1
|
Zhao M, Liu H, Liu M, Yue Z, Li C, Liu L, Li F. Metagenomics and metabolomics reveal that gut microbiome adapts to the diet transition in Hyla rabbits. Microbiol Res 2024; 283:127705. [PMID: 38554650 DOI: 10.1016/j.micres.2024.127705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
There is still a lack of longitudinal dynamic studies on the taxonomic features, functional reserves, and metabolites of the rabbit gut microbiome. An experiment was conducted to characterize the bacterial community of rabbits. By combining metagenomics and metabolomics, we have comprehensively analyzed the longitudinal dynamics of the rabbit gut microbiota and its effect on host adaptability. Our data reveal an overall increasing trend in microbial community and functional gene diversity and richness during the pre-harvest lifespan of rabbits. The introduction of solid feed is an important driving factor affecting rabbit gut microbiological compositions. Clostridium and Ruminococcus had significantly higher relative abundances in the solid feed stage. Further, the starch and fiber in solid feed promote the secretion of carbohydrate-degrading enzymes, which helps the host adapt to dietary changes. The rabbit gut microbiota can synthesize lysine, and the synthase is gradually enriched during the diet transformation. The gut microbiota of newborn rabbits has a higher abundance of lipid metabolism, which helps the host obtain more energy from breast milk lipids. The rabbit gut microbiota can also synthesize a variety of secondary bile acids after the introduction of solid feed. These findings provide a novel understanding of how the gut microbiota mediates adaptability to environment and diet in rabbits and provide multiple potential strategies for regulating intestinal health and promoting higher feed efficiency.
Collapse
Affiliation(s)
- Man Zhao
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Hongli Liu
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Mengqi Liu
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Zhengkai Yue
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Chenyang Li
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Lei Liu
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science, Shandong Agricultural University, Taian, China.
| | - Fuchang Li
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science, Shandong Agricultural University, Taian, China.
| |
Collapse
|
2
|
Abstract
Type III secretion systems (T3SSs) are utilized by Gram-negative pathogens to enhance their pathogenesis. This secretion system is associated with the delivery of effectors through a needle-like structure from the bacterial cytosol directly into a target eukaryotic cell. These effector proteins then manipulate specific eukaryotic cell functions to benefit pathogen survival within the host. The obligate intracellular pathogens of the family Chlamydiaceae have a highly evolutionarily conserved nonflagellar T3SS that is an absolute requirement for their survival and propagation within the host with about one-seventh of the genome dedicated to genes associated with the T3SS apparatus, chaperones, and effectors. Chlamydiae also have a unique biphasic developmental cycle where the organism alternates between an infectious elementary body (EB) and replicative reticulate body (RB). T3SS structures have been visualized on both EBs and RBs. And there are effector proteins that function at each stage of the chlamydial developmental cycle, including entry and egress. This review will discuss the history of the discovery of chlamydial T3SS and the biochemical characterization of components of the T3SS apparatus and associated chaperones in the absence of chlamydial genetic tools. These data will be contextualized into how the T3SS apparatus functions throughout the chlamydial developmental cycle and the utility of heterologous/surrogate models to study chlamydial T3SS. Finally, there will be a targeted discussion on the history of chlamydial effectors and recent advances in the field.
Collapse
Affiliation(s)
- Elizabeth A. Rucks
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Durham Research Center II, Omaha, Nebraska, USA
| |
Collapse
|
3
|
Muduli S, Karmakar S, Mishra S. The coordinated action of the enzymes in the L-lysine biosynthetic pathway and how to inhibit it for antibiotic targets. Biochim Biophys Acta Gen Subj 2023; 1867:130320. [PMID: 36813209 DOI: 10.1016/j.bbagen.2023.130320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Antimicrobial resistance is a global health issue that requires immediate attention in terms of new antibiotics and new antibiotic targets. The l-lysine biosynthesis pathway (LBP) is a promising avenue for drug discovery as it is essential for bacterial growth and survival and is not required by human beings. SCOPE OF REVIEW The LBP involves a coordinated action of fourteen different enzymes distributed over four distinct sub-pathways. The enzymes involved in this pathway belong to different classes, such as aspartokinase, dehydrogenase, aminotransferase, epimerase, etc. This review provides a comprehensive account of the secondary and tertiary structure, conformational dynamics, active site architecture, mechanism of catalytic action, and inhibitors of all enzymes involved in LBP of different bacterial species. MAJOR CONCLUSIONS LBP offers a wide scope for novel antibiotic targets. The enzymology of a majority of the LBP enzymes is well understood, although these enzymes are less widely studied in the critical pathogens (according to the 2017 WHO report) that require immediate attention. In particular, the enzymes in the acetylase pathway, DapAT, DapDH, and Aspartokinase in critical pathogens have received little attention. High throughput screening for inhibitor design against the enzymes of lysine biosynthetic pathway is rather limited, both in number and in the extent of success. GENERAL SIGNIFICANCE This review can serve as a guide for the enzymology of LBP and help in identifying new drug targets and designing potential inhibitors.
Collapse
Affiliation(s)
- Sunita Muduli
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Soumyajit Karmakar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
4
|
Kim W, Kim M, Park W. Unlocking the mystery of lysine toxicity on Microcystis aeruginosa. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130932. [PMID: 36860069 DOI: 10.1016/j.jhazmat.2023.130932] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Lysine toxicity on certain groups of bacterial cells has been recognized for many years, but the detailed molecular mechanisms that drive this phenomenon have not been elucidated. Many cyanobacteria including Microcystis aeruginosa cannot efficiently export and degrade lysine, although they have evolved to maintain a single copy of the lysine uptake system through which arginine or ornithine can also be transported into the cytoplasm. Autoradiographic analysis using 14C-l-lysine confirmed that lysine was competitively uptaken into cells with arginine or ornithine, which explained the arginine or ornithine-mediated alleviation of lysine toxicity in M. aeruginosa. A relatively non-specific MurE amino acid ligase could incorporate l-lysine into the 3rd position of UDP-N-acetylmuramyl-tripeptide by replacing meso-diaminopimelic acid during the stepwise addition of amino acids on peptidoglycan (PG) biosynthesis. However, further transpeptidation was blocked because lysine substitution at the pentapeptide of the cell wall inhibited the activity of transpeptidases. The leaky PG structure caused irreversible damage to the photosynthetic system and membrane integrity. Collectively, our results suggest that a lysine-mediated coarse-grained PG network and the absence of concrete septal PG lead to the death of slow-growing cyanobacteria.
Collapse
Affiliation(s)
- Wonjae Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Minkyung Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
5
|
Reuter J, Otten C, Jacquier N, Lee J, Mengin-Lecreulx D, Löckener I, Kluj R, Mayer C, Corona F, Dannenberg J, Aeby S, Bühl H, Greub G, Vollmer W, Ouellette SP, Schneider T, Henrichfreise B. An NlpC/P60 protein catalyzes a key step in peptidoglycan recycling at the intersection of energy recovery, cell division and immune evasion in the intracellular pathogen Chlamydia trachomatis. PLoS Pathog 2023; 19:e1011047. [PMID: 36730465 PMCID: PMC9928106 DOI: 10.1371/journal.ppat.1011047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/14/2023] [Accepted: 12/06/2022] [Indexed: 02/04/2023] Open
Abstract
The obligate intracellular Chlamydiaceae do not need to resist osmotic challenges and thus lost their cell wall in the course of evolution. Nevertheless, these pathogens maintain a rudimentary peptidoglycan machinery for cell division. They build a transient peptidoglycan ring, which is remodeled during the process of cell division and degraded afterwards. Uncontrolled degradation of peptidoglycan poses risks to the chlamydial cell, as essential building blocks might get lost or trigger host immune response upon release into the host cell. Here, we provide evidence that a primordial enzyme class prevents energy intensive de novo synthesis and uncontrolled release of immunogenic peptidoglycan subunits in Chlamydia trachomatis. Our data indicate that the homolog of a Bacillus NlpC/P60 protein is widely conserved among Chlamydiales. We show that the enzyme is tailored to hydrolyze peptidoglycan-derived peptides, does not interfere with peptidoglycan precursor biosynthesis, and is targeted by cysteine protease inhibitors in vitro and in cell culture. The peptidase plays a key role in the underexplored process of chlamydial peptidoglycan recycling. Our study suggests that chlamydiae orchestrate a closed-loop system of peptidoglycan ring biosynthesis, remodeling, and recycling to support cell division and maintain long-term residence inside the host. Operating at the intersection of energy recovery, cell division and immune evasion, the peptidoglycan recycling NlpC/P60 peptidase could be a promising target for the development of drugs that combine features of classical antibiotics and anti-virulence drugs.
Collapse
Affiliation(s)
- Jula Reuter
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Christian Otten
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Nicolas Jacquier
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Junghoon Lee
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Dominique Mengin-Lecreulx
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Iris Löckener
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Robert Kluj
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions/Glycobiology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Christoph Mayer
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions/Glycobiology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Federico Corona
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Julia Dannenberg
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Sébastien Aeby
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Henrike Bühl
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Scot P. Ouellette
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Beate Henrichfreise
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Weyandt N, Aghdam SA, Brown AMV. Discovery of Early-Branching Wolbachia Reveals Functional Enrichment on Horizontally Transferred Genes. Front Microbiol 2022; 13:867392. [PMID: 35547116 PMCID: PMC9084900 DOI: 10.3389/fmicb.2022.867392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Wolbachia is a widespread endosymbiont of insects and filarial nematodes that profoundly influences host biology. Wolbachia has also been reported in rhizosphere hosts, where its diversity and function remain poorly characterized. The discovery that plant-parasitic nematodes (PPNs) host Wolbachia strains with unknown roles is of interest evolutionarily, ecologically, and for agriculture as a potential target for developing new biological controls. The goal of this study was to screen communities for PPN endosymbionts and analyze genes and genomic patterns that might indicate their role. Genome assemblies revealed 1 out of 16 sampled sites had nematode communities hosting a Wolbachia strain, designated wTex, that has highly diverged as one of the early supergroup L strains. Genome features, gene repertoires, and absence of known genes for cytoplasmic incompatibility, riboflavin, biotin, and other biosynthetic functions placed wTex between mutualist C + D strains and reproductive parasite A + B strains. Functional terms enriched in group L included protoporphyrinogen IX, thiamine, lysine, fatty acid, and cellular amino acid biosynthesis, while dN/dS analysis suggested the strongest purifying selection on arginine and lysine metabolism, and vitamin B6, heme, and zinc ion binding, suggesting these as candidate roles in PPN Wolbachia. Higher dN/dS pathways between group L, wPni from aphids, wFol from springtails, and wCfeT from cat fleas suggested distinct functional changes characterizing these early Wolbachia host transitions. PPN Wolbachia had several putative horizontally transferred genes, including a lysine biosynthesis operon like that of the mitochondrial symbiont Midichloria, a spirochete-like thiamine synthesis operon shared only with wCfeT, an ATP/ADP carrier important in Rickettsia, and a eukaryote-like gene that may mediate plant systemic acquired resistance through the lysine-to-pipecolic acid system. The Discovery of group L-like variants from global rhizosphere databases suggests diverse PPN Wolbachia strains remain to be discovered. These findings support the hypothesis of plant-specialization as key to shaping early Wolbachia evolution and present new functional hypotheses, demonstrating promise for future genomics-based rhizosphere screens.
Collapse
Affiliation(s)
- Nicholas Weyandt
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Shiva A Aghdam
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Amanda M V Brown
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
7
|
Stevens BR, Pepine CJ, Richards EM, Kim S, Raizada MK. Depressive hypertension: A proposed human endotype of brain/gut microbiome dysbiosis. Am Heart J 2021; 239:27-37. [PMID: 33984318 DOI: 10.1016/j.ahj.2021.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hypertension (HTN) is frequently linked with depression (DEP) in adults with cardiovascular disease (CVD), yet the underlying mechanism and successful management remain elusive. We approached this knowledge gap through the lens that humans are eukaryote-prokaryote "meta-organisms," such that cardiovascular disease dysregulation is a mosaic disorder involving dysbiosis of the gut. We hypothesized that patients diagnosed with hypertension plus depression harbor a unique gut microbial ecology with attending functional genomics engaged with their hosts' gut/brain axis physiology. METHODS Stool microbiome DNA was analyzed by whole metagenome shotgun sequencing in 54 subjects parsed into cohorts diagnosed with HTN only (N = 18), DEP only (N = 7), DEP plus HTN (DEP-HTN) (N = 8), or reference subjects with neither HTN nor DEP (N = 21). A novel battery of machine-learning multivariate analyses of de-noised data yielded effect sizes and permutational covariance-based dissimilarities that significantly differentiated the cohorts (false discovery rate (FDR)-adjusted P ≤ .05); data clustering within 95% confidence interval). RESULTS Metagenomic significant differences extricated the four cohorts. Data of the cohort exhibiting DEP-HTN were germane to the interplay of central control of blood pressure concomitant with the neuropathology of depressive disorders. DEP-HTN gut bacterial community ecology was defined by co-occurrence of Eubacterium siraeum, Alistipes obesi, Holdemania filiformis, and Lachnospiraceae bacterium 1.1.57FAA with Streptococcus salivariu. The corresponding microbial functional genomics of DEP-HTN engaged pathways degrading GABA and beneficial short chain fatty acids (SCFA), and are associated with enhanced sodium absorption and inflammasome induction. CONCLUSIONS These data suggest a new putative endotype of hypertension, which we denote "depressive-hypertension" (DEP-HTN), for which we posit a model that is distinctive from either HTN alone or DEP alone. An "endotype" is a subtype of a heterogeneous pathophysiological mechanism. The DEP-HTN model incorporates a unique signature of microbial taxa and functional genomics with crosstalk that putatively intertwines host pathophysiology involving the gastrointestinal tract with disruptions in central control of blood pressure and mood. The DEP-HTN endotype model engages cardiology with gastroenterology and psychiatry, providing a proof-of-concept foundation to explore future treatments, diagnosis, and prevention of HTN-coupled mood disorders.
Collapse
|
8
|
Liu N, Zhang TT, Rao ZM, Zhang WG, Xu JZ. Reconstruction of the Diaminopimelic Acid Pathway to Promote L-lysine Production in Corynebacterium glutamicum. Int J Mol Sci 2021; 22:9065. [PMID: 34445771 PMCID: PMC8396482 DOI: 10.3390/ijms22169065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 01/17/2023] Open
Abstract
The dehydrogenase pathway and the succinylase pathway are involved in the synthesis of L-lysine in Corynebacterium glutamicum. Despite the low contribution rate to L-lysine production, the dehydrogenase pathway is favorable for its simple steps and potential to increase the production of L-lysine. The effect of ammonium (NH4+) concentration on L-lysine biosynthesis was investigated, and the results indicated that the biosynthesis of L-lysine can be promoted in a high NH4+ environment. In order to reduce the requirement of NH4+, the nitrogen source regulatory protein AmtR was knocked out, resulting in an 8.5% increase in L-lysine production (i.e., 52.3 ± 4.31 g/L). Subsequently, the dehydrogenase pathway was upregulated by blocking or weakening the tetrahydrodipicolinate succinylase (DapD)-coding gene dapD and overexpressing the ddh gene to further enhance L-lysine biosynthesis. The final strain XQ-5-W4 could produce 189 ± 8.7 g/L L-lysine with the maximum specific rate (qLys,max.) of 0.35 ± 0.05 g/(g·h) in a 5-L jar fermenter. The L-lysine titer and qLys,max achieved in this study is about 25.2% and 59.1% higher than that of the original strain without enhancement of dehydrogenase pathway, respectively. The results indicated that the dehydrogenase pathway could serve as a breakthrough point to reconstruct the diaminopimelic acid (DAP) pathway and promote L-lysine production.
Collapse
Affiliation(s)
- Ning Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (N.L.); (T.-T.Z.); (W.-G.Z.)
| | - Ting-Ting Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (N.L.); (T.-T.Z.); (W.-G.Z.)
| | - Zhi-Ming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (N.L.); (T.-T.Z.); (W.-G.Z.)
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800# Lihu Road, Wuxi 214122, China
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (N.L.); (T.-T.Z.); (W.-G.Z.)
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (N.L.); (T.-T.Z.); (W.-G.Z.)
| |
Collapse
|
9
|
Soares da Costa TP, Hall CJ, Panjikar S, Wyllie JA, Christoff RM, Bayat S, Hulett MD, Abbott BM, Gendall AR, Perugini MA. Towards novel herbicide modes of action by inhibiting lysine biosynthesis in plants. eLife 2021; 10:69444. [PMID: 34313586 PMCID: PMC8341977 DOI: 10.7554/elife.69444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022] Open
Abstract
Weeds are becoming increasingly resistant to our current herbicides, posing a significant threat to agricultural production. Therefore, new herbicides with novel modes of action are urgently needed. In this study, we exploited a novel herbicide target, dihydrodipicolinate synthase (DHDPS), which catalyses the first and rate-limiting step in lysine biosynthesis. The first class of plant DHDPS inhibitors with micromolar potency against Arabidopsis thaliana DHDPS was identified using a high-throughput chemical screen. We determined that this class of inhibitors binds to a novel and unexplored pocket within DHDPS, which is highly conserved across plant species. The inhibitors also attenuated the germination and growth of A. thaliana seedlings and confirmed their pre-emergence herbicidal activity in soil-grown plants. These results provide proof-of-concept that lysine biosynthesis represents a promising target for the development of herbicides with a novel mode of action to tackle the global rise of herbicide-resistant weeds.
Collapse
Affiliation(s)
- Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Cody J Hall
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Santosh Panjikar
- Australian Synchrotron, ANSTO, Clayton, Australia.,Department of Molecular Biology and Biochemistry, Monash University, Melbourne, Australia
| | - Jessica A Wyllie
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Rebecca M Christoff
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Saadi Bayat
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Belinda M Abbott
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Anthony R Gendall
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Bundoora, Australia.,Australian Research Council Research Hub for Medicinal Agriculture, Bundoora, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| |
Collapse
|
10
|
Song Y, Hervé V, Radek R, Pfeiffer F, Zheng H, Brune A. Characterization and phylogenomic analysis of Breznakiella homolactica gen. nov. sp. nov. indicate that termite gut treponemes evolved from non-acetogenic spirochetes in cockroaches. Environ Microbiol 2021; 23:4228-4245. [PMID: 33998119 DOI: 10.1111/1462-2920.15600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/01/2023]
Abstract
Spirochetes of the genus Treponema are surprisingly abundant in termite guts, where they play an important role in reductive acetogenesis. Although they occur in all termites investigated, their evolutionary origin is obscure. Here, we isolated the first representative of 'termite gut treponemes' from cockroaches, the closest relatives of termites. Phylogenomic analysis revealed that Breznakiella homolactica gen. nov. sp. nov. represents the most basal lineage of the highly diverse 'termite cluster I', a deep-branching sister group of Treponemataceae (fam. 'Termitinemataceae') that was present already in the cockroach ancestor of termites and subsequently coevolved with its host. Breznakiella homolactica is obligately anaerobic and catalyses the homolactic fermentation of both hexoses and pentoses. Resting cells produced acetate in the presence of oxygen. Genome analysis revealed the presence of pyruvate oxidase and catalase, and a cryptic potential for the formation of acetate, ethanol, formate, CO2 and H2 - the fermentation products of termite gut isolates. Genes encoding key enzymes of reductive acetogenesis, however, are absent, confirming the hypothesis that the ancestral metabolism of the cluster was fermentative, and that the capacity for acetogenesis from H2 plus CO2 - the most intriguing property among termite gut treponemes - was acquired by lateral gene transfer.
Collapse
Affiliation(s)
- Yulin Song
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| | - Vincent Hervé
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| | - Renate Radek
- Institute of Biology/Zoology, Free University of Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
| | - Fabienne Pfeiffer
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| | - Hao Zheng
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| | - Andreas Brune
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| |
Collapse
|
11
|
Shima K, Kaufhold I, Eder T, Käding N, Schmidt N, Ogunsulire IM, Deenen R, Köhrer K, Friedrich D, Isay SE, Grebien F, Klinger M, Richer BC, Günther UL, Deepe GS, Rattei T, Rupp J. Regulation of the Mitochondrion-Fatty Acid Axis for the Metabolic Reprogramming of Chlamydia trachomatis during Treatment with β-Lactam Antimicrobials. mBio 2021; 12:e00023-21. [PMID: 33785629 PMCID: PMC8092193 DOI: 10.1128/mbio.00023-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Infection with the obligate intracellular bacterium Chlamydia trachomatis is the most common bacterial sexually transmitted disease worldwide. Since no vaccine is available to date, antimicrobial therapy is the only alternative in C. trachomatis infection. However, changes in chlamydial replicative activity and the occurrence of chlamydial persistence caused by diverse stimuli have been proven to impair treatment effectiveness. Here, we report the mechanism for C. trachomatis regulating host signaling processes and mitochondrial function, which can be used for chlamydial metabolic reprogramming during treatment with β-lactam antimicrobials. Activation of signal transducer and activator of transcription 3 (STAT3) is a well-known host response in various bacterial and viral infections. In C. trachomatis infection, inactivation of STAT3 by host protein tyrosine phosphatases increased mitochondrial respiration in both the absence and presence of β-lactam antimicrobials. However, during treatment with β-lactam antimicrobials, C. trachomatis increased the production of citrate as well as the activity of host ATP-citrate lyase involved in fatty acid synthesis. Concomitantly, chlamydial metabolism switched from the tricarboxylic acid cycle to fatty acid synthesis. This metabolic switch was a unique response in treatment with β-lactam antimicrobials and was not observed in gamma interferon (IFN-γ)-induced persistent infection. Inhibition of fatty acid synthesis was able to attenuate β-lactam-induced chlamydial persistence. Our findings highlight the importance of the mitochondrion-fatty acid interplay for the metabolic reprogramming of C. trachomatis during treatment with β-lactam antimicrobials.IMPORTANCE The mitochondrion generates most of the ATP in eukaryotic cells, and its activity is used for controlling the intracellular growth of Chlamydia trachomatis Furthermore, mitochondrial activity is tightly connected to host fatty acid synthesis that is indispensable for chlamydial membrane biogenesis. Phospholipids, which are composed of fatty acids, are the central components of the bacterial membrane and play a crucial role in the protection against antimicrobials. Chlamydial persistence that is induced by various stimuli is clinically relevant. While one of the well-recognized inducers, β-lactam antimicrobials, has been used to characterize chlamydial persistence, little is known about the role of mitochondria in persistent infection. Here, we demonstrate how C. trachomatis undergoes metabolic reprogramming to switch from the tricarboxylic acid cycle to fatty acid synthesis with promoted host mitochondrial activity in response to treatment with β-lactam antimicrobials.
Collapse
Affiliation(s)
- Kensuke Shima
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Inga Kaufhold
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Thomas Eder
- Division of Computational Systems Biology, University Vienna, Vienna, Austria
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Nadja Käding
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Nis Schmidt
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Iretiolu M Ogunsulire
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - René Deenen
- Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dirk Friedrich
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Sophie E Isay
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Barbara C Richer
- Institute of Chemistry and Metabolomics, University of Lübeck, Lübeck, Germany
| | - Ulrich L Günther
- Institute of Chemistry and Metabolomics, University of Lübeck, Lübeck, Germany
| | - George S Deepe
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Thomas Rattei
- Division of Computational Systems Biology, University Vienna, Vienna, Austria
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| |
Collapse
|
12
|
Marjanovic A, Ramírez-Palacios CJ, Masman MF, Drenth J, Otzen M, Marrink SJ, Janssen DB. Thermostable D-amino acid decarboxylases derived from Thermotoga maritima diaminopimelate decarboxylase. Protein Eng Des Sel 2021; 34:gzab016. [PMID: 34258615 PMCID: PMC8277567 DOI: 10.1093/protein/gzab016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/03/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Diaminopimelate decarboxylases (DAPDCs) are highly selective enzymes that catalyze the common final step in different lysine biosynthetic pathways, i.e. the conversion of meso-diaminopimelate (DAP) to L-lysine. We examined the modification of the substrate specificity of the thermostable decarboxylase from Thermotoga maritima with the aim to introduce activity with 2-aminopimelic acid (2-APA) since its decarboxylation leads to 6-aminocaproic acid (6-ACA), a building block for the synthesis of nylon-6. Structure-based mutagenesis of the distal carboxylate binding site resulted in a set of enzyme variants with new activities toward different D-amino acids. One of the mutants (E315T) had lost most of its activity toward DAP and primarily acted as a 2-APA decarboxylase. We next used computational modeling to explain the observed shift in catalytic activities of the mutants. The results suggest that predictive computational protocols can support the redesign of the catalytic properties of this class of decarboxylating PLP-dependent enzymes.
Collapse
Affiliation(s)
- Antonija Marjanovic
- Biotechnology and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Carlos J Ramírez-Palacios
- Biotechnology and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Marcelo F Masman
- Biotechnology and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Van’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jeroen Drenth
- Biotechnology and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marleen Otzen
- Biotechnology and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Siewert-Jan Marrink
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Dick B Janssen
- Biotechnology and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
13
|
Singh R, Slade JA, Brockett M, Mendez D, Liechti GW, Maurelli AT. Competing Substrates for the Bifunctional Diaminopimelic Acid Epimerase/Glutamate Racemase Modulate Peptidoglycan Synthesis in Chlamydia trachomatis. Infect Immun 2020; 89:IAI.00401-20. [PMID: 33106295 PMCID: PMC7927921 DOI: 10.1128/iai.00401-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/21/2020] [Indexed: 11/20/2022] Open
Abstract
The Chlamydia trachomatis genome encodes multiple bifunctional enzymes, such as DapF, which is capable of both diaminopimelic acid (DAP) epimerase and glutamate racemase activity. Our previous work demonstrated the bifunctional activity of chlamydial DapF in vitro and in a heterologous system (Escherichia coli). In the present study, we employed a substrate competition strategy to demonstrate DapF Ct function in vivo in C. trachomatis We reasoned that, because DapF Ct utilizes a shared substrate-binding site for both racemase and epimerase activities, only one activity can occur at a time. Therefore, an excess of one substrate relative to another must determine which activity is favored. We show that the addition of excess l-glutamate or meso-DAP (mDAP) to C. trachomatis resulted in 90% reduction in bacterial titers, compared to untreated controls. Excess l-glutamate reduced in vivo synthesis of mDAP by C. trachomatis to undetectable levels, thus confirming that excess racemase substrate led to inhibition of DapF Ct DAP epimerase activity. We previously showed that expression of dapFCt in a murI (racemase) ΔdapF (epimerase) double mutant of E. coli rescues the d-glutamate auxotrophic defect. Addition of excess mDAP inhibited growth of this strain, but overexpression of dapFCt allowed the mutant to overcome growth inhibition. These results confirm that DapF Ct is the primary target of these mDAP and l-glutamate treatments. Our findings demonstrate that suppression of either the glutamate racemase or epimerase activity of DapF compromises the growth of C. trachomatis Thus, a substrate competition strategy can be a useful tool for in vivo validation of an essential bifunctional enzyme.
Collapse
Affiliation(s)
- Raghuveer Singh
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Jessica A Slade
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Mary Brockett
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Daniel Mendez
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - George W Liechti
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Anthony T Maurelli
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
14
|
Weatherhead AW, Crowther JM, Horne CR, Meng Y, Coombes D, Currie MJ, Watkin SAJ, Adams LE, Parthasarathy A, Dobson RCJ, Hudson AO. Structure-Function Studies of the Antibiotic Target l,l-Diaminopimelate Aminotransferase from Verrucomicrobium spinosum Reveal an Unusual Oligomeric Structure. Biochemistry 2020; 59:2274-2288. [PMID: 32478518 DOI: 10.1021/acs.biochem.0c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While humans lack the biosynthetic pathways for meso-diaminopimelate and l-lysine, they are essential for bacterial survival and are therefore attractive targets for antibiotics. It was recently discovered that members of the Chlamydia family utilize a rare aminotransferase route of the l-lysine biosynthetic pathway, thus offering a new enzymatic drug target. Here we characterize diaminopimelate aminotransferase from Verrucomicrobium spinosum (VsDapL), a nonpathogenic model bacterium for Chlamydia trachomatis. Complementation experiments verify that the V. spinosum dapL gene encodes a bona fide diaminopimelate aminotransferase, because the gene rescues an Escherichia coli strain that is auxotrophic for meso-diaminopimelate. Kinetic studies show that VsDapL follows a Michaelis-Menten mechanism, with a KMapp of 4.0 mM toward its substrate l,l-diaminopimelate. The kcat (0.46 s-1) and the kcat/KM (115 s-1 M-1) are somewhat lower than values for other diaminopimelate aminotransferases. Moreover, whereas other studied DapL orthologs are dimeric, sedimentation velocity experiments demonstrate that VsDapL exists in a monomer-dimer self-association, with a KD2-1 of 7.4 μM. The 2.25 Å resolution crystal structure presents the canonical dimer of chalice-shaped monomers, and small-angle X-ray scattering experiments confirm the dimer in solution. Sequence and structural alignments reveal that active site residues important for activity are conserved in VsDapL, despite the lower activity compared to those of other DapL homologues. Although the dimer interface buries 18% of the total surface area, several loops that contribute to the interface and active site, notably the L1, L2, and L5 loops, are highly mobile, perhaps explaining the unstable dimer and lower catalytic activity. Our kinetic, biophysical, and structural characterization can be used to inform the development of antibiotics.
Collapse
Affiliation(s)
- Anthony W Weatherhead
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch 8140, New Zealand
| | - Jennifer M Crowther
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch 8140, New Zealand
| | - Christopher R Horne
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch 8140, New Zealand
| | - Yanxiang Meng
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch 8140, New Zealand
| | - David Coombes
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch 8140, New Zealand
| | - Michael J Currie
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch 8140, New Zealand
| | - Serena A J Watkin
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch 8140, New Zealand
| | - Lily E Adams
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York 14623-5603, United States
| | - Anutthaman Parthasarathy
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York 14623-5603, United States
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch 8140, New Zealand.,Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - André O Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York 14623-5603, United States
| |
Collapse
|
15
|
Chlamydia trachomatis Oligopeptide Transporter Performs Dual Functions of Oligopeptide Transport and Peptidoglycan Recycling. Infect Immun 2020; 88:IAI.00086-20. [PMID: 32094256 DOI: 10.1128/iai.00086-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
Peptidoglycan, the sugar-amino acid polymer that composes the bacterial cell wall, requires a significant expenditure of energy to synthesize and is highly immunogenic. To minimize the loss of an energetically expensive metabolite and avoid host detection, bacteria often recycle their peptidoglycan, transporting its components back into the cytoplasm, where they can be used for subsequent rounds of new synthesis. The peptidoglycan-recycling substrate binding protein (SBP) MppA, which is responsible for recycling peptidoglycan fragments in Escherichia coli, has not been annotated for most intracellular pathogens. One such pathogen, Chlamydia trachomatis, has a limited capacity to synthesize amino acids de novo and therefore must obtain oligopeptides from its host cell for growth. Bioinformatics analysis suggests that the putative C. trachomatis oligopeptide transporter OppABCDF (OppABCDF Ct ) encodes multiple SBPs (OppA1 Ct , OppA2 Ct , and OppA3 Ct ). Intracellular pathogens often encode multiple SBPs, while only one, OppA, is encoded in the E. coli opp operon. We hypothesized that the putative OppABCDF transporter of C. trachomatis functions in both oligopeptide transport and peptidoglycan recycling. We coexpressed the putative SBP genes (oppA1Ct , oppA2Ct , oppA3Ct ) along with oppBCDFCt in an E. coli mutant lacking the Opp transporter and determined that all three chlamydial OppA subunits supported oligopeptide transport. We also demonstrated the in vivo functionality of the chlamydial Opp transporter in C. trachomatis Importantly, we found that one chlamydial SBP, OppA3 Ct , possessed dual substrate recognition properties and is capable of transporting peptidoglycan fragments (tri-diaminopimelic acid) in E. coli and in C. trachomatis These findings suggest that Chlamydia evolved an oligopeptide transporter to facilitate the acquisition of oligopeptides for growth while simultaneously reducing the accumulation of immunostimulatory peptidoglycan fragments in the host cell cytosol. The latter property reflects bacterial pathoadaptation that dampens the host innate immune response to Chlamydia infection.
Collapse
|
16
|
d-glutamate and Gut Microbiota in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21082676. [PMID: 32290475 PMCID: PMC7215955 DOI: 10.3390/ijms21082676] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022] Open
Abstract
Background: An increasing number of studies have shown that the brain–gut–microbiota axis may significantly contribute to Alzheimer’s disease (AD) pathogenesis. Moreover, impaired memory and learning involve the dysfunction neurotransmission of glutamate, the agonist of the N-methyl-d-aspartate receptor and a major excitatory neurotransmitter in the brain. This systematic review aimed to summarize the current cutting-edge research on the gut microbiota and glutamate alterations associated with dementia. Methods: PubMed, the Cochrane Collaboration Central Register of Controlled Clinical Trials, and Cochrane Systematic Reviews were reviewed for all studies on glutamate and gut microbiota in dementia published up until Feb 2020. Results: Several pilot studies have reported alterations of gut microbiota and metabolites in AD patients and other forms of dementia. Gut microbiota including Bacteroides vulgatus and Campylobacter jejuni affect glutamate metabolism and decrease the glutamate metabolite 2-keto-glutaramic acid. Meanwhile, gut bacteria with glutamate racemase including Corynebacterium glutamicum, Brevibacterium lactofermentum, and Brevibacterium avium can convert l-glutamate to d-glutamate. N-methyl-d-aspartate glutamate receptor (NMDAR)-enhancing agents have been found to potentially improve cognition in AD or Parkinson’s disease patients. These findings suggest that d-glutamate (d-form glutamate) metabolized by the gut bacteria may influence the glutamate NMDAR and cognitive function in dementia patients. Conclusions: Gut microbiota and glutamate are potential novel interventions to be developed for dementia. Exploring comprehensive cognitive functions in animal and human trials with glutamate-related NMDAR enhancers are warranted to examine d-glutamate signaling efficacy in gut microbiota in patients with AD and other neurodegenerative dementias.
Collapse
|
17
|
Gitsels A, Van Lent S, Sanders N, Vanrompay D. Chlamydia: what is on the outside does matter. Crit Rev Microbiol 2020; 46:100-119. [PMID: 32093536 DOI: 10.1080/1040841x.2020.1730300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This review summarises major highlights on the structural biology of the chlamydial envelope. Chlamydiae are obligate intracellular bacteria, characterised by a unique biphasic developmental cycle. Depending on the stage of their lifecycle, they appear in the form of elementary or reticulate bodies. Since these particles have distinctive functions, it is not surprising that their envelope differs in lipid as well as in protein content. Vice versa, by identifying surface proteins, specific characteristics of the particles such as rigidity or immunogenicity may be deduced. Detailed information on the bacterial membranes will increase our understanding on the host-pathogen interactions chlamydiae employ to survive and grow and might lead to new strategies to battle chlamydial infections.
Collapse
Affiliation(s)
- Arlieke Gitsels
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sarah Van Lent
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Niek Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daisy Vanrompay
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Majdi Yazdi M, Saran S, Mrozowich T, Lehnert C, Patel TR, Sanders DAR, Palmer DRJ. Asparagine-84, a regulatory allosteric site residue, helps maintain the quaternary structure of Campylobacter jejuni dihydrodipicolinate synthase. J Struct Biol 2019; 209:107409. [PMID: 31678256 DOI: 10.1016/j.jsb.2019.107409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 02/05/2023]
Abstract
Dihydrodipicolinate synthase (DHDPS) from Campylobacter jejuni is a natively homotetrameric enzyme that catalyzes the first unique reaction of (S)-lysine biosynthesis and is feedback-regulated by lysine through binding to an allosteric site. High-resolution structures of the DHDPS-lysine complex have revealed significant insights into the binding events. One key asparagine residue, N84, makes hydrogen bonds with both the carboxyl and the α-amino group of the bound lysine. We generated two mutants, N84A and N84D, to study the effects of these changes on the allosteric site properties. However, under normal assay conditions, N84A displayed notably lower catalytic activity, and N84D showed no activity. Here we show that these mutations disrupt the quaternary structure of DHDPS in a concentration-dependent fashion, as demonstrated by size-exclusion chromatography, multi-angle light scattering, dynamic light scattering, small-angle X-ray scattering (SAXS) and high-resolution protein crystallography.
Collapse
Affiliation(s)
- Mohadeseh Majdi Yazdi
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Sagar Saran
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Tyler Mrozowich
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | - Cheyanne Lehnert
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Trushar R Patel
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada; Li Ka Shing Institute of Virology and DiscoveryLab, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| | - David A R Sanders
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.
| | - David R J Palmer
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.
| |
Collapse
|
19
|
Abstract
The evolutionary separated Gram-negative Chlamydiales show a biphasic life cycle and replicate exclusively within eukaryotic host cells. Members of the genus Chlamydia are responsible for many acute and chronic diseases in humans, and Chlamydia-related bacteria are emerging pathogens. We revisit past efforts to detect cell wall material in Chlamydia and Chlamydia-related bacteria in the context of recent breakthroughs in elucidating the underlying cellular and molecular mechanisms of the chlamydial cell wall biosynthesis. In this review, we also discuss the role of cell wall biosynthesis in chlamydial FtsZ-independent cell division and immune modulation. In the past, penicillin susceptibility of an invisible wall was referred to as the "chlamydial anomaly." In light of new mechanistic insights, chlamydiae may now emerge as model systems to understand how a minimal and modified cell wall biosynthetic machine supports bacterial cell division and how cell wall-targeting beta-lactam antibiotics can also act bacteriostatically rather than bactericidal. On the heels of these discussions, we also delve into the effects of other cell wall antibiotics in individual chlamydial lineages.
Collapse
|
20
|
Xu JZ, Ruan HZ, Liu LM, Wang LP, Zhang WG. Overexpression of thermostable meso-diaminopimelate dehydrogenase to redirect diaminopimelate pathway for increasing L-lysine production in Escherichia coli. Sci Rep 2019; 9:2423. [PMID: 30787467 PMCID: PMC6382763 DOI: 10.1038/s41598-018-37974-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/11/2018] [Indexed: 11/29/2022] Open
Abstract
Dehydrogenase pathway, one of diaminopimelate pathway, is important to the biosynthesis of L-lysine and peptidoglycan via one single reaction catalyzed by meso-diaminopimelate dehydrogenase (DapDH). In this study, the thermostable DapDH was introduced into diaminopimelate pathway that increased the final titer (from 71.8 to 119.5 g/L), carbon yield (from 35.3% to 49.1%) and productivity (from 1.80 to 2.99 g/(L∙h)) of L-lysine by LATR12-2∆rpiB::ddhSt in fed-batch fermentation. To do this, the kinetic properties and the effects of different DapDHs on L-lysine production were investigated, and the results indicated that overexpression of StDapDH in LATR12-2 was beneficial to construct an L-lysine producer with good productive performance because it exhibited the best of kinetic characteristics and optimal temperature as well as thermostability in reductive amination. Furthermore, ammonium availability was optimized, and found that 20 g/L of (NH4)2SO4 was the optimal ammonium concentration for improving the efficiency of L-lysine production by LATR12-2∆rpiB::ddhSt. Metabolomics analysis showed that introducing the StDapDH significantly enhanced carbon flux into pentose phosphate pathway and L-lysine biosynthetic pathway, thus increasing the levels of NADPH and precursors for L-lysine biosynthesis. This is the first report of a rational modification of diaminopimelate pathway that improves the efficiency of L-lysine production through overexpression of thermostable DapDH in E. coli.
Collapse
Affiliation(s)
- Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China.
| | - Hao-Zhe Ruan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China
| | - Li-Ming Liu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China
| | - Lu-Ping Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China
| |
Collapse
|
21
|
Sadhasivam A, Vetrivel U. Identification of potential drugs targeting L,L-diaminopimelate aminotransferase of Chlamydia trachomatis: An integrative pharmacoinformatics approach. J Cell Biochem 2019; 120:2271-2288. [PMID: 30302805 DOI: 10.1002/jcb.27553] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/02/2018] [Indexed: 01/24/2023]
Abstract
Chlamydia trachomatis (C.t) is a gram-negative obligate intracellular bacteria, which is a major causative of infectious blindness and sexually transmitted diseases. A surge in multidrug resistance among chlamydial species has posed a challenge to adopt alternative drug targeting strategies. Recently, in C.t, L,L-diaminopimelate aminotransferase (CtDAP-AT) is proven to be a potential drug target due its essential role in cell survival and host nonspecificity. Hence, in this study, a multilevel precision-based virtual screening of CtDAP-AT was performed to identify potential inhibitors, wherein, an integrative stringent scoring and filtration were performed by coupling, glide docking score, binding free energy, ADMET (absorption, distribution, metabolism, and excretion, toxicity) prediction, density functional theory (quantum mechanics), and molecular dynamics simulation (molecular mechanics). On cumulative analysis, NSC_5485 (1,3-bis((7-chloro-4-quinolinyl)amino)-2-propanol) was found to be the most potential lead, as it showed higher order significance in terms of binding affinity, bonded interactions, favorable ADMET, chemical reactivity, and greater stabilization during complex formation. This is the first report on prioritization of small molecules from National Cancer Institute (NCI) and Maybridge data sets (341 519 compounds) towards targeting CtDAP-AT. Thus, the proposed compound shall aid in effective combating of a broad spectrum of C.t infections as it surpassed all the levels of prioritization.
Collapse
Affiliation(s)
- Anupriya Sadhasivam
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, SankaraNethralaya, Chennai, Tamil Nadu, India
| | - Umashankar Vetrivel
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, SankaraNethralaya, Chennai, Tamil Nadu, India
| |
Collapse
|
22
|
Dehhaghi M, Kazemi Shariat Panahi H, Guillemin GJ. Microorganisms' Footprint in Neurodegenerative Diseases. Front Cell Neurosci 2018; 12:466. [PMID: 30564101 PMCID: PMC6288487 DOI: 10.3389/fncel.2018.00466] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/16/2018] [Indexed: 01/08/2023] Open
Abstract
Advancement of science has gifted the human a longer life; however, as neuron cells do not regenerate, the number of people with neurodegeneration disorders rises with population aging. Neurodegeneration diseases occur as a result of neuronal cells loss caused by environmental factors, genetic mutations, proteopathies and other cellular dysfunctions. The negative direct or indirect contributions of various microorganisms in onset or severity of some neurodegeneration disorders and interaction between human immune system and pathogenic microorganisms has been portrayed in this review article. This association may explain the early onset of neurodegeneration disorders in some individuals, which can be traced through detailed study of health background of these individuals for infection with any microbial disease with neuropathogenic microorganisms (bacteria, fungi, viruses). A better understanding and recognition of the relation between microorganisms and neurodegeneration disorders may help researchers in development of novel remedies to avoid, postpone, or make neurodegeneration disorders less severe.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Hamed Kazemi Shariat Panahi
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
23
|
Almutairi ZM. Comparative genomics of HORMA domain-containing proteins in prokaryotes and eukaryotes. Cell Cycle 2018; 17:2531-2546. [PMID: 30488757 PMCID: PMC6300099 DOI: 10.1080/15384101.2018.1553402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/14/2018] [Accepted: 11/02/2018] [Indexed: 10/27/2022] Open
Abstract
In eukaryotes, critical regulation of cell cycle is required to ensure the integrity of cell division. HORMA-containing proteins include various proteins that contain HORMA domain and play important role in the regulation of cell cycle in eukaryotes. Many types of HORMA-containing proteins are found in eukaryotes, but their role in prokaryotes has not been proven. Therefore, we conduct an extensive search in GenBank for HORMA-containing proteins in prokaryotes to compare HORMA domain structure and architecture across eukaryotes and prokaryotes. Strikingly, genome sequencing for many prokaryotic organisms reveals that HORMA domain is present in many bacterial genomes and only two archaeal genomes. We perform sequence alignment and phylogenetic analysis to trace the evolutionary link between HORMA domain in prokaryotes and eukaryotes. HORMA domain in prokaryotes appears to vary in sequence and architecture. Interestingly, seven bacterial HORMA-containing proteins and the two archaeal HORMA-containing proteins showed close relationships with eukaryotic HORMA-containing proteins. Additionally, we uncovered remarkable close relationships between HORMA-containing protein from Chlamydia trachomatis and eukaryotic MAD2 proteins. Our results provide insights into evolutionary relationships between prokaryotic and eukaryotic systems, which facilitate our understanding of the evolution of cell cycle regulation mechanisms.
Collapse
Affiliation(s)
- Zainab M. Almutairi
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
24
|
Cavalcanti JHF, Kirma M, Barros JAS, Quinhones CGS, Pereira-Lima ÍA, Obata T, Nunes-Nesi A, Galili G, Fernie AR, Avin-Wittenberg T, Araújo WL. An L,L-diaminopimelate aminotransferase mutation leads to metabolic shifts and growth inhibition in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5489-5506. [PMID: 30215754 PMCID: PMC6255705 DOI: 10.1093/jxb/ery325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
Lysine (Lys) connects the mitochondrial electron transport chain to amino acid catabolism and the tricarboxylic acid cycle. However, our understanding of how a deficiency in Lys biosynthesis impacts plant metabolism and growth remains limited. Here, we used a previously characterized Arabidopsis mutant (dapat) with reduced activity of the Lys biosynthesis enzyme L,L-diaminopimelate aminotransferase to investigate the physiological and metabolic impacts of impaired Lys biosynthesis. Despite displaying similar stomatal conductance and internal CO2 concentration, we observed reduced photosynthesis and growth in the dapat mutant. Surprisingly, whilst we did not find differences in dark respiration between genotypes, a lower storage and consumption of starch and sugars was observed in dapat plants. We found higher protein turnover but no differences in total amino acids during a diurnal cycle in dapat plants. Transcriptional and two-dimensional (isoelectric focalization/SDS-PAGE) proteome analyses revealed alterations in the abundance of several transcripts and proteins associated with photosynthesis and photorespiration coupled with a high glycine/serine ratio and increased levels of stress-responsive amino acids. Taken together, our findings demonstrate that biochemical alterations rather than stomatal limitations are responsible for the decreased photosynthesis and growth of the dapat mutant, which we hypothesize mimics stress conditions associated with impairments in the Lys biosynthesis pathway.
Collapse
Affiliation(s)
- João Henrique F Cavalcanti
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Menny Kirma
- Department of Plant Science, The Weizmann Institute of Science, Rehovot, Israel
| | - Jessica A S Barros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Carla G S Quinhones
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Ítalo A Pereira-Lima
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Toshihiro Obata
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Gad Galili
- Department of Plant Science, The Weizmann Institute of Science, Rehovot, Israel
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Tamar Avin-Wittenberg
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem Israel
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
25
|
Liechti G, Singh R, Rossi PL, Gray MD, Adams NE, Maurelli AT. Chlamydia trachomatis dapF Encodes a Bifunctional Enzyme Capable of Both d-Glutamate Racemase and Diaminopimelate Epimerase Activities. mBio 2018; 9:e00204-18. [PMID: 29615498 PMCID: PMC5885031 DOI: 10.1128/mbio.00204-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/16/2018] [Indexed: 02/03/2023] Open
Abstract
Peptidoglycan is a sugar/amino acid polymer unique to bacteria and essential for division and cell shape maintenance. The d-amino acids that make up its cross-linked stem peptides are not abundant in nature and must be synthesized by bacteria de novo d-Glutamate is present at the second position of the pentapeptide stem and is strictly conserved in all bacterial species. In Gram-negative bacteria, d-glutamate is generated via the racemization of l-glutamate by glutamate racemase (MurI). Chlamydia trachomatis is the leading cause of infectious blindness and sexually transmitted bacterial infections worldwide. While its genome encodes a majority of the enzymes involved in peptidoglycan synthesis, no murI homologue has ever been annotated. Recent studies have revealed the presence of peptidoglycan in C. trachomatis and confirmed that its pentapeptide includes d-glutamate. In this study, we show that C. trachomatis synthesizes d-glutamate by utilizing a novel, bifunctional homologue of diaminopimelate epimerase (DapF). DapF catalyzes the final step in the synthesis of meso-diaminopimelate, another amino acid unique to peptidoglycan. Genetic complementation of an Escherichia coli murI mutant demonstrated that Chlamydia DapF can generate d-glutamate. Biochemical analysis showed robust activity, but unlike canonical glutamate racemases, activity was dependent on the cofactor pyridoxal phosphate. Genetic complementation, enzymatic characterization, and bioinformatic analyses indicate that chlamydial DapF shares characteristics with other promiscuous/primordial enzymes, presenting a potential mechanism for d-glutamate synthesis not only in Chlamydia but also numerous other genera within the Planctomycetes-Verrucomicrobiae-Chlamydiae superphylum that lack recognized glutamate racemases.IMPORTANCE Here we describe one of the last remaining "missing" steps in peptidoglycan synthesis in pathogenic Chlamydia species, the synthesis of d-glutamate. We have determined that the diaminopimelate epimerase (DapF) encoded by Chlamydia trachomatis is capable of carrying out both the epimerization of DAP and the pyridoxal phosphate-dependent racemization of glutamate. Enzyme promiscuity is thought to be the hallmark of early microbial life on this planet, and there is currently an active debate as to whether "moonlighting enzymes" represent primordial evolutionary relics or are a product of more recent reductionist evolutionary pressures. Given the large number of Chlamydia species (as well as members of the Planctomycetes-Verrucomicrobiae-Chlamydiae superphylum) that possess DapF but lack homologues of MurI, it is likely that DapF is a primordial isomerase that functions as both racemase and epimerase in these organisms, suggesting that specialized d-glutamate racemase enzymes never evolved in these microbes.
Collapse
Affiliation(s)
- George Liechti
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Raghuveer Singh
- Emerging Pathogens Institute and Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Patricia L Rossi
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Miranda D Gray
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Nancy E Adams
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Anthony T Maurelli
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Emerging Pathogens Institute and Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
26
|
The Biological Properties and Potential Interacting Proteins of d-Alanyl-d-alanine Ligase A from Mycobacterium tuberculosis. Molecules 2018; 23:molecules23020324. [PMID: 29401644 PMCID: PMC6017538 DOI: 10.3390/molecules23020324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/23/2018] [Accepted: 02/01/2018] [Indexed: 12/12/2022] Open
Abstract
(1) Background: d-alanine-d-alanine ligase (DdlA), an effective target for drug development to combat against Mycobacterium tuberculosis (Mtb), which threatens human health globally, supplies a substrate of d-alanyl-d-alanine for peptidoglycan crosslinking by catalyzing the dimerization of two d-alanines. To obtain a better understanding of DdlA profiles and develop a colorimetric assay for high-throughput inhibitor screening, we focused on explicating and characterizing Tb-DdlA. (2) Methods and Results: Rv2981c (ddlA) was expressed in Escherichia coli, and the purified Tb-DdlA was identified using (anti)-polyhistidine antibody followed by DdlA activity confirmation by measuring the released orthophosphate via colorimetric assay and the yielded d-alanyl-d-alanine through high performance thin layer chromatography (HP-TLC). The kinetic assays on Tb-DdlA indicated that Tb-DdlA exhibited a higher affinity to ATP (KmATP: 50.327 ± 4.652 μmol/L) than alanine (KmAla: 1.011 ± 0.094 mmol/L). A colorimetric assay for Tb-DdlA activity was developed for high-throughput screening of DdlA inhibitors in this study. In addition, we presented an analysis on Tb-DdlA interaction partners by pull-down assay and MS/MS. Eight putative interaction partners of Tb-DdlA were identified. (3) Conclusions: Our dataset provided a valuable resource for exploring Tb-DdlA biology, and developed an easy colorimetric assay for screening of Tb-DdlA inhibitors.
Collapse
|
27
|
Manning ME, Danson EJ, Calderone CT. Functional chararacterization of the enzymes TabB and TabD involved in tabtoxin biosynthesis by Pseudomonas syringae. Biochem Biophys Res Commun 2018; 496:212-217. [PMID: 29307827 DOI: 10.1016/j.bbrc.2018.01.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/04/2018] [Indexed: 10/18/2022]
Abstract
Pseudomonas syringae pv. tabaci ATCC 11528 produces tabtoxin, a β-lactam-containing dipeptide phytotoxin. Tabtoxinine-β-lactam (TβL), one of tabtoxin's constituent amino acids, structurally mimics lysine, and many of the proteins encoded by the tabtoxin biosynthetic gene cluster are homologs of lysine biosynthetic enzymes, suggesting that the tabtoxin and lysine biosynthetic routes parallel one another. We cloned and expressed TabB and TabD, predicted homologs of tetrahydrodipicolinate (THDPA)-N-acyltransferase and N-acyl-THDPA aminotransferase, respectively, to determine their activities in vitro. We confirmed that TabB succinylates THDPA and that TabD is a PLP-dependent aminotransferase that utilizes glutamate as an amine donor. Surprisingly, we also found that though TabD could utilize the TabB product N-succinyl-THDPA as a substrate, THDPA itself was also recognized. These observations reveal that TabB functionally duplicates DapD, the THDPA-N-succinyltransferase involved in lysine biosynthesis, and reinforce the close relationship between the metabolic logics underpinning the respective biosynthetic pathways.
Collapse
Affiliation(s)
- Margot E Manning
- Department of Chemistry, Carleton College, 1 North College Street, Northfield, MN 55057, United States
| | - Eli J Danson
- Department of Chemistry, Carleton College, 1 North College Street, Northfield, MN 55057, United States
| | - Christopher T Calderone
- Department of Chemistry, Carleton College, 1 North College Street, Northfield, MN 55057, United States.
| |
Collapse
|
28
|
Otten C, Brilli M, Vollmer W, Viollier PH, Salje J. Peptidoglycan in obligate intracellular bacteria. Mol Microbiol 2018; 107:142-163. [PMID: 29178391 PMCID: PMC5814848 DOI: 10.1111/mmi.13880] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2017] [Indexed: 01/08/2023]
Abstract
Peptidoglycan is the predominant stress-bearing structure in the cell envelope of most bacteria, and also a potent stimulator of the eukaryotic immune system. Obligate intracellular bacteria replicate exclusively within the interior of living cells, an osmotically protected niche. Under these conditions peptidoglycan is not necessarily needed to maintain the integrity of the bacterial cell. Moreover, the presence of peptidoglycan puts bacteria at risk of detection and destruction by host peptidoglycan recognition factors and downstream effectors. This has resulted in a selective pressure and opportunity to reduce the levels of peptidoglycan. In this review we have analysed the occurrence of genes involved in peptidoglycan metabolism across the major obligate intracellular bacterial species. From this comparative analysis, we have identified a group of predicted 'peptidoglycan-intermediate' organisms that includes the Chlamydiae, Orientia tsutsugamushi, Wolbachia and Anaplasma marginale. This grouping is likely to reflect biological differences in their infection cycle compared with peptidoglycan-negative obligate intracellular bacteria such as Ehrlichia and Anaplasma phagocytophilum, as well as obligate intracellular bacteria with classical peptidoglycan such as Coxiella, Buchnera and members of the Rickettsia genus. The signature gene set of the peptidoglycan-intermediate group reveals insights into minimal enzymatic requirements for building a peptidoglycan-like sacculus and/or division septum.
Collapse
Affiliation(s)
- Christian Otten
- The Centre for Bacterial Cell BiologyInstitute for Cell and Molecular Biosciences, Newcastle UniversityNewcastle upon TyneNE2 4AXUK
| | - Matteo Brilli
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE)University of Padova. Agripolis ‐ V.le dell'Università, 16 | 35020 Legnaro PadovaItaly
- Present address:
Department of BiosciencesUniversity of Milan, via Celoria 26(MI)Italy
| | - Waldemar Vollmer
- The Centre for Bacterial Cell BiologyInstitute for Cell and Molecular Biosciences, Newcastle UniversityNewcastle upon TyneNE2 4AXUK
| | - Patrick H. Viollier
- Department of Microbiology and Molecular MedicineInstitute of Genetics & Genomics in Geneva (iGE3), University of GenevaGenevaSwitzerland
| | - Jeanne Salje
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global HealthUniversity of OxfordOxfordUK
- Mahidol‐Oxford Tropical Medicine Research UnitMahidol UniversityBangkokThailand
| |
Collapse
|
29
|
Son HF, Kim KJ. Structural basis for substrate specificity of meso-diaminopimelic acid decarboxylase from Corynebacterium glutamicum. Biochem Biophys Res Commun 2018; 495:1815-1821. [DOI: 10.1016/j.bbrc.2017.11.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 11/15/2017] [Indexed: 11/28/2022]
|
30
|
Driscoll TP, Verhoeve VI, Guillotte ML, Lehman SS, Rennoll SA, Beier-Sexton M, Rahman MS, Azad AF, Gillespie JJ. Wholly Rickettsia! Reconstructed Metabolic Profile of the Quintessential Bacterial Parasite of Eukaryotic Cells. mBio 2017; 8:e00859-17. [PMID: 28951473 PMCID: PMC5615194 DOI: 10.1128/mbio.00859-17] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/15/2017] [Indexed: 02/02/2023] Open
Abstract
Reductive genome evolution has purged many metabolic pathways from obligate intracellular Rickettsia (Alphaproteobacteria; Rickettsiaceae). While some aspects of host-dependent rickettsial metabolism have been characterized, the array of host-acquired metabolites and their cognate transporters remains unknown. This dearth of information has thwarted efforts to obtain an axenic Rickettsia culture, a major impediment to conventional genetic approaches. Using phylogenomics and computational pathway analysis, we reconstructed the Rickettsia metabolic and transport network, identifying 51 host-acquired metabolites (only 21 previously characterized) needed to compensate for degraded biosynthesis pathways. In the absence of glycolysis and the pentose phosphate pathway, cell envelope glycoconjugates are synthesized from three imported host sugars, with a range of additional host-acquired metabolites fueling the tricarboxylic acid cycle. Fatty acid and glycerophospholipid pathways also initiate from host precursors, and import of both isoprenes and terpenoids is required for the synthesis of ubiquinone and the lipid carrier of lipid I and O-antigen. Unlike metabolite-provisioning bacterial symbionts of arthropods, rickettsiae cannot synthesize B vitamins or most other cofactors, accentuating their parasitic nature. Six biosynthesis pathways contain holes (missing enzymes); similar patterns in taxonomically diverse bacteria suggest alternative enzymes that await discovery. A paucity of characterized and predicted transporters emphasizes the knowledge gap concerning how rickettsiae import host metabolites, some of which are large and not known to be transported by bacteria. Collectively, our reconstructed metabolic network offers clues to how rickettsiae hijack host metabolic pathways. This blueprint for growth determinants is an important step toward the design of axenic media to rescue rickettsiae from the eukaryotic cell.IMPORTANCE A hallmark of obligate intracellular bacteria is the tradeoff of metabolic genes for the ability to acquire host metabolites. For species of Rickettsia, arthropod-borne parasites with the potential to cause serious human disease, the range of pilfered host metabolites is unknown. This information is critical for dissociating rickettsiae from eukaryotic cells to facilitate rickettsial genetic manipulation. In this study, we reconstructed the Rickettsia metabolic network and identified 51 host metabolites required to compensate patchwork Rickettsia biosynthesis pathways. Remarkably, some metabolites are not known to be transported by any bacteria, and overall, few cognate transporters were identified. Several pathways contain missing enzymes, yet similar pathways in unrelated bacteria indicate convergence and possible novel enzymes awaiting characterization. Our work illuminates the parasitic nature by which rickettsiae hijack host metabolism to counterbalance numerous disintegrated biosynthesis pathways that have arisen through evolution within the eukaryotic cell. This metabolic blueprint reveals what a Rickettsia axenic medium might entail.
Collapse
Affiliation(s)
- Timothy P Driscoll
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Victoria I Verhoeve
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Mark L Guillotte
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Stephanie S Lehman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sherri A Rennoll
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Magda Beier-Sexton
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Sadhasivam A, Vetrivel U. Genome-wide codon usage profiling of ocular infective Chlamydia trachomatis serovars and drug target identification. J Biomol Struct Dyn 2017. [PMID: 28627970 DOI: 10.1080/07391102.2017.1343685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chlamydia trachomatis (C.t) is a Gram-negative obligate intracellular bacteria and is a major causative of infectious blindness and sexually transmitted diseases. Among the varied serovars of this organism, A, B and C are reported as prominent ocular pathogens. Genomic studies of these strains shall aid in deciphering potential drug targets and genomic influence on pathogenesis. Hence, in this study we performed deep statistical profiling of codon usage in these serovars. The overall base composition analysis reveals that these serovars are over biased to AU than GC. Similarly, relative synonymous codon usage also showed preference towards A/U ending codons. Parity Rule 2 analysis inferred unequal distribution of AT and GC, indicative of other unknown factors acting along with mutational pressure to influence codon usage bias (CUB). Moreover, absolute quantification of CUB also revealed lower bias across these serovars. The effect of natural selection on CUB was also confirmed by neutrality plot, reinforcing natural selection under mutational pressure turned to be a pivotal role in shaping the CUB in the strains studied. Correspondence analysis (COA) clarified that, C.t C/TW-3 to show a unique trend in codon usage variation. Host influence analysis on shaping the codon usage pattern also inferred some speculative relativity. In a nutshell, our finding suggests that mutational pressure is the dominating factor in shaping CUB in the strains studied, followed by natural selection. We also propose potential drug targets based on cumulative analysis of strand bias, CUB and human non-homologue screening.
Collapse
Affiliation(s)
- Anupriya Sadhasivam
- a Centre for Bioinformatics , Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya , Chennai 600 006 , Tamil Nadu , India
| | - Umashankar Vetrivel
- a Centre for Bioinformatics , Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya , Chennai 600 006 , Tamil Nadu , India
| |
Collapse
|
32
|
Du S, Lutkenhaus J. The N-succinyl-l,l-diaminopimelic acid desuccinylase DapE acts through ZapB to promote septum formation in Escherichia coli. Mol Microbiol 2017; 105:326-345. [PMID: 28470834 DOI: 10.1111/mmi.13703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Spatial regulation of cell division in Escherichia coli occurs at the stage of Z ring formation. It consists of negative (the Min and NO systems) and positive (Ter signal mediated by MatP/ZapA/ZapB) regulators. Here, we find that N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) facilitates functional Z ring formation by strengthening the Ter signal via ZapB. DapE depends on ZapB to localize to the Z ring and its overproduction suppresses the division defect caused by loss of both the Min and NO systems. DapE shows a strong interaction with ZapB and requires the presence of ZapB to exert its function in division. Consistent with the idea that DapE strengthens the Ter signal, overproduction of DapE supports cell division with reduced FtsZ levels and provides some resistance to the FtsZ inhibitors MinCD and SulA, while deletion of dapE, like deletion of zapB, exacerbates the phenotypes of cells impaired in Z ring formation such as ftsZ84 or a min mutant. Taken together, our results report DapE as a new component of the divisome that promotes the integrity of the Z ring by acting through ZapB and raises the possibility of the existence of additional divisome proteins that also function in other cellular processes.
Collapse
Affiliation(s)
- Shishen Du
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
33
|
Sagong HY, Kim KJ. Structural basis for redox sensitivity in Corynebacterium glutamicum diaminopimelate epimerase: an enzyme involved in l-lysine biosynthesis. Sci Rep 2017; 7:42318. [PMID: 28176858 PMCID: PMC5296763 DOI: 10.1038/srep42318] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/06/2017] [Indexed: 01/07/2023] Open
Abstract
Diaminopimelate epimerase (DapF) is one of the crucial enzymes involved in l-lysine biosynthesis, where it converts l,l-diaminopimelate (l,l-DAP) into d,l-DAP. DapF is also considered as an attractive target for the development of antibacterial drugs. Here, we report the crystal structure of DapF from Corynebacterium glutamicum (CgDapF). Structures of CgDapF obtained under both oxidized and reduced conditions reveal that the function of CgDapF is regulated by redox-switch modulation via reversible disulfide bond formation between two catalytic cysteine residues. Under oxidized condition, two catalytic cysteine residues form a disulfide bond; these same cysteine residues exist in reduced form under reduced condition. Disulfide bond formation also induces a subsequent structural change in the dynamic catalytic loop at the active site, which results in open/closed conformational change at the active site. We also determined the crystal structure of CgDapF in complex with its product d,l-DAP, and elucidated how the enzyme recognizes its substrate l,l-DAP as a substrate. Moreover, the structure in complex with the d,l-DAP product reveals that CgDapF undergoes a large open/closed domain movement upon substrate binding, resulting in a completely buried active site with the substrate bound.
Collapse
Affiliation(s)
- Hye-Young Sagong
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Korea
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Korea,
| |
Collapse
|
34
|
Sagong HY, Kim KJ. Lysine Decarboxylase with an Enhanced Affinity for Pyridoxal 5-Phosphate by Disulfide Bond-Mediated Spatial Reconstitution. PLoS One 2017; 12:e0170163. [PMID: 28095457 PMCID: PMC5240995 DOI: 10.1371/journal.pone.0170163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/30/2016] [Indexed: 01/07/2023] Open
Abstract
Lysine decarboxylase (LDC) catalyzes the decarboxylation of l-lysine to produce cadaverine, an important industrial platform chemical for bio-based polyamides. However, due to high flexibility at the pyridoxal 5-phosphate (PLP) binding site, use of the enzyme for cadaverine production requires continuous supplement of large amounts of PLP. In order to develop an LDC enzyme from Selenomonas ruminantium (SrLDC) with an enhanced affinity for PLP, we introduced an internal disulfide bond between Ala225 and Thr302 residues with a desire to retain the PLP binding site in a closed conformation. The SrLDCA225C/T302C mutant showed a yellow color and the characteristic UV/Vis absorption peaks for enzymes with bound PLP, and exhibited three-fold enhanced PLP affinity compared with the wild-type SrLDC. The mutant also exhibited a dramatically enhanced LDC activity and cadaverine conversion particularly under no or low PLP concentrations. Moreover, introduction of the disulfide bond rendered SrLDC more resistant to high pH and temperature. The formation of the introduced disulfide bond and the maintenance of the PLP binding site in the closed conformation were confirmed by determination of the crystal structure of the mutant. This study shows that disulfide bond-mediated spatial reconstitution can be a platform technology for development of enzymes with enhanced PLP affinity.
Collapse
Affiliation(s)
- Hye-Young Sagong
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
- * E-mail:
| |
Collapse
|
35
|
Grant Pearce F, Hudson AO, Loomes K, Dobson RCJ. Dihydrodipicolinate Synthase: Structure, Dynamics, Function, and Evolution. Subcell Biochem 2017; 83:271-289. [PMID: 28271480 DOI: 10.1007/978-3-319-46503-6_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Enzymes are usually comprised of multiple subunits and more often than not they are made up of identical subunits. In this review we examine lysine biosynthesis and focus on the enzyme dihydrodipicolinate synthase in terms of its structure, function and the evolution of its varied number of subunits (quaternary structure). Dihydrodipicolinate synthase is the first committed step in the biosynthesis of lysine, which occurs naturally in plants, bacteria, archaea and fungi, but is not synthesized in mammals. In bacteria, there have been four separate pathways identified from tetrahydrodipicolinate to meso-diaminopimelate, which is the immediate precursor to lysine. Dihydrodipicolinate synthases from many bacterial and plant species have been structurally characterised and the results show considerable variability with respect to their quaternary structure, hinting at their evolution. The oligomeric state of the enzyme plays a key role, both in catalysis and in the allosteric regulation of the enzyme by lysine. While most bacteria and plants have tetrameric enzymes, where the structure of the dimeric building blocks is conserved, the arrangement of the dimers differs. We also review a key development in the field, namely the discovery of a human dihydrodipicolinate synthase-like enzyme, now known as 4-hydroxy-2-oxoglutarate aldolase . This discovery complicates the rationale underpinning drug development against bacterial dihydrodipicolinate synthases, since genetic errors in 4-hydroxy-2-oxoglutarate aldolase cause the disease Primary Hyperoxaluria Type 3 and therefore compounds that are geared towards the inhibition of bacterial dihydrodipicolinate synthase may be toxic to mammalian cells.
Collapse
Affiliation(s)
- F Grant Pearce
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8041, New Zealand
| | - André O Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Kerry Loomes
- School of Biological Sciences & Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8041, New Zealand.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC, 3010, Australia.
| |
Collapse
|
36
|
Cala AR, Nadeau MT, Abendroth J, Staker BL, Reers AR, Weatherhead AW, Dobson RCJ, Myler PJ, Hudson AO. The crystal structure of dihydrodipicolinate reductase from the human-pathogenic bacterium Bartonella henselae strain Houston-1 at 2.3 Å resolution. Acta Crystallogr F Struct Biol Commun 2016; 72:885-891. [PMID: 27917836 PMCID: PMC5137465 DOI: 10.1107/s2053230x16018525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 11/19/2016] [Indexed: 11/10/2022] Open
Abstract
In bacteria, the second committed step in the diaminopimelate/lysine anabolic pathways is catalyzed by the enzyme dihydrodipicolinate reductase (DapB). DapB catalyzes the reduction of dihydrodipicolinate to yield tetrahydrodipicolinate. Here, the cloning, expression, purification, crystallization and X-ray diffraction analysis of DapB from the human-pathogenic bacterium Bartonella henselae, the causative bacterium of cat-scratch disease, are reported. Protein crystals were grown in conditions consisting of 5%(w/v) PEG 4000, 200 mM sodium acetate, 100 mM sodium citrate tribasic pH 5.5 and were shown to diffract to ∼2.3 Å resolution. They belonged to space group P4322, with unit-cell parameters a = 109.38, b = 109.38, c = 176.95 Å. Rr.i.m. was 0.11, Rwork was 0.177 and Rfree was 0.208. The three-dimensional structural features of the enzymes show that DapB from B. henselae is a tetramer consisting of four identical polypeptides. In addition, the substrate NADP+ was found to be bound to one monomer, which resulted in a closed conformational change in the N-terminal domain.
Collapse
Affiliation(s)
- Ali R. Cala
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, USA
| | - Maria T. Nadeau
- School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, USA
| | - Jan Abendroth
- Beryllium Discovery Inc., Bainbridge Island, WA 98110, USA
| | - Bart L. Staker
- Seattle Structural Genomics Center for Infectious Disease, USA
- Center for Infectious Disease Research, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Alexandra R. Reers
- Seattle Structural Genomics Center for Infectious Disease, USA
- Center for Infectious Disease Research, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Anthony W. Weatherhead
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease, USA
- Center for Infectious Disease Research, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Department of Biomedical Informatics and Health Education, University of Washington, Seattle, WA 98195, USA
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, USA
| |
Collapse
|
37
|
Le DT, Chu HD, Le NQ. Improving Nutritional Quality of Plant Proteins Through Genetic Engineering. Curr Genomics 2016; 17:220-9. [PMID: 27252589 PMCID: PMC4869009 DOI: 10.2174/1389202917666160202215934] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/23/2015] [Accepted: 06/01/2015] [Indexed: 11/22/2022] Open
Abstract
Humans and animals are unable to synthesize essential amino acids such as branch chain amino acids methionine (Met), lysine (Lys) and tryptophan (Trp). Therefore, these amino acids need to be supplied through the diets. Several essential amino acids are deficient or completely lacking among crops used for human food and animal feed. For example, soybean is deficient in Met; Lys and Trp are lacking in maize. In this mini review, we will first summarize the roles of essential amino acids in animal nutrition. Next, we will address the question: “What are the amino acids deficient in various plants and their biosynthesis pathways?” And: “What approaches are being used to improve the availability of essential amino acids in plants?” The potential targets for metabolic engineering will also be discussed, including what has already been done and what remains to be tested.
Collapse
Affiliation(s)
- Dung Tien Le
- National Key Laboratory of Plant and Cell Technology, Agricultural Genetics Institute, Vietnam Academy of Agricul-tural Science, Pham Van Dong Str., Hanoi, Vietnam
| | - Ha Duc Chu
- National Key Laboratory of Plant and Cell Technology, Agricultural Genetics Institute, Vietnam Academy of Agricul-tural Science, Pham Van Dong Str., Hanoi, Vietnam
| | - Ngoc Quynh Le
- National Key Laboratory of Plant and Cell Technology, Agricultural Genetics Institute, Vietnam Academy of Agricul-tural Science, Pham Van Dong Str., Hanoi, Vietnam
| |
Collapse
|
38
|
Liechti G, Kuru E, Packiam M, Hsu YP, Tekkam S, Hall E, Rittichier JT, VanNieuwenhze M, Brun YV, Maurelli AT. Pathogenic Chlamydia Lack a Classical Sacculus but Synthesize a Narrow, Mid-cell Peptidoglycan Ring, Regulated by MreB, for Cell Division. PLoS Pathog 2016; 12:e1005590. [PMID: 27144308 PMCID: PMC4856321 DOI: 10.1371/journal.ppat.1005590] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/01/2016] [Indexed: 01/28/2023] Open
Abstract
The peptidoglycan (PG) cell wall is a peptide cross-linked glycan polymer essential for bacterial division and maintenance of cell shape and hydrostatic pressure. Bacteria in the Chlamydiales were long thought to lack PG until recent advances in PG labeling technologies revealed the presence of this critical cell wall component in Chlamydia trachomatis. In this study, we utilize bio-orthogonal D-amino acid dipeptide probes combined with super-resolution microscopy to demonstrate that four pathogenic Chlamydiae species each possess a ≤ 140 nm wide PG ring limited to the division plane during the replicative phase of their developmental cycles. Assembly of this PG ring is rapid, processive, and linked to the bacterial actin-like protein, MreB. Both MreB polymerization and PG biosynthesis occur only in the intracellular form of pathogenic Chlamydia and are required for cell enlargement, division, and transition between the microbe’s developmental forms. Our kinetic, molecular, and biochemical analyses suggest that the development of this limited, transient, PG ring structure is the result of pathoadaptation by Chlamydia to an intracellular niche within its vertebrate host. Pathogenic Chlamydia do not assemble their peptidoglycan (PG) cell wall in a classical, mesh-like sacculus, but instead apparently confine it to the mid-cell in the actively dividing, non-infectious form. We characterize the assembly and aging of this PG-ring and link its synthesis to MreB, an actin-like protein associated with lateral cell wall synthesis in bacteria. As PG is recognized by the host innate immune system, we hypothesize that the limited amount of PG synthesized by Chlamydia is an adaptation to the microbe’s intracellular lifestyle.
Collapse
Affiliation(s)
- George Liechti
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Erkin Kuru
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Mathanraj Packiam
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Yen-Pang Hsu
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Srinivas Tekkam
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Edward Hall
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Jonathan T Rittichier
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Michael VanNieuwenhze
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Yves V Brun
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Anthony T Maurelli
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| |
Collapse
|
39
|
Abstract
Systems metabolic engineering, which recently emerged as metabolic engineering integrated with systems biology, synthetic biology, and evolutionary engineering, allows engineering of microorganisms on a systemic level for the production of valuable chemicals far beyond its native capabilities. Here, we review the strategies for systems metabolic engineering and particularly its applications in Escherichia coli. First, we cover the various tools developed for genetic manipulation in E. coli to increase the production titers of desired chemicals. Next, we detail the strategies for systems metabolic engineering in E. coli, covering the engineering of the native metabolism, the expansion of metabolism with synthetic pathways, and the process engineering aspects undertaken to achieve higher production titers of desired chemicals. Finally, we examine a couple of notable products as case studies produced in E. coli strains developed by systems metabolic engineering. The large portfolio of chemical products successfully produced by engineered E. coli listed here demonstrates the sheer capacity of what can be envisioned and achieved with respect to microbial production of chemicals. Systems metabolic engineering is no longer in its infancy; it is now widely employed and is also positioned to further embrace next-generation interdisciplinary principles and innovation for its upgrade. Systems metabolic engineering will play increasingly important roles in developing industrial strains including E. coli that are capable of efficiently producing natural and nonnatural chemicals and materials from renewable nonfood biomass.
Collapse
Affiliation(s)
- Kyeong Rok Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Jae Ho Shin
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Jae Sung Cho
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Dongsoo Yang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- BioInformatics Research Center, KAIST, Daejeon 34141, Republic of Korea
- BioProcess Engineering Research Center, KAIST, Daejeon 34141, Republic of Korea
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
40
|
Discovery of the Elusive UDP-Diacylglucosamine Hydrolase in the Lipid A Biosynthetic Pathway in Chlamydia trachomatis. mBio 2016; 7:e00090. [PMID: 27006461 PMCID: PMC4807358 DOI: 10.1128/mbio.00090-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Constitutive biosynthesis of lipid A via the Raetz pathway is essential for the viability and fitness of Gram-negative bacteria, including Chlamydia trachomatis. Although nearly all of the enzymes in the lipid A biosynthetic pathway are highly conserved across Gram-negative bacteria, the cleavage of the pyrophosphate group of UDP-2,3-diacyl-GlcN (UDP-DAGn) to form lipid X is carried out by two unrelated enzymes: LpxH in beta- and gammaproteobacteria and LpxI in alphaproteobacteria. The intracellular pathogen C. trachomatis lacks an ortholog for either of these two enzymes, and yet, it synthesizes lipid A and exhibits conservation of genes encoding other lipid A enzymes. Employing a complementation screen against a C. trachomatis genomic library using a conditional-lethal lpxH mutant Escherichia coli strain, we have identified an open reading frame (Ct461, renamed lpxG) encoding a previously uncharacterized enzyme that complements the UDP-DAGn hydrolase function in E. coli and catalyzes the conversion of UDP-DAGn to lipid X in vitro. LpxG shows little sequence similarity to either LpxH or LpxI, highlighting LpxG as the founding member of a third class of UDP-DAGn hydrolases. Overexpression of LpxG results in toxic accumulation of lipid X and profoundly reduces the infectivity of C. trachomatis, validating LpxG as the long-sought-after UDP-DAGn pyrophosphatase in this prominent human pathogen. The complementation approach presented here overcomes the lack of suitable genetic tools for C. trachomatis and should be broadly applicable for the functional characterization of other essential C. trachomatis genes. Chlamydia trachomatis is a leading cause of infectious blindness and sexually transmitted disease. Due to the lack of robust genetic tools, the functions of many Chlamydia genes remain uncharacterized, including the essential gene encoding the UDP-DAGn pyrophosphatase activity for the biosynthesis of lipid A, the membrane anchor of lipooligosaccharide and the predominant lipid species of the outer leaflet of the bacterial outer membrane. We designed a complementation screen against the C. trachomatis genomic library using a conditional-lethal mutant of E. coli and identified the missing essential gene in the lipid A biosynthetic pathway, which we designated lpxG. We show that LpxG is a member of the calcineurin-like phosphatases and displays robust UDP-DAGn pyrophosphatase activity in vitro. Overexpression of LpxG in C. trachomatis leads to the accumulation of the predicted lipid intermediate and reduces bacterial infectivity, validating the in vivo function of LpxG and highlighting the importance of regulated lipid A biosynthesis in C. trachomatis.
Collapse
|
41
|
Naqvi KF, Staker BL, Dobson RCJ, Serbzhinskiy D, Sankaran B, Myler PJ, Hudson AO. Cloning, expression, purification, crystallization and X-ray diffraction analysis of dihydrodipicolinate synthase from the human pathogenic bacterium Bartonella henselae strain Houston-1 at 2.1 Å resolution. Acta Crystallogr F Struct Biol Commun 2016; 72:2-9. [PMID: 26750477 PMCID: PMC4708043 DOI: 10.1107/s2053230x15023213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/02/2015] [Indexed: 11/10/2022] Open
Abstract
The enzyme dihydrodipicolinate synthase catalyzes the committed step in the synthesis of diaminopimelate and lysine to facilitate peptidoglycan and protein synthesis. Dihydrodipicolinate synthase catalyzes the condensation of L-aspartate 4-semialdehyde and pyruvate to synthesize L-2,3-dihydrodipicolinate. Here, the cloning, expression, purification, crystallization and X-ray diffraction analysis of dihydrodipicolinate synthase from the pathogenic bacterium Bartonella henselae, the causative bacterium of cat-scratch disease, are presented. Protein crystals were grown in conditions consisting of 20%(w/v) PEG 4000, 100 mM sodium citrate tribasic pH 5.5 and were shown to diffract to ∼2.10 Å resolution. They belonged to space group P212121, with unit-cell parameters a = 79.96, b = 106.33, c = 136.25 Å. The final R values were Rr.i.m. = 0.098, Rwork = 0.183, Rfree = 0.233.
Collapse
Affiliation(s)
- Kubra F. Naqvi
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, USA
| | - Bart L. Staker
- Seattle Structural Genomics Center for Infectious Disease, USA
- Center for Infectious Disease Research, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Dmitry Serbzhinskiy
- Seattle Structural Genomics Center for Infectious Disease, USA
- Center for Infectious Disease Research, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Ernest Orlando Lawrence Berkeley National Laboratory, USA
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease, USA
- Center for Infectious Disease Research, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Department of Biomedical Informatics and Health Education, University of Washington, Seattle, WA 98195, USA
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, USA
| |
Collapse
|
42
|
Sagong HY, Kim KJ. Crystal Structure and Biochemical Characterization of Tetrahydrodipicolinate N-Succinyltransferase from Corynebacterium glutamicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10641-10646. [PMID: 26602189 DOI: 10.1021/acs.jafc.5b04785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Tetrahydrodipicolinate N-succinyltransferase (DapD) is an enzyme involved in the biosynthesis of l-lysine by converting tetrahydrodipicolinate into N-succinyl-l-2-amino-6-oxopimelate, using succinyl-CoA as a cofactor. We determined the crystal structure of DapD from Corynebacterium glutamicum (CgDapD). CgDapD functions as a trimer, and each monomer consists of three domains: an N-terminal helical domain (NTD), a left-handed β-helix (LβH) domain, and a β C-terminal domain (CTD). The mode of cofactor binding to CgDapD, elucidated by determining the structure in complex with succinyl-CoA, reveals that the position of the CTD changes slightly as the cofactor binds to the enzyme. The superposition of this structure with that of Mycobacterium tuberculosis shows differences in residues that make up cofactor-binding sites. Moreover, we determined the structure of CgDapD in complex with the substrate analogue 2-aminopimelate and revealed that the analogue was stabilized by conserved residues. The catalytic and substrate binding sites of CgDapD were confirmed by site-directed mutagenesis experiments.
Collapse
Affiliation(s)
- Hye-Young Sagong
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University , Daehak-ro 80, Buk-ku, Daegu 702-701, Korea
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University , Daehak-ro 80, Buk-ku, Daegu 702-701, Korea
| |
Collapse
|
43
|
Waller RF, Gornik SG, Koreny L, Pain A. Metabolic pathway redundancy within the apicomplexan-dinoflagellate radiation argues against an ancient chromalveolate plastid. Commun Integr Biol 2015; 9:e1116653. [PMID: 27066182 PMCID: PMC4802802 DOI: 10.1080/19420889.2015.1116653] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 11/06/2022] Open
Abstract
The chromalveolate hypothesis presents an attractively simple explanation for the presence of red algal-derived secondary plastids in 5 major eukaryotic lineages: “chromista” phyla, cryptophytes, haptophytes and ochrophytes; and alveolate phyla, dinoflagellates and apicomplexans. It posits that a single secondary endosymbiotic event occurred in a common ancestor of these diverse groups, and that this ancient plastid has since been maintained by vertical inheritance only. Substantial testing of this hypothesis by molecular phylogenies has, however, consistently failed to provide support for the predicted monophyly of the host organisms that harbour these plastids—the “chromalveolates.” This lack of support does not disprove the chromalveolate hypothesis per se, but rather drives the proposed endosymbiosis deeper into the eukaryotic tree, and requires multiple plastid losses to have occurred within intervening aplastidic lineages. An alternative perspective on plastid evolution is offered by considering the metabolic partnership between the endosymbiont and its host cell. A recent analysis of metabolic pathways in a deep-branching dinoflagellate indicates a high level of pathway redundancy in the common ancestor of apicomplexans and dinoflagellates, and differential losses of these pathways soon after radiation of the major extant lineages. This suggests that vertical inheritance of an ancient plastid in alveolates is highly unlikely as it would necessitate maintenance of redundant pathways over very long evolutionary timescales.
Collapse
Affiliation(s)
- Ross F Waller
- Department of Biochemistry, University of Cambridge , Cambridge, UK
| | - Sebastian G Gornik
- School of Natural Sciences, National University of Ireland Galway , Galway, Ireland
| | - Ludek Koreny
- Department of Biochemistry, University of Cambridge , Cambridge, UK
| | - Arnab Pain
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology , Thuwal, Saudi Arabia
| |
Collapse
|
44
|
Structural characterization of muropeptides from Chlamydia trachomatis peptidoglycan by mass spectrometry resolves "chlamydial anomaly". Proc Natl Acad Sci U S A 2015; 112:11660-5. [PMID: 26290580 DOI: 10.1073/pnas.1514026112] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The "chlamydial anomaly," first coined by James Moulder, describes the inability of researchers to detect or purify peptidoglycan (PG) from pathogenic Chlamydiae despite genetic and biochemical evidence and antibiotic susceptibility data that suggest its existence. We recently detected PG in Chlamydia trachomatis by a new metabolic cell wall labeling method, however efforts to purify PG from pathogenic Chlamydiae have remained unsuccessful. Pathogenic chlamydial species are known to activate nucleotide-binding oligomerization domain-containing protein 2 (NOD2) innate immune receptors by as yet uncharacterized ligands, which are presumed to be PG fragments (muramyl di- and tripeptides). We used the NOD2-dependent activation of NF-κB by C. trachomatis-infected cell lysates as a biomarker for the presence of PG fragments within specific lysate fractions. We designed a new method of muropeptide isolation consisting of a double filtration step coupled with reverse-phase HPLC fractionation of Chlamydia-infected HeLa cell lysates. Fractions that displayed NOD2 activity were analyzed by electrospray ionization mass spectrometry, confirming the presence of muramyl di- and tripeptides in Chlamydia-infected cell lysate fractions. Moreover, the mass spectrometry data of large muropeptide fragments provided evidence that transpeptidation and transglycosylation reactions occur in pathogenic Chlamydiae. These results reveal the composition of chlamydial PG and disprove the "glycanless peptidoglycan" hypothesis.
Collapse
|
45
|
Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proc Natl Acad Sci U S A 2015; 112:5767-72. [PMID: 25902514 DOI: 10.1073/pnas.1423400112] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Organelle gain through endosymbiosis has been integral to the origin and diversification of eukaryotes, and, once gained, plastids and mitochondria seem seldom lost. Indeed, discovery of nonphotosynthetic plastids in many eukaryotes--notably, the apicoplast in apicomplexan parasites such as the malaria pathogen Plasmodium--highlights the essential metabolic functions performed by plastids beyond photosynthesis. Once a cell becomes reliant on these ancillary functions, organelle dependence is apparently difficult to overcome. Previous examples of endosymbiotic organelle loss (either mitochondria or plastids), which have been invoked to explain the origin of eukaryotic diversity, have subsequently been recognized as organelle reduction to cryptic forms, such as mitosomes and apicoplasts. Integration of these ancient symbionts with their hosts has been too well developed to reverse. Here, we provide evidence that the dinoflagellate Hematodinium sp., a marine parasite of crustaceans, represents a rare case of endosymbiotic organelle loss by the elimination of the plastid. Extensive RNA and genomic sequencing data provide no evidence for a plastid organelle, but, rather, reveal a metabolic decoupling from known plastid functions that typically impede organelle loss. This independence has been achieved through retention of ancestral anabolic pathways, enzyme relocation from the plastid to the cytosol, and metabolic scavenging from the parasite's host. Hematodinium sp. thus represents a further dimension of endosymbiosis--life after the organelle.
Collapse
|
46
|
Jacquier N, Viollier PH, Greub G. The role of peptidoglycan in chlamydial cell division: towards resolving the chlamydial anomaly. FEMS Microbiol Rev 2015; 39:262-75. [PMID: 25670734 DOI: 10.1093/femsre/fuv001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chlamydiales are obligate intracellular bacteria including some important pathogens causing trachoma, genital tract infections and pneumonia, among others. They share an atypical division mechanism, which is independent of an FtsZ homologue. However, they divide by binary fission, in a process inhibited by penicillin derivatives, causing the formation of an aberrant form of the bacteria, which is able to survive in the presence of the antibiotic. The paradox of penicillin sensitivity of chlamydial cells in the absence of detectable peptidoglycan (PG) was dubbed the chlamydial anomaly, since no PG modified by enzymes (Pbps) that are the usual target of penicillin could be detected in Chlamydiales. We review here the recent advances in this field with the first direct and indirect evidences of PG-like material in both Chlamydiaceae and Chlamydia-related bacteria. Moreover, PG biosynthesis is required for proper localization of the newly described septal proteins RodZ and NlpD. Taken together, these new results set the stage for a better understanding of the role of PG and septal proteins in the division mechanism of Chlamydiales and illuminate the long-standing chlamydial anomaly. Moreover, understanding the chlamydial division mechanism is critical for the development of new antibiotics for the treatment of chlamydial chronic infections.
Collapse
Affiliation(s)
- Nicolas Jacquier
- Institute of Microbiology, University Hospital Center and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Patrick H Viollier
- Department of Microbiology & Molecular Medicine, Institute of Genetics & Genomics in Geneva (iGE3), Faculty of Medicine / CMU, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Center and University of Lausanne, CH-1011 Lausanne, Switzerland
| |
Collapse
|
47
|
Chen W, Li X, Tian L, Wu P, Li M, Jiang H, Chen Y, Wu G. Knockdown of LjALD1, AGD2-like defense response protein 1, influences plant growth and nodulation in Lotus japonicus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:1034-1041. [PMID: 24797909 DOI: 10.1111/jipb.12211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/04/2014] [Indexed: 06/03/2023]
Abstract
The discovery of the enzyme L,L-diaminopimelate aminotransferase (LL-DAP-AT, EC 2.6.1.83) uncovered a unique step in the L-lysine biosynthesis pathway in plants. In Arabidopsis thaliana, LL-DAP-AT has been shown to play a key role in plant-pathogen interactions by regulation of the salicylic acid (SA) signaling pathway. Here, a full-length cDNA of LL-DAP-AT named as LjALD1 from Lotus japonicus (Regel) Larsen was isolated. The deduced amino acid sequence shares 67% identity with the Arabidopsis aminotransferase AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (AtALD1) and is predicted to contain the same key elements: a conserved aminotransferase domain and a pyridoxal-5'-phosphate cofactor binding site. Quantitative real-time PCR analysis showed that LjALD1 was expressed in all L. japonicus tissues tested, being strongest in nodules. Expression was induced in roots that had been infected with the symbiotic rhizobium Mesorhizobium loti or treated with SA agonist benzo-(1, 2, 3)-thiadiazole-7-carbothioic acid. LjALD1 Knockdown exhibited a lower SA content, an increased number of infection threads and nodules, and a slight reduction in nodule size. In addition, compared with wild-type, root growth was increased and shoot growth was suppressed in LjALD1 RNAi plant lines. These results indicate that LjALD1 may play important roles in plant development and nodulation via SA signaling in L. japonicus.
Collapse
Affiliation(s)
- Wei Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Lee CR, Kim M, Park YH, Kim YR, Seok YJ. RppH-dependent pyrophosphohydrolysis of mRNAs is regulated by direct interaction with DapF in Escherichia coli. Nucleic Acids Res 2014; 42:12746-57. [PMID: 25313159 PMCID: PMC4227774 DOI: 10.1093/nar/gku926] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Similar to decapping of eukaryotic mRNAs, the RppH-catalyzed conversion of 5′-terminal triphosphate to monophosphate has recently been identified as the rate-limiting step for the degradation of a subset of mRNAs in Escherichia coli. However, the regulation of RppH pyrophosphohydrolase activity is not well understood. Because the overexpression of RppH alone does not affect the decay rate of most target mRNAs, the existence of a mechanism regulating its activity has been suggested. In this study, we identified DapF, a diaminopimelate (DAP) epimerase catalyzing the stereoinversion of L,L-DAP to meso-DAP, as a regulator of RppH. DapF showed a high affinity interaction with RppH and increased its RNA pyrophosphohydrolase activity. The simultaneous overexpression of both DapF and RppH increased the decay rates of RppH target RNAs by about a factor of two. Together, our data suggest that the cellular level of DapF is a critical factor regulating the RppH-catalyzed pyrophosphate removal and the subsequent degradation of target mRNAs.
Collapse
Affiliation(s)
- Chang-Ro Lee
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido 449-728, Republic of Korea
| | - Miri Kim
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 151-742, Korea
| | - Young-Ha Park
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 151-742, Korea
| | - Yeon-Ran Kim
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 151-742, Korea
| | - Yeong-Jae Seok
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 151-742, Korea Department of Biophysics and Chemical Biology, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
49
|
Lal PB, Schneider BL, Vu K, Reitzer L. The redundant aminotransferases in lysine and arginine synthesis and the extent of aminotransferase redundancy in Escherichia coli. Mol Microbiol 2014; 94:843-56. [PMID: 25243376 DOI: 10.1111/mmi.12801] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2014] [Indexed: 11/30/2022]
Abstract
Aminotransferases can be redundant or promiscuous, but the extent and significance of these properties is not known in any organism, even in Escherichia coli. To determine the extent of redundancy, it was first necessary to identify the redundant aminotransferases in arginine and lysine synthesis, and then complement all aminotransferase-deficient mutants with genes for all aminotransferases. The enzymes with N-acetylornithine aminotransferase (ACOAT) activity in arginine synthesis were ArgD, AstC, GabT and PuuE; the major anaerobic ACOAT was ArgD. The major enzymes with N-succinyl-l,l-diaminopimelate aminotransferase (SDAP-AT) activity in lysine synthesis were ArgD, AstC, and SerC. Seven other aminotransferases, when overproduced, complemented the defect in a triple mutant. Lysine availability did not regulate synthesis of the major SDAP-ATs. Complementation analysis of mutants lacking aminotransferases showed that the SDAP-ATs and alanine aminotransferases were exceptionally redundant, and it is proposed that this redundancy may ensure peptidoglycan synthesis. An overview of all aminotransferase reactions indicates that redundancy and broad specificity are common properties of aminotransferases.
Collapse
Affiliation(s)
- Piyush Behari Lal
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | | | | | | |
Collapse
|
50
|
Discovery of chlamydial peptidoglycan reveals bacteria with murein sacculi but without FtsZ. Nat Commun 2014; 4:2856. [PMID: 24292151 PMCID: PMC3847603 DOI: 10.1038/ncomms3856] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/01/2013] [Indexed: 11/18/2022] Open
Abstract
Chlamydiae are important pathogens and symbionts, with unique cell biology features. They lack the cell-division protein FtsZ, which functions in maintaining cell shape and orchestrating cell division in almost all other bacteria. In addition, the existence of peptidoglycan (PG) in chlamydial cell envelopes has been highly controversial. Using electron cryotomography, mass spectrometry and fluorescent labeling dyes, here we show that some environmental chlamydiae have cell-wall sacculi consisting of an unusual PG type. Treatment with fosfomycin (a PG synthesis inhibitor) leads to lower infection rates and aberrant cell shapes, suggesting that PG synthesis is crucial for the chlamydial life cycle. Our findings demonstrate for the first time the presence of PG in a member of the Chlamydiae. They also present a unique example of a bacterium with a PG sacculus but without FtsZ, challenging the current hypothesis that it is the absence of a cell wall that renders FtsZ non-essential.
Collapse
|