1
|
Song X, Qu Z. NF-κB1 deficiency promotes macrophage-derived adrenal tumors but decreases neurofibromas in HTLV-I LTR-Tax transgenic mice. PLoS One 2024; 19:e0303138. [PMID: 38722890 PMCID: PMC11081228 DOI: 10.1371/journal.pone.0303138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Human T-cell leukemia virus type I (HTLV-I) is an oncogenic virus whose infection can cause diverse diseases, most notably adult T-cell leukemia/lymphoma (ATL or ATLL), an aggressive and fatal malignancy of CD4 T cells. The oncogenic ability of HTLV-I is mostly attributed to the viral transcriptional transactivator Tax. Tax alone is sufficient to induce specific tumors in mice depending on the promotor used to drive Tax expression, thereby being used to understand HTLV-I tumorigenesis and model the tumor types developed in Tax transgenic mice. Tax exerts its oncogenic role predominantly by activating the cellular transcription factor NF-κB. Here, we report that genetic deletion of NF-κB1, the prototypic member of the NF-κB family, promotes adrenal medullary tumors but suppresses neurofibromas in mice with transgenic Tax driven by the HTLV-I Long Terminal Repeat (LTR) promoter. The adrenal tumors are derived from macrophages. Neoplastic macrophages also infiltrate the spleen and lymph nodes, causing splenomegaly and lymphadenopathy in mice. Nevertheless, the findings could be human relevant, because macrophages are important target cells of HTLV-I infection and serve as a virus reservoir in vivo. Moreover, the spleen, lymph nodes and adrenal glands are the most common sites of tumor cell infiltration in HTLV-I-infected patients. These data provide new mechanistic insights into the complex interaction between Tax and NF-κB, therefore improving our understanding of HTLV-I oncogenic pathogenesis. They also expand our knowledge and establish a new animal model of macrophage neoplasms and adrenal tumors.
Collapse
Affiliation(s)
- Xinxin Song
- Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Zhaoxia Qu
- Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Department of Molecular Microbiology and Immunology, Hastings Center for Pulmonary Research, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA, United States of America
| |
Collapse
|
2
|
Sun F, Xiao Y, Shapiro SD, Qu Z, Xiao G. Critical and distinct roles of cell type-specific NF-κB2 in lung cancer. JCI Insight 2024; 9:e164188. [PMID: 38385745 DOI: 10.1172/jci.insight.164188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Different from the well-studied canonical NF-κB member RelA, the role of the noncanonical NF-κB member NF-κB2 in solid tumors, and lung cancer in particular, is poorly understood. Here we report that in contrast to the tumor-promoting role of RelA, NF-κB2 intrinsic to lung epithelial and tumor cells had no marked effect on lung tumorigenesis and progression. On the other hand, NF-κB2 limited dendritic cell number and activation in the lung but protected lung macrophages and drove them to promote lung cancer through controlling activation of noncanonical and canonical NF-κB, respectively. NF-κB2 was also required for B cell maintenance and T cell activation. The antitumor activity of lymphocyte NF-κB2 was dominated by the protumor function of myeloid NF-κB2; thus, NF-κB2 has an overall tumor-promoting activity. These studies reveal a cell type-dependent role for NF-κB2 in lung cancer and help understand the complexity of NF-κB action and lung cancer pathogenesis for better design of NF-κB-targeted therapy against this deadliest cancer.
Collapse
Affiliation(s)
- Fan Sun
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yadong Xiao
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Norris Comprehensive Cancer Center, Hastings Center for Pulmonary Research, Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Steven D Shapiro
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Zhaoxia Qu
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Norris Comprehensive Cancer Center, Hastings Center for Pulmonary Research, Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Gutian Xiao
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Norris Comprehensive Cancer Center, Hastings Center for Pulmonary Research, Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| |
Collapse
|
3
|
Mitchell S, Tsui R, Tan ZC, Pack A, Hoffmann A. The NF-κB multidimer system model: A knowledge base to explore diverse biological contexts. Sci Signal 2023; 16:eabo2838. [PMID: 36917644 PMCID: PMC10195159 DOI: 10.1126/scisignal.abo2838] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023]
Abstract
The nuclear factor κB (NF-κB) system is critical for various biological functions in numerous cell types, including the inflammatory response, cell proliferation, survival, differentiation, and pathogenic responses. Each cell type is characterized by a subset of 15 NF-κB dimers whose activity is regulated in a stimulus-responsive manner. Numerous studies have produced different mathematical models that account for cell type-specific NF-κB activities. However, whereas the concentrations or abundances of NF-κB subunits may differ between cell types, the biochemical interactions that constitute the NF-κB signaling system do not. Here, we synthesized a consensus mathematical model of the NF-κB multidimer system, which could account for the cell type-specific repertoires of NF-κB dimers and their cell type-specific activation and cross-talk. Our review demonstrates that these distinct cell type-specific properties of NF-κB signaling can be explained largely as emergent effects of the cell type-specific expression of NF-κB monomers. The consensus systems model represents a knowledge base that may be used to gain insights into the control and function of NF-κB in diverse physiological and pathological scenarios and that describes a path for generating similar regulatory knowledge bases for other pleiotropic signaling systems.
Collapse
Affiliation(s)
- Simon Mitchell
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, CA 90095, USA
- Brighton and Sussex Medical School, Department of Clinical and Experimental Medicine, University of Sussex, Falmer, East Sussex, BN1 9PX, UK
| | - Rachel Tsui
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Zhixin Cyrillus Tan
- Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, CA 90095, USA
| | - Arran Pack
- Brighton and Sussex Medical School, Department of Clinical and Experimental Medicine, University of Sussex, Falmer, East Sussex, BN1 9PX, UK
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Sun F, Li L, Xiao Y, Gregory AD, Shapiro SD, Xiao G, Qu Z. Alveolar Macrophages Inherently Express Programmed Death-1 Ligand 1 for Optimal Protective Immunity and Tolerance. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:110-114. [PMID: 34135059 PMCID: PMC8674373 DOI: 10.4049/jimmunol.2100046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/28/2021] [Indexed: 01/12/2023]
Abstract
Macrophages play a central role in lung physiology and pathology. In this study, we show in mice that alveolar macrophages (AMs), unlike other macrophage types (interstitial, peritoneal, and splenic macrophages), constitutively express programmed death-1 ligand 1 (PD-L1), thereby possessing a superior phagocytic ability and the capacity to repress CTLs by cis- and trans-interacting with CD80 and programmed death-1 (PD-1), respectively. This extraordinary ability of AMs assures optimal protective immunity and tolerance within the lung. These findings uncover a unique characteristic of AMs and an innate immune function of PD-L1 and CD80 and therefore help in the understanding of lung physiology, diseases, and PD-L1/PD-1-based immunotherapy.
Collapse
Affiliation(s)
- Fan Sun
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA; and
| | - Liwen Li
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA; and
| | - Yadong Xiao
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA
- Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA
| | - Alyssa D Gregory
- Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA
| | - Steven D Shapiro
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA;
- Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA
| | - Gutian Xiao
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA;
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA; and
| | - Zhaoxia Qu
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA;
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA; and
| |
Collapse
|
5
|
Li L, Sun F, Han L, Liu X, Xiao Y, Gregory AD, Shapiro SD, Xiao G, Qu Z. PDLIM2 repression by ROS in alveolar macrophages promotes lung tumorigenesis. JCI Insight 2021; 6:144394. [PMID: 33539325 PMCID: PMC8021114 DOI: 10.1172/jci.insight.144394] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/29/2021] [Indexed: 01/01/2023] Open
Abstract
One of the most fundamental and challenging questions in the field of cancer is how immunity is transformed from tumor immunosurveillance to tumor-promoting inflammation. Here, we identified the tumor suppressor PDZ-LIM domain–containing protein 2 (PDLIM2) as a checkpoint of alveolar macrophages (AMs) important for lung tumor suppression. During lung tumorigenesis, PDLIM2 expression in AMs is downregulated by ROS-activated transcription repressor BTB and CNC homology 1 (BACH1). PDLIM2 downregulation leads to constitutive activation of the transcription factor STAT3, driving AM protumorigenic polarization/activation and differentiation from monocytes attracted from the circulation to suppress cytotoxic T lymphocytes and promote lung cancer. PDLIM2 downregulation also decreases AM phagocytosis. These findings establish ROS/BACH1/PDLIM2/STAT3 as a signaling pathway driving AMs for lung tumor promotion.
Collapse
Affiliation(s)
- Liwen Li
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Fan Sun
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lei Han
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xujie Liu
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yadong Xiao
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alyssa D Gregory
- Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven D Shapiro
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gutian Xiao
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zhaoxia Qu
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Causative role of PDLIM2 epigenetic repression in lung cancer and therapeutic resistance. Nat Commun 2019; 10:5324. [PMID: 31757943 PMCID: PMC6876573 DOI: 10.1038/s41467-019-13331-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Most cancers are resistant to anti-PD-1/PD-L1 and chemotherapy. Herein we identify PDLIM2 as a tumor suppressor particularly important for lung cancer therapeutic responses. While PDLIM2 is epigenetically repressed in human lung cancer, associating with therapeutic resistance and poor prognosis, its global or lung epithelial-specific deletion in mice causes increased lung cancer development, chemoresistance, and complete resistance to anti-PD-1 and epigenetic drugs. PDLIM2 epigenetic restoration or ectopic expression shows antitumor activity, and synergizes with anti-PD-1, notably, with chemotherapy for complete remission of most lung cancers. Mechanistically, through repressing NF-κB/RelA and STAT3, PDLIM2 increases expression of genes involved in antigen presentation and T-cell activation while repressing multidrug resistance genes and cancer-related genes, thereby rendering cancer cells vulnerable to immune attacks and therapies. We identify PDLIM2-independent PD-L1 induction by chemotherapeutic and epigenetic drugs as another mechanism for their synergy with anti-PD-1. These findings establish a rationale to use combination therapies for cancer treatment. PDLIM2 is repressed epigenetically in lung cancers, which are frequently resistant to anti-PD-1/PD-L1 and chemotherapy. Here, the authors describe the mechanism through which epigenetic restoration of PDLIM2 synergises with anti-PD-1 and chemotherapy in lung cancers.
Collapse
|
7
|
Li L, Han L, Sun F, Zhou J, Ohaegbulam KC, Tang X, Zang X, Steinbrecher KA, Qu Z, Xiao G. NF-κB RelA renders tumor-associated macrophages resistant to and capable of directly suppressing CD8 + T cells for tumor promotion. Oncoimmunology 2018; 7:e1435250. [PMID: 29872577 DOI: 10.1080/2162402x.2018.1435250] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 01/27/2018] [Indexed: 10/18/2022] Open
Abstract
Activation of the inflammatory transcription factor NF-κB in tumor-associated macrophages (TAMs) is assumed to contribute to tumor promotion. However, whether and how NF-κB drives the antitumor macrophages to become pro-tumorigenic have not been determined in any cancer type yet. Similarly, how TAMs repress CD8+ cytotoxic T lymphocytes (CTLs) remains largely unknown, although their importance in regulatory T (Treg) cell regulation and tumor promotion has been well appreciated. Here, using an endogenous lung cancer model we uncover a direct crosstalk between TAMs and CTLs. TAMs suppress CTLs through the T-cell inhibitory molecule B7x (B7-H4/B7S1) in a cell-cell contact manner, whereas CTLs kill TAMs in a tumor antigen-specific manner. Remarkably, TAMs secrete the known T-cell suppressive cytokine interleukin-10 (IL-10) to activate, but not to repress, CTLs. Notably, one major role of cell-intrinsic NF-κB RelA is to drive TAMs to suppress CTLs for tumor promotion. It induces B7x expression in TAMs directly, and restricts IL-10 expression indirectly by repressing expression of the NF-κB cofactor Bcl3 and subsequent Bcl3/NF-κB1-mediated transcription of IL-10. It also renders TAMs resistant to CTLs by up-regulating anti-apoptotic genes. These studies help understand how immunity is shaped in lung tumorigenesis, and suggest a RelA-targeted immunotherapy for this deadliest cancer.
Collapse
Affiliation(s)
- Liwen Li
- Hillman Cancer Center, University of Pittsburgh Medical Centers, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lei Han
- Hillman Cancer Center, University of Pittsburgh Medical Centers, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Fan Sun
- Hillman Cancer Center, University of Pittsburgh Medical Centers, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jingjiao Zhou
- Hillman Cancer Center, University of Pittsburgh Medical Centers, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kim C Ohaegbulam
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xudong Tang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kris A Steinbrecher
- Division of Pediatrics, Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Zhaoxia Qu
- Hillman Cancer Center, University of Pittsburgh Medical Centers, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Gutian Xiao
- Hillman Cancer Center, University of Pittsburgh Medical Centers, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Chen M, Sun F, Han L, Qu Z. Kaposi's sarcoma herpesvirus (KSHV) microRNA K12-1 functions as an oncogene by activating NF-κB/IL-6/STAT3 signaling. Oncotarget 2017; 7:33363-73. [PMID: 27166260 PMCID: PMC5078101 DOI: 10.18632/oncotarget.9221] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/10/2016] [Indexed: 01/01/2023] Open
Abstract
The human oncogenic virus Kaposi's sarcoma herpesvirus (KSHV) is the most common cause of malignancies among AIDS patients. KSHV possesses over hundred genes, including 25 microRNAs (miRNAs). The roles of these miRNAs and many other viral genes in KSHV biology and pathogenesis remain largely unknown. Accordingly, the molecular mechanisms by which KSHV induces tumorigenesis are still poorly defined. Here, we identify KSHV miRNA K12-1 (miR-K12-1) as a novel viral oncogene by activating two important transcription factors, nuclear factor-κb (NF-κB) and signal transducer and activator of transcription 3 (STAT3). Interestingly, miR-K12-1 activates STAT3 indirectly through inducing NF-κB activation and NF-κB-dependent expression of the cytokine interleukin-6 (IL-6) by repressing the expression of the NF-κB inhibitor IκBα. Accordingly, expression of ectopic IκBα or knockdown of NF-κB RelA, IL-6 or STAT3 prevents expression of cell growth genes and suppresses the oncogenicities of both miR-K12-1 and KSHV. These data identify miR-K12-1/NF-κB/IL-6/STAT3 as a novel oncogenic signaling underlying KSHV tumorigenesis. These data also provide the first evidence showing that IL-6/STAT3 signaling acts as an essential mediator of NF-κB oncogenic actions. These findings significantly improve our understanding of KSHV pathogenesis and oncogenic interaction between NF-κB and STAT3.
Collapse
Affiliation(s)
- Mingqing Chen
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Fan Sun
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lei Han
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhaoxia Qu
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Zhou J, Qu Z, Sun F, Han L, Li L, Yan S, Stabile LP, Chen LF, Siegfried JM, Xiao G. Myeloid STAT3 Promotes Lung Tumorigenesis by Transforming Tumor Immunosurveillance into Tumor-Promoting Inflammation. Cancer Immunol Res 2017; 5:257-268. [PMID: 28108629 DOI: 10.1158/2326-6066.cir-16-0073] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 01/05/2023]
Abstract
One of the most fundamental and challenging questions in the cancer field is how immunity in patients with cancer is transformed from tumor immunosurveillance to tumor-promoting inflammation. Here, we identify the transcription factor STAT3 as the culprit responsible for this pathogenic event in lung cancer development. We found that antitumor type 1 CD4+ T-helper (Th1) cells and CD8+ T cells were directly counter balanced in lung cancer development with tumor-promoting myeloid-derived suppressor cells (MDSCs) and suppressive macrophages, and that activation of STAT3 in MDSCs and macrophages promoted tumorigenesis through pulmonary recruitment and increased resistance of suppressive cells to CD8+ T cells, enhancement of cytotoxicity toward CD4+ and CD8+ T cells, induction of regulatory T cell (Treg), inhibition of dendritic cells (DC), and polarization of macrophages toward the M2 phenotype. The deletion of myeloid STAT3 boosted antitumor immunity and suppressed lung tumorigenesis. These findings increase our understanding of immune programming in lung tumorigenesis and provide a mechanistic basis for developing STAT3-based immunotherapy against this and other solid tumors. Cancer Immunol Res; 5(3); 257-68. ©2017 AACR.
Collapse
Affiliation(s)
- Jingjiao Zhou
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Zhaoxia Qu
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. .,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Fan Sun
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lei Han
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Liwen Li
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shapei Yan
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Laura P Stabile
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lin-Feng Chen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jill M Siegfried
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gutian Xiao
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. .,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
NF-κB1 p105 suppresses lung tumorigenesis through the Tpl2 kinase but independently of its NF-κB function. Oncogene 2015; 35:2299-310. [PMID: 26300007 PMCID: PMC4548811 DOI: 10.1038/onc.2015.299] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 06/04/2015] [Accepted: 07/06/2015] [Indexed: 12/20/2022]
Abstract
NF-κB is generally believed to be pro-tumorigenic. Here, we report a tumor-suppressive function for NF-κB1, the prototypical member of NF-κB. While NF-κB1 down-regulation is associated with high lung cancer risk in humans and poor patient survival, NF-κB1 deficient mice are more vulnerable to lung tumorigenesis induced by the smoke carcinogen, urethane. Notably, the tumor suppressive function of NF-κB1 is independent of its classical role as an NF-κB factor, but instead through stabilization of the Tpl2 kinase. NF-κB1 deficient tumors exhibit “normal” NF-κB activity, but a decreased protein level of Tpl2. Reconstitution of Tpl2 or the NF-κB1 p105, but not p50 (the processed product of p105), inhibits the tumorigenicity of NF-κB1 deficient lung tumor cells. Remarkably, Tpl2 knockout mice resemble NF-κB1 knockouts in urethane-induced lung tumorigenesis. Mechanistic studies indicate that p105/Tpl2 signaling is required for suppressing urethane-induced lung damage and inflammation, and activating mutations of the K-Ras oncogene. These studies reveal an unexpected, NF-κB-independent but Tpl2-depenednt role of NF-κB1 in lung tumor suppression. These studies also reveal a previously unexplored role of p105/Tpl2 signaling in lung homeostasis.
Collapse
|
11
|
Sun F, Xiao Y, Qu Z. Oncovirus Kaposi sarcoma herpesvirus (KSHV) represses tumor suppressor PDLIM2 to persistently activate nuclear factor κB (NF-κB) and STAT3 transcription factors for tumorigenesis and tumor maintenance. J Biol Chem 2015; 290:7362-8. [PMID: 25681443 DOI: 10.1074/jbc.c115.637918] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Kaposi sarcoma herpesvirus (KSHV) is the most common cause of malignancies among AIDS patients. However, how KSHV induces tumorigenesis remains largely unknown. Here, we demonstrate that one important mechanism underlying the tumorigenesis of KSHV is through transcriptional repression of the tumor suppressor gene PDZ-LIM domain-containing protein 2 (PDLIM2). PDLIM2 expression is repressed in KSHV-transformed human umbilical vascular endothelial cells as well as in KSHV-associated cancer cell lines and primary tumors. Importantly, PDLIM2 repression is essential for KSHV-induced persistent activation of nuclear factor κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) and subsequent tumorigenesis and tumor maintenance. Our mechanistic studies indicate that PDLIM2 repression by KSHV involves DNA methylation. Notably, the epigenetic repression of PDLIM2 can be reversed by 5-aza-2-deoxycytidine and vitamin D to suppress KSHV-associated cancer cell growth. These studies not only improve our understanding of KSHV pathogenesis but also provide immediate therapeutic strategies for KSHV-mediated cancers, particularly those associated with AIDS.
Collapse
Affiliation(s)
- Fan Sun
- From the University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15232, and the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Yadong Xiao
- From the University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15232, and
| | - Zhaoxia Qu
- From the University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15232, and the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
12
|
Abstract
In unstimulated cells, NF-κB dimers usually exist as latent complexes in the cytoplasm with the IκB (inhibitor of NF-κB) proteins or IκB-like protein p100, the precursor of NF-κB2 mature form p52. Accordingly, there are two major mechanisms leading to NF-κB activation: inducible degradation of IκBs and processing of p100 to generate p52 (selective degradation of the C-terminal IκB-like sequence of p100), which are termed the canonical and noncanonical NF-κB pathways, respectively. While activation of the canonical NF-κB pathway plays critical roles in a wide range of biological processes, the noncanonical NF-κB pathway has important but more restricted roles in both normal and pathological processes. Systematic detection of the noncanonical NF-κB pathway activation is very important for understanding the physiological role of this pathway in biological processes, and for the diagnosis, prevention, and treatment of related diseases. We describe here the methods we employ to detect noncanonical NF-κB activation in cells and tissues. These methods are immunoblotting, co-immunoprecipitation, immunofluorescence, immunohistochemistry, chromatin immunoprecipitation (ChIP) analysis, and electrophoretic mobility shift assay (EMSA). Noncanonical NF-κB-induced gene expression changes can be determined by gene array analysis and quantitative real-time PCR.
Collapse
Affiliation(s)
- Zhaoxia Qu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, 1.18 Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | | |
Collapse
|
13
|
Chang Y, Lan YY, Hsiao JR, Chang NS. Strategies of oncogenic microbes to deal with WW domain-containing oxidoreductase. Exp Biol Med (Maywood) 2014; 240:329-37. [PMID: 25488911 DOI: 10.1177/1535370214561957] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
WW domain-containing oxidoreductase (WWOX) is a well-documented tumor suppressor protein that controls growth, survival, and metastasis of malignant cells. To counteract WWOX's suppressive effects, cancer cells have developed many strategies either to downregulate WWOX expression or to functionally inactivate WWOX. Relatively unknown is, in the context of those cancers associated with certain viruses or bacteria, how the oncogenic pathogens deal with WWOX. Here we review recent studies showing different strategies utilized by three cancer-associated pathogens. Helicobactor pylori reduces WWOX expression through promoter hypermethylation, an epigenetic mechanism also occurring in many other cancer cells. WWOX has a potential to block canonical NF-κB activation and tumorigenesis induced by Tax, an oncoprotein of human T-cell leukemia virus. Tax successfully overcomes the blockage by inhibiting WWOX expression through activation of the non-canonical NF-κB pathway. On the other hand, latent membrane protein 2A of Epstein-Barr virus physically interacts with WWOX and redirects its function to trigger a signaling pathway that upregulates matrix metalloproteinase 9 and cancer cell invasion. These reports may be just "the tip of the iceberg" regarding multiple interactions between WWOX and oncogenic microbes. Further studies in this direction should expand our understanding of infection-driven oncogenesis.
Collapse
Affiliation(s)
- Yao Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan 70456, Taiwan Graduate Institute of Basic Medical Science, Medical College, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Yan Lan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan 70456, Taiwan Graduate Institute of Basic Medical Science, Medical College, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jenn-Ren Hsiao
- Department of Otolaryngology, Medical College and Hospital, National Cheng Kung University, Tainan 70101, Taiwan
| | - Nan-Shan Chang
- Institute of Molecular Medicine, Medical College, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
14
|
Zhou J, Qu Z, Yan S, Sun F, Whitsett JA, Shapiro SD, Xiao G. Differential roles of STAT3 in the initiation and growth of lung cancer. Oncogene 2014; 34:3804-3814. [PMID: 25284582 PMCID: PMC4387125 DOI: 10.1038/onc.2014.318] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/01/2014] [Accepted: 07/31/2014] [Indexed: 02/06/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is linked to multiple cancers, including pulmonary adenocarcinoma. However, the role of STAT3 in lung cancer pathogenesis has not been determined. Using lung epithelial-specific inducible knockout strategies, we demonstrate that STAT3 has contrasting roles in the initiation and growth of both chemically and genetically induced lung cancers. Selective deletion of lung epithelial STAT3 in mice before cancer induction by the smoke carcinogen, urethane, resulted in increased lung tissue damage and inflammation, K-Ras oncogenic mutations and tumorigenesis. Deletion of lung epithelial STAT3 after establishment of lung cancer inhibited cancer cell proliferation. Simultaneous deletion of STAT3 and expression of oncogenic K-Ras in mouse lung elevated pulmonary injury, inflammation and tumorigenesis, but reduced tumor growth. These studies indicate that STAT3 prevents lung cancer initiation by maintaining pulmonary homeostasis under oncogenic stress, whereas it facilitates lung cancer progression by promoting cancer cell growth. These studies also provide a mechanistic basis for targeting STAT3 to lung cancer therapy.
Collapse
Affiliation(s)
- Jingjiao Zhou
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Zhaoxia Qu
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Shapei Yan
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Fan Sun
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Jeffrey A Whitsett
- Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | - Steven D Shapiro
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Gutian Xiao
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
15
|
Qu Z, Fu J, Ma H, Zhou J, Jin M, Mapara MY, Grusby MJ, Xiao G. PDLIM2 restricts Th1 and Th17 differentiation and prevents autoimmune disease. Cell Biosci 2012; 2:23. [PMID: 22731402 PMCID: PMC3543335 DOI: 10.1186/2045-3701-2-23] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/06/2012] [Indexed: 01/31/2023] Open
Abstract
Background PDLIM2 is essential for the termination of the inflammatory transcription factors NF-κB and STAT but is dispensable for the development of immune cells and immune tissues/organs. Currently, it remains unknown whether and how PDLIM2 is involved in physiologic and pathogenic processes. Results Here we report that naive PDLIM2 deficient CD4+ T cells were prone to differentiate into Th1 and Th17 cells. PDLIM2 deficiency, however, had no obvious effect on lineage commitment towards Th2 or Treg cells. Notably, PDLIM2 deficient mice exhibited increased susceptibility to experimental autoimmune encephalitis (EAE), a Th1 and/or Th17 cell-mediated inflammatory disease model of multiple sclerosis (MS). Mechanistic studies further indicate that PDLIM2 was required for restricting expression of Th1 and Th17 cytokines, which was in accordance with the role of PDLIM2 in the termination of NF-κB and STAT activation. Conclusion These findings suggest that PDLIM2 is a key modulator of T-cell-mediated immune responses that may be targeted for the therapy of human autoimmune diseases.
Collapse
Affiliation(s)
- Zhaoxia Qu
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Chan JK, Greene WC. Dynamic roles for NF-κB in HTLV-I and HIV-1 retroviral pathogenesis. Immunol Rev 2012; 246:286-310. [DOI: 10.1111/j.1600-065x.2012.01094.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATL), whereas the highly related HTLV-2 is not associated with ATL or other cancers. In addition to ATL leukemogenesis, studies of the HTLV viruses also provide an exceptional model for understanding basic pathogenic mechanisms of virus-host interactions and human oncogenesis. Accumulating evidence suggests that the viral regulatory protein Tax and host inflammatory transcription factor NF-κB are largely responsible for the different pathogenic potentials of HTLV-1 and HTLV-2. Here, we discuss the molecular mechanisms of HTLV-1 oncogenic pathogenesis with a focus on the interplay between the Tax oncoprotein and NF-κB pro-oncogenic signaling. We also outline some of the most intriguing and outstanding questions in the fields of HTLV and NF-κB. Answers to those questions will greatly advance our understanding of ATL leukemogenesis and other NF-κB-associated tumorigenesis and will help us design personalized cancer therapies.
Collapse
|
18
|
Abstract
The noncanonical nuclear factor-κB (NF-κB) signaling pathway mediates activation of the p52/RelB NF-κB complex and, thereby, regulates specific immunological processes. This NF-κB pathway relies on the inducible processing of NF-κB2 precursor protein, p100, as opposed to the degradation of IκBα in the canonical NF-κB pathway. A central signaling component of the noncanonical NF-κB pathway is NF-κB-inducing kinase (NIK), which functions together with a downstream kinase, IKKα (inhibitor of NF-κB kinase α), to induce phosphorylation-dependent ubiquitination and processing of p100. Under normal conditions, NIK is targeted for continuous degradation by a tumor necrosis factor (TNF) receptor-associated factor-3 (TRAF3)-dependent E3 ubiquitin ligase. In response to signals mediated by a subset of TNF receptor superfamily members, NIK becomes stabilized as a result of TRAF3 degradation, leading to the activation of noncanonical NF-κB. This review discusses both the historical perspectives and the recent progress in the regulation and biological function of the noncanonical NF-κB pathway.
Collapse
Affiliation(s)
- Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Qu Z, Sun D, Young W. Lithium promotes neural precursor cell proliferation: evidence for the involvement of the non-canonical GSK-3β-NF-AT signaling. Cell Biosci 2011; 1:18. [PMID: 21711903 PMCID: PMC3125208 DOI: 10.1186/2045-3701-1-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 05/03/2011] [Indexed: 12/04/2022] Open
Abstract
Lithium, a drug that has long been used to treat bipolar disorder and some other human pathogenesis, has recently been shown to stimulate neural precursor growth. However, the involved mechanism is not clear. Here, we show that lithium induces proliferation but not survival of neural precursor cells. Mechanistic studies suggest that the effect of lithium mainly involved activation of the transcription factor NF-AT and specific induction of a subset of proliferation-related genes. While NF-AT inactivation by specific inhibition of its upstream activator calcineurin antagonized the effect of lithium on the proliferation of neural precursor cells, specific inhibition of the NF-AT inhibitor GSK-3β, similar to lithium treatment, promoted neural precursor cell proliferation. One important function of lithium appeared to increase inhibitory phosphorylation of GSK-3β, leading to GSK-3β suppression and subsequent NF-AT activation. Moreover, lithium-induced proliferation of neural precursor cells was independent of its role in inositol depletion. These findings not only provide mechanistic insights into the clinical effects of lithium, but also suggest an alternative therapeutic strategy for bipolar disorder and other neural diseases by targeting the non-canonical GSK-3β-NF-AT signaling.
Collapse
Affiliation(s)
- Zhaoxia Qu
- Department of Cell Biology and Neuroscience, W, M, Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | | | | |
Collapse
|
20
|
Abstract
The non-canonical NF-κB pathway is an important arm of NF-κB signaling that predominantly targets activation of the p52/RelB NF-κB complex. This pathway depends on the inducible processing of p100, a molecule functioning as both the precursor of p52 and a RelB-specific inhibitor. A central signaling component of the non-canonical pathway is NF-κB-inducing kinase (NIK), which integrates signals from a subset of TNF receptor family members and activates a downstream kinase, IκB kinase-α (IKKα), for triggering p100 phosphorylation and processing. A unique mechanism of NIK regulation is through its fate control: the basal level of NIK is kept low by a TRAF-cIAP destruction complex and signal-induced non-canonical NF-κB signaling involves NIK stabilization. Tight control of the fate of NIK is important, since deregulated NIK accumulation is associated with lymphoid malignancies.
Collapse
Affiliation(s)
- Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, The University of Texas Graduate School of Biomedical Sciences at Houston, 7455 Fannin Street, Box 902, Houston, TX 77030, USA.
| |
Collapse
|
21
|
Xiao G, Fu J. NF-κB and cancer: a paradigm of Yin-Yang. Am J Cancer Res 2010; 1:192-221. [PMID: 21969033 PMCID: PMC3180046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 12/05/2010] [Indexed: 05/31/2023] Open
Abstract
Recent studies have clearly linked nuclear factor-kappaB (NF-κB), a transcription factor that plays a central role in regulating immune and inflammatory responses, to tumor development, progression, and metastasis as well as tumor therapy resistance. However, it still remains largely unknown on how the tightly regulated NF-κB becomes constitutively activated in tumorigenesis and how the original cancer immunosurveillance function of NF-κB is transformed to be tumorigenic. To address these important issues for cancer prevention and treatment, we discuss current understanding of the molecular mechanisms and molecules involved in the oncogenic activation of NF-κB. We also discuss current understanding of how NF-κB coordinates the inflammatory and malignant cells in tumorigenesis.
Collapse
Affiliation(s)
- Gutian Xiao
- University of Pittsburgh Cancer Institute, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
22
|
The tumor suppressor gene WWOX links the canonical and noncanonical NF-κB pathways in HTLV-I Tax-mediated tumorigenesis. Blood 2010; 117:1652-61. [PMID: 21115974 DOI: 10.1182/blood-2010-08-303073] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Both the canonical and noncanonical nuclear factor κB (NF-κB) pathways have been linked to tumorigenesis. However, it remains unknown whether and how the 2 signaling pathways cooperate during tumorigenesis. We report that inhibition of the noncanonical NF-κB pathway significantly delays tumorigenesis mediated by the viral oncoprotein Tax. One function of noncanonical NF-κB activation was to repress expression of the WWOX tumor suppressor gene. Notably, WWOX specifically inhibited Tax-induced activation of the canonical, but not the noncanonical NF-κB pathway. Mechanistic studies indicated that WWOX blocked Tax-induced inhibitors of κB kinaseα (IKKα) recruitment to RelA and subsequent RelA phosphorylation at S536. In contrast, WWOX Y33R, a mutant unable to block the IKKα recruitment and RelA phosphorylation, lost the ability to inhibit Tax-mediated tumorigenesis. These data provide one important mechanism by which Tax coordinates the 2 NF-κB pathways for tumorigenesis. These data also suggest a novel role of WWOX in NF-κB regulation and viral tumorigenesis.
Collapse
|
23
|
Abstract
Human T-cell leukemia virus type I (HTLV-I) encodes a Tax oncoprotein that has crucial roles in both virus replication and cell transformation. Our recent studies suggest that the counterbalance between HTLV-I/Tax and PDZ-LIM domain-containing protein PDLIM2 may determine the outcome of HTLV-I infection. Although HTLV-I represses PDLIM2 epigenetically and specifically in transformed cells, PDLIM2 shuttles Tax into the nuclear matrix for ubiquitination-mediated proteasomal degradation, thereby suppressing the transforming ability of HTLV-I. Here, we have further shown that PDLIM2 binds to Tax directly, which was mediated by a putative α-helix motif of PDLIM2 at amino acids 236-254. Consistently, selective disruption of this short-helix crippled PDLIM2 in shutting Tax to the nuclear matrix for ubiquitination-mediated degradation, therefore, PDLIM2 lost the ability in tumor suppression. Although the C-terminal LIM domain of PDLIM2 was not required for Tax binding, it was important for PDLIM2 to interact with the nuclear matrix. Accordingly, the LIM domain was essential for PDLIM2-mediated Tax repression. On the contrary, the N-terminal PDZ domain of PDLIM2 was dispensable for all these events, although the PDZ domain was involved in PDLIM2 binding to cytoskeleton. These studies dissect functional sequences within PDLIM2 and their distinct roles in Tax regulation.
Collapse
|
24
|
Qu Z, Fu J, Yan P, Hu J, Cheng SY, Xiao G. Epigenetic repression of PDZ-LIM domain-containing protein 2: implications for the biology and treatment of breast cancer. J Biol Chem 2010; 285:11786-92. [PMID: 20185823 DOI: 10.1074/jbc.m109.086561] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NF-kappaB transcription factor plays a pivotal role in breast cancer progression and therapy resistance. However, the mechanisms by which the tightly regulated NF-kappaB becomes constitutively activated during breast cancer pathogenesis remain obscure. Here, we report that PDZ-LIM domain-containing protein 2 (PDLIM2), an essential terminator of NF-kappaB activation, is repressed in both estrogen receptor-positive and estrogen receptor-negative breast cancer cells, suggesting one important mechanism for the constitutive activation of NF-kappaB. Indeed, PDLIM2 reexpression inhibited constitutive NF-kappaB activation and expression of NF-kappaB-targeted genes in those breast cancer cells. Importantly, PDLIM2, but not its mutants defective in NF-kappaB termination, could suppress in vitro anchorage-independent growth and in vivo tumor formation of those malignant breast cells. In addition, we have shown that PDLIM2 repression involves promoter methylation. Accordingly, treatment of the breast cancer cells with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine reverses the methylation of the PDLIM2 promoter, restored PDLIM2 expression, and suppressed tumorigenicities of human breast cancer cells both in vitro and in vivo. These studies thus provide important mechanistic insights into breast cancer pathogenesis. These studies also suggest a tumor suppression function of PDLIM2 and a therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Zhaoxia Qu
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, PA, USA
| | | | | | | | | | | |
Collapse
|
25
|
Qu Z, Yan P, Fu J, Jiang J, Grusby MJ, Smithgall TE, Xiao G. DNA methylation-dependent repression of PDZ-LIM domain-containing protein 2 in colon cancer and its role as a potential therapeutic target. Cancer Res 2010; 70:1766-72. [PMID: 20145149 DOI: 10.1158/0008-5472.can-09-3263] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Constitutive activation of the nuclear factor-kappaB (NF-kappaB) transcription factor plays a key role in chronic colonic inflammation and colon tumorigenesis. However, the mechanisms by which the tightly regulated NF-kappaB pathway becomes constitutively activated during colonic pathogenesis remain obscure. Here, we report that PDLIM2, an essential terminator of NF-kappaB activation, is repressed in various human colorectal cancer cell lines, suggesting one important mechanism for the constitutive activation of NF-kappaB. Indeed, expression of exogenous PDLIM2 inhibited constitutive NF-kappaB activation in these colorectal cancer cells. Importantly, the PDLIM2 expression was sufficient to suppress in vitro anchorage-independent growth and in vivo tumor formation of these malignant cells. We have further shown that the PDLIM2 repression involves promoter methylation. Accordingly, treatment of the colorectal tumor cell lines with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine restored PDLIM2 expression and resulted in growth arrest. These studies thus provide new mechanistic insights into colon tumorigenesis by identifying a novel tumor suppressor role for PDLIM2.
Collapse
Affiliation(s)
- Zhaoxia Qu
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Human T-cell leukemia virus type I-mediated repression of PDZ-LIM domain-containing protein 2 involves DNA methylation but independent of the viral oncoprotein tax. Neoplasia 2010; 11:1036-41. [PMID: 19794962 DOI: 10.1593/neo.09752] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 11/18/2022]
Abstract
Human T-cell leukemia virus type I (HTLV-I) is the etiological agent of adult T-cell leukemia (ATL). Our recent studies have shown that one important mechanism of HTLV-I-Mediated tumorigenesis is through PDZ-LIM domain-containing protein 2 (PDLIM2) repression, although the involved mechanism remains unknown. Here, we further report that HTLV-I-Mediated PDLIM2 repression was a pathophysiological event and the PDLIM2 repression involved DNA methylation. Whereas DNA methyltransferases 1 and 3b but not 3a were upregulated in HTLV-I-transformed T cells, the hypomethylating agent 5-aza-2'-deoxycytidine (5-aza-dC) restored PDLIM2 expression and induced death of these malignant cells. Notably, the PDLIM2 repression was independent of the viral regulatory protein Tax because neither short-term induction nor long-term stable expression of Tax could downregulate PDLIM2 expression. These studies provide important insights into PDLIM2 regulation, HTLV-I leukemogenicity, long latency, and cancer health disparities. Given the efficient antitumor activity with no obvious toxicity of 5-aza-dC, these studies also suggest potential therapeutic strategies for ATL.
Collapse
|
27
|
Matrix Metalloproteinase-9 gene induction by a truncated oncogenic NF-kappaB2 protein involves the recruitment of MLL1 and MLL2 H3K4 histone methyltransferase complexes. Oncogene 2009; 28:1626-38. [PMID: 19219072 DOI: 10.1038/onc.2009.6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Constitutive nuclear factor (NF)-kappaB activation in haematological malignancies is caused in several cases by loss of function mutations within the coding sequence of NF-kappaB inhibitory molecules such as IkappaBalpha or p100. Hut-78, a truncated form of p100, constitutively generates p52 and contributes to the development of T-cell lymphomas but the molecular mechanism underlying this oncogenic potential remains unclear. We show here that MMP9 gene expression is induced through the alternative NF-kappaB-activating pathway in fibroblasts and also on Hut-78 or p52 overexpression in fibroblasts as well as in lymphoma cells. p52 is critical for Hut-78-mediated MMP9 gene induction as a Hut-78 mutant as well as other truncated NF-kappaB2 proteins that are not processed into p52 failed to induce the expression of this metalloproteinase. Conversely, MMP9 gene expression is impaired in p52-depleted HUT-78 cells. Interestingly, MLL1 and MLL2 H3K4 methyltransferase complexes are tethered by p52 on the MMP9 but not on the IkappaBalpha promoter, and the H3K4 trimethyltransferase activity recruited on the MMP9 promoter is impaired in p52-depleted HUT-78 cells. Moreover, MLL1 and MLL2 are associated with Hut-78 in a native chromatin-enriched extract. Thus, we identified a molecular mechanism by which the recruitment of a H3K4 histone methyltransferase complex on the promoter of a NF-kappaB-dependent gene induces its expression and potentially the invasive potential of lymphoma cells harbouring constitutive activity of the alternative NF-kappaB-activating pathway.
Collapse
|
28
|
PDLIM2 suppresses human T-cell leukemia virus type I Tax-mediated tumorigenesis by targeting Tax into the nuclear matrix for proteasomal degradation. Blood 2009; 113:4370-80. [PMID: 19131544 DOI: 10.1182/blood-2008-10-185660] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The mechanisms by which the human T-cell leukemia virus type I (HTLV-I) Tax oncoprotein deregulates cellular signaling for oncogenesis have been extensively studied, but how Tax itself is regulated remains largely unknown. Here we report that Tax was negatively regulated by PDLIM2, which promoted Tax K48-linked polyubiquitination. In addition, PDLIM2 recruited Tax from its functional sites into the nuclear matrix where the polyubiquitinated Tax was degraded by the proteasome. Consistently, PDLIM2 suppressed Tax-mediated signaling activation, cell transformation, and oncogenesis both in vitro and in animal. Notably, PDLIM2 expression was down-regulated in HTLV-I-transformed T cells, and PDLIM2 reconstitution reversed the tumorigenicity of the malignant cells. These studies indicate that the counterbalance between HTLV-I/Tax and PDLIM2 may determine the outcome of HTLV-I infection. These studies also suggest a potential therapeutic strategy for cancers and other diseases associated with HTLV-I infection and/or PDLIM2 deregulation.
Collapse
|
29
|
Wang Z, Zhang B, Yang L, Ding J, Ding HF. Constitutive production of NF-kappaB2 p52 is not tumorigenic but predisposes mice to inflammatory autoimmune disease by repressing Bim expression. J Biol Chem 2008; 283:10698-706. [PMID: 18281283 DOI: 10.1074/jbc.m800806200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Normal development of the immune system requires regulated processing of NF-kappaB2 p100 to p52, which activates NF-kappaB2 signaling. Constitutive production of p52 has been suggested as a major mechanism underlying lymphomagenesis induced by NF-kappaB2 mutations, which occur recurrently in a variety of human lymphoid malignancies. To test the hypothesis, we generated transgenic mice with targeted expression of p52 in lymphocytes. In contrast to their counterparts expressing the tumor-derived NF-kappaB2 mutant p80HT, which develop predominantly B cell tumors, p52 transgenic mice are not prone to lymphomagenesis. However, they are predisposed to inflammatory autoimmune disease characterized by multiorgan infiltration of activated lymphocytes, high levels of autoantibodies in the serum, and immune complex glomerulonephritis. p52, but not p80HT, represses Bim expression, leading to defects in apoptotic processes critical for elimination of autoreactive lymphocytes and control of immune response. These findings reveal distinct signaling pathways for actions of NF-kappaB2 mutants and p52 and suggest a causal role for sustained NF-kappaB2 activation in the pathogenesis of autoimmunity.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Biochemistry and Cancer Biology, College of Medicine, University of Toledo Health Science Campus, Toledo, Ohio 43614, USA
| | | | | | | | | |
Collapse
|
30
|
Qing G, Yan P, Qu Z, Liu H, Xiao G. Hsp90 regulates processing of NF-kappa B2 p100 involving protection of NF-kappa B-inducing kinase (NIK) from autophagy-mediated degradation. Cell Res 2007; 17:520-30. [PMID: 17563756 DOI: 10.1038/cr.2007.47] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
NF-kappaB-inducing kinase (NIK) is required for NF-kappaB activation based on the processing of NF-kappaB2 p100. Here we report a novel mechanism of NIK regulation involving the chaperone 90 kDa heat shock protein (Hsp90) and autophagy. Functional inhibition of Hsp90 by the anti-tumor agent geldanamycin (GA) efficiently disrupts its interaction with NIK, resulting in NIK degradation and subsequent blockage of p100 processing. Surprisingly, GA-induced NIK degradation is mediated by autophagy, but largely independent of the ubiquitin-proteasome system. Hsp90 seems to be specifically involved in the folding/stabilization of NIK protein, because GA inhibition does not affect NIK mRNA transcription and translation. Furthermore, Hsp90 is not required for NIK-mediated recruitment of the alpha subunit of IkappaB kinase to p100, a key step in induction of p100 processing. These findings define an alternative mechanism for Hsp90 client degradation and identify a novel function of autophagy in NF-kappaB regulation. These findings also suggest a new therapeutic strategy for diseases associated with p100 processing.
Collapse
Affiliation(s)
- Guoliang Qing
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|