1
|
Lai TT, Brooks CL. Accuracy and Reproducibility of Lipari-Szabo Order Parameters From Molecular Dynamics. J Phys Chem B 2024; 128:10813-10822. [PMID: 39466025 DOI: 10.1021/acs.jpcb.4c04895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The Lipari-Szabo generalized order parameter probes the picosecond to nanosecond time scale motions of a protein and is useful for rationalizing a multitude of biological processes such as protein recognition and ligand binding. Although these fast motions are an important and intrinsic property of proteins, it remains unclear what simulation conditions are most suitable to reproduce methyl symmetry axis side chain order parameter data (Saxis2) from molecular dynamics simulations. In this study, we show that, while Saxis2 tends to converge within tens of nanoseconds, it is essential to run 10 to 20 replicas starting from configurations close to the experimental structure to obtain the best agreement with experimental Saxis2 values. Additionally, in a comparison of force fields, AMBER ff14SB outperforms CHARMM36m in accurately capturing these fast time scale motions, and we suggest that the origin of this performance gap is likely attributed to differences in side chain torsional parametrization and not due to differences in the global protein conformations sampled by the force fields. This study provides insight into obtaining accurate and reproducible Saxis2 values from molecular simulations and underscores the necessity of using replica simulations to compute equilibrium properties.
Collapse
Affiliation(s)
- Thanh T Lai
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48103, United States
| | - Charles L Brooks
- Department of Chemistry and Biophysics Program, University of Michigan, Ann Arbor, Michigan 48103, United States
| |
Collapse
|
2
|
Lee NJ, Jung M, Yang HY, Shim H. A single-domain antibody library based on a stability-engineered human VH3 scaffold. Sci Rep 2024; 14:17747. [PMID: 39085444 PMCID: PMC11291719 DOI: 10.1038/s41598-024-68680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Using conventional immunoglobulin G (IgG) molecules as therapeutic agents presents several well-known disadvantages owing to their large size and structural complexity, negatively impacting development and production efficiency. Single-domain antibodies (sdAbs) are the smallest functional antibody format (~ 15 kDa) and represent a viable alternative to IgG in many applications. However, unlike natural single-domain antibodies, such as camelid VHH, the variable domains of conventional antibodies show poor physicochemical properties when expressed as sdAbs. This report identified stable sdAb variants of human VH3-23 from a framework region 2-randomized human VH library by phage display selection under thermal challenge. Synthetic complementarity determining region diversity was introduced to one of the selected variants with high thermal stability, expression level, and monomeric content to construct a human VH sdAb library. The library was validated by panning against a panel of antigens, and target-specific binders were identified and characterized for their affinity and biophysical properties. The results of this study suggest that a synthetic sdAb library based on a stability-engineered human VH scaffold could be a facile source of high-quality sdAb for many practical applications.
Collapse
Affiliation(s)
- Nam Ju Lee
- Department of Bioinspired Sciences, Ewha Womans University, Seoul, Korea
| | - Mooyoung Jung
- Department of Bioinspired Sciences, Ewha Womans University, Seoul, Korea
| | - Hye Young Yang
- Department of Life Sciences, Ewha Womans University, Seoul, Korea
| | - Hyunbo Shim
- Department of Bioinspired Sciences, Ewha Womans University, Seoul, Korea.
- Department of Life Sciences, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
3
|
Sheward DJ, Pushparaj P, Das H, Greaney AJ, Kim C, Kim S, Hanke L, Hyllner E, Dyrdak R, Lee J, Dopico XC, Dosenovic P, Peacock TP, McInerney GM, Albert J, Corcoran M, Bloom JD, Murrell B, Karlsson Hedestam GB, Hällberg BM. Structural basis of broad SARS-CoV-2 cross-neutralization by affinity-matured public antibodies. Cell Rep Med 2024; 5:101577. [PMID: 38761799 PMCID: PMC11228396 DOI: 10.1016/j.xcrm.2024.101577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 12/15/2023] [Accepted: 04/24/2024] [Indexed: 05/20/2024]
Abstract
Descendants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant now account for almost all SARS-CoV-2 infections. The Omicron variant and its sublineages have spike glycoproteins that are highly diverged from the pandemic founder and first-generation vaccine strain, resulting in significant evasion from monoclonal antibody therapeutics and vaccines. Understanding how commonly elicited antibodies can broaden to cross-neutralize escape variants is crucial. We isolate IGHV3-53, using "public" monoclonal antibodies (mAbs) from an individual 7 months post infection with the ancestral virus and identify antibodies that exhibit potent and broad cross-neutralization, extending to the BA.1, BA.2, and BA.4/BA.5 sublineages of Omicron. Deep mutational scanning reveals these mAbs' high resistance to viral escape. Structural analysis via cryoelectron microscopy of a representative broadly neutralizing antibody, CAB-A17, in complex with the Omicron BA.1 spike highlights the structural underpinnings of this broad neutralization. By reintroducing somatic hypermutations into a germline-reverted CAB-A17, we delineate the role of affinity maturation in the development of cross-neutralization by a public class of antibodies.
Collapse
Affiliation(s)
- Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Pradeepa Pushparaj
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hrishikesh Das
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Allison J Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Changil Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sungyong Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Leo Hanke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Erik Hyllner
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Dyrdak
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jimin Lee
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Pia Dosenovic
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Thomas P Peacock
- Department of Infectious Disease, Imperial College London, London, UK
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | | | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Centre for Structural Systems Biology (CSSB) and Karolinska Institutet VR-RÅC, Notkestraße 85, 22607 Hamburg, Germany.
| |
Collapse
|
4
|
Fischman S, Levin I, Rondeau JM, Štrajbl M, Lehmann S, Huber T, Nimrod G, Cebe R, Omer D, Kovarik J, Bernstein S, Sasson Y, Demishtein A, Shlamkovich T, Bluvshtein O, Grossman N, Barak-Fuchs R, Zhenin M, Fastman Y, Twito S, Vana T, Zur N, Ofran Y. "Redirecting an anti-IL-1β antibody to bind a new, unrelated and computationally predicted epitope on hIL-17A". Commun Biol 2023; 6:997. [PMID: 37773269 PMCID: PMC10542344 DOI: 10.1038/s42003-023-05369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023] Open
Abstract
Antibody engineering technology is at the forefront of therapeutic antibody development. The primary goal for engineering a therapeutic antibody is the generation of an antibody with a desired specificity, affinity, function, and developability profile. Mature antibodies are considered antigen specific, which may preclude their use as a starting point for antibody engineering. Here, we explore the plasticity of mature antibodies by engineering novel specificity and function to a pre-selected antibody template. Using a small, focused library, we engineered AAL160, an anti-IL-1β antibody, to bind the unrelated antigen IL-17A, with the introduction of seven mutations. The final redesigned antibody, 11.003, retains favorable biophysical properties, binds IL-17A with sub-nanomolar affinity, inhibits IL-17A binding to its cognate receptor and is functional in a cell-based assay. The epitope of the engineered antibody can be computationally predicted based on the sequence of the template antibody, as is confirmed by the crystal structure of the 11.003/IL-17A complex. The structures of the 11.003/IL-17A and the AAL160/IL-1β complexes highlight the contribution of germline residues to the paratopes of both the template and re-designed antibody. This case study suggests that the inherent plasticity of antibodies allows for re-engineering of mature antibodies to new targets, while maintaining desirable developability profiles.
Collapse
Affiliation(s)
| | - Itay Levin
- Biolojic Design LTD, Rehovot, Israel
- Enzymit LTD, Ness Ziona, Israel
| | | | | | - Sylvie Lehmann
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Thomas Huber
- Novartis Institutes for Biomedical Research, Basel, Switzerland
- Ridgelinediscovery, Basel, Switzerland
| | | | - Régis Cebe
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Dotan Omer
- Biolojic Design LTD, Rehovot, Israel
- EmendoBio Inc., Rehovot, Israel
| | - Jiri Kovarik
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | | | - Alik Demishtein
- Biolojic Design LTD, Rehovot, Israel
- Anima Biotech, Ramat-Gan, Israel
| | | | - Olga Bluvshtein
- Biolojic Design LTD, Rehovot, Israel
- Enzymit LTD, Ness Ziona, Israel
| | | | | | | | | | - Shir Twito
- Biolojic Design LTD, Rehovot, Israel
- Enzymit LTD, Ness Ziona, Israel
| | - Tal Vana
- Biolojic Design LTD, Rehovot, Israel
| | - Nevet Zur
- Biolojic Design LTD, Rehovot, Israel
| | - Yanay Ofran
- Biolojic Design LTD, Rehovot, Israel
- The Goodman Faculty of Life Sciences, Nanotechnology Building, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
5
|
Maeta S, Nakakido M, Matsuura H, Sakai N, Hirata K, Kuroda D, Fukunaga A, Tsumoto K. Arginine cluster introduction on framework region in anti-lysozyme antibody improved association rate constant by changing conformational diversity of CDR loops. Protein Sci 2023; 32:e4745. [PMID: 37550885 PMCID: PMC10461459 DOI: 10.1002/pro.4745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/30/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Antibodies are used for many therapeutic and biotechnological purposes. Because the affinity of an antibody to the antigen is critical for clinical efficacy of pharmaceuticals, many affinity maturation strategies have been developed. Although we previously reported an affinity maturation strategy in which the association rate of the antibody toward its antigen is improved by introducing a cluster of arginine residues into the framework region of the antibody, the detailed molecular mechanism responsible for this improvement has been unknown. In this study, we introduced five arginine residues into an anti-hen egg white lysozyme antibody (HyHEL10) Fab fragment to create the R5-mutant and comprehensively characterized the interaction between antibody and antigen using thermodynamic analysis, X-ray crystallography, and molecular dynamics (MD) simulations. Our results indicate that introduction of charged residues strongly enhanced the association rate, as previously reported, and the antibody-antigen complex structure was almost the same for the R5-mutant and wild-type Fabs. The MD simulations indicate that the mutation increased conformational diversity in complementarity-determining region loops and thereby enhanced the association rate. These observations provide the molecular basis of affinity maturation by R5 mutation.
Collapse
Affiliation(s)
- Shingo Maeta
- Bio‐Diagnostic Reagent Technology CenterSysmex CorporationKobeJapan
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
| | - Makoto Nakakido
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, Graduate School of EngineeringThe University of TokyoTokyoJapan
| | - Hiroaki Matsuura
- Life Science Research Infrastructure Group, RIKEN SPring‐8 CenterSaitamaJapan
| | - Naoki Sakai
- Life Science Research Infrastructure Group, RIKEN SPring‐8 CenterSaitamaJapan
| | - Kunio Hirata
- Life Science Research Infrastructure Group, RIKEN SPring‐8 CenterSaitamaJapan
| | - Daisuke Kuroda
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, Graduate School of EngineeringThe University of TokyoTokyoJapan
- Research Center for Drug and Vaccine DevelopmentNational Institute of Infectious DiseasesTokyoJapan
| | - Atsushi Fukunaga
- Bio‐Diagnostic Reagent Technology CenterSysmex CorporationKobeJapan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, Graduate School of EngineeringThe University of TokyoTokyoJapan
- Institute of Medical ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
6
|
Rappazzo CG, Fernández-Quintero ML, Mayer A, Wu NC, Greiff V, Guthmiller JJ. Defining and Studying B Cell Receptor and TCR Interactions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:311-322. [PMID: 37459189 PMCID: PMC10495106 DOI: 10.4049/jimmunol.2300136] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/15/2023] [Indexed: 07/20/2023]
Abstract
BCRs (Abs) and TCRs (or adaptive immune receptors [AIRs]) are the means by which the adaptive immune system recognizes foreign and self-antigens, playing an integral part in host defense, as well as the emergence of autoimmunity. Importantly, the interaction between AIRs and their cognate Ags defies a simple key-in-lock paradigm and is instead a complex many-to-many mapping between an individual's massively diverse AIR repertoire, and a similarly diverse antigenic space. Understanding how adaptive immunity balances specificity with epitopic coverage is a key challenge for the field, and terms such as broad specificity, cross-reactivity, and polyreactivity remain ill-defined and are used inconsistently. In this Immunology Notes and Resources article, a group of experimental, structural, and computational immunologists define commonly used terms associated with AIR binding, describe methodologies to study these binding modes, as well as highlight the implications of these different binding modes for therapeutic design.
Collapse
Affiliation(s)
| | | | - Andreas Mayer
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Nicholas C. Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| | - Jenna J. Guthmiller
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
7
|
Ausserwöger H, Krainer G, Welsh TJ, Thorsteinson N, de Csilléry E, Sneideris T, Schneider MM, Egebjerg T, Invernizzi G, Herling TW, Lorenzen N, Knowles TPJ. Surface patches induce nonspecific binding and phase separation of antibodies. Proc Natl Acad Sci U S A 2023; 120:e2210332120. [PMID: 37011217 PMCID: PMC10104583 DOI: 10.1073/pnas.2210332120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/06/2023] [Indexed: 04/05/2023] Open
Abstract
Nonspecific interactions are a key challenge in the successful development of therapeutic antibodies. The tendency for nonspecific binding of antibodies is often difficult to reduce by rational design, and instead, it is necessary to rely on comprehensive screening campaigns. To address this issue, we performed a systematic analysis of the impact of surface patch properties on antibody nonspecificity using a designer antibody library as a model system and single-stranded DNA as a nonspecificity ligand. Using an in-solution microfluidic approach, we find that the antibodies tested bind to single-stranded DNA with affinities as high as KD = 1 µM. We show that DNA binding is driven primarily by a hydrophobic patch in the complementarity-determining regions. By quantifying the surface patches across the library, the nonspecific binding affinity is shown to correlate with a trade-off between the hydrophobic and total charged patch areas. Moreover, we show that a change in formulation conditions at low ionic strengths leads to DNA-induced antibody phase separation as a manifestation of nonspecific binding at low micromolar antibody concentrations. We highlight that phase separation is driven by a cooperative electrostatic network assembly mechanism of antibodies with DNA, which correlates with a balance between positive and negative charged patches. Importantly, our study demonstrates that both nonspecific binding and phase separation are controlled by the size of the surface patches. Taken together, these findings highlight the importance of surface patches and their role in conferring antibody nonspecificity and its macroscopic manifestation in phase separation.
Collapse
Affiliation(s)
- Hannes Ausserwöger
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Georg Krainer
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Timothy J. Welsh
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Nels Thorsteinson
- Research and Development, Chemical Computing Group, Montreal, QuebecH3A 2R7, Canada
| | - Ella de Csilléry
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Tomas Sneideris
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Matthias M. Schneider
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Thomas Egebjerg
- Global Research Technologies, Novo Nordisk A/S2760Måløv, Denmark
| | | | - Therese W. Herling
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Nikolai Lorenzen
- Global Research Technologies, Novo Nordisk A/S2760Måløv, Denmark
| | - Tuomas P. J. Knowles
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
- Department of Physics, Cavendish Laboratory, University of Cambridge, CambridgeCB3 0HE, United Kingdom
| |
Collapse
|
8
|
Nosrati M, Housaindokht MR. New insights into the effect of mutations on affibody-Fc interaction, a molecular dynamics simulation approach. J Struct Biol 2023; 215:107925. [PMID: 36470559 DOI: 10.1016/j.jsb.2022.107925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Staphylococcal protein A (SpA) domain B (the basis of affibody) has been widely used in affinity chromatography and found therapeutic applications against inflammatory diseases through targeting the Fc part of immunoglobulin G (IgG). We have performed extensive molecular dynamics simulation of 41 SpA mutants and compared their dynamics and conformations to wild type. The simulations revealed the molecular details of structural and dynamics changes that occurred due to introducing point mutations and helped to explain the SPR results. It was observed in some variants a point mutation caused extensive structural changes far from the mutation site, while an effect of some other mutations was limited to the site of the mutated residue. Also, the pattern of hydrogen bond networks and hydrophobic core arrangements were investigated. We figured out mutations that occurred at positions 128, 136, 150 and 153, affected two hydrophobic cores at the interface as well as mutations introduced at positions 129 and 154 interrupted two hydrogen bond networks of the interface, SPR data showed all of these mutations reduced binding affinity significantly. Overall, by scanning the SpA-Fc interface through the large numbers of introduced mutations, the new insights have been gained which would help to design high- affinity ligands of IgG.
Collapse
Affiliation(s)
- Masoumeh Nosrati
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden.
| | | |
Collapse
|
9
|
Rhodes ER, Faris JG, Petersen BM, Sprenger KG. Common framework mutations impact antibody interfacial dynamics and flexibility. Front Immunol 2023; 14:1120582. [PMID: 36911727 PMCID: PMC9996335 DOI: 10.3389/fimmu.2023.1120582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/25/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction With the flood of engineered antibodies, there is a heightened need to elucidate the structural features of antibodies that contribute to specificity, stability, and breadth. While antibody flexibility and interface angle have begun to be explored, design rules have yet to emerge, as their impact on the metrics above remains unclear. Furthermore, the purpose of framework mutations in mature antibodies is highly convoluted. Methods To this end, a case study utilizing molecular dynamics simulations was undertaken to determine the impact framework mutations have on the VH-VL interface. We further sought to elucidate the governing mechanisms by which changes in the VH-VL interface angle impact structural elements of mature antibodies by looking at root mean squared deviations, root mean squared fluctuations, and solvent accessible surface area. Results and discussion Overall, our results suggest framework mutations can significantly shift the distribution of VH-VL interface angles, which leads to local changes in antibody flexibility through local changes in the solvent accessible surface area. The data presented herein highlights the need to reject the dogma of static antibody crystal structures and exemplifies the dynamic nature of these proteins in solution. Findings from this work further demonstrate the importance of framework mutations on antibody structure and lay the foundation for establishing design principles to create antibodies with increased specificity, stability, and breadth.
Collapse
Affiliation(s)
| | | | | | - Kayla G. Sprenger
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, CO, United States
| |
Collapse
|
10
|
Yamashita T. Molecular Dynamics Simulation for Investigating Antigen-Antibody Interaction. Methods Mol Biol 2023; 2552:101-107. [PMID: 36346587 DOI: 10.1007/978-1-0716-2609-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Molecular dynamics (MD) simulation is a computational method which elucidates the protein dynamics. Following analyses characterize the dynamics and structural change as well as interaction energy. To characterize the protein structure effectively, the internal angular coordinates are often useful. Directional analysis provides the averages and variances of those coordinates in a mathematically rigorous way. Here, we describe not only a standard MD simulation procedure for the antigen-antibody system but also an umbrella sampling method following a multistep targeted MD simulation (US/mTMD), which is useful for evaluating the free energy profile along the antigen-antibody dissociation coordinate.
Collapse
Affiliation(s)
- Takefumi Yamashita
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
11
|
Zhao T, Karki N, Zoltowski BD, Matthews DA. Allosteric regulation in STAT3 interdomains is mediated by a rigid core: SH2 domain regulation by CCD in D170A variant. PLoS Comput Biol 2022; 18:e1010794. [PMID: 36542668 PMCID: PMC9815575 DOI: 10.1371/journal.pcbi.1010794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 01/05/2023] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Signal Transducer and Activator of Transcription 3 (STAT3) plays a crucial role in cancer development and thus is a viable target for cancer treatment. STAT3 functions as a dimer mediated by phosphorylation of the SRC-homology 2 (SH2) domain, a key target for therapeutic drugs. While great efforts have been employed towards the development of compounds that directly target the SH2 domain, no compound has yet been approved by the FDA due to a lack of specificity and pharmacologic efficacy. Studies have shown that allosteric regulation of SH2 via the coiled-coil domain (CCD) is an alternative drug design strategy. Several CCD effectors have been shown to modulate SH2 binding and affinity, and at the time of writing at least one drug candidate has entered phase I clinical trials. However, the mechanism for SH2 regulation via CCD is poorly understood. Here, we investigate structural and dynamic features of STAT3 and compare the wild type to the reduced function variant D170A in order to delineate mechanistic differences and propose allosteric pathways. Molecular dynamics simulations were employed to explore conformational space of STAT3 and the variant, followed by structural, conformation, and dynamic analysis. The trajectories explored show distinctive conformational changes in the SH2 domain for the D170A variant, indicating long range allosteric effects. Multiple analyses provide evidence for long range communication pathways between the two STAT3 domains, which seem to be mediated by a rigid core which connects the CCD and SH2 domains via the linker domain (LD) and transmits conformational changes through a network of short-range interactions. The proposed allosteric mechanism provides new insight into the understanding of intramolecular signaling in STAT3 and potential pharmaceutical control of STAT3 specificity and activity.
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Chemistry, Southern Methodist University, Dallas, Texas, United States of America
| | - Nischal Karki
- Department of Chemistry, Southern Methodist University, Dallas, Texas, United States of America
| | - Brian D. Zoltowski
- Department of Chemistry, Southern Methodist University, Dallas, Texas, United States of America
| | - Devin A. Matthews
- Department of Chemistry, Southern Methodist University, Dallas, Texas, United States of America
| |
Collapse
|
12
|
Ausserwöger H, Schneider MM, Herling TW, Arosio P, Invernizzi G, Knowles TPJ, Lorenzen N. Non-specificity as the sticky problem in therapeutic antibody development. Nat Rev Chem 2022; 6:844-861. [PMID: 37117703 DOI: 10.1038/s41570-022-00438-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 11/16/2022]
Abstract
Antibodies are highly potent therapeutic scaffolds with more than a hundred different products approved on the market. Successful development of antibody-based drugs requires a trade-off between high target specificity and target binding affinity. In order to better understand this problem, we here review non-specific interactions and explore their fundamental physicochemical origins. We discuss the role of surface patches - clusters of surface-exposed amino acid residues with similar physicochemical properties - as inducers of non-specific interactions. These patches collectively drive interactions including dipole-dipole, π-stacking and hydrophobic interactions to complementary moieties. We elucidate links between these supramolecular assembly processes and macroscopic development issues, such as decreased physical stability and poor in vivo half-life. Finally, we highlight challenges and opportunities for optimizing protein binding specificity and minimizing non-specificity for future generations of therapeutics.
Collapse
|
13
|
Aguilar MF, Garay AS, Attallah C, Rodrigues DE, Oggero M. Changes in antibody binding and functionality after humanizing a murine scFv anti-IFN-α2: From in silico studies to experimental analysis. Mol Immunol 2022; 151:193-203. [PMID: 36166900 DOI: 10.1016/j.molimm.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 08/21/2022] [Accepted: 09/11/2022] [Indexed: 11/26/2022]
Abstract
The structural and dynamic changes introduced during antibody humanization continue to be a topic open to new contributions. For this reason, the study of structural and functional changes of a murine scFv (mu.scFv) anti-rhIFN-α2b after humanization was carried out. As it was shown by long molecular dynamics simulations and circular dichroism analysis, changes in primary sequence affected the tertiary structure of the humanized scFv (hz.scFv): the position of the variable domain of light chain (VL) respective to the variable domain of heavy chain (VH) in each scFv molecule was different. This change mainly impacted on conformation and dynamics of the complementarity-determining region 3 of VH (CDR-H3) which led to changes in the specificity and affinity of humanized scFv (hz.scFv). These observations agree with experimental results that showed a decrease in the antigen-binding strength of hz.scFv, and different capacities of these molecules to neutralize the in vitro rhIFN-α2b biological activity. Besides, experimental studies to characterize antigen-antibody binding showed that mu.scFv and hz.scFv bind to the same antigen area and recognize a conformational epitope, which is evidence of docking results. Finally, the differences between these molecules to neutralize the in vitro rhIFN-α2b biological activity were described as a consequence of the blockade of certain functionally relevant amino acids of the cytokine, after scFv binding. All these observations confirmed that humanization affected the affinity and specificity of hz.scFv and pointed out that two specific changes in the frameworks would be responsible.
Collapse
Affiliation(s)
- María Fernanda Aguilar
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia. Santa Fe S3000ZAA, Argentina
| | - A Sergio Garay
- UNL, FBCB, Departamento de Física, Ciudad Universitaria UNL, Pje. "El Pozo" - C.C. 242, S3000ZAA Santa Fe, Argentina.
| | - Carolina Attallah
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia. Santa Fe S3000ZAA, Argentina
| | - Daniel E Rodrigues
- UNL, FBCB, Departamento de Física, Ciudad Universitaria UNL, Pje. "El Pozo" - C.C. 242, S3000ZAA Santa Fe, Argentina; INTEC, CONICET-UNL, Predio CONICET Santa Fe, Pje. "El Pozo", S3000 Santa Fe, Argentina
| | - Marcos Oggero
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia. Santa Fe S3000ZAA, Argentina.
| |
Collapse
|
14
|
From affinity selection to kinetic selection in Germinal Centre modelling. PLoS Comput Biol 2022; 18:e1010168. [PMID: 35658003 PMCID: PMC9200358 DOI: 10.1371/journal.pcbi.1010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 06/15/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
Affinity maturation is an evolutionary process by which the affinity of antibodies (Abs) against specific antigens (Ags) increases through rounds of B-cell proliferation, somatic hypermutation, and positive selection in germinal centres (GC). The positive selection of B cells depends on affinity, but the underlying mechanisms of affinity discrimination and affinity-based selection are not well understood. It has been suggested that selection in GC depends on both rapid binding of B-cell receptors (BcRs) to Ags which is kinetically favourable and tight binding of BcRs to Ags, which is thermodynamically favourable; however, it has not been shown whether a selection bias for kinetic properties is present in the GC. To investigate the GC selection bias towards rapid and tight binding, we developed an agent-based model of GC and compared the evolution of founder B cells with initially identical low affinities but with different association/dissociation rates for Ag presented by follicular dendritic cells in three Ag collection mechanisms. We compared an Ag collection mechanism based on association/dissociation rates of B-cell interaction with presented Ag, which includes a probabilistic rupture of bonds between the B-cell and Ag (Scenario-1) with a reference scenario based on an affinity-based Ag collection mechanism (Scenario-0). Simulations showed that the mechanism of Ag collection affects the GC dynamics and the GC outputs concerning fast/slow (un)binding of B cells to FDC-presented Ags. In particular, clones with lower dissociation rates outcompete clones with higher association rates in Scenario-1, while remaining B cells from clones with higher association rates reach higher affinities. Accordingly, plasma cell and memory B cell populations were biased towards B-cell clones with lower dissociation rates. Without such probabilistic ruptures during the Ag extraction process (Scenario-2), the selective advantage for clones with very low dissociation rates diminished, and the affinity maturation level of all clones decreased to the reference level. Adaptive immunity is one of the vital defence mechanisms of the human body to fight virtually unlimited types of pathogens by producing antigen-specific high-affinity antibodies that bind to pathogens and neutralise them or mark them for further elimination. Affinity is a quantity used to measure and report the strength of interaction between antibodies and antigens that depends both on how fast antibodies bind to antigens (association rate) and how long the bond lasts (dissociation rate). The affinity of produced antibodies for a specific antigen increases in germinal centres through a process called affinity maturation, during which B cells with higher affinities have a competitive advantage and get positively selected to differentiate to antibody-producing plasma cells. Our research shows that the mechanism by which B cells capture Ag affects GC dynamics and GC output with respect to B-cell receptor kinetics. Notably, in a mechanism where rupture of CC-FDC bonds is possible during Ag extraction, B-cell clones with low dissociation rates outcompete clones with high association rates over time. Understanding how B cells get selected in germinal centres could help to develop an optimised and effective immune response against a disease through vaccination for a fast-operating and long-lasting immune response.
Collapse
|
15
|
Cook JD, Khondker A, Lee JE. Conformational plasticity of the HIV-1 gp41 immunodominant region is recognized by multiple non-neutralizing antibodies. Commun Biol 2022; 5:291. [PMID: 35361878 PMCID: PMC8971491 DOI: 10.1038/s42003-022-03235-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/08/2022] [Indexed: 12/17/2022] Open
Abstract
The early humoral immune response to acute HIV-1 infection is largely non-neutralizing. The principal target of these antibodies is the primary immunodominant region (PID) on the gp41 fusion protein. The PID is a highly conserved 15-residue region displayed on the surface of HIV-1 virions. In this study, we analyzed the humoral determinants of HIV-1 gp41 PID binding using biophysical, structural, and computational methods. In complex with a patient-derived near-germline antibody fragment, the PID motif adopts an elongated random coil, whereas the PID bound to affinity-matured Fab adopts a strand-turn-helix conformation. Molecular dynamics simulations showed that the PID is structurally plastic suggesting that the PID can form an ensemble of structural states recognized by various non-neutralizing antibodies, facilitating HIV-1 immunodominance observed in acute and chronic HIV-1 infections. An improved understanding of how the HIV-1 gp41 PID misdirects the early humoral response should guide the development of an effective HIV-1 vaccine. The 15-amino-acid primary immunodominant (PID) region on HIV-1 gp41 adopts an ensemble of conformational states. This conformational plasticity is suggested to misdirect the early humoral immune response.
Collapse
Affiliation(s)
- Jonathan D Cook
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Adree Khondker
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jeffrey E Lee
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
16
|
DeLaitsch AT, Pridgen JR, Tytla A, Peach ML, Hu R, Farnsworth DW, McMillan AK, Flanagan N, Temme JS, Nicklaus MC, Gildersleeve JC. Selective Recognition of Carbohydrate Antigens by Germline Antibodies Isolated from AID Knockout Mice. J Am Chem Soc 2022; 144:4925-4941. [PMID: 35282679 PMCID: PMC10506689 DOI: 10.1021/jacs.1c12745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Germline antibodies, the initial set of antibodies produced by the immune system, are critical for host defense, and information about their binding properties can be useful for designing vaccines, understanding the origins of autoantibodies, and developing monoclonal antibodies. Numerous studies have found that germline antibodies are polyreactive with malleable, flexible binding pockets. While insightful, it remains unclear how broadly this model applies, as there are many families of antibodies that have not yet been studied. In addition, the methods used to obtain germline antibodies typically rely on assumptions and do not work well for many antibodies. Herein, we present a distinct approach for isolating germline antibodies that involves immunizing activation-induced cytidine deaminase (AID) knockout mice. This strategy amplifies antigen-specific B cells, but somatic hypermutation does not occur because AID is absent. Using synthetic haptens, glycoproteins, and whole cells, we obtained germline antibodies to an assortment of clinically important tumor-associated carbohydrate antigens, including Lewis Y, the Tn antigen, sialyl Lewis C, and Lewis X (CD15/SSEA-1). Through glycan microarray profiling and cell binding, we demonstrate that all but one of these germline antibodies had high selectivity for their glycan targets. Using molecular dynamics simulations, we provide insights into the structural basis of glycan recognition. The results have important implications for designing carbohydrate-based vaccines, developing anti-glycan monoclonal antibodies, and understanding antibody evolution within the immune system.
Collapse
Affiliation(s)
- Andrew T DeLaitsch
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Jacey R Pridgen
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Avery Tytla
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Megan L Peach
- Basic Science Program, Chemical Biology Laboratory, Leidos Biomedical Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Rayleen Hu
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - David W Farnsworth
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Aislinn K McMillan
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Natalie Flanagan
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - J Sebastian Temme
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Marc C Nicklaus
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
17
|
Sepay N, Banerjee M, Islam R, Dey SP, Halder UC. Crystallography-based exploration of non-covalent interactions for the design and synthesis of coumarin for stronger protein binding. Phys Chem Chem Phys 2022; 24:6605-6615. [PMID: 35234237 DOI: 10.1039/d2cp00082b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein molecules are a good target for the inhibition or promotion of biological processes. Different methods like QSAR and molecular docking have been developed to accurately design small binder molecules for target proteins. An alternative model has been developed wherein a statistical method is used to find the propensity of different non-covalent interactions between small molecules and amino acid residues of the protein. The results give hints as to the choice of substituents required at the SM to strongly bind to a protein. In this case, 75 different types of proteins bound with coumarin derivatives have been investigated and the non-covalent interactions observed between the basic coumarin moiety and amino acids have been analyzed. Density functional theory (DFT) calculations were used to identify the electronic features of coumarin to understand the feasibility of the observed non-covalent interactions and to find appropriate groups that can modulate these interactions. The binding affinity towards a protein (β-lactoglobulin (BLG)) and the stability of the protein complex have been investigated through docking and molecular dynamics of 100 ns, respectively. The modeled compounds were synthesized and investigated with regards to their interactions with the model carrier protein. The thermodynamics of the interactions were also investigated and the binding is governed by the Le Chatelier principle.
Collapse
Affiliation(s)
- Nayim Sepay
- Department of Chemistry, Lady Brabourne College, Kolkata-700017, India.
| | - Manami Banerjee
- Department of Chemistry, Diamond Harbour Women's University, Sarisha-743368, India
| | - Rajibul Islam
- Department of Chemistry, Jadavpur University, Kolkata-700032, India
| | | | | |
Collapse
|
18
|
The role of cholesterol recognition (CARC/CRAC) mirror codes in the allosterism of the human organic cation transporter 2 (OCT2, SLC22A2). Biochem Pharmacol 2021; 194:114840. [PMID: 34774844 DOI: 10.1016/j.bcp.2021.114840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/21/2022]
Abstract
The human organic cation transporter 2 (OCT2) is a multispecific transporter with cholesterol-dependent allosteric features. The present work elucidates the role of evolutionarily conserved cholesterol recognition/interaction amino acid consensus sequences (CRAC and CARC) in the allosteric binding to 1-methyl-4-phenylpyridinium (MPP+) in human embryonic kidney 293 cells stably or transiently expressing OCT2. Molecular blind simulations docked two mirroring cholesterol molecules in the 5th putative transmembrane domain, where a CARC and a CRAC sequence lie. The impact of the conserved amino acids that may constitute the CARC/CRAC mirror code was studied by alanine-scanning mutagenesis. At a saturating extracellular concentration of substrate, at which the impact of cholesterol depletion is maximal, five mutants transported MPP+ at a significantly lower rate than the wild-type OCT2 (WT), resembling the behavior of the WT upon cholesterol depletion. MPP+ influx rate as a function of the extracellular concentration of substrate was measured for the mutants R234A, R235A, L252A and R263A. R234A kinetic behavior was similar to that of the WT, whereas R235A, L252A and R263A activity shifted from allosteric to one-binding site kinetics, very much like the WT upon cholesterol depletion. The impact of cholesterol on protein thermal stability was assessed for WT, R234A and R263A. While the thermal stability of WT and R234A was improved by the supplementation with cholesterol, R263A was not sensitive to the presence of cholesterol. To conclude, the disruption of the CARC/CRAC mirror code in the 5th putative transmembrane domain is sufficient to abolish the allosteric interaction between OCT2 and MPP+.
Collapse
|
19
|
Ikeuchi E, Kuroda D, Nakakido M, Murakami A, Tsumoto K. Delicate balance among thermal stability, binding affinity, and conformational space explored by single-domain V HH antibodies. Sci Rep 2021; 11:20624. [PMID: 34663870 PMCID: PMC8523659 DOI: 10.1038/s41598-021-98977-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 09/08/2021] [Indexed: 11/29/2022] Open
Abstract
The high binding affinities and specificities of antibodies have led to their use as drugs and biosensors. Single-domain VHH antibodies exhibit high specificity and affinity but have higher stability and solubility than conventional antibodies as they are single-domain proteins. In this work, based on physicochemical measurements and molecular dynamics (MD) simulations, we have gained insight that will facilitate rational design of single-chain VHH antibodies. We first assessed two homologous VHH antibodies by differential scanning calorimetry (DSC); one had a high (64.8 °C) and the other a low (58.6 °C) melting temperature. We then generated a series of the variants of the low stability antibody and analyzed their thermal stabilities by DSC and characterized their structures through MD simulations. We found that a single mutation that resulted in 8.2 °C improvement in melting temperature resulted in binding affinity an order of magnitude lower than the parent antibody, likely due to a shift of conformational space explored by the single-chain VHH antibody. These results suggest that the delicate balance among conformational stability, binding capability, and conformational space explored by antibodies must be considered in design of fully functional single-chain VHH antibodies.
Collapse
Affiliation(s)
- Emina Ikeuchi
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan.,Panasonic Corporation Technology Division, Kyoto, 619-0237, Japan
| | - Daisuke Kuroda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan.,Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan.,Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Makoto Nakakido
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan.,Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Akikazu Murakami
- Department of Parasitology and Immunopathoetiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan. .,Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan. .,Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan. .,Laboratory of Medical Proteomics, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
20
|
Antanasijevic A, Sewall LM, Cottrell CA, Carnathan DG, Jimenez LE, Ngo JT, Silverman JB, Groschel B, Georgeson E, Bhiman J, Bastidas R, LaBranche C, Allen JD, Copps J, Perrett HR, Rantalainen K, Cannac F, Yang YR, de la Peña AT, Rocha RF, Berndsen ZT, Baker D, King NP, Sanders RW, Moore JP, Crotty S, Crispin M, Montefiori DC, Burton DR, Schief WR, Silvestri G, Ward AB. Polyclonal antibody responses to HIV Env immunogens resolved using cryoEM. Nat Commun 2021; 12:4817. [PMID: 34376662 PMCID: PMC8355326 DOI: 10.1038/s41467-021-25087-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/23/2021] [Indexed: 11/08/2022] Open
Abstract
Engineered ectodomain trimer immunogens based on BG505 envelope glycoprotein are widely utilized as components of HIV vaccine development platforms. In this study, we used rhesus macaques to evaluate the immunogenicity of several stabilized BG505 SOSIP constructs both as free trimers and presented on a nanoparticle. We applied a cryoEM-based method for high-resolution mapping of polyclonal antibody responses elicited in immunized animals (cryoEMPEM). Mutational analysis coupled with neutralization assays were used to probe the neutralization potential at each epitope. We demonstrate that cryoEMPEM data can be used for rapid, high-resolution analysis of polyclonal antibody responses without the need for monoclonal antibody isolation. This approach allowed to resolve structurally distinct classes of antibodies that bind overlapping sites. In addition to comprehensive mapping of commonly targeted neutralizing and non-neutralizing epitopes in BG505 SOSIP immunogens, our analysis revealed that epitopes comprising engineered stabilizing mutations and of partially occupied glycosylation sites can be immunogenic.
Collapse
Affiliation(s)
- Aleksandar Antanasijevic
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Leigh M Sewall
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Christopher A Cottrell
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Diane G Carnathan
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Luis E Jimenez
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Julia T Ngo
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Jennifer B Silverman
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Bettina Groschel
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Erik Georgeson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jinal Bhiman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Raiza Bastidas
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Jeffrey Copps
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Hailee R Perrett
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Kimmo Rantalainen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Fabien Cannac
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Yuhe R Yang
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Alba Torrents de la Peña
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Rebeca Froes Rocha
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Zachary T Berndsen
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - David Baker
- Institute for Protein Design, Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Neil P King
- Institute for Protein Design, Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rogier W Sanders
- Academic Medical Center (AMC), University of Amsterdam, Amsterdam, Netherlands
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - John P Moore
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Shane Crotty
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | | | - Dennis R Burton
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - William R Schief
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Andrew B Ward
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
21
|
Vora J, Athar M, Sinha S, Jha PC, Shrivastava N. Binding Insight of Anti-HIV Phytocompounds with Prime Targets of HIV: A Molecular Dynamics Simulation Analysis. Curr HIV Res 2021; 18:132-141. [PMID: 31995010 DOI: 10.2174/1570162x18666200129112509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/27/2019] [Accepted: 01/09/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Despite intense efforts, AIDS is difficult to tackle by current anti-retroviral therapy (ART) due to its side effects; therefore, there is an urgent need to discover potential, multitarget and low-cost anti-HIV compounds. OBJECTIVE We have shown that few phytocompounds can potentially inhibit the prime targets of HIV namely GP120 envelope protein, reverse transcriptase, protease, integrase and ribonulcease. In this study, top ranked prioritized compounds were subjected to Molecular Dynamics (MD) simulation in order to study the conformational dynamics and integrity of crucial interaction in the receptor sites. METHODS The system was built for selected protein-ligand complex using TIP3P water model and OPLS_2005 force field. Trajectories were recorded up to 20 ns simulation time in Desmond module of Schrödinger software. RESULTS As a result of a comprehensive analysis of molecular properties and dynamics of the complexes, it has been concluded that Chebulic acid, Curcumin and Mulberroside C could be developed as envelope glycoprotein GP120 inhibitor, reverse transcriptase inhibitor and protease inhibitor respectively. However, the fluctuation of Chebulic acid with respect to integrase and ribonuclease protein was higher during the simulation. CONCLUSION These findings can aid in the designing of the structural properties for more effective anti-HIV compounds against the given targets.
Collapse
Affiliation(s)
- Jaykant Vora
- B.V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India.,Department of Life Science, Gujarat University, Ahmedabad, Gujarat; India
| | - Mohd Athar
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, India
| | - Sonam Sinha
- B.V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India.,Department of Life Science, Gujarat University, Ahmedabad, Gujarat; India
| | - Prakash C Jha
- Centre for Applied Chemistry, Central University of Gujarat, Gandhinagar, India
| | - Neeta Shrivastava
- B.V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India
| |
Collapse
|
22
|
Fernández-Quintero ML, Georges G, Varga JM, Liedl KR. Ensembles in solution as a new paradigm for antibody structure prediction and design. MAbs 2021; 13:1923122. [PMID: 34030577 PMCID: PMC8158028 DOI: 10.1080/19420862.2021.1923122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The rise of antibodies as a promising and rapidly growing class of biotherapeutic proteins has motivated numerous studies to characterize and understand antibody structures. In the past decades, the number of antibody crystal structures increased substantially, which revolutionized the atomistic understanding of antibody functions. Even though numerous static structures are known, various biophysical properties of antibodies (i.e., specificity, hydrophobicity and stability) are governed by their dynamic character. Additionally, the importance of high-quality structures in structure–function relationship studies has substantially increased. These structure–function relationship studies have also created a demand for precise homology models of antibody structures, which allow rational antibody design and engineering when no crystal structure is available. Here, we discuss various aspects and challenges in antibody design and extend the paradigm of describing antibodies with only a single static structure to characterizing them as dynamic ensembles in solution.
Collapse
Affiliation(s)
- Monica L Fernández-Quintero
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Guy Georges
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Janos M Varga
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Klaus R Liedl
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
23
|
Schulz S, Boyer S, Smerlak M, Cocco S, Monasson R, Nizak C, Rivoire O. Parameters and determinants of responses to selection in antibody libraries. PLoS Comput Biol 2021; 17:e1008751. [PMID: 33765014 PMCID: PMC7993935 DOI: 10.1371/journal.pcbi.1008751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 01/31/2021] [Indexed: 12/01/2022] Open
Abstract
The sequences of antibodies from a given repertoire are highly diverse at few sites located on the surface of a genome-encoded larger scaffold. The scaffold is often considered to play a lesser role than highly diverse, non-genome-encoded sites in controlling binding affinity and specificity. To gauge the impact of the scaffold, we carried out quantitative phage display experiments where we compare the response to selection for binding to four different targets of three different antibody libraries based on distinct scaffolds but harboring the same diversity at randomized sites. We first show that the response to selection of an antibody library may be captured by two measurable parameters. Second, we provide evidence that one of these parameters is determined by the degree of affinity maturation of the scaffold, affinity maturation being the process by which antibodies accumulate somatic mutations to evolve towards higher affinities during the natural immune response. In all cases, we find that libraries of antibodies built around maturated scaffolds have a lower response to selection to other arbitrary targets than libraries built around germline-based scaffolds. We thus propose that germline-encoded scaffolds have a higher selective potential than maturated ones as a consequence of a selection for this potential over the long-term evolution of germline antibody genes. Our results are a first step towards quantifying the evolutionary potential of biomolecules. Antibodies in the immune system consist of a genetically encoded scaffold that exposes a few highly diverse, non-genetically encoded sites. This focused diversity is sufficient to produce antibodies that bind to any target molecule. To understand the role of the scaffold, which acquires hypermutations during the immune response, over the selective response, we analyze quantitative in vitro experiments where large antibody populations based on different scaffolds are selected against different targets. We show that selective responses are described statistically by two parameters, one of which depends on prior evolution of the scaffold as part of a previous response. Our work provides methods to assay whether naïve antibody scaffolds are endowed with a distinctively high selective potential.
Collapse
Affiliation(s)
- Steven Schulz
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Paris, France
| | - Sébastien Boyer
- Département de biochimie, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Matteo Smerlak
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
| | - Simona Cocco
- Laboratory of Physics of École Normale Supérieure, UMR 8023, CNRS & PSL University, Paris, France
| | - Rémi Monasson
- Laboratory of Physics of École Normale Supérieure, UMR 8023, CNRS & PSL University, Paris, France
| | - Clément Nizak
- Laboratory of Biochemistry, CBI, UMR 8231, ESPCI Paris, PSL University, CNRS, Paris, France
- * E-mail: (CN); (OR)
| | - Olivier Rivoire
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Paris, France
- * E-mail: (CN); (OR)
| |
Collapse
|
24
|
Pathak JA, Nugent S, Bender MF, Roberts CJ, Curtis RJ, Douglas JF. Comparison of Huggins Coefficients and Osmotic Second Virial Coefficients of Buffered Solutions of Monoclonal Antibodies. Polymers (Basel) 2021; 13:601. [PMID: 33671342 PMCID: PMC7922252 DOI: 10.3390/polym13040601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/08/2023] Open
Abstract
The Huggins coefficient kH is a well-known metric for quantifying the increase in solution viscosity arising from intermolecular interactions in relatively dilute macromolecular solutions, and there has been much interest in this solution property in connection with developing improved antibody therapeutics. While numerous kH measurements have been reported for select monoclonal antibodies (mAbs) solutions, there has been limited study of kH in terms of the fundamental molecular interactions that determine this property. In this paper, we compare measurements of the osmotic second virial coefficient B22, a common metric of intermolecular and interparticle interaction strength, to measurements of kH for model antibody solutions. This comparison is motivated by the seminal work of Russel for hard sphere particles having a short-range "sticky" interparticle interaction, and we also compare our data with known results for uncharged flexible polymers having variable excluded volume interactions because proteins are polypeptide chains. Our observations indicate that neither the adhesive hard sphere model, a common colloidal model of globular proteins, nor the familiar uncharged flexible polymer model, an excellent model of intrinsically disordered proteins, describes the dependence of kH of these antibodies on B22. Clearly, an improved understanding of protein and ion solvation by water as well as dipole-dipole and charge-dipole effects is required to understand the significance of kH from the standpoint of fundamental protein-protein interactions. Despite shortcomings in our theoretical understanding of kH for antibody solutions, this quantity provides a useful practical measure of the strength of interprotein interactions at elevated protein concentrations that is of direct significance for the development of antibody formulations that minimize the solution viscosity.
Collapse
Affiliation(s)
- Jai A. Pathak
- Vaccine Production Program (VPP), Vaccine Research Center (VRC), Formulation and Stabilization Sciences Department, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 9 W. Watkins Mill Rd., Gaithersburg, MD 20878, USA; (J.A.P.); (S.N.); (M.B.)
| | - Sean Nugent
- Vaccine Production Program (VPP), Vaccine Research Center (VRC), Formulation and Stabilization Sciences Department, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 9 W. Watkins Mill Rd., Gaithersburg, MD 20878, USA; (J.A.P.); (S.N.); (M.B.)
| | - Michael F. Bender
- Vaccine Production Program (VPP), Vaccine Research Center (VRC), Formulation and Stabilization Sciences Department, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 9 W. Watkins Mill Rd., Gaithersburg, MD 20878, USA; (J.A.P.); (S.N.); (M.B.)
| | - Christopher J. Roberts
- Colburn Laboratory, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA;
| | - Robin J. Curtis
- Department of Chemical Engineering and Analytical Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK;
| | - Jack F. Douglas
- Materials Science and Engineering Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8544, USA
| |
Collapse
|
25
|
Xu J, Peng G, Xu J, Li Y, Tong L, Yang D. Probing of the plasticity of the active site in pinene synthase elucidates its potential evolutionary mechanism. PHYTOCHEMISTRY 2021; 181:112573. [PMID: 33142148 DOI: 10.1016/j.phytochem.2020.112573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Terpenes form a class of highly diverse natural products. The diversity of terpenes is created by terpene synthases. During the reaction, carbocation intermediates form and their rearrangement could lead to the formation of various products. Terpene synthases determine the final product profile by controlling the conformation of the intermediate or stabilizing the carbocation. Pinene synthase is a monoterpene synthase catalyzing the cyclization of geranyl pyrophosphate (GPP) to form pinene. Our study suggests that by mutating the aromatic residue F482 to Ala, Val, Ile and Thr, the enzyme can be converted to sabinene synthase, with more than 90% of its total terpene products becoming sabinene, which indicates the aromaticity of this residue is essential for stabilizing the pinyl carbocation. We also identified a mutation S491A that could cause an about 29% increase in the overall activity of the enzyme without altering its produce selectivity. Molecular dynamic simulation indicates this mutation could decrease the flexibility of the enzyme when it forms a complex with the pinyl carbocation. Our study suggests the active pocket of pinene synthase has a certain level of plasticity, making it relatively easy to change the product selectivity or overall activity. This property could have an important implication in the evolution of terpene synthases and thereby terpene diversity, as by changing a few residues an enzyme could synthesize a completely different terpene product in a significant amount, which allows selection to take place.
Collapse
Affiliation(s)
- Jingwei Xu
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Guanzu Peng
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jinkun Xu
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yi Li
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Li Tong
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Dong Yang
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
26
|
Fernández-Quintero ML, Kroell KB, Heiss MC, Loeffler JR, Quoika PK, Waibl F, Bujotzek A, Moessner E, Georges G, Liedl KR. Surprisingly Fast Interface and Elbow Angle Dynamics of Antigen-Binding Fragments. Front Mol Biosci 2020; 7:609088. [PMID: 33330636 PMCID: PMC7732698 DOI: 10.3389/fmolb.2020.609088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Fab consist of a heavy and light chain and can be subdivided into a variable (V H and V L ) and a constant region (C H 1 and C L ). The variable region contains the complementarity-determining region (CDR), which is formed by six hypervariable loops, shaping the antigen binding site, the paratope. Apart from the CDR loops, both the elbow angle and the relative interdomain orientations of the V H -V L and the C H 1-C L domains influence the shape of the paratope. Thus, characterization of the interface and elbow angle dynamics is essential to antigen specificity. We studied nine antigen-binding fragments (Fab) to investigate the influence of affinity maturation, antibody humanization, and different light-chain types on the interface and elbow angle dynamics. While the CDR loops reveal conformational transitions in the micro-to-millisecond timescale, both the interface and elbow angle dynamics occur on the low nanosecond timescale. Upon affinity maturation, we observe a substantial rigidification of the V H and V L interdomain and elbow-angle flexibility, reflected in a narrower and more distinct distribution. Antibody humanization describes the process of grafting non-human CDR loops onto a representative human framework. As the antibody framework changes upon humanization, we investigated if both the interface and the elbow angle distributions are changed or shifted. The results clearly showed a substantial shift in the relative V H -V L distributions upon antibody humanization, indicating that different frameworks favor distinct interface orientations. Additionally, the interface and elbow angle dynamics of five antibody fragments with different light-chain types are included, because of their strong differences in elbow angles. For these five examples, we clearly see a high variability and flexibility in both interface and elbow angle dynamics, highlighting the fact that Fab interface orientations and elbow angles interconvert between each other in the low nanosecond timescale. Understanding how the relative interdomain orientations and the elbow angle influence antigen specificity, affinity, and stability has broad implications in the field of antibody modeling and engineering.
Collapse
Affiliation(s)
- Monica L. Fernández-Quintero
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Katharina B. Kroell
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Martin C. Heiss
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Johannes R. Loeffler
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Patrick K. Quoika
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Franz Waibl
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Alexander Bujotzek
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Ekkehard Moessner
- Roche Pharma Research and Early Development, Large Molecular Research, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Guy Georges
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Klaus R. Liedl
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
27
|
Gupta M, Ha K, Agarwal R, Quarles LD, Smith JC. Molecular dynamics analysis of the binding of human interleukin-6 with interleukin-6 α-receptor. Proteins 2020; 89:163-173. [PMID: 32881084 DOI: 10.1002/prot.26002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/26/2020] [Accepted: 08/25/2020] [Indexed: 11/07/2022]
Abstract
Human interleukin-6 (hIL-6) is a multifunctional cytokine that regulates immune and inflammatory responses in addition to metabolic and regenerative processes and cancer. hIL-6 binding to the IL-6 receptor (IL-6Rα) induces homodimerization and recruitment of the glycoprotein (gp130) to form a hexameric signaling complex. Anti-IL-6 and IL-6R antibodies are clinically approved inhibitors of IL-6 signaling pathway for treating rheumatoid arthritis and Castleman's disease, respectively. There is a potential to develop novel small molecule IL-6 antagonists derived from understanding the structural basis for IL-6/IL-6Rα interactions. Here, we combine homology modeling with extensive molecular dynamics (MD) simulations to examine the association of hIL-6 with IL-6Rα. A comparison with MD of apo hIL-6 reveals that the binding of hIL-6 to IL-6Rα induces structural and dynamic rearrangements in the AB loop region of hIL-6, disrupting intraprotein contacts and increasing the flexibility of residues 48 to 58 of the AB loop. In contrast, due to the involvement of residues 59 to 78 in forming contacts with the receptor, these residues of the AB loop are observed to rigidify in the presence of the receptor. The binary complex is primarily stabilized by two pairs of salt bridges, Arg181 (hIL-6)- Glu182 (IL-6Rα) and Arg184 (hIL-6)- Glu183 (IL-6Rα) as well as hydrophobic and aromatic stacking interactions mediated essentially by Phe residues in both proteins. An interplay of electrostatic, hydrophobic, hydrogen bonding, and aromatic stacking interactions facilitates the formation of the hIL-6/IL-6Rα complex.
Collapse
Affiliation(s)
- Madhulika Gupta
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Lab, Oak Ridge, Tennessee, USA
| | - Khanh Ha
- Tickle College of Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Rupesh Agarwal
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Lab, Oak Ridge, Tennessee, USA
| | - Leigh Darryl Quarles
- Division of Nephrology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Lab, Oak Ridge, Tennessee, USA
| |
Collapse
|
28
|
Zhan HQ, Najmi M, Lin K, Aluri S, Fiser A, Goldman ID, Zhao R. A proton-coupled folate transporter mutation causing hereditary folate malabsorption locks the protein in an inward-open conformation. J Biol Chem 2020; 295:15650-15661. [PMID: 32893190 DOI: 10.1074/jbc.ra120.014757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/26/2020] [Indexed: 11/06/2022] Open
Abstract
The proton-coupled folate transporter (PCFT, SLC46A1) is required for folate intestinal absorption and transport across the choroid plexus. Recent work has identified a F392V mutation causing hereditary folate malabsorption. However, the residue properties responsible for this loss of function remains unknown. Using site-directed mutagenesis, we observed complete loss of function with charged (Lys, Asp, and Glu) and polar (Thr, Ser, and Gln) Phe-392 substitutions and minimal function with some neutral substitutions; however, F392M retained full function. Using the substituted-cysteine accessibility method (with N-biotinyl aminoethyl methanethiosulfonate labeling), Phe-392 mutations causing loss of function, although preserving membrane expression and trafficking, also resulted in loss of accessibility of the substituted cysteine in P314C-PCFT located within the aqueous translocation pathway. F392V function and accessibility of the P314C cysteine were restored by insertion of a G305L (suppressor) mutation. A S196L mutation localized in proximity to Gly-305 by homology modeling was inactive. However, when inserted into the inactive F392V scaffold, function was restored (mutually compensatory mutations), as was accessibility of the P314C cysteine residue. Reduced function, documented with F392H PCFT, was due to a 15-fold decrease in methotrexate influx V max, accompanied by a decreased influx Kt (4.5-fold) and Ki (3-fold). The data indicate that Phe-392 is required for rapid oscillation of the carrier among its conformational states and suggest that this is achieved by dampening affinity of the protein for its folate substrates. F392V and other inactivating Phe-392 PCFT mutations lock the protein in its inward-open conformation. Reach (length) and hydrophobicity of Phe-392 appear to be features required for full activity.
Collapse
Affiliation(s)
- He-Qin Zhan
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Mitra Najmi
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kai Lin
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA; Air Force Medical Center, People's Liberation Army, Beijing, China
| | - Srinivas Aluri
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - I David Goldman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.
| | - Rongbao Zhao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
29
|
Fernández-Quintero ML, Loeffler JR, Bacher LM, Waibl F, Seidler CA, Liedl KR. Local and Global Rigidification Upon Antibody Affinity Maturation. Front Mol Biosci 2020; 7:182. [PMID: 32850970 PMCID: PMC7426445 DOI: 10.3389/fmolb.2020.00182] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/13/2020] [Indexed: 01/03/2023] Open
Abstract
During the affinity maturation process the immune system produces antibodies with higher specificity and activity through various rounds of somatic hypermutations in response to an antigen. Elucidating the affinity maturation process is fundamental in understanding immunity and in the development of biotherapeutics. Therefore, we analyzed 10 pairs of antibody fragments differing in their specificity and in distinct stages of affinity maturation using metadynamics in combination with molecular dynamics (MD) simulations. We investigated differences in flexibility of the CDR-H3 loop and global changes in plasticity upon affinity maturation. Among all antibody pairs we observed a substantial rigidification in flexibility and plasticity reflected in a substantial decrease of conformational diversity. To visualize and characterize these findings we used Markov-states models to reconstruct the kinetics of CDR-H3 loop dynamics and for the first time provide a method to define and localize surface plasticity upon affinity maturation.
Collapse
Affiliation(s)
| | | | | | | | | | - Klaus R. Liedl
- Center for Molecular Biosciences Innsbruck, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
30
|
Esswein SR, Gristick HB, Jurado A, Peace A, Keeffe JR, Lee YE, Voll AV, Saeed M, Nussenzweig MC, Rice CM, Robbiani DF, MacDonald MR, Bjorkman PJ. Structural basis for Zika envelope domain III recognition by a germline version of a recurrent neutralizing antibody. Proc Natl Acad Sci U S A 2020; 117:9865-9875. [PMID: 32321830 PMCID: PMC7211955 DOI: 10.1073/pnas.1919269117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Recent epidemics demonstrate the global threat of Zika virus (ZIKV), a flavivirus transmitted by mosquitoes. Although infection is usually asymptomatic or mild, newborns of infected mothers can display severe symptoms, including neurodevelopmental abnormalities and microcephaly. Given the large-scale spread, symptom severity, and lack of treatment or prophylaxis, a safe and effective ZIKV vaccine is urgently needed. However, vaccine design is complicated by concern that elicited antibodies (Abs) may cross-react with other flaviviruses that share a similar envelope protein, such as dengue virus, West Nile virus, and yellow fever virus. This cross-reactivity may worsen symptoms of a subsequent infection through Ab-dependent enhancement. To better understand the neutralizing Ab response and risk of Ab-dependent enhancement, further information on germline Ab binding to ZIKV and the maturation process that gives rise to potently neutralizing Abs is needed. Here we use binding and structural studies to compare mature and inferred-germline Ab binding to envelope protein domain III of ZIKV and other flaviviruses. We show that affinity maturation of the light-chain variable domain is important for strong binding of the recurrent VH3-23/VK1-5 neutralizing Abs to ZIKV envelope protein domain III, and identify interacting residues that contribute to weak, cross-reactive binding to West Nile virus. These findings provide insight into the affinity maturation process and potential cross-reactivity of VH3-23/VK1-5 neutralizing Abs, informing precautions for protein-based vaccines designed to elicit germline versions of neutralizing Abs.
Collapse
Affiliation(s)
- Shannon R Esswein
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Harry B Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Andrea Jurado
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Avery Peace
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Yu E Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Alisa V Voll
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Mohsan Saeed
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Davide F Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125;
| |
Collapse
|
31
|
Kadonosono T, Kizaka-Kondoh S. [Semi-rational Design of Target-binding Small Proteins for Cancer Treatment]. YAKUGAKU ZASSHI 2020; 140:159-162. [PMID: 32009038 DOI: 10.1248/yakushi.19-00187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Small proteins that have a high affinity for cancer cell surface markers can be promising cheap alternatives to antibodies (antibody mimetics). Various types of antibody mimetics have thus been extensively developed. We recently found that a target-binding peptide binds to its target molecule more strongly when it is structurally constrained. To apply this finding to the development of chemically synthesizable small antibody mimetics, we have established an efficient method of creating such proteins, named fluctuation-regulated affinity proteins (FLAPs). To identify desirable scaffolds, first, 13 human proteins (46-104 aa) were selected from the Protein Data Bank. Then, thirteen graft acceptor (GA) sites that efficiently immobilize the grafted peptide structure were identified from six small protein scaffolds using molecular dynamics simulation. To assess the designed antibody mimetics in vitro, human epidermal growth factor receptor 2 (HER2)-binding peptides were selected from the anti-HER2 antibody drugs trastuzumab and pertuzumab by calculating the binding energy, and these were then grafted into the GA sites of scaffolds to create 65 FLAP candidates. The FLAP candidates were expressed in bacteria as fusion proteins with Renilla luciferase (Rluc), and their relative binding affinity to HER2 was easily determined by measuring the Rluc bioluminescence intensity without protein purification. Finally, four out of the 65 showed specific binding to HER2 with a dissociation constant (KD) of 24-65 nM, and these were used for the detection of HER2-expressing cancer cells. Our design strategy will promote the development of antibody mimetics for the effective treatment of cancers and other diseases.
Collapse
|
32
|
Kadonosono T, Yimchuen W, Ota Y, See K, Furuta T, Shiozawa T, Kitazawa M, Goto Y, Patil A, Kuchimaru T, Kizaka-Kondoh S. Design Strategy to Create Antibody Mimetics Harbouring Immobilised Complementarity Determining Region Peptides for Practical Use. Sci Rep 2020; 10:891. [PMID: 31964960 PMCID: PMC6972867 DOI: 10.1038/s41598-020-57713-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 01/06/2020] [Indexed: 01/25/2023] Open
Abstract
Monoclonal antibodies (mAbs) are attractive therapeutics for treating a wide range of human disorders, and bind to the antigen through their complementarity-determining regions (CDRs). Small stable proteins containing structurally retained CDRs are promising alternatives to mAbs. In this report, we present a method to create such proteins, named fluctuation-regulated affinity proteins (FLAPs). Thirteen graft acceptor (GA) sites that efficiently immobilise the grafted peptide structure were initially selected from six small protein scaffolds by computational identification. Five CDR peptides extracted by binding energy calculations from mAbs against breast cancer marker human epithelial growth factor receptor type 2 (HER2) were then grafted to the selected scaffolds. The combination of five CDR peptides and 13 GA sites in six scaffolds revealed that three of the 65 combinations showed specific binding to HER2 with dissociation constants (KD) of 270–350 nM in biolayer interferometry and 24–65 nM in ELISA. The FLAPs specifically detected HER2-overexpressing cancer cells. Thus, the present strategy is a promising and practical method for developing small antibody mimetics.
Collapse
Affiliation(s)
- Tetsuya Kadonosono
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Wanaporn Yimchuen
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Yumi Ota
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Kyra See
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Tadaomi Furuta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Tadashi Shiozawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Maika Kitazawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Yu Goto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Akash Patil
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Takahiro Kuchimaru
- Center for Molecular Medicine, Jichi Medical University, Shimotsuke, 329-0498, Japan
| | - Shinae Kizaka-Kondoh
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| |
Collapse
|
33
|
Bjorkman PJ. Can we use structural knowledge to design a protective vaccine against HIV-1? HLA 2019; 95:95-103. [PMID: 31721469 DOI: 10.1111/tan.13759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/08/2019] [Indexed: 11/30/2022]
Abstract
Human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) remains one of the most important current threats to global public health. Since its identification in the early 1980s, at least 75 million people have been infected with HIV-1, the virus that causes AIDS. Although antiretroviral drugs are effective at prolonging life after infection in the developed world, they are associated with significant side effects and are not in widespread use in the developing world. The best way to control the AIDS epidemic would be a vaccine that protects against infection by HIV-1. Most vaccines work by inducing antibodies in serum or mucosa that block infection or prevent invasion of the bloodstream. Here, I describe background related to my laboratory's attempts to develop an immunogen that would elicit protective antibodies against HIV-1.
Collapse
Affiliation(s)
- Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| |
Collapse
|
34
|
Shehata L, Maurer DP, Wec AZ, Lilov A, Champney E, Sun T, Archambault K, Burnina I, Lynaugh H, Zhi X, Xu Y, Walker LM. Affinity Maturation Enhances Antibody Specificity but Compromises Conformational Stability. Cell Rep 2019; 28:3300-3308.e4. [PMID: 31553901 DOI: 10.1016/j.celrep.2019.08.056] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/04/2019] [Accepted: 08/16/2019] [Indexed: 11/16/2022] Open
Abstract
Monoclonal antibodies (mAbs) have recently emerged as one of the most promising classes of biotherapeutics. A potential advantage of B cell-derived mAbs as therapeutic agents is that they have been subjected to natural filtering mechanisms, which may enrich for B cell receptors (BCRs) with favorable biophysical properties. Here, we evaluated 400 human mAbs for polyreactivity, hydrophobicity, and thermal stability using high-throughput screening assays. Overall, mAbs derived from memory B cells and long-lived plasma cells (LLPCs) display reduced levels of polyreactivity, hydrophobicity, and thermal stability compared with naive B cell-derived mAbs. Somatic hypermutation (SHM) is inversely associated with all three biophysical properties, as well as BCR expression levels. Finally, the developability profiles of the human B cell-derived mAbs are comparable with those observed for clinical mAbs, suggesting their high therapeutic potential. The results provide insight into the biophysical consequences of affinity maturation and have implications for therapeutic antibody engineering and development.
Collapse
|
35
|
Mobaraki N, Hemmateenejad B, Weikl TR, Sakhteman A. On the relationship between docking scores and protein conformational changes in HIV-1 protease. J Mol Graph Model 2019; 91:186-193. [DOI: 10.1016/j.jmgm.2019.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 11/25/2022]
|
36
|
Yamashita T. Toward rational antibody design: recent advancements in molecular dynamics simulations. Int Immunol 2019; 30:133-140. [PMID: 29346652 DOI: 10.1093/intimm/dxx077] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 01/11/2018] [Indexed: 01/02/2023] Open
Abstract
Because antibodies have become an important therapeutic tool, rational antibody design is a challenging issue involving various science and technology fields. From the computational aspect, many types of design-assist methods have been developed, but their accuracy is not fully satisfactory. Because of recent advancements in computational power, molecular dynamics (MD) simulation has become a helpful tool to trace the motion of proteins and to characterize their properties. Thus, MD simulation has been applied to various systems involving antigen-antibody complexes and has been shown to provide accurate insight into antigen-antibody interactions and dynamics at an atomic resolution. Therefore, it is highly possible that MD simulation will play several roles complementing the conventional antibody design. In this review, we address several important features of MD simulation in the context of rational antibody design.
Collapse
Affiliation(s)
- Takefumi Yamashita
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Japan
| |
Collapse
|
37
|
Abstract
Immunoglobulin (Ig) molecules are composed of Fab and Fc portions tethered by a hinge region that enables them to rotate and flex, relative to each other. Variable (V) and constant (C) domains of the Fab are connected by a flexible elbow region that is responsible for the movements of the V and C heterodimers. Significant movements of Fc domains have also been documented. The Ig portion's rotational freedom greatly enhances its ability to react with antigens and cell receptors, often simultaneously. The antigen-combining site also displays a dynamic structure. The ability of its various parts to change position greatly facilitates their complexation with various antigenic compounds.
Collapse
Affiliation(s)
- Roald Nezlin
- Department of Immunology, The Weizmann Institute of Science , Rehovot , Israel
| |
Collapse
|
38
|
Abstract
At the molecular level biology is intrinsically noisy. The forces that regulate the myriad of molecular reactions in the cell are tiny, on the order of piconewtons (10−12 Newtons), yet they proceed in concerted action making life possible. Understanding how this is possible is one of the most fundamental questions biophysicists would like to understand. Single molecule experiments offer an opportunity to delve into the fundamental laws that make biological complexity surface in a physical world governed by the second law of thermodynamics. Techniques such as force spectroscopy, fluorescence, microfluidics, molecular sequencing, and computational studies project a view of the biomolecular world ruled by the conspiracy between the disorganizing forces due to thermal motion and the cosmic evolutionary drive. Here we will digress on some of the evidences in support of this view and the role of physical information in biology.
Collapse
|
39
|
Kundert K, Kortemme T. Computational design of structured loops for new protein functions. Biol Chem 2019; 400:275-288. [PMID: 30676995 PMCID: PMC6530579 DOI: 10.1515/hsz-2018-0348] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022]
Abstract
The ability to engineer the precise geometries, fine-tuned energetics and subtle dynamics that are characteristic of functional proteins is a major unsolved challenge in the field of computational protein design. In natural proteins, functional sites exhibiting these properties often feature structured loops. However, unlike the elements of secondary structures that comprise idealized protein folds, structured loops have been difficult to design computationally. Addressing this shortcoming in a general way is a necessary first step towards the routine design of protein function. In this perspective, we will describe the progress that has been made on this problem and discuss how recent advances in the field of loop structure prediction can be harnessed and applied to the inverse problem of computational loop design.
Collapse
Affiliation(s)
- Kale Kundert
- Graduate Group in Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Tanja Kortemme
- Graduate Group in Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, 499 Illinois St, San Francisco, CA 94158, USA
| |
Collapse
|
40
|
|
41
|
Fernández-Quintero ML, Loeffler JR, Kraml J, Kahler U, Kamenik AS, Liedl KR. Characterizing the Diversity of the CDR-H3 Loop Conformational Ensembles in Relationship to Antibody Binding Properties. Front Immunol 2019; 9:3065. [PMID: 30666252 PMCID: PMC6330313 DOI: 10.3389/fimmu.2018.03065] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/11/2018] [Indexed: 11/23/2022] Open
Abstract
We present an approach to assess antibody CDR-H3 loops according to their dynamic properties using molecular dynamics simulations. We selected six antibodies in three pairs differing substantially in their individual promiscuity respectively specificity. For two pairs of antibodies crystal structures are available in different states of maturation and used as starting structures for the analyses. For a third pair we chose two antibody CDR sequences obtained from a synthetic library and predicted the respective structures. For all three pairs of antibodies we performed metadynamics simulations to overcome the limitations in conformational sampling imposed by high energy barriers. Additionally, we used classic molecular dynamics simulations to describe nano- to microsecond flexibility and to estimate up to millisecond kinetics of captured conformational transitions. The methodology represents the antibodies as conformational ensembles and allows comprehensive analysis of structural diversity, thermodynamics of conformations and kinetics of structural transitions. Referring to the concept of conformational selection we investigated the link between promiscuity and flexibility of the antibodies' binding interfaces. The obtained detailed characterization of the binding interface clearly indicates a link between structural flexibility and binding promiscuity for this set of antibodies.
Collapse
Affiliation(s)
| | | | | | | | | | - Klaus R. Liedl
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
42
|
Riley TP, Baker BM. The intersection of affinity and specificity in the development and optimization of T cell receptor based therapeutics. Semin Cell Dev Biol 2018; 84:30-41. [DOI: 10.1016/j.semcdb.2017.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 10/07/2017] [Accepted: 10/17/2017] [Indexed: 12/29/2022]
|
43
|
Kang J, Brooks KV. Optimization of biolayer interferometer-based binding assay of the interaction between the Candida albicans protein Pra1 and complement protein C3. Mol Immunol 2018; 101:635-637. [DOI: 10.1016/j.molimm.2018.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/05/2018] [Indexed: 11/30/2022]
|
44
|
Jeliazkov JR, Sljoka A, Kuroda D, Tsuchimura N, Katoh N, Tsumoto K, Gray JJ. Repertoire Analysis of Antibody CDR-H3 Loops Suggests Affinity Maturation Does Not Typically Result in Rigidification. Front Immunol 2018; 9:413. [PMID: 29545810 PMCID: PMC5840193 DOI: 10.3389/fimmu.2018.00413] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/14/2018] [Indexed: 12/18/2022] Open
Abstract
Antibodies can rapidly evolve in specific response to antigens. Affinity maturation drives this evolution through cycles of mutation and selection leading to enhanced antibody specificity and affinity. Elucidating the biophysical mechanisms that underlie affinity maturation is fundamental to understanding B-cell immunity. An emergent hypothesis is that affinity maturation reduces the conformational flexibility of the antibody's antigen-binding paratope to minimize entropic losses incurred upon binding. In recent years, computational and experimental approaches have tested this hypothesis on a small number of antibodies, often observing a decrease in the flexibility of the complementarity determining region (CDR) loops that typically comprise the paratope and in particular the CDR-H3 loop, which contributes a plurality of antigen contacts. However, there were a few exceptions and previous studies were limited to a small handful of cases. Here, we determined the structural flexibility of the CDR-H3 loop for thousands of recent homology models of the human peripheral blood cell antibody repertoire using rigidity theory. We found no clear delineation in the flexibility of naïve and antigen-experienced antibodies. To account for possible sources of error, we additionally analyzed hundreds of human and mouse antibodies in the Protein Data Bank through both rigidity theory and B-factor analysis. By both metrics, we observed only a slight decrease in the CDR-H3 loop flexibility when comparing affinity matured antibodies to naïve antibodies, and the decrease was not as drastic as previously reported. Further analysis, incorporating molecular dynamics simulations, revealed a spectrum of changes in flexibility. Our results suggest that rigidification may be just one of many biophysical mechanisms for increasing affinity.
Collapse
Affiliation(s)
- Jeliazko R Jeliazkov
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, United States
| | - Adnan Sljoka
- Department of Informatics, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Daisuke Kuroda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.,Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Nobuyuki Tsuchimura
- Department of Informatics, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Naoki Katoh
- Department of Informatics, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.,Laboratory of Medical Proteomics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jeffrey J Gray
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, United States.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
45
|
Ovchinnikov V, Louveau JE, Barton JP, Karplus M, Chakraborty AK. Role of framework mutations and antibody flexibility in the evolution of broadly neutralizing antibodies. eLife 2018; 7:33038. [PMID: 29442996 PMCID: PMC5828663 DOI: 10.7554/elife.33038] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/13/2018] [Indexed: 01/13/2023] Open
Abstract
Eliciting antibodies that are cross reactive with surface proteins of diverse strains of highly mutable pathogens (e.g., HIV, influenza) could be key for developing effective universal vaccines. Mutations in the framework regions of such broadly neutralizing antibodies (bnAbs) have been reported to play a role in determining their properties. We used molecular dynamics simulations and models of affinity maturation to study specific bnAbs against HIV. Our results suggest that there are different classes of evolutionary lineages for the bnAbs. If germline B cells that initiate affinity maturation have high affinity for the conserved residues of the targeted epitope, framework mutations increase antibody rigidity as affinity maturation progresses to evolve bnAbs. If the germline B cells exhibit weak/moderate affinity for conserved residues, an initial increase in flexibility via framework mutations may be required for the evolution of bnAbs. Subsequent mutations that increase rigidity result in highly potent bnAbs. Implications of our results for immunogen design are discussed.
Collapse
Affiliation(s)
- Victor Ovchinnikov
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Joy E Louveau
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, United States
| | - John P Barton
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, United States.,Department of Physics, Massachusetts Institute of Technology, Cambridge, United States.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, United States.,Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
| | - Martin Karplus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States.,Laboratoire de Chimie Biophysique, ISIS, Universite de Strasbourg, Strasbourg, France
| | - Arup K Chakraborty
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, United States.,Department of Physics, Massachusetts Institute of Technology, Cambridge, United States.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, United States.,Ragon Institute of MGH, MIT and Harvard, Cambridge, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
46
|
Abstract
The immune systems protect our bodies from foreign molecules or antigens, where antibodies play important roles. Antibodies evolve over time upon antigen encounter by somatically mutating their genome sequences. The end result is a series of antibodies that display higher affinities and specificities to specific antigens. This process is called affinity maturation. Recent improvements in computer hardware and modeling algorithms now enable the rational design of protein structures and functions, and several works on computer-aided antibody design have been published. In this chapter, we briefly describe computational methods for antibody affinity maturation, focusing on methods for sampling antibody conformations and for scoring designed antibody variants. We also discuss lessons learned from the successful computer-aided design of antibodies.
Collapse
Affiliation(s)
- Daisuke Kuroda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
47
|
Di Palma F, Tramontano A. Dynamics behind affinity maturation of an anti-HCMV antibody family influencing antigen binding. FEBS Lett 2017; 591:2936-2950. [PMID: 28771696 DOI: 10.1002/1873-3468.12774] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 12/24/2022]
Abstract
The investigation of antibody affinity maturation and its effects on antigen binding is important with respect to understanding the regulation of the immune response. To shed light on this crucial process, we analyzed two Igs neutralizing the human cytomegalovirus: the primary germline antibody M2J1 and its related mature antibody 8F9. Both antibodies target the AD-2S1 epitope of the gB envelope protein and are considered to establish similar interactions with the cognate antigen. We used molecular dynamics simulations to understand the effect of mutations on the antibody-antigen interactions. The results provide a qualitative explanation for the increased 8F9 peptide affinity compared with that of M2J1. The emerging atomistic-detailed description of these complexes reveals the molecular effects of the somatic hypermutations occurring during affinity maturation.
Collapse
Affiliation(s)
| | - Anna Tramontano
- Department of Physics, Sapienza - Università di Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Roma, Italy
| |
Collapse
|
48
|
Kepler TB, Wiehe K. Genetic and structural analyses of affinity maturation in the humoral response to HIV-1. Immunol Rev 2017; 275:129-144. [PMID: 28133793 DOI: 10.1111/imr.12513] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Most broadly neutralizing antibodies (BNAbs) elicited in response to HIV-1 infection are extraordinarily mutated. One goal of HIV-1 vaccine development is to induce antibodies that are similar to the most potent and broad BNAbs isolated from infected subjects. The most effective BNAbs have very high mutation frequencies, indicative of the long periods of continual activation necessary to acquire the BNAb phenotype through affinity maturation. Understanding the mutational patterns that define the maturation pathways in BNAb development is critical to vaccine design efforts to recapitulate through vaccination the successful routes to neutralization breadth and potency that have occurred in natural infection. Studying the mutational changes that occur during affinity maturation, however, requires accurate partitioning of sequence data into B-cell clones and identification of the starting point of a B-cell clonal lineage, the initial V(D)J rearrangement. Here, we describe the statistical framework we have used to perform these tasks. Through the recent advancement of these and similar computational methods, many HIV-1 ancestral antibodies have been inferred, synthesized and their structures determined. This has allowed, for the first time, the investigation of the structural mechanisms underlying the affinity maturation process in HIV-1 antibody development. Here, we review what has been learned from this atomic-level structural characterization of affinity maturation in HIV-1 antibodies and the implications for vaccine design.
Collapse
Affiliation(s)
- Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, Department of Mathematics and Statistics, Boston University, Boston, MA, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
49
|
Abstract
The investigation of intrinsically disordered proteins (IDPs) is a new frontier in structural and molecular biology that requires a new paradigm to connect structural disorder to function. Molecular dynamics simulations and statistical thermodynamics potentially offer ideal tools for atomic-level characterizations and thermodynamic descriptions of this fascinating class of proteins that will complement experimental studies. However, IDPs display sensitivity to inaccuracies in the underlying molecular mechanics force fields. Thus, achieving an accurate structural characterization of IDPs via simulations is a challenge. It is also daunting to perform a configuration-space integration over heterogeneous structural ensembles sampled by IDPs to extract, in particular, protein configurational entropy. In this review, we summarize recent efforts devoted to the development of force fields and the critical evaluations of their performance when applied to IDPs. We also survey recent advances in computational methods for protein configurational entropy that aim to provide a thermodynamic link between structural disorder and protein activity.
Collapse
Affiliation(s)
- Song-Ho Chong
- Department of Chemistry, Sookmyung Women's University, Yongsan-Ku, Seoul 04310, Korea;
| | - Prathit Chatterjee
- Department of Chemistry, Sookmyung Women's University, Yongsan-Ku, Seoul 04310, Korea;
| | - Sihyun Ham
- Department of Chemistry, Sookmyung Women's University, Yongsan-Ku, Seoul 04310, Korea;
| |
Collapse
|
50
|
Van Regenmortel MHV. Structure-Based Reverse Vaccinology Failed in the Case of HIV Because it Disregarded Accepted Immunological Theory. Int J Mol Sci 2016; 17:E1591. [PMID: 27657055 PMCID: PMC5037856 DOI: 10.3390/ijms17091591] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/30/2016] [Accepted: 09/07/2016] [Indexed: 12/14/2022] Open
Abstract
Two types of reverse vaccinology (RV) should be distinguished: genome-based RV for bacterial vaccines and structure-based RV for viral vaccines. Structure-based RV consists in trying to generate a vaccine by first determining the crystallographic structure of a complex between a viral epitope and a neutralizing monoclonal antibody (nMab) and then reconstructing the epitope by reverse molecular engineering outside the context of the native viral protein. It is based on the unwarranted assumption that the epitope designed to fit the nMab will have acquired the immunogenic capacity to elicit a polyclonal antibody response with the same protective capacity as the nMab. After more than a decade of intensive research using this type of RV, this approach has failed to deliver an effective, preventive HIV-1 vaccine. The structure and dynamics of different types of HIV-1 epitopes and of paratopes are described. The rational design of an anti-HIV-1 vaccine is shown to be a misnomer since investigators who claim that they design a vaccine are actually only improving the antigenic binding capacity of one epitope with respect to only one paratope and not the immunogenic capacity of an epitope to elicit neutralizing antibodies. Because of the degeneracy of the immune system and the polyspecificity of antibodies, each epitope studied by the structure-based RV procedure is only one of the many epitopes that the particular nMab is able to recognize and there is no reason to assume that this nMab must have been elicited by this one epitope of known structure. Recent evidence is presented that the trimeric Env spikes of the virus possess such an enormous plasticity and intrinsic structural flexibility that it is it extremely difficult to determine which Env regions are the best candidate vaccine immunogens most likely to elicit protective antibodies.
Collapse
Affiliation(s)
- Marc H V Van Regenmortel
- UMR 7242 Biotechnologie et Signalisation Cellulaire, Université de Strasbourg-CNRS, 300, Boulevard Sébastien Brant, CS 10413, 67412 Illkirch Cedex, France.
| |
Collapse
|