1
|
Szydlowski LM, Bulbul AA, Simpson AC, Kaya DE, Singh NK, Sezerman UO, Łabaj PP, Kosciolek T, Venkateswaran K. Adaptation to space conditions of novel bacterial species isolated from the International Space Station revealed by functional gene annotations and comparative genome analysis. MICROBIOME 2024; 12:190. [PMID: 39363369 PMCID: PMC11451251 DOI: 10.1186/s40168-024-01916-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 08/21/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND The extreme environment of the International Space Station (ISS) puts selective pressure on microorganisms unintentionally introduced during its 20+ years of service as a low-orbit science platform and human habitat. Such pressure leads to the development of new features not found in the Earth-bound relatives, which enable them to adapt to unfavorable conditions. RESULTS In this study, we generated the functional annotation of the genomes of five newly identified species of Gram-positive bacteria, four of which are non-spore-forming and one spore-forming, all isolated from the ISS. Using a deep-learning based tool-deepFRI-we were able to functionally annotate close to 100% of protein-coding genes in all studied species, overcoming other annotation tools. Our comparative genomic analysis highlights common characteristics across all five species and specific genetic traits that appear unique to these ISS microorganisms. Proteome analysis mirrored these genomic patterns, revealing similar traits. The collective annotations suggest adaptations to life in space, including the management of hypoosmotic stress related to microgravity via mechanosensitive channel proteins, increased DNA repair activity to counteract heightened radiation exposure, and the presence of mobile genetic elements enhancing metabolism. In addition, our findings suggest the evolution of certain genetic traits indicative of potential pathogenic capabilities, such as small molecule and peptide synthesis and ATP-dependent transporters. These traits, exclusive to the ISS microorganisms, further substantiate previous reports explaining why microbes exposed to space conditions demonstrate enhanced antibiotic resistance and pathogenicity. CONCLUSION Our findings indicate that the microorganisms isolated from ISS we studied have adapted to life in space. Evidence such as mechanosensitive channel proteins, increased DNA repair activity, as well as metallopeptidases and novel S-layer oxidoreductases suggest a convergent adaptation among these diverse microorganisms, potentially complementing one another within the context of the microbiome. The common genes that facilitate adaptation to the ISS environment may enable bioproduction of essential biomolecules need during future space missions, or serve as potential drug targets, if these microorganisms pose health risks. Video Abstract.
Collapse
Affiliation(s)
- Lukasz M Szydlowski
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Malopolska, Poland
- Sano Centre for Computational Personalized Medicine, Czarnowiejska 36, Krakow, 30-054, Malopolskie, Poland
| | - Alper A Bulbul
- Biostatistics and Medical Informatics Department, M. A. A. Acibadem University, İçerenköy, Kayıcdağı Cd.32, Istanbul, 34752, Turkey
| | - Anna C Simpson
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, CA, USA
| | - Deniz E Kaya
- Biostatistics and Medical Informatics Department, M. A. A. Acibadem University, İçerenköy, Kayıcdağı Cd.32, Istanbul, 34752, Turkey
| | - Nitin K Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, CA, USA
| | - Ugur O Sezerman
- Biostatistics and Medical Informatics Department, M. A. A. Acibadem University, İçerenköy, Kayıcdağı Cd.32, Istanbul, 34752, Turkey
| | - Paweł P Łabaj
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Malopolska, Poland
| | - Tomasz Kosciolek
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Malopolska, Poland.
- Department of Data Science and Engineering, Silesian University of Technology, Akademicka 2A, Gliwice, 44-100, Slaskie, Poland.
- Sano Centre for Computational Personalized Medicine, Czarnowiejska 36, Krakow, 30-054, Malopolskie, Poland.
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, CA, USA.
| |
Collapse
|
2
|
Royle SH, Cropper L, Watson JS, Sinibaldi S, Entwisle M, Sephton MA. Solid-Phase Microextraction for Organic Contamination Control Throughout Assembly and Operational Phases of Space Missions. ASTROBIOLOGY 2023; 23:127-143. [PMID: 36473197 DOI: 10.1089/ast.2021.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Space missions concerned with life detection contain highly sensitive instruments for the detection of organics. Terrestrial contamination can interfere with signals of indigenous organics in samples and has the potential to cause false-positive biosignature detections, which may lead to incorrect suggestions of the presence of life elsewhere in the solar system. This study assessed the capability of solid-phase microextraction (SPME) as a method for monitoring organic contamination encountered by spacecraft hardware during assembly and operation. SPME-gas chromatography-mass spectrometry (SPME-GC-MS) analysis was performed on potential contaminant source materials, which are commonly used in spacecraft construction. The sensitivity of SPME-GC-MS to organics was assessed in the context of contaminants identified in molecular wipes taken from hardware surfaces on the ExoMars Rosalind Franklin rover. SPME was found to be effective at detecting a wide range of common organic contaminants that include aromatic hydrocarbons, aliphatic hydrocarbons, nitrogen-containing compounds, alcohols, and carbonyls. A notable example of correlation of contaminant with source material was the detection of benzenamine compounds in an epoxy adhesive analyzed by SPME-GC-MS and in the ExoMars rover surface wipe samples. The current form of SPME-GC-MS does not enable quantitative evaluation of contaminants, nor is it suitable for the detection of every group of organic molecules relevant to astrobiological contamination concerns, namely large and/or polar molecules such as amino acids. However, it nonetheless represents an effective new monitoring method for rapid, easy identification of organic contaminants commonly present on spacecraft hardware and could thus be utilized in future space missions as part of their contamination control and mitigation protocols.
Collapse
Affiliation(s)
- Samuel H Royle
- Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Lorcan Cropper
- Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Jonathan S Watson
- Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | | | | | - Mark A Sephton
- Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
3
|
Sithamparam M, Satthiyasilan N, Chen C, Jia TZ, Chandru K. A material-based panspermia hypothesis: The potential of polymer gels and membraneless droplets. Biopolymers 2022; 113:e23486. [PMID: 35148427 DOI: 10.1002/bip.23486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/08/2023]
Abstract
The Panspermia hypothesis posits that either life's building blocks (molecular Panspermia) or life itself (organism-based Panspermia) may have been interplanetarily transferred to facilitate the origins of life (OoL) on a given planet, complementing several current OoL frameworks. Although many spaceflight experiments were performed in the past to test for potential terrestrial organisms as Panspermia seeds, it is uncertain whether such organisms will likely "seed" a new planet even if they are able to survive spaceflight. Therefore, rather than using organisms, using abiotic chemicals as seeds has been proposed as part of the molecular Panspermia hypothesis. Here, as an extension of this hypothesis, we introduce and review the plausibility of a polymeric material-based Panspermia seed (M-BPS) as a theoretical concept, where the type of polymeric material that can function as a M-BPS must be able to: (1) survive spaceflight and (2) "function", i.e., contingently drive chemical evolution toward some form of abiogenesis once arriving on a foreign planet. We use polymeric gels as a model example of a potential M-BPS. Polymeric gels that can be prebiotically synthesized on one planet (such as polyester gels) could be transferred to another planet via meteoritic transfer, where upon landing on a liquid bearing planet, can assemble into structures containing cellular-like characteristics and functionalities. Such features presupposed that these gels can assemble into compartments through phase separation to accomplish relevant functions such as encapsulation of primitive metabolic, genetic and catalytic materials, exchange of these materials, motion, coalescence, and evolution. All of these functions can result in the gels' capability to alter local geochemical niches on other planets, thereby allowing chemical evolution to lead to OoL events.
Collapse
Affiliation(s)
- Mahendran Sithamparam
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Nirmell Satthiyasilan
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Chen Chen
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia (UKM), Bangi, Selangor, Malaysia
| |
Collapse
|
4
|
Yang X, Song G, Liu H, Hu D. Microbial diversity formation and maintenance due to temporal niche differentiation caused by low-dose ionizing radiation in oligotrophic environments. LIFE SCIENCES IN SPACE RESEARCH 2021; 31:92-100. [PMID: 34689955 DOI: 10.1016/j.lssr.2021.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
The planetary protection strives to minimize the contamination of microorganisms in spacecrafts. However, it is reported that microbial diversity is abnormally high in the International Space Station (ISS) after long-term exposure to low-dose ionizing radiation (LDIR). It remains a mystery why LDIR leads to the formation and maintenance of high microbial diversity in oligotrophic environments like the ISS. In this study, an artificial microbial community has been cultivated without and with LDIR, respectively. The microbial community was composed of three common microbial species, i.e., Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa in the ISS. After analyzing the differences in microbial physiological and behavioral response characteristics in the two scenarios, a reasonable hypothesis was proposed to elucidate the formation and maintenance mechanisms of high microbial diversity in oligotrophic environments with the LDIR. Then a set of kinetic models with time-lag were developed based on this hypothesis, observed phenomena, and experimental data. Finally, these kinetic models were sufficiently validated, and the hypothesis was fully confirmed through large-scale digital simulations. Briefly, as a decisive succession mechanism in oligotrophic environments with LDIR, temporal niche differentiation (TND) caused by microbial delayed responses to LDIR can give rise to asynchronously convergent fluctuations of microbial populations and significantly alleviate the intra- and interspecific competitions. Such a mechanism can drive the microbial communities in oligotrophic environments with LDIR to form and maintain high species diversity.
Collapse
Affiliation(s)
- Xinbin Yang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Institute of Environmental Biology and Life Support Technology, Beihang University, Beijing 100083, China
| | - Ganyu Song
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Institute of Environmental Biology and Life Support Technology, Beihang University, Beijing 100083, China
| | - Hong Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Institute of Environmental Biology and Life Support Technology, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Dawei Hu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Institute of Environmental Biology and Life Support Technology, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100083, China; State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
5
|
Abstract
Astrobiology is focused on the study of life in the universe. However, lifeless planetary environments yield biological information on the variety of ways in which physical and chemical conditions in the universe preclude the possibility of the origin or persistence of life, and in turn this will help explain the distribution and abundance of life, or lack of it, in the universe. Furthermore, many places that humans wish to explore and settle in space are lifeless, and studying the fate of life in these environments will aid our own success in thriving in them. In this synthetic review, I have three objectives, as follows: (1) To discuss the biological value and use of lifeless environments, (2) To explore the diverse planetary bodies and environments that can be lifeless and to categorize them, and (3) To propose sets of biological experiments that can be undertaken in different categories of lifeless worlds and environments and suggest concepts for mission ideas to realize these goals. They include origin of life and microbial inoculation experiments in lifeless but habitable environments. I suggest that the biological study of lifelessness is an underappreciated area in planetary sciences.
Collapse
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Smith HB, Drew A, Malloy JF, Walker SI. Seeding Biochemistry on Other Worlds: Enceladus as a Case Study. ASTROBIOLOGY 2021; 21:177-190. [PMID: 33064954 PMCID: PMC7876360 DOI: 10.1089/ast.2019.2197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
The Solar System is becoming increasingly accessible to exploration by robotic missions to search for life. However, astrobiologists currently lack well-defined frameworks to quantitatively assess the chemical space accessible to life in these alien environments. Such frameworks will be critical for developing concrete predictions needed for future mission planning, both to determine the potential viability of life on other worlds and to anticipate the molecular biosignatures that life could produce. Here, we describe how uniting existing methods provides a framework to study the accessibility of biochemical space across diverse planetary environments. Our approach combines observational data from planetary missions with genomic data catalogued from across Earth and analyzed using computational methods from network theory. To demonstrate this, we use 307 biochemical networks generated from genomic data collected across Earth and "seed" these networks with molecules confirmed to be present on Saturn's moon Enceladus. By expanding through known biochemical reaction space starting from these seed compounds, we are able to determine which products of Earth's biochemistry are, in principle, reachable from compounds available in the environment on Enceladus, and how this varies across different examples of life from Earth (organisms, ecosystems, planetary-scale biochemistry). While we find that none of the 307 prokaryotes analyzed meet the threshold for viability, the reaction space covered by this process can provide a map of possible targets for detection of Earth-like life on Enceladus, as well as targets for synthetic biology approaches to seed life on Enceladus. In cases where biochemistry is not viable because key compounds are missing, we identify the environmental precursors required to make it viable, thus providing a set of compounds to prioritize for detection in future planetary exploration missions aimed at assessing the ability of Enceladus to sustain Earth-like life or directed panspermia.
Collapse
Affiliation(s)
- Harrison B. Smith
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | - Alexa Drew
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | - John F. Malloy
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | - Sara Imari Walker
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
- ASU-SFI Center for Biosocial Complex Systems, Arizona State University, Tempe, Arizona, USA
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
7
|
Stevens A, Kobs Nawotniak S, Garry W, Payler S, Brady A, Miller M, Beaton K, Cockell C, Lim D. Tactical Scientific Decision-Making during Crewed Astrobiology Mars Missions. ASTROBIOLOGY 2019; 19:369-386. [PMID: 30840503 PMCID: PMC6442282 DOI: 10.1089/ast.2018.1837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/19/2018] [Indexed: 05/26/2023]
Abstract
The limitations placed upon human explorers on the surface of Mars will necessitate a methodology for scientific exploration that is different from standard approaches to terrestrial fieldwork and prior crewed exploration of the Moon. In particular, the data transmission limitations and communication latency between Earth and Mars create a unique situation for surface crew in contact with a terrestrial science team. The BASALT research program simulated a series of extravehicular activities (EVAs) in Mars analog terrains under various Mars-relevant bandwidth and latency conditions to investigate how best to approach this problem. Here we discuss tactical decision-making under these conditions, that is, how the crew on Mars interacts with a team of scientists and support personnel on Earth to collect samples of maximum scientific interest. We describe the strategies, protocols, and tools tested in BASALT EVAs and give recommendations on how best to conduct human exploration of Mars with support from Earth-based scientists. We find that even with scientists supporting them, the crew performing the exploration must be trained in the appropriate scientific disciplines in order to provide the terrestrial scientists with enough information to make decisions, but that with appropriate planning and structure, and tools such as a "dynamic leaderboard," terrestrial scientists can add scientific value to an EVA, even under Mars communication latency.
Collapse
Affiliation(s)
- A.H. Stevens
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | | | - W.B. Garry
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - S.J. Payler
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - A.L. Brady
- School of Geography and Earth Sciences, McMaster University, Hamilton, Canada
| | - M.J. Miller
- Georgia Institute of Technology College of Engineering, Atlanta, Georgia, USA
| | - K.H. Beaton
- NASA Johnson Space Center, Houston, Texas, USA
| | - C.S. Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - D.S.S. Lim
- NASA Ames Research Center, Moffett Field, California, USA
| |
Collapse
|
8
|
Nicholson WL, Schuerger AC, Douki T. The Photochemistry of Unprotected DNA and DNA inside Bacillus subtilis Spores Exposed to Simulated Martian Surface Conditions of Atmospheric Composition, Temperature, Pressure, and Solar Radiation. ASTROBIOLOGY 2018; 18:393-402. [PMID: 29589975 DOI: 10.1089/ast.2017.1721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
DNA is considered a potential biomarker for life-detection experiments destined for Mars. Experiments were conducted to examine the photochemistry of bacterial DNA, either unprotected or within Bacillus subtilis spores, in response to exposure to simulated martian surface conditions consisting of the following: temperature (-10°C), pressure (0.7 kPa), atmospheric composition [CO2 (95.54%), N2 (2.7%), Ar (1.6%), O2 (0.13%), and H2O (0.03%)], and UV-visible-near IR solar radiation spectrum (200-1100 nm) calibrated to 4 W/m2 of UVC (200-280 nm). While the majority (99.9%) of viable spores deposited in multiple layers on spacecraft-qualified aluminum coupons were inactivated within 5 min, a detectable fraction survived for up to the equivalent of ∼115 martian sols. Spore photoproduct (SP) was the major lesion detected in spore DNA, with minor amounts of cyclobutane pyrimidine dimers (CPD), in the order TT CPD > TC CPD >> CT CPD. In addition, the (6-4)TC, but not the (6-4)TT, photoproduct was detected in spore DNA. When unprotected DNA was exposed to simulated martian conditions, all photoproducts were detected. Surprisingly, the (6-4)TC photoproduct was the major photoproduct, followed by SP ∼ TT CPD > TC CPD > (6-4)TT > CT CPD > CC CPD. Differences in the photochemistry of unprotected DNA and spore DNA in response to simulated martian surface conditions versus laboratory conditions are reviewed and discussed. The results have implications for the planning of future life-detection experiments that use DNA as the target, and for the long-term persistence on Mars of forward contaminants or their DNA. Key Words: Bacillus subtilis-DNA-Mars-Photochemistry-Spore-Ultraviolet. Astrobiology 18, 393-402.
Collapse
Affiliation(s)
- Wayne L Nicholson
- 1 Department of Microbiology and Cell Science, University of Florida , Merritt Island, Florida, USA
| | - Andrew C Schuerger
- 2 Department of Plant Pathology, University of Florida , Merritt Island, Florida, USA
| | - Thierry Douki
- 3 Univ. Grenoble Alpes , CEA, CNRS, INAC, SyMMES/CIBEST, Grenoble, France
| |
Collapse
|
9
|
Pervasiveness of UVC254-resistant Geobacillus strains in extreme environments. Appl Microbiol Biotechnol 2018; 102:1869-1887. [DOI: 10.1007/s00253-017-8712-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 12/11/2022]
|
10
|
Pacelli C, Selbmann L, Moeller R, Zucconi L, Fujimori A, Onofri S. Cryptoendolithic Antarctic Black Fungus Cryomyces antarcticus Irradiated with Accelerated Helium Ions: Survival and Metabolic Activity, DNA and Ultrastructural Damage. Front Microbiol 2017; 8:2002. [PMID: 29089932 PMCID: PMC5650992 DOI: 10.3389/fmicb.2017.02002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/28/2017] [Indexed: 11/22/2022] Open
Abstract
Space represents an extremely harmful environment for life and survival of terrestrial organisms. In the last decades, a considerable deal of attention was paid to characterize the effects of spaceflight relevant radiation on various model organisms. The aim of this study was to test the survival capacity of the cryptoendolithic black fungus Cryomyces antarcticus CCFEE 515 to space relevant radiation, to outline its endurance to space conditions. In the frame of an international radiation campaign, dried fungal colonies were irradiated with accelerated Helium ion (150 MeV/n, LET 2.2 keV/μm), up to a final dose of 1,000 Gy, as one of the space-relevant ionizing radiation. Results showed that the fungus maintained high survival and metabolic activity with no detectable DNA and ultrastructural damage, even after the highest dose irradiation. These data give clues on the resistance of life toward space ionizing radiation in general and on the resistance and responses of eukaryotic cells in particular.
Collapse
Affiliation(s)
- Claudia Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Ralf Moeller
- German Aerospace Center, Institute of Aerospace Medicine, Radiation Biology Department, Space Microbiology Research Group, Cologne, Germany
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Akira Fujimori
- National Institute of Radiological Sciences, Research Center for Charged Particle Therapy, Chiba, Japan
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
11
|
Fox S, Strasdeit H. Inhabited or Uninhabited? Pitfalls in the Interpretation of Possible Chemical Signatures of Extraterrestrial Life. Front Microbiol 2017; 8:1622. [PMID: 28970819 PMCID: PMC5609592 DOI: 10.3389/fmicb.2017.01622] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/09/2017] [Indexed: 02/02/2023] Open
Abstract
The "Rare Earth" hypothesis-put forward by Ward and Brownlee in their 2000 book of the same title-states that prokaryote-type organisms may be common in the universe but animals and higher plants are exceedingly rare. If this idea is correct, the search for extraterrestrial life is essentially the search for microorganisms. Various indicators may be used to detect extant or extinct microbial life beyond Earth. Among them are chemical biosignatures, such as biomolecules and stable isotope ratios. The present minireview focuses on the major problems associated with the identification of chemical biosignatures. Two main types of misinterpretation are distinguished, namely false positive and false negative results. The former can be caused by terrestrial biogenic contaminants or by abiotic products. Terrestrial contamination is a common problem in space missions that search for biosignatures on other planets and moons. Abiotic organics can lead to false positive results if erroneously interpreted as biomolecules, but also to false negatives, for example when an abiotic source obscures a less productive biological one. In principle, all types of putative chemical biosignatures are prone to misinterpretation. Some, however, are more reliable ("stronger") than others. These include: (i) homochiral polymers of defined length and sequence, comparable to proteins and polynucleotides; (ii) enantiopure compounds; (iii) the existence of only a subset of molecules when abiotic syntheses would produce a continuous range of molecules; the proteinogenic amino acids constitute such a subset. These considerations are particularly important for life detection missions to solar system bodies such as Mars, Europa, and Enceladus.
Collapse
Affiliation(s)
- Stefan Fox
- Department of Bioinorganic Chemistry, Institute of Chemistry, University of HohenheimStuttgart, Germany
| | - Henry Strasdeit
- Department of Bioinorganic Chemistry, Institute of Chemistry, University of HohenheimStuttgart, Germany
| |
Collapse
|
12
|
Venkateswaran K, La Duc MT, Horneck G. Microbial existence in controlled habitats and their resistance to space conditions. Microbes Environ 2014; 29:243-9. [PMID: 25130881 PMCID: PMC4159035 DOI: 10.1264/jsme2.me14032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The National Research Council (NRC) has recently recognized the International Space Station (ISS) as uniquely suitable for furthering the study of microbial species in closed habitats. Answering the NRC’s call for the study, in particular, of uncommon microbial species in the ISS, and/or of those that have significantly increased or decreased in number, space microbiologists have begun capitalizing on the maturity, speed, and cost-effectiveness of molecular/genomic microbiological technologies to elucidate changes in microbial populations in the ISS and other closed habitats. Since investigators can only collect samples infrequently from the ISS itself due to logistical reasons, Earth analogs, such as spacecraft-assembly clean rooms, are used and extensively characterized for the presence of microbes. Microbiologists identify the predominant, problematic, and extremophilic microbial species in these closed habitats and use the ISS as a testbed to study their resistance to extreme extraterrestrial environmental conditions. Investigators monitor the microbes exposed to the real space conditions in order to track their genomic changes in response to the selective pressures present in outer space (external to the ISS) and the spaceflight (in the interior of the ISS). In this review, we discussed the presence of microbes in space research-related closed habitats and the resistance of some microbial species to the extreme environmental conditions of space.
Collapse
Affiliation(s)
- Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, California Institute of Technology, Jet Propulsion Laboratory
| | | | | |
Collapse
|
13
|
Heldmann JL, Schurmeier L, McKay C, Davila A, Stoker C, Marinova M, Wilhelm MB. Midlatitude ice-rich ground on mars as a target in the search for evidence of life and for in situ resource utilization on human missions. ASTROBIOLOGY 2014; 14:102-118. [PMID: 24506507 DOI: 10.1089/ast.2013.1103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Midlatitude ground ice on Mars is of significant scientific interest for understanding the history and evolution of ice stability on Mars and is relevant for human exploration as a possible in situ resource. For both science and exploration, assessing the astrobiological potential of the ice is important in terms of (1) understanding the potential for life on Mars and (2) evaluating the presence of possible biohazards in advance of human exploration. In the present study, we review the evidence for midlatitude ground ice on Mars, discuss the possible explanations for its occurrence, and assess its potential habitability. During the course of study, we systematically analyzed remote-sensing data sets to determine whether a viable landing site exists in the northern midlatitudes to enable a robotic mission that conducts in situ characterization and searches for evidence of life in the ice. We classified each site according to (1) presence of polygons as a proxy for subsurface ice, (2) presence and abundance of rough topographic obstacles (e.g., large cracks, cliffs, uneven topography), (3) rock density, (4) presence and abundance of large boulders, and (5) presence of craters. We found that a suitable landing site exists within Amazonis Planitia near ground ice that was recently excavated by a meteorite impact.
Collapse
Affiliation(s)
- J L Heldmann
- 1 NASA Ames Research Center , Division of Space Sciences and Astrobiology, Moffett Field, California
| | | | | | | | | | | | | |
Collapse
|
14
|
Stapelmann K, Fiebrandt M, Raguse M, Awakowicz P, Reitz G, Moeller R. Utilization of low-pressure plasma to inactivate bacterial spores on stainless steel screws. ASTROBIOLOGY 2013; 13:597-606. [PMID: 23768085 PMCID: PMC3713438 DOI: 10.1089/ast.2012.0949] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 04/12/2013] [Indexed: 05/22/2023]
Abstract
A special focus area of planetary protection is the monitoring, control, and reduction of microbial contaminations that are detected on spacecraft components and hardware during and after assembly. In this study, wild-type spores of Bacillus pumilus SAFR-032 (a persistent spacecraft assembly facility isolate) and the laboratory model organism B. subtilis 168 were used to study the effects of low-pressure plasma, with hydrogen alone and in combination with oxygen and evaporated hydrogen peroxide as a process gas, on spore survival, which was determined by a colony formation assay. Spores of B. pumilus SAFR-032 and B. subtilis 168 were deposited with an aseptic technique onto the surface of stainless steel screws to simulate a spore-contaminated spacecraft hardware component, and were subsequently exposed to different plasmas and hydrogen peroxide conditions in a very high frequency capacitively coupled plasma reactor (VHF-CCP) to reduce the spore burden. Spores of the spacecraft isolate B. pumilus SAFR-032 were significantly more resistant to plasma treatment than spores of B. subtilis 168. The use of low-pressure plasma with an additional treatment of evaporated hydrogen peroxide also led to an enhanced spore inactivation that surpassed either single treatment when applied alone, which indicates the potential application of this method as a fast and suitable way to reduce spore-contaminated spacecraft hardware components for planetary protection purposes.
Collapse
Affiliation(s)
- Katharina Stapelmann
- Ruhr University Bochum (RUB), Institute for Electrical Engineering and Plasma Technology (AEPT), Bochum, Germany
| | - Marcel Fiebrandt
- Ruhr University Bochum (RUB), Institute for Electrical Engineering and Plasma Technology (AEPT), Bochum, Germany
| | - Marina Raguse
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Cologne (Köln), Germany
| | - Peter Awakowicz
- Ruhr University Bochum (RUB), Institute for Electrical Engineering and Plasma Technology (AEPT), Bochum, Germany
| | - Günther Reitz
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Cologne (Köln), Germany
| | - Ralf Moeller
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Cologne (Köln), Germany
| |
Collapse
|
15
|
Vaishampayan P, Moissl-Eichinger C, Pukall R, Schumann P, Spröer C, Augustus A, Roberts AH, Namba G, Cisneros J, Salmassi T, Venkateswaran K. Description of Tersicoccus phoenicis gen. nov., sp. nov. isolated from spacecraft assembly clean room environments. Int J Syst Evol Microbiol 2013; 63:2463-2471. [DOI: 10.1099/ijs.0.047134-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two strains of aerobic, non-motile, Gram-reaction-positive cocci were independently isolated from geographically distinct spacecraft assembly clean room facilities (Kennedy Space Center, Florida, USA and Centre Spatial Guyanais, Kourou, French Guiana). A polyphasic study was carried out to delineate the taxonomic identity of these two isolates (1P05MAT and KO_PS43). The 16S rRNA gene sequences exhibited a high similarity when compared to each other (100 %) and lower than 96.7 % relatedness with
Arthrobacter crystallopoietes
ATCC 15481T,
Arthrobacter luteolus
ATCC BAA-272T,
Arthrobacter tumbae
DSM 16406T and
Arthrobacter subterraneus
DSM 17585T. In contrast with previously described
Arthrobacter
species, the novel isolates maintained their coccidal morphology throughout their growth and did not exhibit the rod–coccus life cycle typically observed in nearly all
Arthrobacter
species, except
A. agilis
. The distinct taxonomic identity of the novel isolates was confirmed based on their unique cell-wall peptidoglycan type (A.11.20; Lys-Ser-Ala2) and polar lipid profile (presence of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, an unknown phospholipid and two unknown glycolipids). The G+C content of the genomic DNA was 70.6 mol%. The novel strains revealed MK-9(H2) and MK-8(H2) as dominant menaquinones and exhibited fatty acid profiles consisting of major amounts of anteiso-C15 : 0 and anteiso-C17 : 0 and moderate amounts of iso-C15 : 0 discriminating them again from closely related
Arthrobacter
species. Based on these observations, the authors propose that strains 1P05MAT and KO_PS43 be assigned into a separate genus Tersicoccus gen. nov. For this new taxon, comprising strains 1P05MAT and KO_PS43, we propose the name Tersicoccus phoenicis gen. nov., sp. nov. (the type species of Tersicoccus), represented by the type strain Tersicoccus phoenicis 1P05MAT ( = NRRL B-59547T = DSM 30849T).
Collapse
Affiliation(s)
- Parag Vaishampayan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Christine Moissl-Eichinger
- Institute for Microbiology and Archaea Center, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| | - Rüdiger Pukall
- Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, D-38124 Braunschweig, Germany
| | - Peter Schumann
- Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, D-38124 Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, D-38124 Braunschweig, Germany
| | - Angela Augustus
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - Anne Hayden Roberts
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - Greg Namba
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - Jessica Cisneros
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - Tina Salmassi
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| |
Collapse
|
16
|
Tirumalai MR, Rastogi R, Zamani N, O’Bryant Williams E, Allen S, Diouf F, Kwende S, Weinstock GM, Venkateswaran KJ, Fox GE. Candidate genes that may be responsible for the unusual resistances exhibited by Bacillus pumilus SAFR-032 spores. PLoS One 2013; 8:e66012. [PMID: 23799069 PMCID: PMC3682946 DOI: 10.1371/journal.pone.0066012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/30/2013] [Indexed: 11/18/2022] Open
Abstract
The spores of several Bacillus species, including Bacillus pumilus SAFR-032 and B. safensis FO-36b, which were isolated from the spacecraft assembly facility at NASA's Jet Propulsion Laboratory, are unusually resistant to UV radiation and hydrogen peroxide. In order to identify candidate genes that might be associated with these resistances, the whole genome of B. pumilus SAFR-032, and the draft genome of B. safensis FO-36b were compared in detail with the very closely related type strain B. pumilus ATCC7061(T). 170 genes are considered characteristic of SAFR-032, because they are absent from both FO-36b and ATCC7061(T). Forty of these SAFR-032 characteristic genes are entirely unique open reading frames. In addition, four genes are unique to the genomes of the resistant SAFR-032 and FO-36b. Fifty three genes involved in spore coat formation, regulation and germination, DNA repair, and peroxide resistance, are missing from all three genomes. The vast majority of these are cleanly deleted from their usual genomic context without any obvious replacement. Several DNA repair and peroxide resistance genes earlier reported to be unique to SAFR-032 are in fact shared with ATCC7061(T) and no longer considered to be promising candidates for association with the elevated resistances. Instead, several SAFR-032 characteristic genes were identified, which along with one or more of the unique SAFR-032 genes may be responsible for the elevated resistances. These new candidates include five genes associated with DNA repair, namely, BPUM_0608 a helicase, BPUM_0652 an ATP binding protein, BPUM_0653 an endonuclease, BPUM_0656 a DNA cytosine-5- methyltransferase, and BPUM_3674 a DNA helicase. Three of these candidate genes are in immediate proximity of two conserved hypothetical proteins, BPUM_0654 and BPUM_0655 that are also absent from both FO-36b and ATCC7061(T). This cluster of five genes is considered to be an especially promising target for future experimental work.
Collapse
Affiliation(s)
- Madhan R. Tirumalai
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Rajat Rastogi
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Nader Zamani
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Elisha O’Bryant Williams
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Shamail Allen
- Department of Biology, Texas Southern University, Houston, Texas, United States of America
| | - Fatma Diouf
- Department of Biology, Texas Southern University, Houston, Texas, United States of America
| | - Sharon Kwende
- Department of Biology, Texas Southern University, Houston, Texas, United States of America
| | - George M. Weinstock
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kasthuri J. Venkateswaran
- Biotechnology & Planetary Protection Group, NASA Jet Propulsion Laboratories, California Institute of Technology, Pasadena, California, United States of America
| | - George E. Fox
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| |
Collapse
|
17
|
Dachwald B, Ulamec S, Biele J. Clean In Situ Subsurface Exploration of Icy Environments in the Solar System. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-94-007-6546-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
18
|
Moeller R, Reitz G, Nicholson The Protect Team WL, Horneck G. Mutagenesis in bacterial spores exposed to space and simulated martian conditions: data from the EXPOSE-E spaceflight experiment PROTECT. ASTROBIOLOGY 2012; 12:457-468. [PMID: 22680692 DOI: 10.1089/ast.2011.0739] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
As part of the PROTECT experiment of the EXPOSE-E mission on board the International Space Station (ISS), the mutagenic efficiency of space was studied in spores of Bacillus subtilis 168. After 1.5 years' exposure to selected parameters of outer space or simulated martian conditions, the rates of induced mutations to rifampicin resistance (Rif(R)) and sporulation deficiency (Spo(-)) were quantified. In all flight samples, both mutations, Rif(R) and Spo(-), were induced and their rates increased by several orders of magnitude. Extraterrestrial solar UV radiation (>110 nm) as well as simulated martian UV radiation (>200 nm) led to the most pronounced increase (up to nearly 4 orders of magnitude); however, mutations were also induced in flight samples shielded from insolation, which were exposed to the same conditions except solar irradiation. Nucleotide sequencing located the Rif(R) mutations in the rpoB gene encoding the β-subunit of RNA polymerase. Mutations isolated from flight and parallel mission ground reference (MGR) samples were exclusively localized to Cluster I. The 21 Rif(R) mutations isolated from the flight experiment showed all a C to T transition and were all localized to one hotspot: H482Y. In mutants isolated from the MGR, the spectrum was wider with predicted amino acid changes at residues Q469K/L/R, H482D/P/R/Y, and S487L. The data show the unique mutagenic power of space and martian surface conditions as a consequence of DNA injuries induced by solar UV radiation and space vacuum or the low pressure of Mars.
Collapse
Affiliation(s)
- Ralf Moeller
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR) , Cologne, Germany.
| | | | | | | |
Collapse
|
19
|
Nicholson WL, Moeller R, Horneck G. Transcriptomic responses of germinating Bacillus subtilis spores exposed to 1.5 years of space and simulated martian conditions on the EXPOSE-E experiment PROTECT. ASTROBIOLOGY 2012; 12:469-86. [PMID: 22680693 DOI: 10.1089/ast.2011.0748] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Because of their ubiquity and resistance to spacecraft decontamination, bacterial spores are considered likely potential forward contaminants on robotic missions to Mars. Thus, it is important to understand their global responses to long-term exposure to space or martian environments. As part of the PROTECT experiment, spores of B. subtilis 168 were exposed to real space conditions and to simulated martian conditions for 559 days in low-Earth orbit mounted on the EXPOSE-E exposure platform outside the European Columbus module on the International Space Station. Upon return, spores were germinated, total RNA extracted, fluorescently labeled, and used to probe a custom Bacillus subtilis microarray to identify genes preferentially activated or repressed relative to ground control spores. Increased transcript levels were detected for a number of stress-related regulons responding to DNA damage (SOS response, SPβ prophage induction), protein damage (CtsR/Clp system), oxidative stress (PerR regulon), and cell envelope stress (SigV regulon). Spores exposed to space demonstrated a much broader and more severe stress response than spores exposed to simulated martian conditions. The results are discussed in the context of planetary protection for a hypothetical journey of potential forward contaminant spores from Earth to Mars and their subsequent residence on Mars.
Collapse
Affiliation(s)
- Wayne L Nicholson
- Department of Microbiology and Cell Science, University of Florida, Space Life Sciences Laboratory, Kennedy Space Center, FL 32899, USA.
| | | | | |
Collapse
|
20
|
Rauscher H, Kylián O, Benedikt J, von Keudell A, Rossi F. Elimination of biological contaminations from surfaces by plasma discharges: chemical sputtering. Chemphyschem 2010; 11:1382-9. [PMID: 19967733 DOI: 10.1002/cphc.200900757] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Plasma treatment of surfaces as a sterilisation or decontamination method is a promising approach to overcome limitations of conventional techniques. The precise characterisation of the employed plasma discharges, the application of sensitive surface diagnostic methods and targeted experiments to separate the effects of different agents, have led to rapid progress in the understanding of different relevant elementary processes. This contribution provides an overview of the most relevant and recent results, which reveal the importance of chemical sputtering as one of the most important processes for the elimination of biological residuals. Selected studies on the interaction of plasmas with bacteria, proteins and polypeptides are highlighted, and investigations employing beams of atoms and ions confirming the prominent role of chemical sputtering are presented. With this knowledge, it is possible to optimize the plasma treatment for decontamination/sterilisation purposes in terms of discharge composition, density of active species and UV radiation intensity.
Collapse
Affiliation(s)
- Hubert Rauscher
- Institute for Health and Consumer Protection, European Commission-Joint Research Centre, V. Fermi, 21027 Ispra, Italy.
| | | | | | | | | |
Collapse
|
21
|
Fajardo-Cavazos P, Schuerger AC, Nicholson WL. Exposure of DNA and Bacillus subtilis spores to simulated martian environments: use of quantitative PCR (qPCR) to measure inactivation rates of DNA to function as a template molecule. ASTROBIOLOGY 2010; 10:403-411. [PMID: 20528195 DOI: 10.1089/ast.2009.0408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Several NASA and ESA missions are planned for the next decade to investigate the possibility of present or past life on Mars. Evidence of extraterrestrial life will likely rely on the detection of biomolecules, which highlights the importance of preventing forward contamination not only with viable microorganisms but also with biomolecules that could compromise the validity of life-detection experiments. The designation of DNA as a high-priority biosignature makes it necessary to evaluate its persistence in extraterrestrial environments and the effects of those conditions on its biological activity. We exposed DNA deposited on spacecraft-qualified aluminum coupons to a simulated martian environment for periods ranging from 1 minute to 1 hour and measured its ability to function as a template for replication in a quantitative polymerase chain reaction (qPCR) assay. We found that inactivation of naked DNA or DNA extracted from exposed spores of Bacillus subtilis followed a multiphasic UV-dose response and that a fraction of DNA molecules retained functionality after 60 minutes of exposure to simulated full-spectrum solar radiation in martian atmospheric conditions. The results indicate that forward-contaminant DNA could persist for considerable periods of time at the martian surface.
Collapse
Affiliation(s)
- Patricia Fajardo-Cavazos
- Department of Microbiology and Cell Science, University of Florida , Kennedy Space Center, Florida 32899, USA.
| | | | | |
Collapse
|
22
|
Ghosh S, Osman S, Vaishampayan P, Venkateswaran K. Recurrent isolation of extremotolerant bacteria from the clean room where Phoenix spacecraft components were assembled. ASTROBIOLOGY 2010; 10:325-35. [PMID: 20446872 DOI: 10.1089/ast.2009.0396] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The microbial burden of the Phoenix spacecraft assembly environment was assessed in a systematic manner via several cultivation-based techniques and a suite of NASA-certified, cultivation-independent biomolecule-based detection assays. Extremotolerant bacteria that could potentially survive conditions experienced en route to Mars or on the planet's surface were isolated with a series of cultivation-based assays that promoted the growth of a variety of organisms, including spore formers, mesophilic heterotrophs, anaerobes, thermophiles, psychrophiles, alkaliphiles, and bacteria resistant to UVC radiation and hydrogen peroxide exposure. Samples were collected from the clean room where Phoenix was housed at three different time points, before (1P), during (2P), and after (3P) Phoenix's presence at the facility. There was a reduction in microbial burden of most bacterial groups, including spore formers, in samples 2P and 3P. Analysis of 262 isolates from the facility demonstrated that there was also a shift in predominant cultivable bacterial populations accompanied by a reduction in diversity during 2P and 3P. It is suggested that this shift was a result of increased cleaning when Phoenix was present in the assembly facility and that certain species, such as Acinetobacter johnsonii and Brevundimonas diminuta, may be better adapted to environmental conditions found during 2P and 3P. In addition, problematic bacteria resistant to multiple extreme conditions, such as Bacillus pumilus, were able to survive these periods of increased cleaning.
Collapse
Affiliation(s)
- Sudeshna Ghosh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | | | | |
Collapse
|
23
|
La Duc MT, Osman S, Vaishampayan P, Piceno Y, Andersen G, Spry JA, Venkateswaran K. Comprehensive census of bacteria in clean rooms by using DNA microarray and cloning methods. Appl Environ Microbiol 2009; 75:6559-67. [PMID: 19700540 PMCID: PMC2765134 DOI: 10.1128/aem.01073-09] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 08/16/2009] [Indexed: 11/20/2022] Open
Abstract
A census of clean room surface-associated bacterial populations was derived from the results of both the cloning and sequencing of 16S rRNA genes and DNA microarray (PhyloChip) analyses. Samples from the Lockheed Martin Aeronautics Multiple Testing Facility (LMA-MTF), the Kennedy Space Center Payload Hazard and Servicing Facility (KSC-PHSF), and the Jet Propulsion Laboratory Spacecraft Assembly Facility (JPL-SAF) clean rooms were collected during the various assembly phases of the Phoenix and Mars Science Laboratory (MSL) spacecraft. Clone library-derived analyses detected a larger bacterial diversity prior to the arrival of spacecraft hardware in these clean room facilities. PhyloChip results were in agreement with this trend but also unveiled the presence of anywhere from 9- to 70-fold more bacterial taxa than cloning approaches. Among the facilities sampled, the JPL-SAF (MSL mission) housed a significantly less diverse bacterial population than either the LMA-MTF or KSC-PHSF (Phoenix mission). Bacterial taxa known to thrive in arid conditions were frequently detected in MSL-associated JPL-SAF samples, whereas proteobacterial lineages dominated Phoenix-associated KSC-PHSF samples. Comprehensive bacterial censuses, such as that reported here, will help space-faring nations preemptively identify contaminant biomatter that may compromise extraterrestrial life detection experiments. The robust nature and high sensitivity of DNA microarray technologies should prove beneficial to a wide range of scientific, electronic, homeland security, medical, and pharmaceutical applications and to any other ventures with a vested interest in monitoring and controlling contamination in exceptionally clean environments.
Collapse
Affiliation(s)
- Myron T La Duc
- Biotechnology and Planetary Protection, NASA Jet Propulsion Laboratory, California Institute of Technology, Mail Stop 89, Oak Grove Dr., Pasadena, CA 91109, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Migrating microbes and planetary protection. Trends Microbiol 2009; 17:389-92. [DOI: 10.1016/j.tim.2009.07.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 07/08/2009] [Indexed: 11/22/2022]
|
25
|
Newcombe D, Dekas A, Mayilraj S, Venkateswaran K. Bacillus canaveralius sp. nov., an alkali-tolerant bacterium isolated from a spacecraft assembly facility. Int J Syst Evol Microbiol 2009; 59:2015-9. [DOI: 10.1099/ijs.0.009167-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
26
|
Eigenbrode J, Benning LG, Maule J, Wainwright N, Steele A, Amundsen HEF. A field-based cleaning protocol for sampling devices used in life-detection studies. ASTROBIOLOGY 2009; 9:455-465. [PMID: 19496672 DOI: 10.1089/ast.2008.0275] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Analytical approaches to extant and extinct life detection involve molecular detection often at trace levels. Thus, removal of biological materials and other organic molecules from the surfaces of devices used for sampling is essential for ascertaining meaningful results. Organic decontamination to levels consistent with null values on life-detection instruments is particularly challenging at remote field locations where Mars analog field investigations are carried out. Here, we present a seven-step, multi-reagent decontamination method that can be applied to sampling devices while in the field. In situ lipopolysaccharide detection via low-level endotoxin assays and molecular detection via gas chromatography-mass spectrometry were used to test the effectiveness of the decontamination protocol for sampling of glacial ice with a coring device and for sampling of sediments with a rover scoop during deployment at Arctic Mars-analog sites in Svalbard, Norway. Our results indicate that the protocols and detection technique sufficiently remove and detect low levels of molecular constituents necessary for life-detection tests.
Collapse
Affiliation(s)
- Jennifer Eigenbrode
- Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Nicholson WL. Ancient micronauts: interplanetary transport of microbes by cosmic impacts. Trends Microbiol 2009; 17:243-50. [PMID: 19464895 DOI: 10.1016/j.tim.2009.03.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/17/2009] [Accepted: 03/23/2009] [Indexed: 10/20/2022]
Abstract
Recent developments in microbiology, geophysics and planetary sciences raise the possibility that the planets in our solar system might not be biologically isolated. Hence, the possibility of lithopanspermia (the interplanetary transport of microbial passengers inside rocks) is presently being re-evaluated, with implications for the origin and evolution of life on Earth and within our solar system. Here, I summarize our current understanding of the physics of impacts, space transport of meteorites, and the potentiality of microorganisms to undergo and survive interplanetary transfer.
Collapse
Affiliation(s)
- Wayne L Nicholson
- Department of Microbiology and Cell Science, University of Florida, Space Life Sciences Laboratory, Building M6-1025, Room 201-B, Kennedy Space Center, FL 32899, USA.
| |
Collapse
|
28
|
Persistence of biomarker ATP and ATP-generating capability in bacterial cells and spores contaminating spacecraft materials under earth conditions and in a simulated martian environment. Appl Environ Microbiol 2008; 74:5159-67. [PMID: 18567687 DOI: 10.1128/aem.00891-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most planetary protection research has concentrated on characterizing viable bioloads on spacecraft surfaces, developing techniques for bioload reduction prior to launch, and studying the effects of simulated martian environments on microbial survival. Little research has examined the persistence of biogenic signature molecules on spacecraft materials under simulated martian surface conditions. This study examined how endogenous adenosine-5'-triphosphate (ATP) would persist on aluminum coupons under simulated martian conditions of 7.1 mbar, full-spectrum simulated martian radiation calibrated to 4 W m(-2) of UV-C (200 to 280 nm), -10 degrees C, and a Mars gas mix of CO(2) (95.54%), N(2) (2.7%), Ar (1.6%), O(2) (0.13%), and H(2)O (0.03%). Cell or spore viabilities of Acinetobacter radioresistens, Bacillus pumilus, and B. subtilis were measured in minutes to hours, while high levels of endogenous ATP were recovered after exposures of up to 21 days. The dominant factor responsible for temporal reductions in viability and loss of ATP was the simulated Mars surface radiation; low pressure, low temperature, and the Mars gas composition exhibited only slight effects. The normal burst of endogenous ATP detected during spore germination in B. pumilus and B. subtilis was reduced by 1 or 2 orders of magnitude following, respectively, 8- or 30-min exposures to simulated martian conditions. The results support the conclusion that endogenous ATP will persist for time periods that are likely to extend beyond the nominal lengths of most surface missions on Mars, and planetary protection protocols prior to launch may require additional rigor to further reduce the presence and abundance of biosignature molecules on spacecraft surfaces.
Collapse
|
29
|
Gronstal A, Cockell CS, Perino MA, Bittner T, Clacey E, Clark O, Ingold O, Alves de Oliveira C, Wathiong S. Lunar astrobiology: a review and suggested laboratory equipment. ASTROBIOLOGY 2007; 7:767-782. [PMID: 17963476 DOI: 10.1089/ast.2006.0082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In October of 2005, the European Space Agency (ESA) and Alcatel Alenia Spazio released a "call to academia for innovative concepts and technologies for lunar exploration." In recent years, interest in lunar exploration has increased in numerous space programs around the globe, and the purpose of our study, in response to the ESA call, was to draw on the expertise of researchers and university students to examine science questions and technologies that could support human astrobiology activity on the Moon. In this mini review, we discuss astrobiology science questions of importance for a human presence on the surface of the Moon and we provide a summary of key instrumentation requirements to support a lunar astrobiology laboratory.
Collapse
Affiliation(s)
- Aaron Gronstal
- Planetary and Space Sciences Research Institute, Open University, Milton Keynes, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tauscher C, Schuerger AC, Nicholson WL. Survival and germinability of Bacillus subtilis spores exposed to simulated Mars solar radiation: implications for life detection and planetary protection. ASTROBIOLOGY 2006; 6:592-605. [PMID: 16916285 DOI: 10.1089/ast.2006.6.592] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Bacterial spores have been considered as microbial life that could survive interplanetary transport by natural impact processes or human spaceflight activity. Deposition of terrestrial microbes or their biosignature molecules onto the surface of Mars could negatively impact life detection experiments and planetary protection measures. Simulated Mars solar radiation, particularly the ultraviolet component, has been shown to reduce spore viability, but its effect on spore germination and resulting production of biosignature molecules has not been explored. We examined the survival and germinability of Bacillus subtilis spores exposed to simulated martian conditions that include solar radiation. Spores of B. subtilis that contain luciferase resulting from expression of an sspB-luxAB gene fusion were deposited on aluminum coupons to simulate deposition on spacecraft surfaces and exposed to simulated Mars atmosphere and solar radiation. The equivalent of 42 min of simulated Mars solar radiation exposure reduced spore viability by nearly 3 logs, while germination-induced bioluminescence, a measure of germination metabolism, was reduced by less than 1 log. The data indicate that spores can retain the potential to initiate germination-associated metabolic processes and produce biological signature molecules after being rendered nonviable by exposure to Mars solar radiation.
Collapse
Affiliation(s)
- Courtney Tauscher
- Department of Microbiology, University of Florida, Space Life Sciences Laboratory, Kennedy Space Center, Florida 32899, USA
| | | | | |
Collapse
|
31
|
Fajardo-Cavazos P, Nicholson W. Bacillus endospores isolated from granite: close molecular relationships to globally distributed Bacillus spp. from endolithic and extreme environments. Appl Environ Microbiol 2006; 72:2856-63. [PMID: 16597992 PMCID: PMC1449054 DOI: 10.1128/aem.72.4.2856-2863.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As part of an ongoing effort to catalog spore-forming bacterial populations in environments conducive to interplanetary transfer by natural impacts or by human spaceflight activities, spores of Bacillus spp. were isolated and characterized from the interior of near-subsurface granite rock collected from the Santa Catalina Mountains, AZ. Granite was found to contain approximately 500 cultivable Bacillus spores and approximately 10(4) total cultivable bacteria per gram. Many of the Bacillus isolates produced a previously unreported diffusible blue fluorescent compound. Two strains of eight tested exhibited increased spore UV resistance relative to a standard Bacillus subtilis UV biodosimetry strain. Fifty-six isolates were identified by repetitive extragenic palindromic PCR (rep-PCR) and 16S rRNA gene analysis as most closely related to B. megaterium (15 isolates), B. simplex (23 isolates), B. drentensis (6 isolates), B. niacini (7 isolates), and, likely, a new species related to B. barbaricus (5 isolates). Granite isolates were very closely related to a limited number of Bacillus spp. previously found to inhabit (i) globally distributed endolithic sites such as biodeteriorated murals, stone tombs, underground caverns, and rock concretions and (ii) extreme environments such as Antarctic soils, deep sea floor sediments, and spacecraft assembly facilities. Thus, it appears that the occurrence of Bacillus spp. in endolithic or extreme environments is not accidental but that these environments create unique niches excluding most Bacillus spp. but to which a limited number of Bacillus spp. are specifically adapted.
Collapse
Affiliation(s)
- Patricia Fajardo-Cavazos
- Department of Microbiology and Cell Science, Room 201-B, Space Life Sciences Laboratory, Building M6-1025/SLSL, University of Florida, Kennedy Space Center, FL 32899, USA
| | | |
Collapse
|
32
|
Newcombe DA, Schuerger AC, Benardini JN, Dickinson D, Tanner R, Venkateswaran K. Survival of spacecraft-associated microorganisms under simulated martian UV irradiation. Appl Environ Microbiol 2006; 71:8147-56. [PMID: 16332797 PMCID: PMC1317311 DOI: 10.1128/aem.71.12.8147-8156.2005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spore-forming microbes recovered from spacecraft surfaces and assembly facilities were exposed to simulated Martian UV irradiation. The effects of UVA (315 to 400 nm), UVA+B (280 to 400 nm), and the full UV spectrum (200 to 400 nm) on the survival of microorganisms were studied at UV intensities expected to strike the surfaces of Mars. Microbial species isolated from the surfaces of several spacecraft, including Mars Odyssey, X-2000 (avionics), and the International Space Station, and their assembly facilities were identified using 16S rRNA gene sequencing. Forty-three Bacillus spore lines were screened, and 19 isolates showed resistance to UVC irradiation (200 to 280 nm) after exposure to 1,000 J m(-2) of UVC irradiation at 254 nm using a low-pressure mercury lamp. Spores of Bacillus species isolated from spacecraft-associated surfaces were more resistant than a standard dosimetric strain, Bacillus subtilis 168. In addition, the exposure time required for UVA+B irradiation to reduce the viable spore numbers by 90% was 35-fold longer than the exposure time required for the full UV spectrum to do this, confirming that UVC is the primary biocidal bandwidth. Among the Bacillus species tested, spores of a Bacillus pumilus strain showed the greatest resistance to all three UV bandwidths, as well as the total spectrum. The resistance to simulated Mars UV irradiation was strain specific; B. pumilus SAFR-032 exhibited greater resistance than all other strains tested. The isolation of organisms like B. pumilus SAFR-032 and the greater survival of this organism (sixfold) than of the standard dosimetric strains should be considered when the sanitation capabilities of UV irradiation are determined.
Collapse
Affiliation(s)
- David A Newcombe
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | | | | | | | | |
Collapse
|
33
|
Szewczyk NJ, Mancinelli RL, McLamb W, Reed D, Blumberg BS, Conley CA. Caenorhabditis elegans survives atmospheric breakup of STS-107, space shuttle Columbia. ASTROBIOLOGY 2005; 5:690-705. [PMID: 16379525 DOI: 10.1089/ast.2005.5.690] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The nematode Caenorhabditis elegans, a popular organism for biological studies, is being developed as a model system for space biology. The chemically defined liquid medium, C. elegans Maintenance Medium (CeMM), allows axenic cultivation and automation of experiments that are critical for spaceflight research. To validate CeMM for use during spaceflight, we grew animals using CeMM and standard laboratory conditions onboard STS-107, space shuttle Columbia. Tragically, the Columbia was destroyed while reentering the Earth's atmosphere. During the massive recovery effort, hardware that contained our experiment was found. Live animals were observed in four of the five recovered canisters, which had survived on both types of media. These data demonstrate that CeMM is capable of supporting C. elegans during spaceflight. They also demonstrate that animals can survive a relatively unprotected reentry into the Earth's atmosphere, which has implications with regard to the packaging of living material during space flight, planetary protection, and the interplanetary transfer of life.
Collapse
|
34
|
Nicholson WL, Schuerger AC. Bacillus subtilis spore survival and expression of germination-induced bioluminescence after prolonged incubation under simulated Mars atmospheric pressure and composition: implications for planetary protection and lithopanspermia. ASTROBIOLOGY 2005; 5:536-44. [PMID: 16078870 DOI: 10.1089/ast.2005.5.536] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Bacterial endospores in the genus Bacillus are considered good models for studying interplanetary transfer of microbes by natural or human processes. Although spore survival during transfer itself has been the subject of considerable study, the fate of spores in extraterrestrial environments has received less attention. In this report we subjected spores of a strain of Bacillus subtilis, containing luciferase resulting from expression of an sspB-luxAB gene fusion, to simulated martian atmospheric pressure (7-18 mbar) and composition (100% CO(2)) for up to 19 days in a Mars simulation chamber. We report here that survival was similar between spores exposed to Earth conditions and spores exposed up to 19 days to simulated martian conditions. However, germination-induced bioluminescence was lower in spores exposed to simulated martian atmosphere, which suggests sublethal impairment of some endogenous spore germination processes.
Collapse
Affiliation(s)
- Wayne L Nicholson
- Department of Microbiology and Cell Science, University of Florida, Kennedy Space Center, Florida 32899, USA.
| | | |
Collapse
|
35
|
Roberts MS, Garland JL, Mills AL. Microbial astronauts: assembling microbial communities for advanced life support systems. MICROBIAL ECOLOGY 2004; 47:137-149. [PMID: 14994179 DOI: 10.1007/s00248-003-1060-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2003] [Accepted: 11/08/2003] [Indexed: 05/24/2023]
Abstract
Extension of human habitation into space requires that humans carry with them many of the microorganisms with which they coexist on Earth. The ubiquity of microorganisms in close association with all living things and biogeochemical processes on Earth predicates that they must also play a critical role in maintaining the viability of human life in space. Even though bacterial populations exist as locally adapted ecotypes, the abundance of individuals in microbial species is so large that dispersal is unlikely to be limited by geographical barriers on Earth (i.e., for most environments "everything is everywhere" given enough time). This will not be true for microbial communities in space where local species richness will be relatively low because of sterilization protocols prior to launch and physical barriers between Earth and spacecraft after launch. Although community diversity will be sufficient to sustain ecosystem function at the onset, richness and evenness may decline over time such that biological systems either lose functional potential (e.g., bioreactors may fail to reduce BOD or nitrogen load) or become susceptible to invasion by human-associated microorganisms (pathogens) over time. Research at the John F. Kennedy Space Center has evaluated fundamental properties of microbial diversity and community assembly in prototype bioregenerative systems for NASA Advanced Life Support. Successional trends related to increased niche specialization, including an apparent increase in the proportion of nonculturable types of organisms, have been consistently observed. In addition, the stability of the microbial communities, as defined by their resistance to invasion by human-associated microorganisms, has been correlated to their diversity. Overall, these results reflect the significant challenges ahead for the assembly of stable, functional communities using gnotobiotic approaches, and the need to better define the basic biological principles that define ecosystem processes in the space environment.
Collapse
Affiliation(s)
- M S Roberts
- Dynamac Inc., DYN-3, John F. Kennedy Space Center, FL 32899, USA.
| | | | | |
Collapse
|
36
|
Schuerger AC, Mancinelli RL, Kern RG, Rothschild LJ, McKay CP. Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated martian environments: implications for the forward contamination of Mars. ICARUS 2003; 165:253-276. [PMID: 14649627 DOI: 10.1016/s0019-1035(03)00200-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Experiments were conducted in a Mars simulation chamber (MSC) to characterize the survival of endospores of Bacillus subtilis under high UV irradiation and simulated martian conditions. The MSC was used to create Mars surface environments in which pressure (8.5 mb), temperature (-80, -40, -10, or +23 degrees C), gas composition (Earth-normal N2/O2 mix, pure N2, pure CO2, or a Mars gas mix), and UV-VIS-NIR fluence rates (200-1200 nm) were maintained within tight limits. The Mars gas mix was composed of CO2 (95.3%), N2 (2.7%), Ar (1.7%), O2 (0.2%), and water vapor (0.03%). Experiments were conducted to measure the effects of pressure, gas composition, and temperature alone or in combination with Mars-normal UV-VIS-NIR light environments. Endospores of B. subtilis, were deposited on aluminum coupons as monolayers in which the average density applied to coupons was 2.47 x 10(6) bacteria per sample. Populations of B. subtilis placed on aluminum coupons and subjected to an Earth-normal temperature (23 degrees C), pressure (1013 mb), and gas mix (normal N2/O2 ratio) but illuminated with a Mars-normal UV-VIS-NIR spectrum were reduced by over 99.9% after 30 sec exposure to Mars-normal UV fluence rates. However, it required at least 15 min of Mars-normal UV exposure to reduce bacterial populations on aluminum coupons to non-recoverable levels. These results were duplicated when bacteria were exposed to Mars-normal environments of temperature (-10 degrees C), pressure (8.5 mb), gas composition (pure CO2), and UV fluence rates. In other experiments, results indicated that the gas composition of the atmosphere and the temperature of the bacterial monolayers at the time of Mars UV exposure had no effects on the survival of bacterial endospores. But Mars-normal pressures (8.5 mb) were found to reduce survival by approximately 20-35% compared to Earth-normal pressures (1013 mb). The primary implications of these results are (a) that greater than 99.9% of bacterial populations on sun-exposed surfaces of spacecraft are likely to be inactivated within a few tens of seconds to a few minutes on the surface of Mars, and (b) that within a single Mars day under clear-sky conditions bacterial populations on sun-exposed surfaces of spacecraft will be sterilized. Furthermore, these results suggest that the high UV fluence rates on the martian surface can be an important resource in minimizing the forward contamination of Mars.
Collapse
|
37
|
Staley JT. Astrobiology, the transcendent science: the promise of astrobiology as an integrative approach for science and engineering education and research. Curr Opin Biotechnol 2003; 14:347-54. [PMID: 12849791 DOI: 10.1016/s0958-1669(03)00073-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Astrobiology is rapidly gaining the worldwide attention of scientists, engineers and the public. Astrobiology's captivation is due to its inherently interesting focus on life, its origins and distribution in the Universe. Because of its remarkable breadth as a scientific field, astrobiology touches on virtually all disciplines in the physical, biological and social sciences as well as engineering. The multidisciplinary nature and the appeal of its subject matter make astrobiology ideal for integrating the teaching of science at all levels in educational curricula. The rationale for implementing novel educational programs in astrobiology is presented along with specific research and educational policy recommendations.
Collapse
Affiliation(s)
- James T Staley
- Department of Microbiology, NSF Astrobiology IGERT Program, University of Washington, Box 357242, Seattle, WA 98195, USA.
| |
Collapse
|
38
|
Boston PJ, Spilde MN, Northup DE, Melim LA, Soroka DS, Kleina LG, Lavoie KH, Hose LD, Mallory LM, Dahm CN, Crossey LJ, Schelble RT. Cave biosignature suites: microbes, minerals, and Mars. ASTROBIOLOGY 2001; 1:25-55. [PMID: 12448994 DOI: 10.1089/153110701750137413] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Earth's subsurface offers one of the best possible sites to search for microbial life and the characteristic lithologies that life leaves behind. The subterrain may be equally valuable for astrobiology. Where surface conditions are particularly hostile, like on Mars, the subsurface may offer the only habitat for extant lifeforms and access to recognizable biosignatures. We have identified numerous unequivocally biogenic macroscopic, microscopic, and chemical/geochemical cave biosignatures. However, to be especially useful for astrobiology, we are looking for suites of characteristics. Ideally, "biosignature suites" should be both macroscopically and microscopically detectable, independently verifiable by nonmorphological means, and as independent as possible of specific details of life chemistries--demanding (and sometimes conflicting) criteria. Working in fragile, legally protected environments, we developed noninvasive and minimal impact techniques for life and biosignature detection/characterization analogous to Planetary Protection Protocols. Our difficult field conditions have shared limitations common to extraterrestrial robotic and human missions. Thus, the cave/subsurface astrobiology model addresses the most important goals from both scientific and operational points of view. We present details of cave biosignature suites involving manganese and iron oxides, calcite, and sulfur minerals. Suites include morphological fossils, mineral-coated filaments, living microbial mats and preserved biofabrics, 13C and 34S values consistent with microbial metabolism, genetic data, unusual elemental abundances and ratios, and crystallographic mineral forms.
Collapse
Affiliation(s)
- P J Boston
- Biology Department, University of New Mexico, Albuquerque, NM, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|