changes to the viral capsid are believed to be necessary for endosome escape and virus uncoating. Due to the fundamental nature of these processes, we hypothesized that premature exposure of AAV8 particles to acidic pH would decrease viral transduction of HT1080 cells in vitro, as measured by fluorescent reporter gene expression using high-content imaging analysis. We found that increasingly acidic incubation conditions were associated with concomitant reductions in transduction efficiency, and that quantitative levels of reporter gene expression in transduced cells were similarly decreased. The biggest decrease in transduction occurred between pH 7.4 and pH 6.4, suggesting the possible co-occurrence of a pH-associated event and viral inactivation within that range. Taken together, these findings indicate that exposure of AAV8 to acidic pH for as little as 1 hour is deleterious to transduction ability. Future studies are necessary to understand the pH-associated causative mechanisms involved. This study was approved by the University of Miami Institutional Animal Care and Use Committee, USA (Protocol #18-108-LF) on July 12, 2018.
Collapse
Affiliation(s)
- Jeffrey A Lowell
- Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
| | - Kar Men Mah
- Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
| | - John L Bixby
- Miami Project to Cure Paralysis; Department of Neurological Surgery; Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL, USA
| | - Vance P Lemmon
- Miami Project to Cure Paralysis; Department of Neurological Surgery, University of Miami, Miami, FL, USA
| |
Collapse
|
18
|
Reovirus σ1 Conformational Flexibility Modulates the Efficiency of Host Cell Attachment. J Virol 2020; 94:JVI.01163-20. [PMID: 32938765 DOI: 10.1128/jvi.01163-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Reovirus attachment protein σ1 is a trimeric molecule containing tail, body, and head domains. During infection, σ1 engages sialylated glycans and junctional adhesion molecule-A (JAM-A), triggering uptake into the endocytic compartment, where virions are proteolytically converted to infectious subvirion particles (ISVPs). Further disassembly allows σ1 release and escape of transcriptionally active reovirus cores into the cytosol. Electron microscopy has revealed a distinct conformational change in σ1 from a compact form on virions to an extended form on ISVPs. To determine the importance of σ1 conformational mobility, we used reverse genetics to introduce cysteine mutations that can cross-link σ1 by establishing disulfide bonds between structurally adjacent sites in the tail, body, and head domains. We detected phenotypic differences among the engineered viruses. A mutant with a cysteine pair in the head domain replicates with enhanced kinetics, forms large plaques, and displays increased avidity for JAM-A relative to the parental virus, mimicking properties of ISVPs. However, unlike ISVPs, particles containing cysteine mutations that cross-link the head domain uncoat and transcribe viral positive-sense RNA with kinetics similar to the parental virus and are sensitive to ammonium chloride, which blocks virion-to-ISVP conversion. Together, these data suggest that σ1 conformational flexibility modulates the efficiency of reovirus host cell attachment.IMPORTANCE Nonenveloped virus entry is an incompletely understood process. For reovirus, the functional significance of conformational rearrangements in the attachment protein, σ1, that occur during entry and particle uncoating are unknown. We engineered and characterized reoviruses containing cysteine mutations that cross-link σ1 monomers in nonreducing conditions. We found that the introduction of a cysteine pair in the receptor-binding domain of σ1 yielded a virus that replicates with faster kinetics than the parental virus and forms larger plaques. Using functional assays, we found that cross-linking the σ1 receptor-binding domain modulates reovirus attachment but not uncoating or transcription. These data suggest that σ1 conformational rearrangements mediate the efficiency of reovirus host cell binding.
Collapse
|
19
|
Daussy CF, Wodrich H. "Repair Me if You Can": Membrane Damage, Response, and Control from the Viral Perspective. Cells 2020; 9:cells9092042. [PMID: 32906744 PMCID: PMC7564661 DOI: 10.3390/cells9092042] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Cells are constantly challenged by pathogens (bacteria, virus, and fungi), and protein aggregates or chemicals, which can provoke membrane damage at the plasma membrane or within the endo-lysosomal compartments. Detection of endo-lysosomal rupture depends on a family of sugar-binding lectins, known as galectins, which sense the abnormal exposure of glycans to the cytoplasm upon membrane damage. Galectins in conjunction with other factors orchestrate specific membrane damage responses such as the recruitment of the endosomal sorting complex required for transport (ESCRT) machinery to either repair damaged membranes or the activation of autophagy to remove membrane remnants. If not controlled, membrane damage causes the release of harmful components including protons, reactive oxygen species, or cathepsins that will elicit inflammation. In this review, we provide an overview of current knowledge on membrane damage and cellular responses. In particular, we focus on the endo-lysosomal damage triggered by non-enveloped viruses (such as adenovirus) and discuss viral strategies to control the cellular membrane damage response. Finally, we debate the link between autophagy and inflammation in this context and discuss the possibility that virus induced autophagy upon entry limits inflammation.
Collapse
|
20
|
Polymorphisms in the Most Oncolytic Reovirus Strain Confer Enhanced Cell Attachment, Transcription, and Single-Step Replication Kinetics. J Virol 2020; 94:JVI.01937-19. [PMID: 31776267 DOI: 10.1128/jvi.01937-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/31/2022] Open
Abstract
Reovirus serotype 3 Dearing (T3D) replicates preferentially in transformed cells and is in clinical trials as a cancer therapy. Laboratory strains of T3D, however, exhibit differences in plaque size on cancer cells and differences in oncolytic activity in vivo This study aimed to determine why the most oncolytic T3D reovirus lab strain, the Patrick Lee laboratory strain (T3DPL), replicates more efficiently in cancer cells than other commonly used laboratory strains, the Kevin Coombs laboratory strain (T3DKC) and Terence Dermody laboratory (T3DTD) strain. In single-step growth curves, T3DPL titers increased at higher rates and produced ∼9-fold higher burst size. Furthermore, the number of reovirus antigen-positive cells increased more rapidly for T3DPL than for T3DTD In conclusion, the most oncolytic T3DPL possesses replication advantages in a single round of infection. Two specific mechanisms for enhanced infection by T3DPL were identified. First, T3DPL exhibited higher cell attachment, which was attributed to a higher proportion of virus particles with insufficient (≤3) σ1 cell attachment proteins. Second, T3DPL transcribed RNA at rates superior to those of the less oncolytic T3D strains, which is attributed to polymorphisms in M1-encoding μ2 protein, as confirmed in an in vitro transcription assay, and which thus demonstrates that T3DPL has an inherent transcription advantage that is cell type independent. Accordingly, T3DPL established rapid onset of viral RNA and protein synthesis, leading to more rapid kinetics of progeny virus production, larger virus burst size, and higher levels of cell death. Together, these results emphasize the importance of paying close attention to genomic divergence between virus laboratory strains and, mechanistically, reveal the importance of the rapid onset of infection for reovirus oncolysis.IMPORTANCE Reovirus serotype 3 Dearing (T3D) is in clinical trials for cancer therapy. Recently, it was discovered that highly related laboratory strains of T3D exhibit large differences in their abilities to replicate in cancer cells in vitro, which correlates with oncolytic activity in a murine model of melanoma. The current study reveals two mechanisms for the enhanced efficiency of T3DPL in cancer cells. Due to polymorphisms in two viral genes, within the first round of reovirus infection, T3DPL binds to cells more efficiency and more rapidly produces viral RNAs; this increased rate of infection relative to that of the less oncolytic strains gives T3DPL a strong inherent advantage that culminates in higher virus production, more cell death, and higher virus spread.
Collapse
|
21
|
Abstract
Viruses must navigate the complex endomembranous network of the host cell to cause infection. In the case of a non-enveloped virus that lacks a surrounding lipid bilayer, endocytic uptake from the plasma membrane is not sufficient to cause infection. Instead, the virus must travel within organelle membranes to reach a specific cellular destination that supports exposure or arrival of the virus to the cytosol. This is achieved by viral penetration across a host endomembrane, ultimately enabling entry of the virus into the nucleus to initiate infection. In this review, we discuss the entry mechanisms of three distinct non-enveloped DNA viruses-adenovirus (AdV), human papillomavirus (HPV), and polyomavirus (PyV)-highlighting how each exploit different intracellular transport machineries and membrane penetration apparatus associated with the endosome, Golgi, and endoplasmic reticulum (ER) membrane systems to infect a host cell. These processes not only illuminate a highly-coordinated interplay between non-enveloped viruses and their host, but may provide new strategies to combat non-enveloped virus-induced diseases.
Collapse
Affiliation(s)
- Chelsey C Spriggs
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mara C Harwood
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
22
|
Selection and Characterization of a Reovirus Mutant with Increased Thermostability. J Virol 2019; 93:JVI.00247-19. [PMID: 30787157 DOI: 10.1128/jvi.00247-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/26/2022] Open
Abstract
The environment represents a significant barrier to infection. Physical stressors (heat) or chemical agents (ethanol) can render virions noninfectious. As such, discrete proteins are necessary to stabilize the dual-layered structure of mammalian orthoreovirus (reovirus). The outer capsid participates in cell entry: (i) σ3 is degraded to generate the infectious subviral particle, and (ii) μ1 facilitates membrane penetration and subsequent core delivery. μ1-σ3 interactions also prevent inactivation; however, this activity is not fully characterized. Using forward and reverse genetic approaches, we identified two mutations (μ1 M258I and σ3 S344P) within heat-resistant strains. σ3 S344P was sufficient to enhance capsid integrity and to reduce protease sensitivity. Moreover, these changes impaired replicative fitness in a reassortant background. This work reveals new details regarding the determinants of reovirus stability.IMPORTANCE Nonenveloped viruses rely on protein-protein interactions to shield their genomes from the environment. The capsid, or protective shell, must also disassemble during cell entry. In this work, we identified a determinant within mammalian orthoreovirus that regulates heat resistance, disassembly kinetics, and replicative fitness. Together, these findings show capsid function is balanced for optimal replication and for spread to a new host.
Collapse
|
23
|
Components of the Reovirus Capsid Differentially Contribute to Stability. J Virol 2019; 93:JVI.01894-18. [PMID: 30381491 DOI: 10.1128/jvi.01894-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022] Open
Abstract
The mammalian orthoreovirus (reovirus) outer capsid is composed of 200 μ1-σ3 heterohexamers and a maximum of 12 σ1 trimers. During cell entry, σ3 is degraded by luminal or intracellular proteases to generate the infectious subviral particle (ISVP). When ISVP formation is prevented, reovirus fails to establish a productive infection, suggesting proteolytic priming is required for entry. ISVPs are then converted to ISVP*s, which is accompanied by μ1 rearrangements. The μ1 and σ3 proteins confer resistance to inactivating agents; however, neither the impact on capsid properties nor the mechanism (or basis) of inactivation is fully understood. Here, we utilized T1L/T3D M2 and T3D/T1L S4 to investigate the determinants of reovirus stability. Both reassortants encode mismatched subunits. When μ1-σ3 were derived from different strains, virions resembled wild-type particles in structure and protease sensitivity. T1L/T3D M2 and T3D/T1L S4 ISVPs were less thermostable than wild-type ISVPs. In contrast, virions were equally susceptible to heating. Virion associated μ1 adopted an ISVP*-like conformation concurrent with inactivation; σ3 preserves infectivity by preventing μ1 rearrangements. Moreover, thermostability was enhanced by a hyperstable variant of μ1. Unlike the outer capsid, the inner capsid (core) was highly resistant to elevated temperatures. The dual layered architecture allowed for differential sensitivity to inactivating agents.IMPORTANCE Nonenveloped and enveloped viruses are exposed to the environment during transmission to a new host. Protein-protein and/or protein-lipid interactions stabilize the particle and protect the viral genome. Mammalian orthoreovirus (reovirus) is composed of two concentric, protein shells. The μ1 and σ3 proteins form the outer capsid; contacts between neighboring subunits are thought to confer resistance to inactivating agents. We further investigated the determinants of reovirus stability. The outer capsid was disrupted concurrent with the loss of infectivity; virion associated μ1 rearranged into an altered conformation. Heat sensitivity was controlled by σ3; however, particle integrity was enhanced by a single μ1 mutation. In contrast, the inner capsid (core) displayed superior resistance to heating. These findings reveal structural components that differentially contribute to reovirus stability.
Collapse
|
24
|
Brendel JC, Sanchis J, Catrouillet S, Czuba E, Chen MZ, Long BM, Nowell C, Johnston A, Jolliffe KA, Perrier S. Secondary Self‐Assembly of Supramolecular Nanotubes into Tubisomes and Their Activity on Cells. Angew Chem Int Ed Engl 2018; 57:16678-16682. [DOI: 10.1002/anie.201808543] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/04/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Johannes C. Brendel
- Department of ChemistryUniversity of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Joaquin Sanchis
- Faculty of Pharmacy and Pharmaceutical SciencesMonash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Sylvain Catrouillet
- Department of ChemistryUniversity of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Ewa Czuba
- Faculty of Pharmacy and Pharmaceutical SciencesMonash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Moore Z. Chen
- Faculty of Pharmacy and Pharmaceutical SciencesMonash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Benjamin M. Long
- The University of SydneySchool of Chemistry Building F11 Sydney NSW 2006 Australia
| | - Cameron Nowell
- Faculty of Pharmacy and Pharmaceutical SciencesMonash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Angus Johnston
- Faculty of Pharmacy and Pharmaceutical SciencesMonash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Katrina A. Jolliffe
- The University of SydneySchool of Chemistry Building F11 Sydney NSW 2006 Australia
| | - Sébastien Perrier
- Department of ChemistryUniversity of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- Faculty of Pharmacy and Pharmaceutical SciencesMonash University 381 Royal Parade Parkville VIC 3052 Australia
- Warwick Medical SchoolThe University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
25
|
Brendel JC, Sanchis J, Catrouillet S, Czuba E, Chen MZ, Long BM, Nowell C, Johnston A, Jolliffe KA, Perrier S. Secondary Self‐Assembly of Supramolecular Nanotubes into Tubisomes and Their Activity on Cells. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Johannes C. Brendel
- Department of ChemistryUniversity of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Joaquin Sanchis
- Faculty of Pharmacy and Pharmaceutical SciencesMonash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Sylvain Catrouillet
- Department of ChemistryUniversity of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Ewa Czuba
- Faculty of Pharmacy and Pharmaceutical SciencesMonash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Moore Z. Chen
- Faculty of Pharmacy and Pharmaceutical SciencesMonash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Benjamin M. Long
- The University of SydneySchool of Chemistry Building F11 Sydney NSW 2006 Australia
| | - Cameron Nowell
- Faculty of Pharmacy and Pharmaceutical SciencesMonash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Angus Johnston
- Faculty of Pharmacy and Pharmaceutical SciencesMonash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Katrina A. Jolliffe
- The University of SydneySchool of Chemistry Building F11 Sydney NSW 2006 Australia
| | - Sébastien Perrier
- Department of ChemistryUniversity of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- Faculty of Pharmacy and Pharmaceutical SciencesMonash University 381 Royal Parade Parkville VIC 3052 Australia
- Warwick Medical SchoolThe University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
26
|
Protein Mismatches Caused by Reassortment Influence Functions of the Reovirus Capsid. J Virol 2018; 92:JVI.00858-18. [PMID: 30068646 DOI: 10.1128/jvi.00858-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/26/2018] [Indexed: 12/22/2022] Open
Abstract
Following attachment to host receptors via σ1, reovirus particles are endocytosed and disassembled to generate infectious subvirion particles (ISVPs). ISVPs undergo conformational changes to form ISVP*, releasing σ1 and membrane-targeting peptides from the viral μ1 protein. ISVP* formation is required for delivery of the viral core into the cytoplasm for replication. We characterized the properties of T3DF/T3DCS1, an S1 gene monoreassortant between two laboratory isolates of prototype reovirus strain T3D: T3DF and T3DC T3DF/T3DCS1 is poorly infectious. This deficiency is a consequence of inefficient encapsidation of S1-encoded σ1 on T3DF/T3DCS1 virions. Additionally, compared to T3DF, T3DF/T3DCS1 undergoes ISVP-to-ISVP* conversion more readily, revealing an unexpected role for σ1 in regulating ISVP* formation. The σ1 protein is held within turrets formed by the λ2 protein. To test if the altered properties of T3DF/T3DCS1 are due to a mismatch between σ1 and λ2 proteins from T3DF and T3DC, properties of T3DF/T3DCL2 and T3DF/T3DCS1L2, which express a T3DC-derived λ2, were compared. The presence of T3DC λ2 allowed more efficient σ1 incorporation, producing particles that exhibit T3DF-like infectivity. Compared to T3DF, T3DF/T3DCL2 prematurely converts to ISVP*, uncovering a role for λ2 in regulating ISVP* formation. Importantly, a virus with matching σ1 and λ2 displayed a more regulated conversion to ISVP* than either T3DF/T3DCS1 or T3DF/T3DCL2. In addition to identifying new regulators of ISVP* formation, our results highlight that protein mismatches produced by reassortment can alter virus assembly and thereby influence subsequent functions of the virus capsid.IMPORTANCE Cells coinfected with viruses that possess a multipartite or segmented genome reassort to produce progeny viruses that contain a combination of gene segments from each parent. Reassortment places new pairs of genes together, generating viruses in which mismatched proteins must function together. To test if such forced pairing of proteins that form the virus shell or capsid alters the function of the particle, we investigated properties of reovirus variants in which the σ1 attachment protein and the λ2 protein that anchors σ1 on the particle are mismatched. Our studies demonstrate that a σ1-λ2 mismatch produces particles with lower levels of encapsidated σ1, consequently decreasing virus attachment and infectivity. The mismatch between σ1 and λ2 also altered the capacity of the viral capsid to undergo conformational changes required for cell entry. These studies reveal new functions of reovirus capsid proteins and illuminate both predictable and novel implications of reassortment.
Collapse
|
27
|
Falanga A, Galdiero M, Morelli G, Galdiero S. Membranotropic peptides mediating viral entry. Pept Sci (Hoboken) 2018; 110:e24040. [PMID: 32328541 PMCID: PMC7167733 DOI: 10.1002/pep2.24040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/27/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023]
Abstract
The means used by enveloped viruses to bypass cellular membranes are well characterized; however, the mechanisms used by non-enveloped viruses to deliver their genome inside the cell remain unresolved and poorly defined. The discovery of short, membrane interacting, amphipathic or hydrophobic sequences (known as membranotropic peptides) in both enveloped and non-enveloped viruses suggests that these small peptides are strongly involved in breaching the host membrane and in the delivery of the viral genome into the host cell. Thus, in spite of noticeable differences in entry, this short stretches of membranotropic peptides are probably associated with similar entry-related events. This review will uncover the intrinsic features of viral membranotropic peptides involved in viral entry of both naked viruses and the ones encircled with a biological membrane with the objective to better elucidate their different functional properties and possible applications in the biomedical field.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Pharmacy, School of MedicineNaples80134Italy
- CIRPEB University of Naples Federico II, Via Mezzocannone 16Naples80134Italy
| | - Massimiliano Galdiero
- CIRPEB University of Naples Federico II, Via Mezzocannone 16Naples80134Italy
- Department of Experimental MedicineUniversity of Campania “Luigi Vanvitelli,” Via de CrecchioNaples80134Italy
| | - Giancarlo Morelli
- Department of Pharmacy, School of MedicineNaples80134Italy
- CIRPEB University of Naples Federico II, Via Mezzocannone 16Naples80134Italy
| | - Stefania Galdiero
- Department of Pharmacy, School of MedicineNaples80134Italy
- CIRPEB University of Naples Federico II, Via Mezzocannone 16Naples80134Italy
| |
Collapse
|
28
|
N-Terminal Myristoylated VP5 is Required for Penetrating Cell Membrane and Promoting Infectivity in Aquareoviruses. Virol Sin 2018; 33:287-290. [PMID: 29869748 DOI: 10.1007/s12250-018-0036-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/10/2018] [Indexed: 10/14/2022] Open
|
29
|
Cleavage of the C-Terminal Fragment of Reovirus μ1 Is Required for Optimal Infectivity. J Virol 2018; 92:JVI.01848-17. [PMID: 29298891 DOI: 10.1128/jvi.01848-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/20/2017] [Indexed: 12/12/2022] Open
Abstract
The mammalian orthoreovirus (reovirus) outer capsid, which is composed of 200 μ1/σ3 heterohexamers and a maximum of 12 σ1 trimers, contains all of the proteins that are necessary for attaching to and entering host cells. Following attachment, reovirus is internalized by receptor-mediated endocytosis and acid-dependent cathepsin proteases degrade the σ3 protein. This process generates a metastable intermediate, called infectious subviral particle (ISVP), in which the μ1 membrane penetration protein is exposed. ISVPs undergo a second structural rearrangement to deposit the genome-containing core into the host cytoplasm. The conformationally altered particle is called ISVP*. ISVP-to-ISVP* conversion culminates in the release of μ1 N- and C-terminal fragments, μ1N and Φ, respectively. Released μ1N is thought to facilitate core delivery by generating size-selective pores within the endosomal membrane, whereas the precise role of Φ, particularly in the context of viral entry, is undefined. In this report, we characterize a recombinant reovirus that fails to cleave Φ from μ1 in vitro Φ cleavage, which is not required for ISVP-to-ISVP* conversion, enhances the disruption of liposomal membranes and facilitates the recruitment of ISVP*s to the site of pore formation. Moreover, the Φ cleavage-deficient strain initiates infection of host cells less efficiently than the parental strain. These results indicate that μ1N and Φ contribute to reovirus pore forming activity.IMPORTANCE Host membranes represent a physical barrier that prevents infection. To overcome this barrier, viruses utilize diverse strategies, such as membrane fusion or membrane disruption, to access internal components of the cell. These strategies are characterized by discrete protein-protein and protein-lipid interactions. The mammalian orthoreovirus (reovirus) outer capsid undergoes a series of well-defined conformational changes, which conclude with pore formation and delivery of the viral genetic material. In this report, we characterize the role of the small, reovirus-derived Φ peptide in pore formation. Φ cleavage from the outer capsid enhances membrane disruption and facilitates the recruitment of virions to membrane-associated pores. Moreover, Φ cleavage promotes the initiation of infection. Together, these results reveal an additional component of the reovirus pore forming apparatus and highlight a strategy for penetrating host membranes.
Collapse
|
30
|
Snyder AJ, Danthi P. Infectious Subviral Particle-induced Hemolysis Assay for Mammalian Orthoreovirus. Bio Protoc 2018; 8:e2701. [PMID: 29552594 DOI: 10.21769/bioprotoc.2701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Mammalian orthoreovirus (reovirus) utilizes pore forming peptides to penetrate host cell membranes. This step is essential for delivering its genome containing core particle during viral entry. This protocol describes an in vitro assay for measuring reovirus-induced pore formation.
Collapse
Affiliation(s)
- Anthony J Snyder
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Pranav Danthi
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
31
|
Breach: Host Membrane Penetration and Entry by Nonenveloped Viruses. Trends Microbiol 2017; 26:525-537. [PMID: 29079499 DOI: 10.1016/j.tim.2017.09.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 09/06/2017] [Accepted: 09/26/2017] [Indexed: 11/22/2022]
Abstract
Disruption of host membranes by nonenveloped viruses, which allows the nucleocapsid or genome to enter the cytosol, is a mechanistically diverse process. Although the membrane-penetrating agents are usually small, hydrophobic or amphipathic peptides deployed from the capsid interior during entry, their manner of membrane interaction varies substantially. In this review, we discuss recent data about the molecular pathways for externalization of viral peptides amidst conformational alterations in the capsid, as well as mechanisms of membrane penetration, which is influenced by structural features of the peptides themselves as well as physicochemical properties of membranes, and other host factors. The membrane-penetrating components of nonenveloped viruses constitute an interesting class of cell-penetrating peptides, and may have potential therapeutic value for gene transfer.
Collapse
|
32
|
Affiliation(s)
- Kimi Azad
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;,
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;,
| | - John E. Johnson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
33
|
The Loop Formed by Residues 340 to 343 of Reovirus μ1 Controls Entry-Related Conformational Changes. J Virol 2017; 91:JVI.00898-17. [PMID: 28794028 DOI: 10.1128/jvi.00898-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/02/2017] [Indexed: 12/13/2022] Open
Abstract
Reovirus particles are covered with 200 μ1/σ3 heterohexamers. Following attachment to cell surface receptors, reovirus is internalized by receptor-mediated endocytosis. Within the endosome, particles undergo a series of stepwise disassembly events. First, the σ3 protector protein is degraded by cellular proteases to generate infectious subviral particles (ISVPs). Second, the μ1 protein rearranges into a protease-sensitive conformation to generate ISVP*s and releases two virus-encoded peptides, μ1N and Φ. The released peptides promote delivery of the genome-containing core by perforating the endosomal membrane. Thus, to establish a productive infection, virions must be stable in the environment but flexible to disassemble in response to the appropriate cellular cue. The reovirus outer capsid is stabilized by μ1 intratrimer, intertrimer, and trimer-core interactions. As a consequence of ISVP-to-ISVP* conversion, neighboring μ1 trimers unwind and separate. Located within the μ1 jelly roll β barrel domain, which is a known regulator of ISVP* formation, residues 340 to 343 form a loop and have been proposed to facilitate viral entry. To test this idea, we generated recombinant reoviruses that encoded deletions within this loop (Δ341 and Δ342). Both deletions destabilized the outer capsid. Notably, Δ342 impaired the viral life cycle; however, replicative fitness was restored by an additional change (V403A) within the μ1 jelly roll β barrel domain. In the Δ341 and Δ342 backgrounds, V403A also rescued defects in ISVP-to-ISVP* conversion. Together, these findings reveal a new region that regulates reovirus disassembly and how perturbing a metastable capsid can compromise replicative fitness.IMPORTANCE Capsids of nonenveloped viruses are composed of protein complexes that encapsulate, or form a shell around, nucleic acid. The protein-protein interactions that form this shell must be stable to protect the viral genome but also sufficiently flexible to disassemble during cell entry. Thus, capsids adopt conformations that undergo rapid disassembly in response to a specific cellular cue. In this work, we identify a new region within the mammalian orthoreovirus outer capsid that regulates particle stability. Amino acid deletions that destabilize this region impair the viral replication cycle. Nonetheless, replicative fitness is restored by a compensatory mutation that restores particle stability. Together, this work demonstrates the critical balance between assembling virions that are stable and maintaining conformational flexibility. Any factor that perturbs this balance has the potential to block a productive infection.
Collapse
|
34
|
Abstract
Purpose of Review The ability of viruses to infect host cells is dependent on several factors including the availability of cell-surface receptors, antiviral state of cells, and presence of host factors needed for viral replication. Here, we review findings from in vitro and in vivo studies using mammalian orthoreovirus (reovirus) that have identified an intricate group of molecules and mechanisms used by the virus to attach and enter cells. Recent Findings Recent findings provide an improved mechanistic understanding of reovirus cell entry. Of special note is the identification of a cellular mediator of cell entry in neuronal and non-neuronal cells, the effect of cell entry on the outcome of infection and cytopathic effects on the host cell, and an improved understanding of the components that promote viral penetration of cellular membranes. Summary A mechanistic understanding of the interplay between host and viral factors has enhanced our view of how viruses usurp cellular processes during infection.
Collapse
Affiliation(s)
- Bernardo A Mainou
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322.,Children's Healthcare of Atlanta, Atlanta, GA, 30322
| |
Collapse
|
35
|
African Swine Fever Virus NP868R Capping Enzyme Promotes Reovirus Rescue during Reverse Genetics by Promoting Reovirus Protein Expression, Virion Assembly, and RNA Incorporation into Infectious Virions. J Virol 2017; 91:JVI.02416-16. [PMID: 28298603 DOI: 10.1128/jvi.02416-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/07/2017] [Indexed: 12/25/2022] Open
Abstract
Reoviruses, like many eukaryotic viruses, contain an inverted 7-methylguanosine (m7G) cap linked to the 5' nucleotide of mRNA. The traditional functions of capping are to promote mRNA stability, protein translation, and concealment from cellular proteins that recognize foreign RNA. To address the role of mRNA capping during reovirus replication, we assessed the benefits of adding the African swine fever virus NP868R capping enzyme during reovirus rescue. C3P3, a fusion protein containing T7 RNA polymerase and NP868R, was found to increase protein expression 5- to 10-fold compared to T7 RNA polymerase alone while enhancing reovirus rescue from the current reverse genetics system by 100-fold. Surprisingly, RNA stability was not increased by C3P3, suggesting a direct effect on protein translation. A time course analysis revealed that C3P3 increased protein synthesis within the first 2 days of a reverse genetics transfection. This analysis also revealed that C3P3 enhanced processing of outer capsid μ1 protein to μ1C, a previously described hallmark of reovirus assembly. Finally, to determine the rate of infectious-RNA incorporation into new virions, we developed a new recombinant reovirus S1 gene that expressed the fluorescent protein UnaG. Following transfection of cells with UnaG and infection with wild-type virus, passage of UnaG through progeny was significantly enhanced by C3P3. These data suggest that capping provides nontraditional functions to reovirus, such as promoting assembly and infectious-RNA incorporation.IMPORTANCE Our findings expand our understanding of how viruses utilize capping, suggesting that capping provides nontraditional functions to reovirus, such as promoting assembly and infectious-RNA incorporation, in addition to enhancing protein translation. Beyond providing mechanistic insight into reovirus replication, our findings also show that reovirus reverse genetics rescue is enhanced 100-fold by the NP868R capping enzyme. Since reovirus shows promise as a cancer therapy, efficient reovirus reverse genetics rescue will accelerate production of recombinant reoviruses as candidates to enhance therapeutic potency. NP868R-assisted reovirus rescue will also expedite production of recombinant reovirus for mechanistic insights into reovirus protein function and structure.
Collapse
|
36
|
[How polyomavirus crosses the endoplasmic reticulum membrane to gain entry into the cytosol]. Uirusu 2017; 67:121-132. [PMID: 30369536 DOI: 10.2222/jsv.67.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Polyomavirus (Py) is a non-enveloped, double stranded DNA virus that causes a myriad of devastating human diseases for immunocompromised individuals. To cause infection, Py binds to its receptors on the plasma membrane, is endocytosed, and sorts to the endoplasmic reticulum (ER). From here, Py penetrates the ER membrane to reach the cytosol. Ensuing nuclear entry enables the virus to cause infection. How Py penetrates the ER membrane to access the cytosol is a decisive infection step that is enigmatic. In this review, I highlight the mechanisms by which host cell functions facilitate Py translocation across the ER membrane into the cytosol.
Collapse
|
37
|
Snyder AJ, Danthi P. Lipids Cooperate with the Reovirus Membrane Penetration Peptide to Facilitate Particle Uncoating. J Biol Chem 2016; 291:26773-26785. [PMID: 27875299 DOI: 10.1074/jbc.m116.747477] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/14/2016] [Indexed: 12/24/2022] Open
Abstract
Virus-host interactions play a role in many stages of the viral lifecycle, including entry. Reovirus, a model system for studying the entry mechanisms of nonenveloped viruses, undergoes a series of regulated structural transitions that culminate in delivery of the viral genetic material. Lipids can trigger one of these conformational changes, infectious subviral particle (ISVP)-to-ISVP* conversion. ISVP* formation releases two virally encoded peptides, myristoylated μ1N (myr-μ1N) and Φ. Among these, myr-μ1N is sufficient to form pores within membranes. Released myr-μ1N can also promote ISVP* formation in trans Using thermal inactivation as a readout for ISVP-to-ISVP* conversion, we demonstrate that lipids render ISVPs less thermostable in a virus concentration-dependent manner. Under conditions in which neither lipids alone nor myr-μ1N alone promotes ISVP-to-ISVP* conversion, myr-μ1N induces particle uncoating when lipids are present. These data suggest that the pore-forming activity and the ISVP*-promoting activity of myr-μ1N are linked. Lipid-associated myr-μ1N interacts with ISVPs and triggers efficient ISVP* formation. The cooperativity between a reovirus component and lipids reveals a distinct virus-host interaction in which membranes can facilitate nonenveloped virus entry.
Collapse
Affiliation(s)
- Anthony J Snyder
- From the Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Pranav Danthi
- From the Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
38
|
Ni R, Zhou J, Hossain N, Chau Y. Virus-inspired nucleic acid delivery system: Linking virus and viral mimicry. Adv Drug Deliv Rev 2016; 106:3-26. [PMID: 27473931 DOI: 10.1016/j.addr.2016.07.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/02/2016] [Accepted: 07/20/2016] [Indexed: 12/21/2022]
Abstract
Targeted delivery of nucleic acids into disease sites of human body has been attempted for decades, but both viral and non-viral vectors are yet to meet our expectations. Safety concerns and low delivery efficiency are the main limitations of viral and non-viral vectors, respectively. The structure of viruses is both ordered and dynamic, and is believed to be the key for effective transfection. Detailed understanding of the physical properties of viruses, their interaction with cellular components, and responses towards cellular environments leading to transfection would inspire the development of safe and effective non-viral vectors. To this goal, this review systematically summarizes distinctive features of viruses that are implied for efficient nucleic acid delivery but not yet fully explored in current non-viral vectors. The assembly and disassembly of viral structures, presentation of viral ligands, and the subcellular targeting of viruses are emphasized. Moreover, we describe the current development of cationic material-based viral mimicry (CVM) and structural viral mimicry (SVM) in these aspects. In light of the discrepancy, we identify future opportunities for rational design of viral mimics for the efficient delivery of DNA and RNA.
Collapse
Affiliation(s)
- Rong Ni
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Junli Zhou
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Naushad Hossain
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ying Chau
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
39
|
Reovirus μ1 Protein Affects Infectivity by Altering Virus-Receptor Interactions. J Virol 2016; 90:10951-10962. [PMID: 27681135 DOI: 10.1128/jvi.01843-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/22/2016] [Indexed: 01/04/2023] Open
Abstract
Proteins that form the reovirus outer capsid play an active role in the entry of reovirus into host cells. Among these, the σ1 protein mediates attachment of reovirus particles to host cells via interaction with cell surface glycans or the proteinaceous receptor junctional adhesion molecule A (JAM-A). The μ1 protein functions to penetrate the host cell membrane to allow delivery of the genome-containing viral core particle into the cytoplasm to initiate viral replication. We demonstrate that a reassortant virus that expresses the M2 gene-encoded μ1 protein derived from prototype strain T3D in an otherwise prototype T1L background (T1L/T3DM2) infects cells more efficiently than parental T1L. Unexpectedly, the enhancement in infectivity of T1L/T3DM2 is due to its capacity to attach to cells more efficiently. We present genetic data implicating the central region of μ1 in altering the cell attachment property of reovirus. Our data indicate that the T3D μ1-mediated enhancement in infectivity of T1L is dependent on the function of σ1 and requires the expression of JAM-A. We also demonstrate that T1L/T3DM2 utilizes JAM-A more efficiently than T1L. These studies revealed a previously unknown relationship between two nonadjacent reovirus outer capsid proteins, σ1 and μ1. IMPORTANCE How reovirus attaches to host cells has been extensively characterized. Attachment of reovirus to host cells is mediated by the σ1 protein, and properties of σ1 influence the capacity of reovirus to target specific host tissues and produce disease. Here, we present new evidence indicating that the cell attachment properties of σ1 are influenced by the nature of μ1, a capsid protein that does not physically interact with σ1. These studies could explain the previously described role for μ1 in influencing reovirus pathogenesis. These studies are also of broader significance because they highlight an example of how genetic reassortment between virus strains could produce phenotypes that are distinct from those of either parent.
Collapse
|
40
|
Non-Enveloped Virus Entry: Structural Determinants and Mechanism of Functioning of a Viral Lytic Peptide. J Mol Biol 2016; 428:3540-56. [DOI: 10.1016/j.jmb.2016.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/08/2016] [Accepted: 06/08/2016] [Indexed: 11/20/2022]
|
41
|
Stanifer ML, Rippert A, Kazakov A, Willemsen J, Bucher D, Bender S, Bartenschlager R, Binder M, Boulant S. Reovirus intermediate subviral particles constitute a strategy to infect intestinal epithelial cells by exploiting TGF-β dependent pro-survival signaling. Cell Microbiol 2016; 18:1831-1845. [PMID: 27279006 DOI: 10.1111/cmi.12626] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 12/24/2022]
Abstract
Intestinal epithelial cells (IECs) constitute the primary barrier that separates us from the outside environment. These cells, lining the surface of the intestinal tract, represent a major challenge that enteric pathogens have to face. How IECs respond to viral infection and whether enteric viruses have developed strategies to subvert IECs innate immune response remains poorly characterized. Using mammalian reovirus (MRV) as a model enteric virus, we found that the intermediate subviral particles (ISVPs), which are formed in the gut during the natural course of infection by proteolytic digestion of the reovirus virion, trigger reduced innate antiviral immune response in IECs. On the contrary, infection of IECs by virions induces a strong antiviral immune response that leads to cellular death. Additionally, we determined that virions can be sensed by both TLR and RLR pathways while ISVPs are sensed by RLR pathways only. Interestingly, we found that ISVP infected cells secrete TGF-β acting as a pro-survival factor that protects IECs against virion induced cellular death. We propose that ISVPs represent a reovirus strategy to initiate primary infection of the gut by subverting IECs innate immune system and by counteracting cellular-death pathways.
Collapse
Affiliation(s)
- Megan L Stanifer
- Schaller research group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University, Germany
| | - Anja Rippert
- Schaller research group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University, Germany
| | - Alexander Kazakov
- Schaller research group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University, Germany
| | - Joschka Willemsen
- Research Group 'Dynamics of early viral infection and the innate antiviral response'.,Division Virus-associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Delia Bucher
- Schaller research group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University, Germany
| | - Silke Bender
- Division Virus-associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ralf Bartenschlager
- Division Virus-associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Binder
- Research Group 'Dynamics of early viral infection and the innate antiviral response'.,Division Virus-associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steeve Boulant
- Schaller research group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University, Germany.,Research Group 'Cellular polarity and viral infection' (F140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
42
|
Harrison JJ, Warrilow D, McLean BJ, Watterson D, O'Brien CA, Colmant AMG, Johansen CA, Barnard RT, Hall-Mendelin S, Davis SS, Hall RA, Hobson-Peters J. A New Orbivirus Isolated from Mosquitoes in North-Western Australia Shows Antigenic and Genetic Similarity to Corriparta Virus but Does Not Replicate in Vertebrate Cells. Viruses 2016; 8:v8050141. [PMID: 27213426 PMCID: PMC4885096 DOI: 10.3390/v8050141] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/27/2016] [Accepted: 05/10/2016] [Indexed: 11/16/2022] Open
Abstract
The discovery and characterisation of new mosquito-borne viruses provides valuable information on the biodiversity of vector-borne viruses and important insights into their evolution. In this study, a broad-spectrum virus screening system, based on the detection of long double-stranded RNA in inoculated cell cultures, was used to investigate the presence of novel viruses in mosquito populations of northern Australia. We detected and isolated a new virus (tentatively named Parry’s Lagoon virus, PLV) from Culex annulirostris, Culex pullus, Mansonia uniformis and Aedes normanensis mosquitoes that shares genomic sequence similarities to Corriparta virus (CORV), a member of the Orbivirus genus of the family Reoviridae. Despite moderate to high (72.2% to 92.2%) amino acid identity across all proteins when compared to CORV, and demonstration of antigenic relatedness, PLV did not replicate in several vertebrate cell lines that were permissive to CORV. This striking phenotypic difference suggests that PLV has evolved to have a very restricted host range, indicative of a mosquito-only life cycle.
Collapse
Affiliation(s)
- Jessica J Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Australia.
| | - David Warrilow
- Public Health Virology Laboratory, Department of Health, Queensland Government, P.O. Box 594, Archerfield 4108, Australia.
| | - Breeanna J McLean
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Australia.
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Australia.
| | - Caitlin A O'Brien
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Australia.
| | - Agathe M G Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Australia.
| | - Cheryl A Johansen
- School of Pathology and Laboratory Medicine, The University of Western Australia, Nedlands 6009, Australia.
| | - Ross T Barnard
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Australia.
| | - Sonja Hall-Mendelin
- Public Health Virology Laboratory, Department of Health, Queensland Government, P.O. Box 594, Archerfield 4108, Australia.
| | - Steven S Davis
- Berrimah Veterinary Laboratory, Department of Primary Industries and Fisheries, Darwin 0828, Australia.
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Australia.
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Australia.
| |
Collapse
|
43
|
Patel A, Mohl BP, Roy P. Entry of Bluetongue Virus Capsid Requires the Late Endosome-specific Lipid Lysobisphosphatidic Acid. J Biol Chem 2016; 291:12408-19. [PMID: 27036941 PMCID: PMC4933286 DOI: 10.1074/jbc.m115.700856] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Indexed: 12/03/2022] Open
Abstract
The entry of viruses into host cells is one of the key processes of infection. The mechanisms of cellular entry for enveloped virus have been well studied. The fusion proteins as well as the facilitating cellular lipid factors involved in the viral fusion entry process have been well characterized. The process of non-enveloped virus cell entry, in comparison, remains poorly defined, particularly for large complex capsid viruses of the family Reoviridae, which comprises a range of mammalian pathogens. These viruses enter cells without the aid of a limiting membrane and thus cannot fuse with host cell membranes to enter cells. Instead, these viruses are believed to penetrate membranes of the host cell during endocytosis. However, the molecular mechanism of this process is largely undefined. Here we show, utilizing an in vitro liposome penetration assay and cell biology, that bluetongue virus (BTV), an archetypal member of the Reoviridae, utilizes the late endosome-specific lipid lysobisphosphatidic acid for productive membrane penetration and viral entry. Further, we provide preliminary evidence that lipid lysobisphosphatidic acid facilitates pore expansion during membrane penetration, suggesting a mechanism for lipid factor requirement of BTV. This finding indicates that despite the lack of a membrane envelope, the entry process of BTV is similar in specific lipid requirements to enveloped viruses that enter cells through the late endosome. These results are the first, to our knowledge, to demonstrate that a large non-enveloped virus of the Reoviridae has specific lipid requirements for membrane penetration and host cell entry.
Collapse
Affiliation(s)
- Avnish Patel
- From the Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Bjorn-Patrick Mohl
- From the Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Polly Roy
- From the Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| |
Collapse
|
44
|
Lipid Membranes Facilitate Conformational Changes Required for Reovirus Cell Entry. J Virol 2015; 90:2628-38. [PMID: 26699639 DOI: 10.1128/jvi.02997-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/15/2015] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED Cellular entry of nonenveloped and enveloped viruses is often accompanied by dramatic conformational changes within viral structural proteins. These rearrangements are triggered by a variety of mechanisms, such as low pH, virus-receptor interactions, and virus-host chaperone interactions. Reoviruses, a model system for entry of nonenveloped viruses, undergo a series of disassembly steps within the host endosome. One of these steps, infectious subviral particle (ISVP)-to-ISVP* conversion, is necessary for delivering the genome-containing viral core into host cells, but the physiological trigger that mediates ISVP-to-ISVP* conversion during cell entry is unknown. Structural studies of the reovirus membrane penetration protein, μ1, predict that interactions between μ1 and negatively charged lipid head groups may promote ISVP* formation; however, experimental evidence for this idea is lacking. Here, we show that the presence of polyanions (SO4(2-) and HPO4(2-)) or lipids in the form of liposomes facilitates ISVP-to-ISVP* conversion. The requirement for charged lipids appears to be selective, since phosphatidylcholine and phosphatidylethanolamine promoted ISVP* formation, whereas other lipids, such as sphingomyelin and sulfatide, either did not affect ISVP* formation or prevented ISVP* formation. Thus, our work provides evidence that interactions with membranes can function as a trigger for a nonenveloped virus to gain entry into host cells. IMPORTANCE Cell entry, a critical stage in the virus life cycle, concludes with the delivery of the viral genetic material across host membranes. Regulated structural transitions within nonenveloped and enveloped viruses are necessary for accomplishing this step; these conformational changes are predominantly triggered by low pH and/or interactions with host proteins. In this work, we describe a previously unknown trigger, interactions with lipid membranes, which can induce the structural rearrangements required for cell entry. This mechanism operates during entry of mammalian orthoreoviruses. We show that interactions between reovirus entry intermediates and lipid membranes devoid of host proteins promote conformational changes within the viral outer capsid that lead to membrane penetration. Thus, this work illustrates a novel strategy that nonenveloped viruses can use to gain access into cells and how viruses usurp disparate host factors to initiate infection.
Collapse
|
45
|
Mohamed A, Johnston RN, Shmulevitz M. Potential for Improving Potency and Specificity of Reovirus Oncolysis with Next-Generation Reovirus Variants. Viruses 2015; 7:6251-78. [PMID: 26633466 PMCID: PMC4690860 DOI: 10.3390/v7122936] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/10/2015] [Accepted: 11/18/2015] [Indexed: 12/16/2022] Open
Abstract
Viruses that specifically replicate in tumor over normal cells offer promising cancer therapies. Oncolytic viruses (OV) not only kill the tumor cells directly; they also promote anti-tumor immunotherapeutic responses. Other major advantages of OVs are that they dose-escalate in tumors and can be genetically engineered to enhance potency and specificity. Unmodified wild type reovirus is a propitious OV currently in phase I–III clinical trials. This review summarizes modifications to reovirus that may improve potency and/or specificity during oncolysis. Classical genetics approaches have revealed reovirus variants with improved adaptation towards tumors or with enhanced ability to establish specific steps of virus replication and cell killing among transformed cells. The recent emergence of a reverse genetics system for reovirus has provided novel strategies to fine-tune reovirus proteins or introduce exogenous genes that could promote oncolytic activity. Over the next decade, these findings are likely to generate better-optimized second-generation reovirus vectors and improve the efficacy of oncolytic reotherapy.
Collapse
Affiliation(s)
- Adil Mohamed
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Randal N Johnston
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Maya Shmulevitz
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
46
|
Miyazaki N, Higashiura A, Higashiura T, Akita F, Hibino H, Omura T, Nakagawa A, Iwasaki K. Electron microscopic imaging revealed the flexible filamentous structure of the cell attachment protein P2 of Rice dwarf virus located around the icosahedral 5-fold axes. J Biochem 2015; 159:181-90. [PMID: 26374901 DOI: 10.1093/jb/mvv092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/30/2015] [Indexed: 02/02/2023] Open
Abstract
The minor outer capsid protein P2 of Rice dwarf virus (RDV), a member of the genus Phytoreovirus in the family Reoviridae, is essential for viral cell entry. Here, we clarified the structure of P2 and the interactions to host insect cells. Negative stain electron microscopy (EM) showed that P2 proteins are monomeric and flexible L-shaped filamentous structures of ∼20 nm in length. Cryo-EM structure revealed the spatial arrangement of P2 in the capsid, which was prescribed by the characteristic virion structure. The P2 proteins were visualized as partial rod-shaped structures of ∼10 nm in length in the cryo-EM map and accommodated in crevasses on the viral surface around icosahedral 5-fold axes with hydrophobic interactions. The remaining disordered region of P2 assumed to be extended to the radial direction towards exterior. Electron tomography clearly showed that RDV particles were away from the cellular membrane at a uniform distance and several spike-like densities, probably corresponding to P2, connecting a viral particle to the host cellular membrane during cell entry. By combining the in vitro and in vivo structural information, we could gain new insights into the detailed mechanism of the cell entry of RDV.
Collapse
Affiliation(s)
- Naoyuki Miyazaki
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan; Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi, Japan;
| | | | - Tomoko Higashiura
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Fusamichi Akita
- Laboratory of Virology, National Agricultural Research Center, Tsukuba, Ibaraki, Japan; and Photosynthesis Research Center, Graduate School of Natural Science and Technology, Okayama University, Okayama, Okayama, Japan
| | - Hiroyuki Hibino
- Laboratory of Virology, National Agricultural Research Center, Tsukuba, Ibaraki, Japan; and
| | - Toshihiro Omura
- Laboratory of Virology, National Agricultural Research Center, Tsukuba, Ibaraki, Japan; and
| | - Atsushi Nakagawa
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kenji Iwasaki
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan;
| |
Collapse
|
47
|
Thete D, Danthi P. Conformational changes required for reovirus cell entry are sensitive to pH. Virology 2015; 483:291-301. [PMID: 26004253 DOI: 10.1016/j.virol.2015.04.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/23/2015] [Accepted: 04/30/2015] [Indexed: 12/31/2022]
Abstract
During cell entry, reovirus particles disassemble to generate ISVPs. ISVPs undergo conformational changes to form ISVP(*) and this conversion is required for membrane penetration. In tissues where ISVP formation occurs within endosomes, ISVP-to-ISVP(*) conversion occurs at low pH. In contrast, in tissues where ISVP formation occurs extracellularly, ISVP-to-ISVP(*) transition occurs at neutral pH. Whether these two distinct pH environments influence the efficiency of cell entry is not known. In this study, we used Ouabain to lower the endosomal pH and determined its effect on reovirus infection. We found that Ouabain treatment blocks reovirus infection. In cells treated with Ouabain, virus attachment, internalization, and ISVP formation were unaffected but the efficiency of ISVP(*)s formation was diminished. Low pH also diminished the efficiency of ISVP-to-ISVP(*) conversion in vitro. Thus, the pH of the compartment where ISVP-to-ISVP(*) conversion takes place may dictate the efficiency of reovirus infection.
Collapse
Affiliation(s)
- Deepti Thete
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| | - Pranav Danthi
- Department of Biology, Indiana University, Bloomington, IN 47405, United States.
| |
Collapse
|
48
|
Biology of Viruses and Viral Diseases. MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015. [PMCID: PMC7152303 DOI: 10.1016/b978-1-4557-4801-3.00134-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|
49
|
Abstract
ABSTRACT Viruses are a diverse class of nanoparticles. However, they have evolved a few common mechanisms that enable successful infection of their host cells. The first stage of this process involves entry into the cell. For enveloped viruses this process has been well characterized. For nonenveloped viruses, the focus of this review, the entry mechanisms are less well understood. For these viruses, a typical pathway involves receptor attachment followed by internalization into cellular vesicles and subsequent viral escape to the cytosol and transport to the site of genome replication. Significantly, these viruses have evolved numerous mechanisms to fulfill this seemingly simple infection scheme. We focus on the latest observations for several families of nonenveloped viruses and highlight specific members for eukaryotic families: Adenoviridae, Papillomaviridae, Parvoviridae, Picornaviridae, Polyomaviridae and Reoviridae; and prokaryotic families: Microviridae, Myoviridae, Podoviridae and Siphoviridae.
Collapse
Affiliation(s)
- Bridget Lins
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
50
|
The VP4 peptide of hepatitis A virus ruptures membranes through formation of discrete pores. J Virol 2014; 88:12409-21. [PMID: 25122794 DOI: 10.1128/jvi.01896-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Membrane-active peptides, components of capsid structural proteins, assist viruses in overcoming the host membrane barrier in the initial stages of infection. Several such peptides have been identified, and their roles in membrane fusion or disruption have been characterized through biophysical studies. In several members of the Picornaviridae family, the role of the VP4 structural peptide in cellular-membrane penetration is well established. However, there is not much information on the membrane-penetrating capsid components of hepatitis A virus (HAV), an unusual member of this family. The VP4 peptide of HAV differs from its analogues in other picornaviruses in being significantly shorter in length and in lacking a signal for myristoylation, thought to be a critical requisite for VP4-mediated membrane penetration. Here we report, for the first time, that the atypical VP4 in HAV contains significant membrane-penetrating activity. Using a combination of biophysical assays and molecular dynamics simulation studies, we show that VP4 integrates into membrane vesicles through its N-terminal region to finally form discrete pores of 5- to 9-nm diameter, which induces leakage in the vesicles without altering their overall size or shape. We further demonstrate that the membrane activity of VP4 is specific toward vesicles mimicking the lipid content of late endosomes at acidic pH. Taken together, our data indicate that VP4 might be essential for the penetration of host endosomal membranes and release of the viral genome during HAV entry. IMPORTANCE Hepatitis A virus causes acute hepatitis in humans through the fecal-oral route and is particularly prevalent in underdeveloped regions with poor hygienic conditions. Although a vaccine for HAV exists, its high cost makes it unsuitable for universal application in developing countries. Studies on host-virus interaction for HAV have been hampered due to a lack of starting material, since the virus is extremely slow growing in culture. Among the unknown aspects of the HAV life cycle is its manner of host membrane penetration, which is one of the most important initial steps in viral infection. Here, we present data to suggest that a small peptide, VP4, a component of the HAV structural polyprotein, might be essential in helping the viral genome cross cell membranes during entry. It is hoped that this work might help in elucidating the manner of initial host cell interaction by HAV.
Collapse
|