1
|
Targeting BMP signaling in the bone marrow microenvironment of myeloid leukemia. Biochem Soc Trans 2020; 48:411-418. [DOI: 10.1042/bst20190223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/29/2022]
Abstract
The bone morphogenetic protein (BMP) pathway regulates the fate and proliferation of normal hematopoietic stem cells (HSC) as well as interactions with their niche. While BMP2 and BMP4 promote HSC differentiation, only BMP4 maintains HSC pool and favors interactions with their niche. In myeloid leukemia, we have identified intrinsic and extrinsic dysregulations of the BMP pathway in Chronic Myeloid Leukemia (CML) and Acute Myeloid leukemia (AML) responsible for leukemic stem cells (LSC) survival. In AML, BMP pathway alterations sustain and promote resistant immature-like leukemic cells by activating a new signaling cascade. Binding of BMP4 to BMPR1A leads to ΔNp73 expression, which in turn induces NANOG, altogether associated with a poor patient's prognosis. Despite efficient targeted therapies, like Tyrosine Kinase Inhibitors (TKI) in CML, many patients retain LSCs. Our laboratory demonstrated that the BMP pathway sustains a permanent pool of LSCs expressing high levels of BMPR1B receptor, that evolve upon treatment to progressively implement a BMP4 autocrine loop, leading to TKI-resistant cells. Single cell RNA-Seq analysis of TKI-persisting LSCs showed a co-enrichment of BMP with Jak2-signaling, quiescence and stem cell (SC) signatures. Using a new model of persisting LSCs, we recently demonstrated that BMPR1B+ cells display co-activated Smad1/5/8 and Stat3 pathways and could be targeted by blocking BMPR1B/Jak2 signal. Lastly, a specific BMPR1B inhibitor impaired BMP4-mediated LSC protection against TKIs. Altogether, data based on various studies including ours, indicate that BMP targeting could eliminate leukemic cells within a protective bone marrow microenvironment to efficiently impact residual resistance or persistence of LSCs in myeloid leukemia.
Collapse
|
2
|
Xu Z, Sharp PP, Yao Y, Segal D, Ang CH, Khaw SL, Aubrey BJ, Gong J, Kelly GL, Herold MJ, Strasser A, Roberts AW, Alexander WS, Burns CJ, Huang DCS, Glaser SP. BET inhibition represses miR17-92 to drive BIM-initiated apoptosis of normal and transformed hematopoietic cells. Leukemia 2016; 30:1531-41. [PMID: 27055867 DOI: 10.1038/leu.2016.52] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/13/2016] [Accepted: 02/10/2016] [Indexed: 02/04/2023]
Abstract
The BET (bromodomain and extraterminal domain) bromodomain-containing proteins, such as BRD4, are highly promising targets for treating lymphoid and myeloid malignancies. They act to modulate the expression of multiple genes that control diverse cellular processes including proliferation, survival and differentiation that are consequentially disrupted by small-molecule BET bromodomain inhibitors such as JQ1. By assessing the impact of these inhibitors on normal mouse hematopoietic cells or their transformed counterparts, we establish definitively that their cytotoxic action in vitro and in vivo relies predominantly on the activation of BAX/BAK-dependent mitochondrial (intrinsic) apoptosis. In large part, this is triggered by marked upregulation of the BH3-only protein BIM when the BET inhibitors suppress miR-17-92, a key post-transcriptional repressor of BIM expression. Thus, our study strongly suggests that mutations that permit the evasion of apoptosis (for example, BCL2 overexpression, BIM inactivation) are likely to blunt the activity of the BET bromodomain inhibitors and should be anticipated when therapy resistance develops. Strikingly, we also found that certain normal hematopoietic cells, especially those of lymphoid origin, are as prone to apoptosis induced by the BET inhibitors as their transformed counterparts, indicating that their susceptibility to BET inhibitors did not arise from oncogenic transformation.
Collapse
Affiliation(s)
- Z Xu
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - P P Sharp
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Y Yao
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.,School of Medicine, Tsinghua University, Beijing, China
| | - D Segal
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - C H Ang
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - S L Khaw
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.,Children's Cancer Centre, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - B J Aubrey
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Clinical Haematology and Bone Marrow Transplantation, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - J Gong
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - G L Kelly
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - M J Herold
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - A Strasser
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - A W Roberts
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Clinical Haematology and Bone Marrow Transplantation, The Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Victorian Comprehensive Cancer Centre, Melbourne, Victoria, Australia
| | - W S Alexander
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - C J Burns
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - D C S Huang
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - S P Glaser
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Raymond A, Liu B, Liang H, Wei C, Guindani M, Lu Y, Liang S, St John LS, Molldrem J, Nagarajan L. A role for BMP-induced homeobox gene MIXL1 in acute myelogenous leukemia and identification of type I BMP receptor as a potential target for therapy. Oncotarget 2015; 5:12675-93. [PMID: 25544748 PMCID: PMC4350356 DOI: 10.18632/oncotarget.2564] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 10/02/2014] [Indexed: 01/03/2023] Open
Abstract
Mesoderm Inducer in Xenopus Like1 (MIXL1), a paired-type homeobox transcription factor induced by TGF-β family of ligands is required for early embryonic specification of mesoderm and endoderm. Retrovirally transduced Mixl1 is reported to induce acute myelogenous leukemia (AML) with a high penetrance. But the mechanistic underpinnings of MIXL1 mediated leukemogenesis are unknown. Here, we establish the protooncogene c-REL to be a transcriptional target of MIXL1 by genome wide chromatin immune precipitation. Accordingly, expression of c-REL and its downstream targets BCL2L1 and BCL2A2 are elevated in MIXL1 expressing cells. Notably, MIXL1 regulates c-REL through a zinc finger binding motif, potentially by a MIXL1–Zinc finger protein transcriptional complex. Furthermore, MIXL1 expression is detected in the cancer genome atlas (TCGA) AML samples in a pattern mutually exclusive from that of HOXA9, CDX2 and HLX suggesting the existence of a core, yet distinct HOX transcriptional program. Finally, we demonstrate MIXL1 to be induced by BMP4 and not TGF-β in primary human hematopoietic stem and progenitor cells. Consequently, MIXL1 expressing AML cells are preferentially sensitive to the BMPR1 kinase inhibitor LDN-193189. These findings support the existence of a novel MIXL1-c REL mediated survival axis in AML that can be targeted by BMPR1 inhibitors. (MIXL1- human gene, Mixl1- mouse ortholog, MIXL1- protein)
Collapse
Affiliation(s)
- Aaron Raymond
- Department of Genetics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Graduate Program in Genes and Development, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bin Liu
- Department of Genetics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Center for Cancer Genetics and Genomics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hong Liang
- Department of Genetics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Caimiao Wei
- Department of Biostatistics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michele Guindani
- Department of Biostatistics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yue Lu
- Dept. of Leukemia, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Dept. of Molecular Carcinogenesis, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shoudan Liang
- Dept. of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lisa S St John
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeff Molldrem
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lalitha Nagarajan
- Department of Genetics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Graduate Program in Genes and Development, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Center for Cancer Genetics and Genomics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Dept. of Leukemia, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Graduate Program in Human Molecular Genetics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Center for Stem cell and Developmental biology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
4
|
Chen G, Tan R, Tao Q. Sebox regulates mesoderm formation in early amphibian embryos. Dev Dyn 2015; 244:1415-26. [DOI: 10.1002/dvdy.24323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 08/02/2015] [Accepted: 08/04/2015] [Indexed: 01/02/2023] Open
Affiliation(s)
- Geng Chen
- MOE Key Laboratory of Protein Sciences; Tsinghua University School of Life Sciences; Beijing China
| | - Renbo Tan
- MOE Key Laboratory of Protein Sciences; Tsinghua University School of Life Sciences; Beijing China
| | - Qinghua Tao
- MOE Key Laboratory of Protein Sciences; Tsinghua University School of Life Sciences; Beijing China
| |
Collapse
|
5
|
Hu J, Yang Y, Turner PC, Jain V, McIntyre LM, Renne R. LANA binds to multiple active viral and cellular promoters and associates with the H3K4methyltransferase hSET1 complex. PLoS Pathog 2014; 10:e1004240. [PMID: 25033463 PMCID: PMC4102568 DOI: 10.1371/journal.ppat.1004240] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 05/27/2014] [Indexed: 02/07/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a γ-herpesvirus associated with KS and two lymphoproliferative diseases. Recent studies characterized epigenetic modification of KSHV episomes during latency and determined that latency-associated genes are associated with H3K4me3 while most lytic genes are associated with the silencing mark H3K27me3. Since the latency-associated nuclear antigen (LANA) (i) is expressed very early after de novo infection, (ii) interacts with transcriptional regulators and chromatin remodelers, and (iii) regulates the LANA and RTA promoters, we hypothesized that LANA may contribute to the establishment of latency through epigenetic control. We performed a detailed ChIP-seq analysis in cells of lymphoid and endothelial origin and compared H3K4me3, H3K27me3, polII, and LANA occupancy. On viral episomes LANA binding was detected at numerous lytic and latent promoters, which were transactivated by LANA using reporter assays. LANA binding was highly enriched at H3K4me3 peaks and this co-occupancy was also detected on many host gene promoters. Bioinformatic analysis of enriched LANA binding sites in combination with biochemical binding studies revealed three distinct binding patterns. A small subset of LANA binding sites showed sequence homology to the characterized LBS1/2 sequence in the viral terminal repeat. A large number of sites contained a novel LANA binding motif (TCCAT)3 which was confirmed by gel shift analysis. Third, some viral and cellular promoters did not contain LANA binding sites and are likely enriched through protein/protein interaction. LANA was associated with H3K4me3 marks and in PEL cells 86% of all LANA bound promoters were transcriptionally active, leading to the hypothesis that LANA interacts with the machinery that methylates H3K4. Co-immunoprecipitation demonstrated LANA association with endogenous hSET1 complexes in both lymphoid and endothelial cells suggesting that LANA may contribute to the epigenetic profile of KSHV episomes. KSHV is a DNA tumor virus which is associated with Kaposi's sarcoma and some lymphoproliferative diseases. During latent infection, the viral genome persists as circular extrachromosomal DNA in the nucleus and expresses a very limited number of viral proteins, including LANA, a multi-functional protein. KSHV viral episomes, like host genomic DNA, are subject to chromatin formation and histone modifications which contribute to tightly controlled gene expression during latency. We determined where LANA binds on the KSHV and human genomes, and mapped activating and repressing histone marks and RNA polymerase II binding. We found that LANA bound near transcription start sites, and binding correlated with the transcription active mark H3K4me3, but not silencing mark H3K27me3. Binding sites for transcription factors including znf143, CTCF, and Stat1 are enriched at regions where LANA is bound. We identified some LANA binding sites near human gene promoters that resembled KSHV sequences known to bind LANA. We also found a novel motif that occurs frequently in the human genome and that binds LANA directly despite being different from known LANA-binding sequences. Furthermore, we demonstrate that LANA associates with the H3K4 methyltransferase hSET1 which creates activating histone marks.
Collapse
Affiliation(s)
- Jianhong Hu
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Yajie Yang
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Peter C. Turner
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Vaibhav Jain
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Lauren M. McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
- UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
- UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
6
|
Wolfe AD, Downs KM. Mixl1 localizes to putative axial stem cell reservoirs and their posterior descendants in the mouse embryo. Gene Expr Patterns 2014; 15:8-20. [PMID: 24632399 DOI: 10.1016/j.gep.2014.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 01/22/2023]
Abstract
Mixl1 is thought to play important roles in formation of mesoderm and endoderm. Previously, Mixl1 expression was reported in the posterior primitive streak and allantois, but the precise spatiotemporal whereabouts of Mixl1 protein throughout gastrulation have not been elucidated. To localize Mixl1 protein, immunohistochemistry was carried out at 2-4 h intervals on mouse gastrulae between primitive streak and 16-somite pair (s) stages (~E6.5-9.5). Mixl1 localized to the entire primitive streak early in gastrulation. However, by headfold stages (~E7.75-8.0), Mixl1 diminished within the mid-streak but remained concentrated at either end of the streak, and localized throughout midline posterior visceral endoderm. At the streak's anterior end, Mixl1 was confined to the posterior crown cells of Hensen's node, which contribute to dorsal hindgut endoderm, and the posterior notochord. In the posterior streak, Mixl1 localized to the Allantoic Core Domain (ACD), which is the source of most of the allantois and contributes to the posterior embryonic-extraembryonic interface. In addition, Mix1 co-localized with the early hematopoietic marker, Runx1, in the allantois and visceral yolk sac blood islands. During hindgut invagination (4-16s, ~E8.5-9.5), Mixl1 localized to the hindgut lip, becoming concentrated within the midline anastomosis of the splanchnopleure, which appears to create the ventral component of the hindgut and omphalomesenteric artery. Surrounding the distal hindgut, Mixl1 identified midline cells within tailbud mesoderm. Mixl1 was also found in the posterior notochord. These findings provide a critical systematic, and tissue-level understanding of embryonic Mixl1 localization, and support its role in regulation of crucial posterior axial mesendodermal stem cell niches during embryogenesis.
Collapse
Affiliation(s)
- Adam D Wolfe
- Department of Pediatrics, Division of Pediatric Hematology, Oncology & Bone Marrow Transplant, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, 4105 WIMR, Madison, WI 53705, United States
| | - Karen M Downs
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, United States
| |
Collapse
|
7
|
Glaser SP, Lee EF, Trounson E, Bouillet P, Wei A, Fairlie WD, Izon DJ, Zuber J, Rappaport AR, Herold MJ, Alexander WS, Lowe SW, Robb L, Strasser A. Anti-apoptotic Mcl-1 is essential for the development and sustained growth of acute myeloid leukemia. Genes Dev 2012; 26:120-5. [PMID: 22279045 DOI: 10.1101/gad.182980.111] [Citation(s) in RCA: 333] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Acute myeloid leukemia (AML) frequently relapses after initial treatment. Drug resistance in AML has been attributed to high levels of the anti-apoptotic Bcl-2 family members Bcl-x(L) and Mcl-1. Here we report that removal of Mcl-1, but not loss or pharmacological blockade of Bcl-x(L), Bcl-2, or Bcl-w, caused the death of transformed AML and could cure disease in AML-afflicted mice. Enforced expression of selective inhibitors of prosurvival Bcl-2 family members revealed that Mcl-1 is critical for survival of human AML cells. Thus, targeting of Mcl-1 or regulators of its expression may be a useful strategy for the treatment of AML.
Collapse
Affiliation(s)
- Stefan P Glaser
- The Walter and Eliza Hall Institute, Parkville, Melbourne, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zon LI. Derivation of adult stem cells during embryogenesis. HARVEY LECTURES 2010; 102:117-132. [PMID: 20166566 DOI: 10.1002/9780470593042.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Affiliation(s)
- Leonard I Zon
- Children's Hospital Boston, Howard Hughes Medical Institute, Boston, Massachusetts, USA
| |
Collapse
|
9
|
The preleukemic state of mice reconstituted with Mixl1-transduced marrow cells. Proc Natl Acad Sci U S A 2007; 104:20013-8. [PMID: 18056627 DOI: 10.1073/pnas.0710339104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Murine granulocytic cells, in becoming leukemic, need to acquire enhanced self-generation and a capacity for autocrine growth stimulation. Mice transplanted with bone marrow cells transduced with the Mixl1 homeobox gene develop a very high frequency of myeloid leukemia derived from the transduced cells. Preleukemic mice contained a high frequency of transduced clonogenic granulocytic cells. They exhibited an abnormally high capacity for self-replication and could generate immortalized granulocytic cell lines that remained absolutely dependent on either GM-CSF or IL-3 and were not leukemic. Organs from mice repopulated by marrow cells transduced either with Mixl1 or the control murine stem cell virus vector exhibited a capacity to produce IL-3 in vitro, activity being highest with the lungs, marrow, bladder, and thymus. Supporting evidence for the in vivo production of IL-3 was the frequent development of mast cells in the marrow. Overexpression of Mixl1 appears capable of inducing an abnormal self-renewal capacity in granulocytic precursors. Aberrant production of IL-3 was not present in the continuous Mixl cell lines and was therefore not in itself likely to be a leukemogenic change but it could support the enhanced survival and proliferation of the Mixl1 granulocytic populations until a final leukemogenic mutation occurs in them.
Collapse
|
10
|
Metcalf D, Majewski I, Mifsud S, Di Rago L, Alexander WS. Clonogenic mast cell progenitors and their excess numbers in chimeric BALB/c mice with inactivated GATA-1. Proc Natl Acad Sci U S A 2007; 104:18642-7. [PMID: 18000035 PMCID: PMC2141830 DOI: 10.1073/pnas.0709625104] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Indexed: 11/18/2022] Open
Abstract
In agar cultures of marrow cells from adult female BALB/c chimeric GATA-1(Plt13/+) mice, a high frequency of unusual dispersed colonies was noted. Analysis showed that these were colonies of mast cells and that mast cell colony-forming cells (progenitors) could be detected in clonal cultures of adult marrow, neonatal marrow, or fetal liver if the combined stimulus of stem cell factor and interleukin-3 was used. Mast cell progenitors were in active cell cycle and showed an extensive capacity for self-generation. Mast cell colonies both from control GATA-1(+/+) mice and GATA-1(Plt13/+) mice could generate growth factor-dependent cloned cell lines that grew for >18 months. Surprisingly, the majority of the excessive numbers of mast cell progenitors in chimeric GATA-1(Plt13/+) mice were transcribing the inactive Plt13 allele of GATA-1, suggesting that GATA-1 normally acts to restrict the emergence of committed mast cell progenitors. In sharp contrast, all eosinophil progenitors in these mice were transcribing the normal GATA-1 allele. No excess tissue mast cells were observed in GATA-1(Plt13/+) mice, suggesting that the excess mast cell progenitors in these mice might be generating mast cells with a defective in vivo proliferative or tissue homing capacity.
Collapse
Affiliation(s)
- Donald Metcalf
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3050, Victoria, Australia.
| | | | | | | | | |
Collapse
|