1
|
Magli MC, Crippa A, Perruzza D, Azzena S, Graziosi S, Coppola F, Tabanelli C, Ferraretti AP, Gianaroli L. Birefringence properties of human immotile spermatozoa and ICSI outcome. Reprod Biomed Online 2023; 46:597-606. [PMID: 36642560 DOI: 10.1016/j.rbmo.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/05/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
RESEARCH QUESTION In sperm samples with complete asthenozoospermia, pregnancies are achieved by intracytoplasmic sperm injection (ICSI), but this condition has a negative impact on fertilization and embryo development owing to the difficulty of identifying viable cells for oocyte injection. Is the selection of sperm cells with head birefringence properties under polarizing light a successful strategy to identify viable spermatozoa? DESIGN This study included 192 ICSI cycles with complete asthenozoospermia (83 ejaculated and 109 testicular samples) performed under polarized light. Two types of sperm head birefringence were distinguished: partial (presumably reacted spermatozoa) and total (presumably intact acrosome). In some sperm cells, no birefringence was present. The main outcome of the study was the cumulative live birth rate (cLBR) per ICSI cycle. RESULTS Seventy-three deliveries resulted with 38.0% cLBR per ICSI cycle. The injection of birefringent spermatozoa led to significantly higher rates of fertilization, embryo development and implantation compared with the absence of birefringence (P < 0.001). Similarly, the resulting cLBR were 53.6% and 9.0%, respectively (P < 0.001). Spermatozoa with partial head birefringence yielded significantly higher fertilization and embryo utilization rates compared with total birefringence. The cLBR showed the same trend (62.7% and 46.7%, respectively, P = 0.048). Multiple logistic regression analysis showed the pattern of partial birefringence to be strongly associated with live birth rate. CONCLUSIONS Immotile sperm cells with birefringence properties under polarized light have higher chances of inducing fertilization and embryo development compared with non-birefringent cells. In addition, a pattern of partial birefringence, associated with a reacted acrosome, is the strongest predictive factor for live birth delivery, both in ejaculated and testicular samples.
Collapse
Affiliation(s)
- M Cristina Magli
- SISMER, Reproductive Medicine Unit, Via Mazzini 12, 40138 Bologna, Italy.
| | - Andor Crippa
- SISMER, Reproductive Medicine Unit, Via Mazzini 12, 40138 Bologna, Italy
| | - Davide Perruzza
- SISMER, Reproductive Medicine Unit, Via Mazzini 12, 40138 Bologna, Italy
| | - Silvia Azzena
- SISMER, Reproductive Medicine Unit, Via Mazzini 12, 40138 Bologna, Italy
| | - Serena Graziosi
- SISMER, Reproductive Medicine Unit, Via Mazzini 12, 40138 Bologna, Italy
| | | | - Carla Tabanelli
- SISMER, Reproductive Medicine Unit, Via Mazzini 12, 40138 Bologna, Italy
| | - Anna P Ferraretti
- SISMER, Reproductive Medicine Unit, Via Mazzini 12, 40138 Bologna, Italy
| | - Luca Gianaroli
- SISMER, Reproductive Medicine Unit, Via Mazzini 12, 40138 Bologna, Italy
| |
Collapse
|
2
|
Roldan ERS. Assessments of sperm quality integrating morphology, swimming patterns, bioenergetics and cell signalling. Theriogenology 2020; 150:388-395. [PMID: 32093962 DOI: 10.1016/j.theriogenology.2020.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 02/08/2020] [Indexed: 12/15/2022]
Abstract
Spermatozoa are diverse in form and function and these differences impact on their fertilizing capacity. Because of considerable inter-male and inter-species differences in sperm traits, assessments of sperm quality demand that we consider variations at different levels. We should thus pay attention not only to average values but also intra- and inter-sperm population variations and subpopulation structure. Sperm shape and size evolve in reponse to postcopulatory sexual selection. Assessments of morphological variation, with conventional microscopy or with computer-assisted systems, should bear this in mind. In rodents sperm head shape is asymmetric so it requires more complex tools, such as geometric morphometrics. Sperm function also evolves under postcopulatory sexual selection and this could be used as a basis to assess sperm performance. Sperm cells swim actively to overcome barriers in the female tract and develop a peculiar motility pattern in the final stages prior to and during fertilization. Both types of movement can be analyzed by computer-assisted microscopy systems. Sperm have high energetic demands for cell homeostasis, motility, and signalling. Bioenergetics can be analyzed by various means, including extracellular flux analyses to characterize glycolysis and mitochondrial respiration. Finally, cell signalling during capacitation has received much attention and can be assessed by microscopy (conventional or computer-assisted) or flow cytometry. Recent advances in image-flow cytometry affords analyses of high cell numbers with spatial localization of subcellular changes, which will have a big impact in the development of functional tests for the andrology clinic and in sperm preservation and use in artificial insemination.
Collapse
Affiliation(s)
- Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), c/José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| |
Collapse
|
3
|
Sánchez-Villalba E, Arias ME, Loren P, Fuentes F, Pereyra-Bonnet F, Salamone D, Felmer R. Improved expression of green fluorescent protein in cattle embryos produced by ICSI-mediated gene transfer with spermatozoa treated with streptolysin-O. Anim Reprod Sci 2018; 196:130-137. [PMID: 30033189 DOI: 10.1016/j.anireprosci.2018.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/26/2018] [Accepted: 07/16/2018] [Indexed: 12/30/2022]
Abstract
The ICSI-sperm mediated gene transfer (ICSI-SMGT) has been used to produce transgenic mice with high efficiency; however, the efficiency of this technique in farm animals is still less than desirable. Pretreatment of sperm with membrane destabilizing agents can improve the efficiency of ICSI in cattle. The objective of the present study was to evaluate streptolysin-O (SLO) as a novel treatment to permeabilize the bovine sperm membrane and assess its effect on efficiency of generating transgenic embryos by ICSI-SMGT. First, there was evaluation of the plasma membrane integrity (SYBR/PI), acrosome membrane integrity (PNA/FITC), DNA damage (TUNEL) and binding capacity of exogenous DNA (Nick Translation) in bull sperm treated with SLO. Subsequently, there was assessment of embryonic development and the efficiency in generating transgenic embryos with enhanced expression of the gene for green fluorescent protein (EGFP). Results indicate that SLO efficiently permeabilizes the plasma and acrosome membranes of bull spermatozoa and increases binding of exogenous DNA mostly to the post-acrosomal region and tail without greatly affecting the integrity of the DNA. Furthermore, treatment of bull spermatozoa with SLO prior to the injection of oocytes by ICSI-SMGT significantly increased the rate of embryo expression of the EGFP gene. Future experiments are still needed to determine the effect of this treatment on the development and transgene expression in fetuses and animals produced by ICSI-SMGT.
Collapse
Affiliation(s)
- Esther Sánchez-Villalba
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Student of Doctoral Program in Sciences in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - María Elena Arias
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Department of Animal Production, Faculty of Agriculture and Forestry Sciences, Universidad de La Frontera, Temuco, Chile
| | - Pía Loren
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Student of Doctoral Program in Sciences in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Fernanda Fuentes
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Federico Pereyra-Bonnet
- Basic Science and Experimental Medicine Institute, University Institute, Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
| | - Daniel Salamone
- Laboratory of Animal Biotechnology, Faculty of Agricultural Sciences, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry Sciences, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
4
|
Improved embryo development using high cysteamine concentration during IVM and sperm co-culture with COCs previous to ICSI in bovine. Theriogenology 2018; 117:26-33. [PMID: 29807255 DOI: 10.1016/j.theriogenology.2018.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/25/2018] [Accepted: 05/15/2018] [Indexed: 11/23/2022]
Abstract
In contrast to other species, intracytoplasmic sperm injection (ICSI) in bovine remains inefficient, resulting in low embryo developmental rates. It is unclear whether such inefficiency is due to the poor response of bovine ooplasms to the injection stimulus, or to the inability of bull sperm to induce oocyte activation. In order to facilitate these events, two strategies were assessed: the use of high concentration of cysteamine [Cys] during IVM; and the selection of sperm attached to cumulus cells after incubation with COCs for ICSI. First, COCs were IVM with increasing [Cys] and subjected to IVF. Zygotes from all groups were cultured under different O2 tensions and development to blastocyst was evaluated. In a second experiment, sperm were co-cultured for 3 h with COCs and acrosome reaction was studied. Afterwards, the best IVM and IVC conditions determined on Experiment 1 were used for ICSI assay. COCs were matured for 21 h with 1 (Cys 1) or 0.1 mM Cys (Cys 0.1 groups, standard condition). In addition, COCs were incubated for ≥3 h with 16 × 106 sperm/ml and only sperm attached to cumulus cells were selected for ICSI (ICSI + Co-cult groups). After chemical activation, embryos were cultured in SOF medium under low O2 tension. Cleavage and blastocyst rates were evaluated at days 2 and 7 of IVC, respectively. Finally, the relative expression of eight genes indicators of embryo quality was compared between ICSI and IVF control blastocysts by qPCR. Cleavage rates were higher for Cys 0.1 ICSI + Co-cult and Cys 1 ICSI + Co-cult groups (n = 117, 92% and n = 116, 79%, respectively) compared to their controls (n = 132, 60% for Cys 0.1 ICSI and n = 108, 52% for Cys 1 ICSI) (p ≤ 0.05). Interestingly, the combined treatment (Cys 1 ICSI + Co-cult) showed higher blastocyst rates than all other ICSI groups (23 vs. 11, 18 and 14% for Cys 0.1 ICSI + Co-cult, Cys 1 ICSI, and Cys 0.1 ICSI, respectively) (p ≤ 0.05). Moreover, incubation with COCs increased the rates of live acrosome reacted sperm (p ≤ 0.05). The relative abundance of mRNAs coding for INFτ, CAT, DNMT1, OCT4, and HDAC3 did not differ between treatments (p ≤ 0.05). SOD2, HADC1 and HADC2 expression was higher for Cys 0.1 ICSI than for IVF embryos (p ≤ 0.05). Group Cys 1 ICSI did not differ from IVF for those three genes, neither did Cys 1 ICSI + Co-cult, except for HDAC1 (p ≤ 0.05). In conclusion, the use of 1 mM Cys during IVM and of sperm incubated with mature COCs might be a good strategy to improve ICSI outcomes in cattle.
Collapse
|
5
|
Salamone DF, Canel NG, Rodríguez MB. Intracytoplasmic sperm injection in domestic and wild mammals. Reproduction 2017; 154:F111-F124. [PMID: 29196493 DOI: 10.1530/rep-17-0357] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/21/2017] [Accepted: 12/01/2017] [Indexed: 11/08/2022]
Abstract
Intracytoplasmic sperm injection (ICSI) has become a useful technique for clinical applications in the horse-breeding industry. However, both ICSI blastocyst and offspring production continues to be limited for most farm and wild species. This article reviews technical differences of ICSI performance among species, possible biological and methodological reasons for the variable efficiency and potential strategies to improve the outcomes. One of the major applications of ICSI in animal production is the reproduction of high-value specimens. Unfortunately, some domestic species like the bovine show low rates of pronuclei formation after sperm injection, which led to the development of various artificial activation protocols and sperm pre-treatments that are discussed in this article. The impact of ICSI technique on equine breeding programs is considered in detail, since in contrast to other species, its use for elite horse reproduction has increased in recent years. ICSI has also been used to produce genetically modified animals; however, despite numerous attempts in several domestic species, only transgenic pigs have been consistently produced. Finally, the ICSI is a promising tool for genetic rescue of endangered and wild species. In conclusion, while ICSI has become a consistent ART for some species, it needs further development for others. The low results obtained for some domestic species, the high training needed and the equipment required have limited this technique to the production of elite specimens or for research purposes.
Collapse
Affiliation(s)
- Daniel F Salamone
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| | - Natalia G Canel
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| | - María Belén Rodríguez
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| |
Collapse
|
6
|
Zambrano F, Aguila L, Arias ME, Sánchez R, Felmer R. Improved preimplantation development of bovine ICSI embryos generated with spermatozoa pretreated with membrane-destabilizing agents lysolecithin and Triton X-100. Theriogenology 2016; 86:1489-1497. [PMID: 27325573 DOI: 10.1016/j.theriogenology.2016.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 11/18/2022]
Abstract
In cattle, intracytoplasmic sperm injection (ICSI) has a low efficiency. The acrosome content may be responsible for this effect because of the large amount of hydrolytic enzymes that are released within the oocyte. With the aim of removing the acrosome and destabilize the membranes, cryopreserved bovine spermatozoa were treated with lysolecithin (LL) and Triton X-100 (TX) at different concentrations. We evaluated the membrane integrity, the acrosome integrity, DNA integrity, and the variation of phospholipase C zeta. The rates of development (cleavage and blastocysts) were also evaluated along with pronuclear formation and the embryo quality. Spermatozoa incubated with LL and TX (0.01%, 0.02%, 0.03%, and 0.04%) decreased (P < 0.0001) sperm viability in a dose-dependent manner. The acrosome reaction was also increased (P < 0.0001) in all tested concentrations of LL and TX achieving 100% at 0.05% concentration in both treatments. Terminal deoxynucleotidyl transferase dUTP nick-end labeling assay reported an increase (P < 0.05) in DNA fragmentation only with the highest concentration of LL (0.06%), whereas all concentrations assessed of TX reported an increased respect to the control. Phospholipase C zeta expression decreased (P < 0.05) in spermatozoa treated with LL and TX at all concentrations tested. A higher cleavage rate was observed in ICSI-TX (66%) and ICSI-LL (65%) groups compared with the untreated control group (51%) and the blastocyst formation rate significantly increased in the ICSI-LL group (29%) compared with the control (21%). No differences were observed in the pronuclear formation and quality of the embryos. In conclusion, the destabilization of the plasma membrane and the release of the acrosomal content with LL and TX before ICSI improve the rate of embryonic development, without affecting the quality of the embryos produced by this technique.
Collapse
Affiliation(s)
- Fabiola Zambrano
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Luis Aguila
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - María E Arias
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Raúl Sánchez
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile; Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry Sciences, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
7
|
Plasma membrane and acrosome loss before ICSI is required for sheep embryonic development. J Assist Reprod Genet 2016; 33:757-63. [PMID: 27059776 DOI: 10.1007/s10815-016-0709-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/23/2016] [Indexed: 02/07/2023] Open
Abstract
PURPOSE This study aims to determine if the integrity of the sperm plasma membrane and acrosome vesicle could be limiting factors in sheep intracytoplasmic sperm injection (ICSI). METHODS Prior to in vitro fertilization (IVF) or ICSI, the oocytes were subjected to in vitro maturation (IVM) for 24 h. First, to evaluate the need of artificial activation for ovine ICSI, 226 oocytes were injected with intact spermatozoa (IS), from which 125 were activated by incubation in ionomycin and 101 were cultured without activation. Next, spermatozoa were mechanically (by piezo-electrical pulses) and/or chemically (by ionomycin/Triton X-100) treated to break membranes and acrosomes and were injected into oocytes, grouped as follows: (i) piezo-pulsed spermatozoa (PPS), (ii) PPS pre-treated with ionomycin (PPS-I), (iii) PPS pre-treated with Triton X-100 (PPS-T), and (iv) intact and untreated spermatozoa as a control (CTR-IS). RESULTS No differences were observed in the zygote/cleavage/blastocyst rate between chemically activated and non-activated oocytes (50 vs. 45 %, 11.6 vs. 10.1 %; 1.8 vs. 1.1 %, respectively), after ICSI with CTR-IS. Injection of PPS compared to CTR-IS increased the proportion of zygotes and blastocysts (84.6 vs. 45 %, p < 0.01; 15.5 vs. 1.1 %, p < 0.0001, respectively). Moreover, the percentage of PPS-derived blastocysts was not significantly different from that obtained by conventional IVF (15.5 vs. 20.2 %). The ICSI blastocysts' development was also improved with PPS pre-treated with ionomycin (15.6 %), but was completely impeded with PPS pre-treated with Triton X-100 (0 %). CONCLUSION Our findings confirm that ICSI with spermatozoa whose plasma membrane and acrosome have been mechanically damaged substantially improves embryonic development until the blastocyst stage.
Collapse
|
8
|
Lo Monte G, Murisier F, Piva I, Germond M, Marci R. Focus on intracytoplasmic morphologically selected sperm injection (IMSI): a mini-review. Asian J Androl 2013; 15:608-15. [PMID: 23832017 DOI: 10.1038/aja.2013.54] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 01/11/2013] [Accepted: 04/08/2013] [Indexed: 11/09/2022] Open
Abstract
Intracytoplasmic sperm injection (ICSI) is the recommended treatment in many cases of male-factor infertility. Several studies have demonstrated a positive correlation between optimal sperm morphology and positive ICSI outcomes. In fact, spermatozoa with severe abnormalities of the head are well documented to be associated with low fertilisation, implantation and pregnancy rates. However, a spermatozoon which is classified as 'normal' by microscopic observation at low magnification could contain ultrastructural defects that impair both the fertilisation process and embryonic development. The intracytoplasmic morphologically selected sperm injection (IMSI) procedure changed the perception of how a spermatozoon suitable for injection should appear. Sperm selection is carried out at ×6000 magnification, allowing improved assessment of the sperm nucleus. Currently, standardized clinical indications for IMSI are lacking and the candidates are selected on the grounds of their medical history or of a careful analysis of the sperm suspension. Further prospective randomized studies are needed to confirm the advantages of IMSI in specific groups of patients. In addition to providing a brief overview of the IMSI procedure, this study aims to review the literature, which explains the theoretical basis and the clinical outcomes of this technique. Several reports show that IMSI is associated with improved implantation and clinical pregnancy rates as well as lower abortion rates when compared to ICSI. Although a possible correlation between the sperm's abnormal nucleus shape, increased DNA fragmentation and negative laboratory and clinical outcomes has been long investigated, the results are conflicting.
Collapse
Affiliation(s)
- Giuseppe Lo Monte
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | | | | | | | | |
Collapse
|
9
|
Xiao Y, Zhang H, Ahmad S, Bai L, Wang X, Huo L, Zhang X, Li W, Li X, Yang L. Sperm capacitation combined with removal of the sperm acrosome and plasma membrane enhances paternal nucleus remodelling and early development of bovine androgenetic embryos. Reprod Fertil Dev 2013; 25:624-38. [DOI: 10.1071/rd12075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 05/17/2012] [Indexed: 11/23/2022] Open
Abstract
The androgenetic embryo is a useful model for functional analysis of the paternal genome during embryogenesis. However, few studies have focused on the factors involved in the suppressed developmental competence of such embryos or why sperm cloning-derived androgenetic embryos fail to develop beyond the morula stage in large domestic animals. To overcome this developmental failure, we tried to improve sperm decondensation, as well as to enhance embryonic development by sperm capacitation and removal of the acrosome and plasma membrane before injection of the spermatozoa. Before injection of the spermatozoa, we quantified the effects of sperm capacitation combined with sperm pretreatment on the acrosome and plasma membrane status. We also evaluated sperm decondensation potential, sperm viability and chromatin integrity. Immunostaining data showed that the sperm acrosome and plasma membrane could be more efficiently removed after capacitation. Dithiothreitol-induced sperm decondensation potential was improved with capacitation and removal of the acrosome and plasma membrane. Although most spermatozoa lost viability after pretreatment, their chromatin remained integrated. The patterns of paternal chromatin remodelling within uncleaved androgenetic embryos and the nucleus morphology of cleaved embryos indicated that capacitation combined with membrane disruption could make injected spermatozoa decondense synchronously not only with each other, but also with the developmental pace of the ooplasm. We successfully produced androgenetic blastocysts, and efficiency increased with sperm pretreatment. In conclusion, sperm decondensation and the early development of androgenetic embryos were enhanced with sperm capacitation and removal of the acrosome and plasma membrane prior to sperm injection.
Collapse
|
10
|
Ebner T, Filicori M, Tews G, Parmegiani L. A plea for a more physiological ICSI. Andrologia 2011; 44 Suppl 1:2-19. [DOI: 10.1111/j.1439-0272.2011.01266.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2011] [Indexed: 01/07/2023] Open
Affiliation(s)
- T. Ebner
- Landes- Frauen- und Kinderklinik; Kinderwunsch Zentrum; Linz; Upper Austria; Austria
| | - M. Filicori
- GynePro Medical Centers; Reproductive Medicine Unit; Bologna; Italy
| | - G. Tews
- Landes- Frauen- und Kinderklinik; Kinderwunsch Zentrum; Linz; Upper Austria; Austria
| | - L. Parmegiani
- GynePro Medical Centers; Reproductive Medicine Unit; Bologna; Italy
| |
Collapse
|
11
|
Watanabe H, Suzuki H, Fukui Y. Fertilizability, developmental competence, and chromosomal integrity of oocytes microinjected with pre-treated spermatozoa in mice. Reproduction 2010; 139:513-21. [DOI: 10.1530/rep-09-0270] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of the present study was to investigate the safety of sperm pre-treatment during the ICSI procedure using a mouse model. Mouse spermatozoa were treated with methyl-β-cyclodextrin, lysolecithin, Triton X-100, and dithiothreitol (DTT), and injected into mouse oocytes. The injected oocytes were monitored for chromosomal integrity and pre- and post-implantation development. The chromosomal integrity of the injected oocytes was impaired by in vitro incubation and chemical antagonism. Particularly in the 60-min DTT group, severe chromosome damage increased. Despite the chromosomal damage, the resultant embryos frequently developed to the blastocyst stage. However, the embryos in the 60-min DTT group had significantly higher chromosomal damage and decreased developmental competence to live fetuses. These results indicate that excessive sperm pre-treatment such as DTT for 60 min generates severe chromosome damage in injected oocytes, and that the damage decreases developmental competence to live fetuses but not to blastocysts.
Collapse
|
12
|
Kacem O, Sifer C, Barraud-Lange V, Ducot B, De Ziegler D, Poirot C, Wolf J. Sperm nuclear vacuoles, as assessed by motile sperm organellar morphological examination, are mostly of acrosomal origin. Reprod Biomed Online 2009; 20:132-7. [PMID: 20158998 DOI: 10.1016/j.rbmo.2009.10.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 04/22/2009] [Accepted: 09/16/2009] [Indexed: 11/19/2022]
Abstract
Microinjection of nuclear vacuole-free spermatozoa selected by motile sperm organellar morphological examination (MSOME) has been claimed to enhance assisted reproduction treatment outcome compared with intracytoplasmic sperm injection. However, the nature of these nuclear vacuoles is unclear, since their localization at the front of the sperm head suggests they might be of acrosomal origin. To study this hypothesis, acrosomal status was evaluated using Pisum sativum agglutinin staining on a smear, together with sperm organellar morphological examination using the same optics as for MSOME on 30 sperm samples from infertile patients, yielding >3200 spermatozoa. Vacuoles were present in 61% of spermatozoa when acrosomal material or intact acrosomes were observed, versus 29% when spermatozoa were acrosome reacted (P<0.0001). Induction of the acrosomal reaction by ionophore A23587 from 17.4% to 36.1% significantly increased the percentage of vacuole-free spermatozoa from 41.2% to 63.8% (P<0.001). These data suggest that most nuclear vacuoles are of acrosomal origin. Hence, the best spermatozoa selected by MSOME are mostly acrosome-reacted spermatozoa. As microinjection of spermatozoa with a persistent acrosome drastically hampers embryo development in animal models, this suggests that the improvement in pregnancy rates reported following intracytoplasmic injection of morphologically selected sperm might be due to the procedure allowing injection of acrosome-reacted spermatozoa.
Collapse
Affiliation(s)
- O Kacem
- Service d'Histologie-Embryologie-Biologie de la Reproduction, Hôpital Cochin, AP-HP, 123, Bd Port Royal 75013 Paris, Université Paris Descartes, France
| | | | | | | | | | | | | |
Collapse
|