1
|
Beaven R, Denholm B. The cryptonephridial/rectal complex: an evolutionary adaptation for water and ion conservation. Biol Rev Camb Philos Soc 2024. [PMID: 39438273 DOI: 10.1111/brv.13156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Arthropods have integrated digestive and renal systems, which function to acquire and maintain homeostatically the substances they require for survival. The cryptonephridial complex (CNC) is an evolutionary novelty in which the renal organs and gut have been dramatically reorganised. Parts of the renal or Malpighian tubules (MpTs) form a close association with the surface of the rectum, and are surrounded by a novel tissue, the perinephric membrane, which acts to insulate the system from the haemolymph and thus allows tight regulation of ions and water into and out of the CNC. The CNC can reclaim water and solutes from the rectal contents and recycle these back into the haemolymph. Fluid flow in the MpTs runs counter to flow within the rectum. It is this countercurrent arrangement that underpins its powerful recycling capabilities, and represents one of the most efficient water conservation mechanisms in nature. CNCs appear to have evolved multiple times, and are present in some of the largest and most evolutionarily successful insect groups including the larvae of most Lepidoptera and in a major beetle lineage (Cucujiformia + Bostrichoidea), suggesting that the CNC is an important adaptation. Here we review the knowledge of this remarkable organ system gained over the past 200 years. We first focus on the CNCs of tenebrionid beetles, for which we have an in-depth understanding from physiological, structural and ultrastructural studies (primarily in Tenebrio molitor), which are now being extended by studies in Tribolium castaneum enabled by advances in molecular and microscopy approaches established for this species. These recent studies are beginning to illuminate CNC development, physiology and endocrine control. We then take a broader view of arthropod CNCs, phylogenetically mapping their reported occurrence to assess their distribution and likely evolutionary origins. We explore CNCs from an ecological viewpoint, put forward evidence that CNCs may primarily be adaptations for facing the challenges of larval life, and argue that their loss in many aquatic species could point to a primary function in conserving water in terrestrial species. Finally, by considering the functions of renal and digestive epithelia in insects lacking CNCs, as well as the typical architecture of these organs in relation to one another, we propose that ancestral features of these organs predispose them for the evolution of CNCs.
Collapse
Affiliation(s)
- Robin Beaven
- Hugh Robson Building, George Square, Deanery of Biomedical Sciences, The University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Barry Denholm
- Hugh Robson Building, George Square, Deanery of Biomedical Sciences, The University of Edinburgh, Edinburgh, EH8 9XD, UK
| |
Collapse
|
2
|
Fanara JJ, Sassi PL, Goenaga J, Hasson E. Genetic basis and repeatability for desiccation resistance in Drosophila melanogaster (Diptera: Drosophilidae). Genetica 2024; 152:1-9. [PMID: 38102503 DOI: 10.1007/s10709-023-00201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Dehydration is a stress factor for organisms inhabiting natural habitats where water is scarce. Thus, it may be expected that species facing arid environments will develop mechanisms that maximize resistance to desiccation. Insects are excellent models for studying the effects of dehydration as well as the mechanisms and processes that prevent water loss since the effect of desiccation is greater due to the higher area/volume ratio than larger animals. Even though physiological and behavioral mechanisms to cope with desiccation are being understood, the genetic basis underlying the mechanisms related to variation in desiccation resistance and the context-dependent effect remain unsolved. Here we analyze the genetic bases of desiccation resistance in Drosophila melanogaster and identify candidate genes that underlie trait variation. Our quantitative genetic analysis of desiccation resistance revealed sexual dimorphism and extensive genetic variation. The phenotype-genotype association analyses (GWAS) identified 71 candidate genes responsible for total phenotypic variation in desiccation resistance. Half of these candidate genes were sex-specific suggesting that the genetic architecture underlying this adaptive trait differs between males and females. Moreover, the public availability of desiccation data analyzed on the same lines but in a different lab allows us to investigate the reliability and repeatability of results obtained in independent screens. Our survey indicates a pervasive micro-environment lab-dependent effect since we did not detect overlap in the sets of genes affecting desiccation resistance identified between labs.
Collapse
Affiliation(s)
- Juan Jose Fanara
- Laboratorio de Evolución, Departamento de Ecología Genética y Evolución, Instituto de Ecología Genética y Evolución de Buenos Aires (IEGEBA), CONICET-UBA, FCEN, Buenos Aires, Argentina.
| | - Paola Lorena Sassi
- Grupo de Ecología Integrativa de Fauna Silvestre, Instituto Argentino de Investigaciones de Zonas Áridas, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Julieta Goenaga
- Quality Control & NIR Scientist, Biomar Group, Aarhus, Denmark
| | - Esteban Hasson
- Laboratorio de Evolución, Departamento de Ecología Genética y Evolución, Instituto de Ecología Genética y Evolución de Buenos Aires (IEGEBA), CONICET-UBA, FCEN, Buenos Aires, Argentina
| |
Collapse
|
3
|
Holcombe J, Weavers H. Functional-metabolic coupling in distinct renal cell types coordinates organ-wide physiology and delays premature ageing. Nat Commun 2023; 14:8405. [PMID: 38110414 PMCID: PMC10728150 DOI: 10.1038/s41467-023-44098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023] Open
Abstract
Precise coupling between cellular physiology and metabolism is emerging as a vital relationship underpinning tissue health and longevity. Nevertheless, functional-metabolic coupling within heterogenous microenvironments in vivo remains poorly understood due to tissue complexity and metabolic plasticity. Here, we establish the Drosophila renal system as a paradigm for linking mechanistic analysis of metabolism, at single-cell resolution, to organ-wide physiology. Kidneys are amongst the most energetically-demanding organs, yet exactly how individual cell types fine-tune metabolism to meet their diverse, unique physiologies over the life-course remains unclear. Integrating live-imaging of metabolite and organelle dynamics with spatio-temporal genetic perturbation within intact functional tissue, we uncover distinct cellular metabolic signatures essential to support renal physiology and healthy ageing. Cell type-specific programming of glucose handling, PPP-mediated glutathione regeneration and FA β-oxidation via dynamic lipid-peroxisomal networks, downstream of differential ERR receptor activity, precisely match cellular energetic demands whilst limiting damage and premature senescence; however, their dramatic dysregulation may underlie age-related renal dysfunction.
Collapse
Affiliation(s)
- Jack Holcombe
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Helen Weavers
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
4
|
Sun J, Zhang C, Gao F, Stathopoulos A. Single-cell transcriptomics illuminates regulatory steps driving anterior-posterior patterning of Drosophila embryonic mesoderm. Cell Rep 2023; 42:113289. [PMID: 37858470 DOI: 10.1016/j.celrep.2023.113289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/29/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
Single-cell technologies promise to uncover how transcriptional programs orchestrate complex processes during embryogenesis. Here, we apply a combination of single-cell technology and genetic analysis to investigate the dynamic transcriptional changes associated with Drosophila embryo morphogenesis at gastrulation. Our dataset encompassing the blastoderm-to-gastrula transition provides a comprehensive single-cell map of gene expression across cell lineages validated by genetic analysis. Subclustering and trajectory analyses revealed a surprising stepwise progression in patterning to transition zygotic gene expression and specify germ layers as well as uncovered an early role for ecdysone signaling in epithelial-to-mesenchymal transition in the mesoderm. We also show multipotent progenitors arise prior to gastrulation by analyzing the transcription trajectory of caudal mesoderm cells, including a derivative that ultimately incorporates into visceral muscles of the midgut and hindgut. This study provides a rich resource of gastrulation and elucidates spatially regulated temporal transitions of transcription states during the process.
Collapse
Affiliation(s)
- Jingjing Sun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chen Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Fan Gao
- Bioinformatics Resource Center, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Angelike Stathopoulos
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
5
|
Beaven R, Denholm B. Early patterning followed by tissue growth establishes distal identity in Drosophila Malpighian tubules. Front Cell Dev Biol 2022; 10:947376. [PMID: 36060795 PMCID: PMC9437309 DOI: 10.3389/fcell.2022.947376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/28/2022] [Indexed: 12/03/2022] Open
Abstract
Specification and elaboration of proximo-distal (P-D) axes for structures or tissues within a body occurs secondarily from that of the main axes of the body. Our understanding of the mechanism(s) that pattern P-D axes is limited to a few examples such as vertebrate and invertebrate limbs. Drosophila Malpighian/renal tubules (MpTs) are simple epithelial tubules, with a defined P-D axis. How this axis is patterned is not known, and provides an ideal context to understand patterning mechanisms of a secondary axis. Furthermore, epithelial tubules are widespread, and their patterning is not well understood. Here, we describe the mechanism that establishes distal tubule and show this is a radically different mechanism to that patterning the proximal MpT. The distal domain is patterned in two steps: distal identity is specified in a small group of cells very early in MpT development through Wingless/Wnt signalling. Subsequently, this population is expanded by proliferation to generate the distal MpT domain. This mechanism enables distal identity to be established in the tubule in a domain of cells much greater than the effective range of Wingless.
Collapse
Affiliation(s)
| | - Barry Denholm
- Deanery of Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Dow JAT, Simons M, Romero MF. Drosophila melanogaster: a simple genetic model of kidney structure, function and disease. Nat Rev Nephrol 2022; 18:417-434. [PMID: 35411063 DOI: 10.1038/s41581-022-00561-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/27/2022]
Abstract
Although the genetic basis of many kidney diseases is being rapidly elucidated, their experimental study remains problematic owing to the lack of suitable models. The fruitfly Drosophila melanogaster provides a rapid, ethical and cost-effective model system of the kidney. The unique advantages of D. melanogaster include ease and low cost of maintenance, comprehensive availability of genetic mutants and powerful transgenic technologies, and less onerous regulation, as compared with mammalian systems. Renal and excretory functions in D. melanogaster reside in three main tissues - the transporting renal (Malpighian) tubules, the reabsorptive hindgut and the endocytic nephrocytes. Tubules contain multiple cell types and regions and generate a primary urine by transcellular transport rather than filtration, which is then subjected to selective reabsorption in the hindgut. By contrast, the nephrocytes are specialized for uptake of macromolecules and equipped with a filtering slit diaphragm resembling that of podocytes. Many genes with key roles in the human kidney have D. melanogaster orthologues that are enriched and functionally relevant in fly renal tissues. This similarity has allowed investigations of epithelial transport, kidney stone formation and podocyte and proximal tubule function. Furthermore, a range of unique quantitative phenotypes are available to measure function in both wild type and disease-modelling flies.
Collapse
Affiliation(s)
- Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Matias Simons
- INSERM UMR1163, Laboratory of Epithelial Biology and Disease, Imagine Institute, Université de Paris, Hôpital Necker-Enfants Malades, Paris, France
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
7
|
Molecular evidence for a single origin of ultrafiltration-based excretory organs. Curr Biol 2021; 31:3629-3638.e2. [PMID: 34166606 DOI: 10.1016/j.cub.2021.05.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/14/2021] [Accepted: 05/26/2021] [Indexed: 01/14/2023]
Abstract
Excretion is an essential physiological process, carried out by all living organisms, regardless of their size or complexity.1-3 Both protostomes (e.g., flies and flatworms) and deuterostomes (e.g., humans and sea urchins) possess specialized excretory organs serving that purpose. Those organs exhibit an astonishing diversity, ranging from units composed of just few distinct cells (e.g., protonephridia) to complex structures, built by millions of cells of multiple types with divergent morphology and function (e.g., vertebrate kidneys).4,5 Although some molecular similarities between the development of kidneys of vertebrates and the regeneration of the protonephridia of flatworms have been reported,6,7 the molecular underpinnings of the development of excretory organs have never been systematically studied in a comparative context.4 Here, we show that a set of transcription factors (eya, six1/2, pou3, sall, lhx1/5, and osr) and structural proteins (nephrin, kirre, and zo1) is expressed in the excretory organs of a phoronid, brachiopod, annelid, onychophoran, priapulid, and hemichordate that represent major protostome lineages and non-vertebrate deuterostomes. We demonstrate that the molecular similarity observed in the vertebrate kidney and flatworm protonephridia6,7 is also seen in the developing excretory organs of those animals. Our results show that all types of ultrafiltration-based excretory organs are patterned by a conserved set of developmental genes, an observation that supports their homology. We propose that the last common ancestor of protostomes and deuterostomes already possessed an ultrafiltration-based organ that later gave rise to the vast diversity of extant excretory organs, including both proto- and metanephridia.
Collapse
|
8
|
Chiu M, Trigg B, Taracena M, Wells M. Diverse cellular morphologies during lumen maturation in Anopheles gambiae larval salivary glands. INSECT MOLECULAR BIOLOGY 2021; 30:210-230. [PMID: 33305876 PMCID: PMC8142555 DOI: 10.1111/imb.12689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/29/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Mosquitoes are the greatest animal threat to human health, causing hundreds of millions of infections and around 1 million deaths each year. All mosquito-borne pathogens must traverse the salivary glands (SGs) to be transmitted to the next host, making this organ an ideal target for interventions. The adult SG develops from precursor cells located in the larval SG duct bud. Characterization of the larval SG has been limited. We sought to better understand larval SG architecture, secretion and gene expression. We developed an optimized method for larval SG staining and surveyed hundreds of larval stage 4 (L4) SGs using fluorescence confocal microscopy. Remarkable variation in SG cell and chromatin organization differed among individuals and across the L4 stage. Lumen formation occurred during L4 stage through secretion likely involving a coincident cellular apical lipid enrichment and extracellular vesicle-like structures. Meta-analysis of microarray data showed that larval SG gene expression is divergent from adult SGs, more similar to larval gastric cecae, but different from other larval gut compartments. This work highlights the variable cell architecture of larval Anopheles gambiae SGs and provides candidate targets for genetic strategies aiming to disrupt SGs and transmission of mosquito-borne pathogens.
Collapse
Affiliation(s)
- M Chiu
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - B Trigg
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - M Taracena
- Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - M Wells
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Biomedical Sciences, Idaho College of Osteopathic Medicine (ICOM), Meridian, Idaho, USA
| |
Collapse
|
9
|
Cohen E, Sawyer JK, Peterson NG, Dow JAT, Fox DT. Physiology, Development, and Disease Modeling in the Drosophila Excretory System. Genetics 2020; 214:235-264. [PMID: 32029579 PMCID: PMC7017010 DOI: 10.1534/genetics.119.302289] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
The insect excretory system contains two organ systems acting in concert: the Malpighian tubules and the hindgut perform essential roles in excretion and ionic and osmotic homeostasis. For over 350 years, these two organs have fascinated biologists as a model of organ structure and function. As part of a recent surge in interest, research on the Malpighian tubules and hindgut of Drosophila have uncovered important paradigms of organ physiology and development. Further, many human disease processes can be modeled in these organs. Here, focusing on discoveries in the past 10 years, we provide an overview of the anatomy and physiology of the Drosophila excretory system. We describe the major developmental events that build these organs during embryogenesis, remodel them during metamorphosis, and repair them following injury. Finally, we highlight the use of the Malpighian tubules and hindgut as accessible models of human disease biology. The Malpighian tubule is a particularly excellent model to study rapid fluid transport, neuroendocrine control of renal function, and modeling of numerous human renal conditions such as kidney stones, while the hindgut provides an outstanding model for processes such as the role of cell chirality in development, nonstem cell-based injury repair, cancer-promoting processes, and communication between the intestine and nervous system.
Collapse
Affiliation(s)
| | - Jessica K Sawyer
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| | | | - Julian A T Dow
- Institute of Molecular, Cell, and Systems Biology, University of Glasgow, G12 8QQ, United Kingdom
| | - Donald T Fox
- Department of Cell Biology and
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| |
Collapse
|
10
|
Martínez-Corrales G, Cabrero P, Dow JAT, Terhzaz S, Davies SA. Novel roles for GATAe in growth, maintenance and proliferation of cell populations in the Drosophila renal tubule. Development 2019; 146:dev.178087. [PMID: 31036543 DOI: 10.1242/dev.178087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022]
Abstract
The GATA family of transcription factors is implicated in numerous developmental and physiological processes in metazoans. In Drosophila melanogaster, five different GATA factor genes (pannier, serpent, grain, GATAd and GATAe) have been reported as essential in the development and identity of multiple tissues, including the midgut, heart and brain. Here, we present a novel role for GATAe in the function and homeostasis of the Drosophila renal (Malpighian) tubule. We demonstrate that reduced levels of GATAe gene expression in tubule principal cells induce uncontrolled cell proliferation, resulting in tumorous growth with associated altered expression of apoptotic and carcinogenic key genes. Furthermore, we uncover the involvement of GATAe in the maintenance of stellate cells and migration of renal and nephritic stem cells into the tubule. Our findings of GATAe as a potential master regulator in the events of growth control and cell survival required for the maintenance of the Drosophila renal tubule could provide new insights into the molecular pathways involved in the formation and maintenance of a functional tissue and kidney disease.
Collapse
Affiliation(s)
- Guillermo Martínez-Corrales
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Pablo Cabrero
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Selim Terhzaz
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Shireen-A Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
11
|
Gautam NK, Verma P, Tapadia MG. Ecdysone regulates morphogenesis and function of Malpighian tubules in Drosophila melanogaster through EcR-B2 isoform. Dev Biol 2014; 398:163-76. [PMID: 25476260 DOI: 10.1016/j.ydbio.2014.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 10/20/2014] [Accepted: 11/11/2014] [Indexed: 10/24/2022]
Abstract
Malpighian tubules are the osmoregulatory and detoxifying organs of Drosophila and its proper development is critical for the survival of the organism. They are made up of two major cell types, the ectodermal principal cells and mesodermal stellate cells. The principal and stellate cells are structurally and physiologically distinct from each other, but coordinate together for production of isotonic fluid. Proper integration of these cells during the course of development is an important pre-requisite for the proper functioning of the tubules. We have conclusively determined an essential role of ecdysone hormone in the development and function of Malpighian tubules. Disruption of ecdysone signaling interferes with the organization of principal and stellate cells resulting in malformed tubules and early larval lethality. Abnormalities include reduction in the number of cells and the clustering of cells rather than their arrangement in characteristic wild type pattern. Organization of F-actin and β-tubulin also show aberrant distribution pattern. Malformed tubules show reduced uric acid deposition and altered expression of Na(+)/K(+)-ATPase pump. B2 isoform of ecdysone receptor is critical for the development of Malpighian tubules and is expressed from early stages of its development.
Collapse
Affiliation(s)
- Naveen Kumar Gautam
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005,Uttar Pradesh, India; Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Puja Verma
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005,Uttar Pradesh, India
| | - Madhu G Tapadia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005,Uttar Pradesh, India.
| |
Collapse
|
12
|
King B, Denholm B. Malpighian tubule development in the red flour beetle (Tribolium castaneum). ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:605-613. [PMID: 25242057 DOI: 10.1016/j.asd.2014.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/22/2014] [Accepted: 08/24/2014] [Indexed: 06/03/2023]
Abstract
Malpighian tubules (MpTs) are the major organ for excretion and osmoregulation in most insects. MpT development is characterised for Drosophila melanogaster, but not other species. We therefore do not know the extent to which the MpT developmental programme is conserved across insects. To redress this we provide a comprehensive description of MpT development in the beetle Tribolium castaneum (Coleoptera), a species separated from Drosophila by >315 million years. We identify similarities with Drosophila MpT development including: 1) the onset of morphological development, beginning when tubules bud from the gut and proliferate to increase organ size. 2) the tubule is shaped by convergent-extension movements and oriented cell divisions. 3) differentiated tip cells activate EGF-signalling in distal MpT cells through the ligand Spitz. 4) MpTs contain two main cell types - principal and stellate cells, differing in morphology and gene expression. We also describe development of the beetle cryptonephridial system, an adaptation for water conservation, which represents a major modification of the MpT ground plan characterised by intimate association between MpTs and rectum. This work establishes a new model to compare MpT development across insects, and provides a framework to help understand how an evolutionary novelty - the cryptonephridial system - arose during organ evolution.
Collapse
Affiliation(s)
- Benedict King
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | - Barry Denholm
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| |
Collapse
|
13
|
Zohar-Stoopel A, Gonen N, Mahroum M, Ben-Zvi DS, Toledano H, Salzberg A. Homothorax plays autonomous and nonautonomous roles in proximodistal axis formation and migration of the Drosophila renal tubules. Dev Dyn 2013; 243:132-44. [PMID: 23821438 DOI: 10.1002/dvdy.24011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/20/2013] [Accepted: 06/24/2013] [Indexed: 01/18/2023] Open
Abstract
The Drosophila Malpighian tubules (MpTs) serve as a functional equivalent of the mammalian renal tubules. The MpTs are composed of two pairs of epithelial tubes that bud from the midgut-hindgut boundary during embryogenesis. The MpT primordia grow, elongate and migrate through the body cavity to assume their final position and shape. The stereotypic pattern of MpT migration is regulated by multiple intrinsic and extrinsic signals, many of which are still obscure. In this work, we implicate the TALE-class homeoprotein Homothorax (Hth) in MpT patterning. We show that in the absence of Hth the tubules fail to rearrange and migrate. Hth plays both autonomous and nonautonomous roles in this developmental process. Within the tubules Hth is required for convergent extension and for defining distal versus proximal cell identities. The difference between distal and proximal cell identities seems to be required for proper formation of the leading loop. Outside the tubules, wide-range mesodermal expression of Hth is required for directing anterior migration. The nonautonomous effects of Hth on MpT migration can be partially attributed to its effects on homeotic determination along the anterior posterior axis of the embryo and to its effects on stellate cell (SC) incorporation into the MpT.
Collapse
Affiliation(s)
- Adi Zohar-Stoopel
- Department of Genetics, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
14
|
Denholm B, Hu N, Fauquier T, Caubit X, Fasano L, Skaer H. The tiptop/teashirt genes regulate cell differentiation and renal physiology in Drosophila. Development 2013; 140:1100-10. [PMID: 23404107 PMCID: PMC3583044 DOI: 10.1242/dev.088989] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The physiological activities of organs are underpinned by an interplay between the distinct cell types they contain. However, little is known about the genetic control of patterned cell differentiation during organ development. We show that the conserved Teashirt transcription factors are decisive for the differentiation of a subset of secretory cells, stellate cells, in Drosophila melanogaster renal tubules. Teashirt controls the expression of the water channel Drip, the chloride conductance channel CLC-a and the Leukokinin receptor (LKR), all of which characterise differentiated stellate cells and are required for primary urine production and responsiveness to diuretic stimuli. Teashirt also controls a dramatic transformation in cell morphology, from cuboidal to the eponymous stellate shape, during metamorphosis. teashirt interacts with cut, which encodes a transcription factor that underlies the differentiation of the primary, principal secretory cells, establishing a reciprocal negative-feedback loop that ensures the full differentiation of both cell types. Loss of teashirt leads to ineffective urine production, failure of homeostasis and premature lethality. Stellate cell-specific expression of the teashirt paralogue tiptop, which is not normally expressed in larval or adult stellate cells, almost completely rescues teashirt loss of expression from stellate cells. We demonstrate conservation in the expression of the family of tiptop/teashirt genes in lower insects and establish conservation in the targets of Teashirt transcription factors in mouse embryonic kidney.
Collapse
Affiliation(s)
- Barry Denholm
- Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK.
| | | | | | | | | | | |
Collapse
|
15
|
Denholm B. Shaping up for action: the path to physiological maturation in the renal tubules of Drosophila. Organogenesis 2013; 9:40-54. [PMID: 23445869 DOI: 10.4161/org.24107] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Malpighian tubule is the main organ for excretion and osmoregulation in most insects. During a short period of embryonic development the tubules of Drosophila are shaped, undergo differentiation and become precisely positioned in the body cavity, so they become fully functional at the time of larval hatching a few hours later. In this review I explore three developmental events on the path to physiological maturation. First, I examine the molecular and cellular mechanisms that generate organ shape, focusing on the process of cell intercalation that drives tubule elongation, the roles of the cytoskeleton, the extracellular matrix and how intercalation is coordinated at the tissue level. Second, I look at the genetic networks that control the physiological differentiation of tubule cells and consider how distinctive physiological domains in the tubule are patterned. Finally, I explore how the organ is positioned within the body cavity and consider the relationship between organ position and function.
Collapse
Affiliation(s)
- Barry Denholm
- Department of Zoology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
16
|
Sui L, Pflugfelder GO, Shen J. The Dorsocross T-box transcription factors promote tissue morphogenesis in the Drosophila wing imaginal disc. Development 2012; 139:2773-82. [PMID: 22782723 DOI: 10.1242/dev.079384] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Drosophila wing imaginal disc is subdivided into notum, hinge and blade territories during the third larval instar by formation of several deep apical folds. The molecular mechanisms of these subdivisions and the subsequent initiation of morphogenic processes during metamorphosis are poorly understood. Here, we demonstrate that the Dorsocross (Doc) T-box genes promote the progression of epithelial folds that not only separate the hinge and blade regions of the wing disc but also contribute to metamorphic development by changing cell shapes and bending the wing disc. We found that Doc expression was restricted by two inhibitors, Vestigial and Homothorax, leading to two narrow Doc stripes where the folds separating hinge and blade are forming. Doc mutant clones prevented the lateral extension and deepening of these folds at the larval stage and delayed wing disc bending in the early pupal stage. Ectopic Doc expression was sufficient to generate deep apical folds by causing a basolateral redistribution of the apical microtubule web and a shortening of cells. Cells of both the endogenous blade/hinge folds and of folds elicited by ectopic Doc expression expressed Matrix metalloproteinase 2 (Mmp2). In these folds, integrins and extracellular matrix proteins were depleted. Overexpression of Doc along the blade/hinge folds caused precocious wing disc bending, which could be suppressed by co-expressing MMP2RNAi.
Collapse
Affiliation(s)
- Liyuan Sui
- Department of Entomology, China Agricultural University, Beijing, China
| | | | | |
Collapse
|
17
|
Chintapalli VR, Terhzaz S, Wang J, Al Bratty M, Watson DG, Herzyk P, Davies SA, Dow JAT. Functional correlates of positional and gender-specific renal asymmetry in Drosophila. PLoS One 2012; 7:e32577. [PMID: 22496733 PMCID: PMC3319558 DOI: 10.1371/journal.pone.0032577] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 01/27/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In humans and other animals, the internal organs are positioned asymmetrically in the body cavity, and disruption of this body plan can be fatal in humans. The mechanisms by which internal asymmetry are established are presently the subject of intense study; however, the functional significance of internal asymmetry (outside the brain) is largely unexplored. Is internal asymmetry functionally significant, or merely an expedient way of packing organs into a cavity? METHODOLOGY/PRINCIPAL FINDINGS Like humans, Drosophila shows internal asymmetry, with the gut thrown into stereotyped folds. There is also renal asymmetry, with the rightmost pair of renal (Malpighian) tubules always ramifying anteriorly, and the leftmost pair always sitting posteriorly in the body cavity. Accordingly, transcriptomes of anterior-directed (right-side) and posterior-directed (left-side) Malpighian (renal) tubules were compared in both adult male and female Drosophila. Although genes encoding the basic functions of the tubules (transport, signalling) were uniformly expressed, some functions (like innate immunity) showed positional or gender differences in emphasis; others, like calcium handling or the generation of potentially toxic ammonia, were reserved for just the right-side or left-side tubules, respectively. These findings correlated with the distinct locations of each tubule pair within the body cavity. Well known developmental genes (like dorsocross, dachshund and doublesex) showed continuing, patterned expression in adult tubules, implying that somatic tissues maintain both left-right and gender identities throughout life. Gender asymmetry was also noted, both in defence and in male-specific expression of receptors for neuropeptide F and sex-peptide: NPF elevated calcium only in male tubules. CONCLUSIONS/SIGNIFICANCE Accordingly, the physical asymmetry of the tubules in the body cavity is directly adaptive. Now that the detailed machinery underlying internal asymmetry is starting to be delineated, our work invites the investigation, not just of tissues in isolation, but in the context of their unique physical locations and milieux.
Collapse
Affiliation(s)
- Venkateswara R. Chintapalli
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Selim Terhzaz
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jing Wang
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mohammed Al Bratty
- Strathclyde Institute for Pharmacy and Biomedical Sciences, Glasgow, United Kingdom
| | - David G. Watson
- Strathclyde Institute for Pharmacy and Biomedical Sciences, Glasgow, United Kingdom
| | - Pawel Herzyk
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Shireen A. Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Julian A. T. Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Dow JAT, Romero MF. Drosophila provides rapid modeling of renal development, function, and disease. Am J Physiol Renal Physiol 2010; 299:F1237-44. [PMID: 20926630 DOI: 10.1152/ajprenal.00521.2010] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The evolution of specialized excretory cells is a cornerstone of the metazoan radiation, and the basic tasks performed by Drosophila and human renal systems are similar. The development of the Drosophila renal (Malpighian) tubule is a classic example of branched tubular morphogenesis, allowing study of mesenchymal-to-epithelial transitions, stem cell-mediated regeneration, and the evolution of a glomerular kidney. Tubule function employs conserved transport proteins, such as the Na(+), K(+)-ATPase and V-ATPase, aquaporins, inward rectifier K(+) channels, and organic solute transporters, regulated by cAMP, cGMP, nitric oxide, and calcium. In addition to generation and selective reabsorption of primary urine, the tubule plays roles in metabolism and excretion of xenobiotics, and in innate immunity. The gene expression resource FlyAtlas.org shows that the tubule is an ideal tissue for the modeling of renal diseases, such as nephrolithiasis and Bartter syndrome, or for inborn errors of metabolism. Studies are assisted by uniquely powerful genetic and transgenic resources, the widespread availability of mutant stocks, and low-cost, rapid deployment of new transgenics to allow manipulation of renal function in an organotypic context.
Collapse
Affiliation(s)
- Julian A T Dow
- Institute of Cell, Molecular, and Systems Biology, College of Medical, Veterinary, and Life Sciences, Univ. of Glasgow, Glasgow G12 8QQ, UK.
| | | |
Collapse
|
19
|
Hemocyte-secreted type IV collagen enhances BMP signaling to guide renal tubule morphogenesis in Drosophila. Dev Cell 2010; 19:296-306. [PMID: 20708591 PMCID: PMC2941037 DOI: 10.1016/j.devcel.2010.07.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 07/09/2010] [Accepted: 07/28/2010] [Indexed: 12/17/2022]
Abstract
Details of the mechanisms that determine the shape and positioning of organs in the body cavity remain largely obscure. We show that stereotypic positioning of outgrowing Drosophila renal tubules depends on signaling in a subset of tubule cells and results from enhanced sensitivity to guidance signals by targeted matrix deposition. VEGF/PDGF ligands from the tubules attract hemocytes, which secrete components of the basement membrane to ensheath them. Collagen IV sensitizes tubule cells to localized BMP guidance cues. Signaling results in pathway activation in a subset of tubule cells that lead outgrowth through the body cavity. Failure of hemocyte migration, loss of collagen IV, or abrogation of BMP signaling results in tubule misrouting and defective organ shape and positioning. Such regulated interplay between cell-cell and cell-matrix interactions is likely to have wide relevance in organogenesis and congenital disease.
Collapse
|
20
|
Beyenbach KW, Skaer H, Dow JAT. The developmental, molecular, and transport biology of Malpighian tubules. ANNUAL REVIEW OF ENTOMOLOGY 2010; 55:351-74. [PMID: 19961332 DOI: 10.1146/annurev-ento-112408-085512] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Molecular biology is reaching new depths in our understanding of the development and physiology of Malpighian tubules. In Diptera, Malpighian tubules derive from ectodermal cells that evaginate from the primitive hindgut and subsequently undergo a sequence of orderly events that culminates in an active excretory organ by the time the larva takes its first meal. Thereafter, the tubules enlarge by cell growth. Just as modern experimental strategies have illuminated the development of tubules, genomic, transcriptomic, and proteomic studies have uncovered new tubule functions that serve immune defenses and the breakdown and renal clearance of toxic substances. Moreover, genes associated with specific diseases in humans are also found in flies, some of which, astonishingly, express similar pathophenotypes. However, classical experimental approaches continue to show their worth by distinguishing between -omic possibilities and physiological reality while providing further detail about the rapid regulation of the transport pathway through septate junctions and the reversible assembly of proton pumps.
Collapse
Affiliation(s)
- Klaus W Beyenbach
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
21
|
Campbell K, Knust E, Skaer H. Crumbs stabilises epithelial polarity during tissue remodelling. J Cell Sci 2009; 122:2604-12. [PMID: 19567473 DOI: 10.1242/jcs.047183] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The apicobasal polarity of epithelia depends on the integrated activity of apical and basolateral proteins, and is essential for tissue integrity and body homeostasis. Yet these tissues are frequently on the move as they are sculpted by active morphogenetic cell rearrangements. How does cell polarity survive these stresses? We analyse this question in the renal tubules of Drosophila, a tissue that undergoes dramatic morphogenetic change as it develops. Here we show that, whereas the Bazooka and Scribble protein groups are required for the establishment of tubule cell polarity, the key apical determinant, Crumbs, is required for cell polarity in the tubules only from the time when morphogenetic movements start. Strikingly, if these movements are stalled, polarity persists in the absence of Crumbs. Similar rescue of the ectodermal phenotype of the crumbs mutant when germ-band extension is reduced suggests that Crumbs has a specific, conserved function in stabilising cell polarity during tissue remodelling rather than in its initial stabilisation. We also identify a requirement for the exocyst component Exo84 during tissue morphogenesis, which suggests that Crumbs-dependent stability of epithelial polarity is correlated with a requirement for membrane recycling and targeted vesicle delivery.
Collapse
Affiliation(s)
- Kyra Campbell
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | | | |
Collapse
|
22
|
Singh SR, Hou SX. Multipotent stem cells in the Malpighian tubules of adult Drosophila melanogaster. ACTA ACUST UNITED AC 2009; 212:413-23. [PMID: 19151216 DOI: 10.1242/jeb.024216] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Excretion is an essential process of an organism's removal of the waste products of metabolism to maintain a constant chemical composition of the body fluids despite changes in the external environment. Excretion is performed by the kidneys in vertebrates and by Malpighian tubules (MTs) in Drosophila. The kidney serves as an excellent model organ to investigate the cellular and molecular mechanisms underlying organogenesis. Mammals and Drosophila share common principles of renal development. Tissue homeostasis, which is accomplished through self-renewal or differentiation of stem cells, is critical for the maintenance of adult tissues throughout the lifetime of an animal. Growing evidence suggests that stem cell self-renewal and differentiation is controlled by both intrinsic and extrinsic factors. Deregulation of stem cell behavior results in cancer formation, tissue degeneration, and premature aging. The mammalian kidney has a low rate of cellular turnover but has a great capacity for tissue regeneration following an ischemic injury. However, there is an ongoing controversy about the source of regenerating cells in the adult kidney that repopulate injured renal tissues. Recently, we identified multipotent stem cells in the MTs of adult Drosophila and found that these stem cells are able to proliferate and differentiate in several types of cells in MTs. Furthermore, we demonstrated that an autocrine JAK-STAT (Janus kinase-signal transducers and activators of transcription) signaling regulates stem cell self-renewal or differentiation of renal stem cells. The Drosophila MTs provide an excellent in vivo system for studying the renal stem cells at cellular and molecular levels. Understanding the molecular mechanisms governing stem cell self-renewal or differentiation in vivo is not only crucial to using stem cells for future regenerative medicine and gene therapy, but it also will increase our understanding of the mechanisms underlying cancer formation, aging and degenerative diseases. Identifying and understanding the cellular processes underlying the development and repair of the mammalian kidney may enable more effective, targeted therapies for acute and chronic kidney diseases in humans.
Collapse
Affiliation(s)
- Shree Ram Singh
- Mouse Cancer Genetics Program, National Institutes of Health, National Cancer Institute, MD 21702, USA
| | | |
Collapse
|
23
|
Singh SR, Hou SX. Lessons learned about adult kidney stem cells from the malpighian tubules of Drosophila. J Am Soc Nephrol 2008; 19:660-6. [PMID: 18287558 DOI: 10.1681/asn.2007121307] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
All multicellular organisms have a specialized organ to concentrate and excrete wastes from the body. The kidneys in vertebrates and the malpighian tubules in Drosophila accomplish these functions. Mammals and Drosophila share some similar features during renal tubular development. Vertebrate kidneys are derived through the mutual induction of the ureteric bud and metanephric mesoderm, whereas the malpighian tubules of Drosophila develop from the hindgut primordium and visceral mesoderm. The vertebrate kidney also has the capacity to recover and regenerate following episodes of acute injury. Previous studies suggest that stem cells and progenitor cells may be involved in the repair and regeneration of injured renal tissue. However, studies differ as to the source of the regenerating renal cells. Recently, multipotent stem cells in Drosophila malpighian tubules were identified, and it was demonstrated that several differentiated cells in the malpighian tubules arise from these stem cells. In this article, the current understanding of kidney development and stem cell fate in mammal and Drosophila is compared. Furthermore, the potential application of the adult renal stem cells in kidney repair and the treatment of kidney cancers are discussed.
Collapse
Affiliation(s)
- Shree Ram Singh
- Mouse Cancer Genetics Program, National Institutes of Health, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | | |
Collapse
|
24
|
Mani A, Radhakrishnan J, Wang H, Mani A, Mani M, Nelson-Williams C, Carew K, Mane S, Najmabadi H, Wu D, Lifton R. Metabolic Syndrome—What We Know and What We Don't Know. J Am Soc Nephrol 2007. [DOI: 10.1681/asn.2007040522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|