1
|
Bezpalaya EY, Matyuta IO, Vorobyeva NN, Kurilova SA, Oreshkov SD, Minyaev ME, Boyko KM, Rodina EV. The crystal structure of yeast mitochondrial type pyrophosphatase provides a model to study pathological mutations in its human ortholog. Biochem Biophys Res Commun 2024; 738:150563. [PMID: 39178581 DOI: 10.1016/j.bbrc.2024.150563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
Mutations in human ppa2 gene encoding mitochondrial inorganic pyrophosphatase (PPA2) result in the mitochondria malfunction in heart and brain and lead to early death. In comparison with its cytosolic counterpart, PPA2 of any species is a poorly characterized enzyme with a previously unknown 3D structure. We report here the crystal structure of PPA2 from yeast Ogataea parapolymorpha (OpPPA2), as well as its biochemical characterization. OpPPA2 is a dimer, demonstrating the fold typical for other eukaryotic Family I pyrophosphatases, including the human cytosolic enzyme. Cofactor Mg2+ ions found in OpPPA2 structure have similar coordination to most known Family I pyrophosphatases. Most of the residues associated with the pathological mutations in human PPA2 are conserved in OpPPA2, and their structural context suggests possible explanations for the effects of the mutations on the human enzyme. In this work, the mutant variant of OpPPA2, Met52Val, corresponding to the natural pathogenic variant Met94Val of human PPA2, is characterized. The obtained structural and biochemical data provide a step to understanding the structural basis of PPA2-associated pathologies.
Collapse
Affiliation(s)
| | - Ilya O Matyuta
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia; Landau Phystech School of Physics and Research, Moscow Institute of Physics and Technology, Institutsky Lane, 9, Dolgoprudny, 141700, Moscow, Russia
| | - Natalia N Vorobyeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899, Moscow, Russia
| | - Svetlana A Kurilova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899, Moscow, Russia
| | - Sergey D Oreshkov
- Lomonosov Moscow State University, Chemistry Department, 119991, Moscow, Russia
| | - Mikhail E Minyaev
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, 119071, Moscow, Russia
| | - Konstantin M Boyko
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia.
| | - Elena V Rodina
- Lomonosov Moscow State University, Chemistry Department, 119991, Moscow, Russia.
| |
Collapse
|
2
|
García-Contreras R, de la Mora J, Mora-Montes HM, Martínez-Álvarez JA, Vicente-Gómez M, Padilla-Vaca F, Vargas-Maya NI, Franco B. The inorganic pyrophosphatases of microorganisms: a structural and functional review. PeerJ 2024; 12:e17496. [PMID: 38938619 PMCID: PMC11210485 DOI: 10.7717/peerj.17496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/09/2024] [Indexed: 06/29/2024] Open
Abstract
Pyrophosphatases (PPases) are enzymes that catalyze the hydrolysis of pyrophosphate (PPi), a byproduct of the synthesis and degradation of diverse biomolecules. The accumulation of PPi in the cell can result in cell death. Although the substrate is the same, there are variations in the catalysis and features of these enzymes. Two enzyme forms have been identified in bacteria: cytoplasmic or soluble pyrophosphatases and membrane-bound pyrophosphatases, which play major roles in cell bioenergetics. In eukaryotic cells, cytoplasmic enzymes are the predominant form of PPases (c-PPases), while membrane enzymes (m-PPases) are found only in protists and plants. The study of bacterial cytoplasmic and membrane-bound pyrophosphatases has slowed in recent years. These enzymes are central to cell metabolism and physiology since phospholipid and nucleic acid synthesis release important amounts of PPi that must be removed to allow biosynthesis to continue. In this review, two aims were pursued: first, to provide insight into the structural features of PPases known to date and that are well characterized, and to provide examples of enzymes with novel features. Second, the scientific community should continue studying these enzymes because they have many biotechnological applications. Additionally, in this review, we provide evidence that there are m-PPases present in fungi; to date, no examples have been characterized. Therefore, the diversity of PPase enzymes is still a fruitful field of research. Additionally, we focused on the roles of H+/Na+ pumps and m-PPases in cell bioenergetics. Finally, we provide some examples of the applications of these enzymes in molecular biology and biotechnology, especially in plants. This review is valuable for professionals in the biochemistry field of protein structure-function relationships and experts in other fields, such as chemistry, nanotechnology, and plant sciences.
Collapse
Affiliation(s)
- Rodolfo García-Contreras
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Javier de la Mora
- Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Héctor Manuel Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - José A. Martínez-Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Marcos Vicente-Gómez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Felipe Padilla-Vaca
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Naurú Idalia Vargas-Maya
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Bernardo Franco
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| |
Collapse
|
3
|
Zheng S, Zheng C, Chen S, Guo J, Huang L, Huang Z, Xu S, Wu Y, Li S, Lin J, You Y, Hu F. Structural and biochemical characterization of active sites mutant in human inorganic pyrophosphatase. Biochim Biophys Acta Gen Subj 2024; 1868:130594. [PMID: 38428647 DOI: 10.1016/j.bbagen.2024.130594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Inorganic pyrophosphatases (PPases) are enzymes that catalyze the conversion of inorganic pyrophosphate (PPi) into phosphate (Pi). Human inorganic pyrophosphatase 1 (Hu-PPase) exhibits high expression levels in a variety of tumors and plays roles in cell proliferation, apoptosis, invasion and metastasis, making it a promising prognostic biomarker and a target for cancer therapy. Despite its widespread presence, the catalytic mechanism of Hu-PPase in humans remains inadequately understood. The signature motif amino acid sequence (DXDPXD) within the active sites of PPases is preserved across different species. In this research, an enzymatic activity assay revealed that mutations led to a notable reduction in enzymatic function, although the impact of the four amino acids on the activity of the pocket varied. To investigate the influence of these residues on the substrate binding and enzymatic function of PPase, the crystal structure of the Hu-PPase-ED quadruple mutant (D116A/D118A/P119A/D121A) was determined at 1.69 Å resolution. The resulting structure maintained a barrel-like shape similar to that of the wild-type, albeit lacking Mg2+ ions. Molecular docking analysis demonstrated a decreased ability of Hu-PPase-ED to bind to PPi. Further, molecular dynamics simulation analysis indicated that the mutation rendered the loop of Mg2+ ion-binding residues less stable. Therefore, the effect on enzyme activity did not result from a change in the gross protein structure but rather from a mutation that abolished the Mg2+-coordinating groups, thereby eliminating Mg2+ binding and leading to the loss of enzyme activity.
Collapse
Affiliation(s)
- Shuping Zheng
- Public Technology Service Center, Fujian Medical University, Fuzhou, China
| | - Chenhua Zheng
- Experiment Teaching Center of Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Sishi Chen
- Public Technology Service Center, Fujian Medical University, Fuzhou, China
| | - Jianpeng Guo
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, China
| | - Lirui Huang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zhenhong Huang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Sunting Xu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yihan Wu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Shunfa Li
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Junjin Lin
- Public Technology Service Center, Fujian Medical University, Fuzhou, China
| | - Yiqing You
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Fen Hu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
4
|
Moorefield J, Konuk Y, Norman JO, Abendroth J, Edwards TE, Lorimer DD, Mayclin SJ, Staker BL, Craig JK, Barett KF, Barrett LK, Van Voorhis WC, Myler PJ, McLaughlin KJ. Characterization of a family I inorganic pyrophosphatase from Legionella pneumophila Philadelphia 1. Acta Crystallogr F Struct Biol Commun 2023; 79:257-266. [PMID: 37728609 PMCID: PMC10565794 DOI: 10.1107/s2053230x23008002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Inorganic pyrophosphate (PPi) is generated as an intermediate or byproduct of many fundamental metabolic pathways, including DNA/RNA synthesis. The intracellular concentration of PPi must be regulated as buildup can inhibit many critical cellular processes. Inorganic pyrophosphatases (PPases) hydrolyze PPi into two orthophosphates (Pi), preventing the toxic accumulation of the PPi byproduct in cells and making Pi available for use in biosynthetic pathways. Here, the crystal structure of a family I inorganic pyrophosphatase from Legionella pneumophila is reported at 2.0 Å resolution. L. pneumophila PPase (LpPPase) adopts a homohexameric assembly and shares the oligonucleotide/oligosaccharide-binding (OB) β-barrel core fold common to many other bacterial family I PPases. LpPPase demonstrated hydrolytic activity against a general substrate, with Mg2+ being the preferred metal cofactor for catalysis. Legionnaires' disease is a severe respiratory infection caused primarily by L. pneumophila, and thus increased characterization of the L. pneumophila proteome is of interest.
Collapse
Affiliation(s)
- Julia Moorefield
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA
| | - Yagmur Konuk
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA
| | - Jordan O. Norman
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- UCB Biosciences, 7869 Day Road West, Bainbridge Island, WA 98110, USA
| | - Thomas E. Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- UCB Biosciences, 7869 Day Road West, Bainbridge Island, WA 98110, USA
| | - Donald D. Lorimer
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- UCB Biosciences, 7869 Day Road West, Bainbridge Island, WA 98110, USA
| | - Stephen J. Mayclin
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- UCB Biosciences, 7869 Day Road West, Bainbridge Island, WA 98110, USA
| | - Bart L. Staker
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Seattle Children’s Research Institute, University of Washington, Seattle, Washington, USA
| | - Justin K. Craig
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Kayleigh F. Barett
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Lynn K. Barrett
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Wesley C. Van Voorhis
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Seattle Children’s Research Institute, University of Washington, Seattle, Washington, USA
| | - Krystle J. McLaughlin
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA
| |
Collapse
|
5
|
Wu QF, Wang WS, Chen SB, Xu B, Li YD, Chen JH. Crystal Structure of Inorganic Pyrophosphatase From Schistosoma japonicum Reveals the Mechanism of Chemicals and Substrate Inhibition. Front Cell Dev Biol 2021; 9:712328. [PMID: 34458268 PMCID: PMC8386120 DOI: 10.3389/fcell.2021.712328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
Soluble inorganic pyrophosphatases (PPases) are essential for facilitating the growth and development of organisms, making them attractive functional proteins. To provide insight into the molecular basis of PPases in Schistosoma japonicum (SjPPase), we expressed the recombinant SjPPase, analyzed the hydrolysis mechanism of inorganic pyrophosphate (PPi), and measured its activity. Moreover, we solved the crystal structure of SjPPase in complex with orthophosphate (Pi) and performed PPi and methylene diphosphonic acid (MDP) docking into the active site. Our results suggest that the SjPPase possesses PPi hydrolysis activity, and the activity declines with increased MDP or NaF concentration. However, the enzyme shows unexpected substrate inhibition properties. Through PPi metabolic pathway analysis, the physiological action of substrate inhibition might be energy saving, adaptably cytoprotective, and biosynthetic rate regulating. Furthermore, the structure of apo-SjPPase and SjPPase with Pi has been solved at 2.6 and 2.3 Å, respectively. The docking of PPi into the active site of the SjPPase-Pi complex revealed that substrate inhibition might result from blocking Pi exit due to excess PPi in the SjPPase-Pi complex of the catalytic cycle. Our results revealed the structural features of apo-SjPPase and the SjPPase-Pi complex by X-ray crystallography, providing novel insights into the physiological functions of PPase in S. japonicum without the PPi transporter and the mechanism of its substrate inhibition.
Collapse
Affiliation(s)
- Qun-Feng Wu
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Shanghai, China.,Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou, China
| | - Wei-Si Wang
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Shanghai, China
| | - Shen-Bo Chen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Shanghai, China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Shanghai, China
| | - Yong-Dong Li
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Shanghai, China.,Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou, China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Shanghai, China.,The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Niu H, Zhu J, Qu Q, Zhou X, Huang X, Du Z. Crystallographic and modeling study of the human inorganic pyrophosphatase 1: A potential anti-cancer drug target. Proteins 2021; 89:853-865. [PMID: 33583053 DOI: 10.1002/prot.26064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/09/2020] [Accepted: 01/31/2021] [Indexed: 11/10/2022]
Abstract
Inorganic pyrophosphatases (PPases) catalyze the hydrolysis of pyrophosphate to phosphates. PPases play essential roles in growth and development, and are found in all kingdoms of life. Human possess two PPases, PPA1 and PPA2. PPA1 is present in all tissues, acting largely as a housekeeping enzyme. Besides pyrophosphate hydrolysis, PPA1 can also directly dephosphorylate phosphorylated c-Jun N-terminal kinases 1 (JNK1). Upregulated expression of PPA1 has been linked to many human malignant tumors. PPA1 knockdown induces apoptosis and decreases proliferation. PPA1 is emerging as a potential prognostic biomarker and target for anti-cancer drug development. In spite of the biological and physiopathological importance of PPA1, there is no detailed study on the structure and catalytic mechanisms of mammalian origin PPases. Here we report the crystal structure of human PPA1 at a resolution of 2.4 Å. We also carried out modeling studies of PPA1 in complex with JNK1 derived phosphor-peptides. The monomeric protein fold of PPA1 is similar to those found in other family I PPases. PPA1 forms a dimeric structure that should be conserved in animal and fungal PPases. Analysis of the PPA1 structure and comparison with available structures of PPases from lower organisms suggest that PPA1 has a largely pre-organized and relatively rigid active site for pyrophosphate hydrolysis. Results from the modeling study indicate the active site of PPA1 has the potential to accommodate double-phosphorylated peptides from JNK1. In short, results from the study provides new insights into the mechanisms of human PPA1 and basis for structure-based anti-cancer drug developments using PPA1 as the target.
Collapse
Affiliation(s)
- Haiying Niu
- Department of Gynecology and Obstetrics, Tianjin First Central Hospital, Tianjin, China.,Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois, USA
| | - Jiang Zhu
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois, USA.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College 16802, Pennsylvania, USA
| | - Quanxin Qu
- Department of Gynecology and Obstetrics, Tianjin First Central Hospital, Tianjin, China
| | - Xia Zhou
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois, USA
| | - Xiaolan Huang
- Department of Computer Science, Southern Illinois University, Carbondale, Illinois, USA
| | - Zhihua Du
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois, USA
| |
Collapse
|
7
|
Romanov RS, Kurilova SA, Baykov AA, Rodina EV. Effect of Structure Variations in the Inter-subunit Contact Zone on the Activity and Allosteric Regulation of Inorganic Pyrophosphatase from Mycobacterium tuberculosis. BIOCHEMISTRY (MOSCOW) 2021; 85:326-333. [PMID: 32564737 DOI: 10.1134/s0006297920030086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hexameric inorganic pyrophosphatase from Mycobacterium tuberculosis (Mt-PPase) has a number of structural and functional features that distinguish it from homologous enzymes widely occurring in living organisms. In particular, it has unusual zones of inter-subunit contacts and lacks the N-terminal region common for other PPases. In this work, we constructed two mutant forms of the enzyme, Ec-Mt-PPase and R14Q-Mt-PPase. In Ec-Mt-PPase, the missing part of the polypeptide chain was compensated with a fragment of PPase from Escherichia coli (Ec-PPase). In R14Q-Mt-PPase, a point mutation was introduced to the contact interface between the two trimers of the hexamer. Both modifications significantly improved the catalytic activity of the enzyme and abolished its inhibition by the cofactor (Mg2+ ion) excess. Activation of Mt-PPase by low (~10 μM) concentrations of ATP, fructose-1-phosphate, L-malate, and non-hydrolyzable substrate analogue methylene bisphosphonate (PCP) was observed. At concentrations of 100 μM and higher, the first three compounds acted as inhibitors. The activating effect of PCP was absent in both mutant forms, and the inhibitory effect of fructose-1-phosphate was absent in Ec-Mt-PPase. The effects of other modulators varied only quantitatively among the mutants. The obtained data indicate the presence of allosteric sites in Mt-PPase, which are located in the zones of inter-subunit contact or associated with them.
Collapse
Affiliation(s)
- R S Romanov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - S A Kurilova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - E V Rodina
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.
| |
Collapse
|
8
|
Abstract
Microorganisms contend with numerous and unusual chemical threats and have evolved a catalog of resistance mechanisms in response. One particularly ancient, pernicious threat is posed by fluoride ion (F-), a common xenobiotic in natural environments that causes broad-spectrum harm to metabolic pathways. This review focuses on advances in the last ten years toward understanding the microbial response to cytoplasmic accumulation of F-, with a special emphasis on the structure and mechanisms of the proteins that microbes use to export fluoride: the CLCF family of F-/H+ antiporters and the Fluc/FEX family of F- channels.
Collapse
Affiliation(s)
- Benjamin C McIlwain
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Michal T Ruprecht
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Randy B Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA; .,Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
9
|
Lai Z, Zhao T, Sessler JL, He Q. Bis–Calix[4]pyrroles: Preparation, structure, complexation properties and beyond. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Mechanisms of Fluoride Toxicity: From Enzymes to Underlying Integrative Networks. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207100] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluoride has been employed in laboratory investigations since the early 20th century. These studies opened the understanding of fluoride interventions to fundamental biological processes. Millions of people living in endemic fluorosis areas suffer from various pathological disturbances. The practice of community water fluoridation used prophylactically against dental caries increased concern of adverse fluoride effects. We assessed the publications on fluoride toxicity until June 2020. We present evidence that fluoride is an enzymatic poison, inducing oxidative stress, hormonal disruptions, and neurotoxicity. Fluoride in synergy with aluminum acts as a false signal in G protein cascades of hormonal and neuronal regulations in much lower concentrations than fluoride acting alone. Our review shows the impact of fluoride on human health. We suggest focusing the research on fluoride toxicity to the underlying integrative networks. Ignorance of the pluripotent toxic effects of fluoride might contribute to unexpected epidemics in the future.
Collapse
|
11
|
Vorobyeva NN, Kurilova SA, Vlasova AV, Anashkin VA, Nazarova TI, Rodina EV, Baykov AA. Constitutive inorganic pyrophosphatase as a reciprocal regulator of three inducible enzymes in Escherichia coli. Biochim Biophys Acta Gen Subj 2020; 1865:129762. [PMID: 33053413 DOI: 10.1016/j.bbagen.2020.129762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/30/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Previous studies have demonstrated the formation of stable complexes between inorganic pyrophosphatase (PPase) and three other Escherichia coli enzymes - cupin-type phosphoglucose isomerase (cPGI), class I fructose-1,6-bisphosphate aldolase (FbaB) and l-glutamate decarboxylase (GadA). METHODS Here, we determined by activity measurements how complex formation between these enzymes affects their activities and oligomeric structure. RESULTS cPGI activity was modulated by all partner proteins, but none was reciprocally affected by cPGI. PPase activity was down-regulated upon complex formation, whereas all other enzymes were up-regulated. For cPGI, the activation was partially counteracted by a shift in dimer ⇆ hexamer equilibrium to inactive hexamer. Complex stoichiometry appeared to be 1:1 in most cases, but FbaB formed both 1:1 and 1:2 complexes with both GadA and PPase, FbaB activation was only observed in the 1:2 complexes. FbaB and GadA induced functional asymmetry (negative kinetic cooperativity) in hexameric PPase, presumably by favoring partial dissociation to trimers. CONCLUSIONS These four enzymes form all six possible binary complexes in vitro, resulting in modulated activity of at least one of the constituent enzymes. In five complexes, the effects on activity were unidirectional, and in one complex (FbaB⋅PPase), the effects were reciprocal. The effects of potential physiological significance include inhibition of PPase by FbaB and GadA and activation of FbaB and cPGI by PPase. Together, they provide a mechanism for feedback regulation of FbaB and GadA biosynthesis. GENERAL SIGNIFICANCE These findings indicate the complexity of functionally significant interactions between cellular enzymes, which classical enzymology treats as individual entities, and demonstrate their moonlighting activities as regulators.
Collapse
Affiliation(s)
- Natalia N Vorobyeva
- Department of Chemistry and Belozersky, Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russian Federation
| | - Svetlana A Kurilova
- Department of Chemistry and Belozersky, Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russian Federation
| | - Anna V Vlasova
- Department of Chemistry and Belozersky, Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russian Federation
| | - Viktor A Anashkin
- Department of Chemistry and Belozersky, Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russian Federation
| | - Tatiana I Nazarova
- Department of Chemistry and Belozersky, Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russian Federation
| | - Elena V Rodina
- Department of Chemistry and Belozersky, Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russian Federation
| | - Alexander A Baykov
- Department of Chemistry and Belozersky, Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russian Federation.
| |
Collapse
|
12
|
Abstract
Biocatalysis is dominated by protein enzymes, and only a few classes of ribozymes are known to contribute to the task of promoting biochemical transformations. The RNA World theory encompasses the notion that earlier forms of life made use of a much greater diversity of ribozymes and other functional RNAs to guide complex metabolic states long before proteins had emerged in evolution. In recent years, the discoveries of various classes of ribozymes, riboswitches, and other noncoding RNAs in bacteria have provided additional support for the hypothesis that RNA molecules indeed have the catalytic competence to promote diverse chemical reactions without the aid of protein enzymes. Herein, some of the most striking observations made from examinations of natural riboswitches that bind small ligands are highlighted and used as a basis to imagine the characteristics and functions of long-extinct ribozymes from the RNA World.
Collapse
Affiliation(s)
- Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Department of Chemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520, United States
| |
Collapse
|
13
|
Si Y, Wang X, Yang G, Yang T, Li Y, Ayala GJ, Li X, Wang H, Su J. Crystal Structures of Pyrophosphatase from Acinetobacter baumannii: Snapshots of Pyrophosphate Binding and Identification of a Phosphorylated Enzyme Intermediate. Int J Mol Sci 2019; 20:ijms20184394. [PMID: 31500178 PMCID: PMC6770254 DOI: 10.3390/ijms20184394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 11/26/2022] Open
Abstract
All living things have pyrophosphatases that hydrolyze pyrophosphate and release energy. This energetically favorable reaction drives many energetically unfavorable reactions. An accepted catalytic model of pyrophosphatase shows that a water molecule activated by two divalent cations (M1 and M2) within the catalytic center can attack pyrophosphate in an SN2 mechanism and thus hydrolyze the molecule. However, our co-crystal structure of Acinetobacter baumannii pyrophosphatase with pyrophosphate shows that a water molecule from the solvent may, in fact, be the actual catalytic water. In the co-crystal structure of the wild-type pyrophosphatase with pyrophosphate, the electron density of the catalytic centers of each monomer are different from one another. This indicates that pyrophosphates in the catalytic center are dynamic. Our mass spectroscopy results have identified a highly conserved lysine residue (Lys30) in the catalytic center that is phosphorylated, indicating that the enzyme could form a phosphoryl enzyme intermediate during hydrolysis. Mutation of Lys30 to Arg abolished the activity of the enzyme. In the structure of the apo wild type enzyme, we observed that a Na+ ion is coordinated by residues within a loop proximal to the catalytic center. Therefore, we mutated three key residues within the loop (K143R, P147G, and K149R) and determined Na+ and K+-induced inhibition on their activities. Compared to the wild type enzyme, P147G is most sensitive to these cations, whereas K143R was inactive and K149R showed no change in activity. These data indicate that monovalent cations could play a role in down-regulating pyrophosphatase activity in vivo. Overall, our results reveal new aspects of pyrophosphatase catalysis and could assist in the design of specific inhibitors of Acinetobacter baumannii growth.
Collapse
Affiliation(s)
- Yunlong Si
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xing Wang
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Guosong Yang
- Zhongke Biopharm Co., LTD, East of Beijing, Beijing 101601, China
| | - Tong Yang
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yuying Li
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Gabriela Jaramillo Ayala
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xumin Li
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Hao Wang
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jiyong Su
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
14
|
Crystal structures of plant inorganic pyrophosphatase, an enzyme with a moonlighting autoproteolytic activity. Biochem J 2019; 476:2297-2319. [PMID: 31371393 DOI: 10.1042/bcj20190427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 11/17/2022]
Abstract
Inorganic pyrophosphatases (PPases, EC 3.6.1.1), which hydrolyze inorganic pyrophosphate to phosphate in the presence of divalent metal cations, play a key role in maintaining phosphorus homeostasis in cells. DNA coding inorganic pyrophosphatases from Arabidopsis thaliana (AtPPA1) and Medicago truncatula (MtPPA1) were cloned into a bacterial expression vector and the proteins were produced in Escherichia coli cells and crystallized. In terms of their subunit fold, AtPPA1 and MtPPA1 are reminiscent of other members of Family I soluble pyrophosphatases from bacteria and yeast. Like their bacterial orthologs, both plant PPases form hexamers, as confirmed in solution by multi-angle light scattering and size-exclusion chromatography. This is in contrast with the fungal counterparts, which are dimeric. Unexpectedly, the crystallized AtPPA1 and MtPPA1 proteins lack ∼30 amino acid residues at their N-termini, as independently confirmed by chemical sequencing. In vitro, self-cleavage of the recombinant proteins is observed after prolonged storage or during crystallization. The cleaved fragment corresponds to a putative signal peptide of mitochondrial targeting, with a predicted cleavage site at Val31-Ala32. Site-directed mutagenesis shows that mutations of the key active site Asp residues dramatically reduce the cleavage rate, which suggests a moonlighting proteolytic activity. Moreover, the discovery of autoproteolytic cleavage of a mitochondrial targeting peptide would change our perception of this signaling process.
Collapse
|
15
|
Machulin A, Deryusheva E, Lobanov M, Galzitskaya O. Repeats in S1 Proteins: Flexibility and Tendency for Intrinsic Disorder. Int J Mol Sci 2019; 20:ijms20102377. [PMID: 31091666 PMCID: PMC6566611 DOI: 10.3390/ijms20102377] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 11/16/2022] Open
Abstract
An important feature of ribosomal S1 proteins is multiple copies of structural domains in bacteria, the number of which changes in a strictly limited range from one to six. For S1 proteins, little is known about the contribution of flexible regions to protein domain function. We exhaustively studied a tendency for intrinsic disorder and flexibility within and between structural domains for all available UniProt S1 sequences. Using charge–hydrophobicity plot cumulative distribution function (CH-CDF) analysis we classified 53% of S1 proteins as ordered proteins; the remaining proteins were related to molten globule state. S1 proteins are characterized by an equal ratio of regions connecting the secondary structure within and between structural domains, which indicates a similar organization of separate S1 domains and multi-domain S1 proteins. According to the FoldUnfold and IsUnstruct programs, in the multi-domain proteins, relatively short flexible or disordered regions are predominant. The lowest percentage of flexibility is in the central parts of multi-domain proteins. Our results suggest that the ratio of flexibility in the separate domains is related to their roles in the activity and functionality of S1: a more stable and compact central part in the multi-domain proteins is vital for RNA interaction, terminals domains are important for other functions.
Collapse
Affiliation(s)
- Andrey Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia.
| | - Evgenia Deryusheva
- Institute for Biological Instrumentation, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia.
| | - Mikhail Lobanov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia.
| | - Oxana Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia.
| |
Collapse
|
16
|
Roles of the Hydrophobic Gate and Exit Channel in Vigna radiata Pyrophosphatase Ion Translocation. J Mol Biol 2019; 431:1619-1632. [PMID: 30878480 DOI: 10.1016/j.jmb.2019.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/26/2019] [Accepted: 03/03/2019] [Indexed: 12/25/2022]
Abstract
Membrane-embedded pyrophosphatase (M-PPase) hydrolyzes pyrophosphate to drive ion (H+ and/or Na+) translocation. We determined crystal structures and functions of Vigna radiata M-PPase (VrH+-PPase), the VrH+-PPase-2Pi complex and mutants at hydrophobic gate (residue L555) and exit channel (residues T228 and E225). Ion pore diameters along the translocation pathway of three VrH+-PPases complexes (Pi-, 2Pi- and imidodiphosphate-bound states) present a unique wave-like profile, with different pore diameters at the hydrophobic gate and exit channel, indicating that the ligands induced pore size alterations. The 2Pi-bound state with the largest pore diameter might mimic the hydrophobic gate open. In mutant structures, ordered waters detected at the hydrophobic gate among VrH+-PPase imply the possibility of solvation, and numerous waters at the exit channel might signify an open channel. A salt-bridge, E225-R562 is at the way out of the exit channel of VrH+-PPase; E225A mutant makes the interaction eliminated and reveals a decreased pumping ability. E225-R562 might act as a latch to regulate proton release. A water wire from the ion gate (R-D-K-E) through the hydrophobic gate and into the exit channel may reflect the path of proton transfer.
Collapse
|
17
|
Rather IA, Wagay SA, Hasnain MS, Ali R. New dimensions in calix[4]pyrrole: the land of opportunity in supramolecular chemistry. RSC Adv 2019; 9:38309-38344. [PMID: 35540221 PMCID: PMC9076024 DOI: 10.1039/c9ra07399j] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/06/2019] [Indexed: 01/05/2023] Open
Abstract
The quest for receptors endowed with the selective complexation and detection of negatively charged species continues to receive substantial consideration within the scientific community worldwide. This study is encouraged by the utilization of anions in nature in a plethora of biological systems such as chloride channels and proteins and as polyanions for genetic information. The molecular recognition of anionic species is greatly interesting in terms of their favourable interactions. In this comprehensive review, in addition to giving accounts of some selected syntheses, we illustrated diverse applications ranging from molecular containers to ion transporters and drug carriers of a supramolecular receptor named calix[4]pyrrole. We believe that the present review may act as a catalyst in enhancing the novel applications of calix[4]pyrrole and its congeners in the other dimensions of science and technology. The quest for receptors endowed with the selective complexation and detection of negatively charged species continues to receive substantial consideration within the scientific community worldwide.![]()
Collapse
Affiliation(s)
| | | | | | - Rashid Ali
- Department of Chemistry
- Jamia Millia Islamia
- New Delhi-110025
- India
| |
Collapse
|
18
|
Identification of a novel PYP-1 gene in Sarcoptes scabiei and its potential as a serodiagnostic candidate by indirect-ELISA. Parasitology 2017; 145:752-761. [PMID: 29113603 DOI: 10.1017/s0031182017001780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Scabies is a parasitic disease caused by the ectoparasite Sarcoptes scabiei, affecting different mammalian species, including rabbits, worldwide. In the present study, we cloned and expressed a novel inorganic pyrophosphatase, Ssc-PYP-1, from S. scabiei var. cuniculi. Immunofluorescence staining showed that native Ssc-PYP-1 was localized in the tegument around the mouthparts and the entire legs, as well as in the cuticle of the mites. Interestingly, obvious staining was also observed on the fecal pellets of mites and in the integument of the mites. Based on its good immunoreactivity, an indirect enzyme-linked immunosorbent assay (ELISA) using recombinant Ssc-PYP-1 (rSsc-PYP-1) as the capture antigen was developed to diagnose sarcoptic mange in naturally infected rabbits; the assay had a sensitivity of 92·0% and specificity of 93·6%. Finally, using the rSsc-PYP-1-ELISA, the Ssc-PYP-1 antibody from 10 experimentally infected rabbits could be detected from 1 week post-infection. This is the first report of S. scabiei inorganic pyrophosphatase and the protein could serve as a potential serodiagnostic candidate for sarcoptic mange in rabbits.
Collapse
|
19
|
Baykov AA, Anashkin VA, Salminen A, Lahti R. Inorganic pyrophosphatases of Family II-two decades after their discovery. FEBS Lett 2017; 591:3225-3234. [PMID: 28986979 DOI: 10.1002/1873-3468.12877] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 12/22/2022]
Abstract
Inorganic pyrophosphatases (PPases) convert pyrophosphate (PPi ) to phosphate and are present in all cell types. Soluble PPases belong to three nonhomologous families, of which Family II is found in approximately a quarter of prokaryotic organisms, often pathogenic ones. Each subunit of dimeric canonical Family II PPases is formed by two domains connected by a flexible linker, with the active site located between the domains. These enzymes require both magnesium and a transition metal ion (manganese or cobalt) for maximal activity and are the most active (kcat ≈ 104 s-1 ) among all PPase types. Catalysis by Family II PPases requires four metal ions per substrate molecule, three of which form a unique trimetal center that coordinates the nucleophilic water and converts it to a reactive hydroxide ion. A quarter of Family II PPases contain an autoinhibitory regulatory insert formed by two cystathionine β-synthase (CBS) domains and one DRTGG domain. Adenine nucleotide binding either activates or inhibits the CBS domain-containing PPases, thereby tuning their activity and, hence, PPi levels, in response to changes in cell energy status (ATP/ADP ratio).
Collapse
Affiliation(s)
- Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Viktor A Anashkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Anu Salminen
- Department of Biochemistry, University of Turku, Finland
| | - Reijo Lahti
- Department of Biochemistry, University of Turku, Finland
| |
Collapse
|
20
|
Vorobyeva NN, Kurilova SA, Anashkin VA, Rodina EV. Inhibition of Escherichia coli inorganic pyrophosphatase by fructose-1-phosphate. BIOCHEMISTRY (MOSCOW) 2017; 82:953-956. [DOI: 10.1134/s0006297917080107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
He Q, Kelliher M, Bähring S, Lynch VM, Sessler JL. A Bis-calix[4]pyrrole Enzyme Mimic That Constrains Two Oxoanions in Close Proximity. J Am Chem Soc 2017; 139:7140-7143. [PMID: 28493689 DOI: 10.1021/jacs.7b02329] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Herein we describe a large capsule-like bis-calix[4]pyrrole 1, which is able to host concurrently two dihydrogen phosphate anions within a relatively large internal cavity. Evidence for the concurrent, dual recognition of the encapsulated anions came from 1H NMR and UV-vis spectroscopies and ITC titrations carried out in CD2Cl2/CD3OD (9/1, v/v) or dichloroethane (DCE), as well as single crystal X-ray diffraction analyses. Receptor 1 was also found to bind two dianionic sulfate anions bridged by two water molecules in the solid state. The resulting sulfate dimer was retained in DCE solution, as evidenced by spectroscopic analyses. Finally, receptor 1 was found capable of accommodating two trianionic pyrophosphate anions in the cavity. The present experimental findings are supported by DFT calculations along with 1H NMR and UV-vis spectroscopies, ITC studies, and single crystal X-ray diffraction analyses.
Collapse
Affiliation(s)
- Qing He
- Department of Chemistry, The University of Texas at Austin , 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Michael Kelliher
- Department of Chemistry, The University of Texas at Austin , 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Steffen Bähring
- Department of Chemistry, The University of Texas at Austin , 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States.,Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark , Campusvej 55, 5230 Odense M, Denmark
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin , 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin , 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
22
|
Membrane pyrophosphatases from Thermotoga maritima and Vigna radiata suggest a conserved coupling mechanism. Nat Commun 2016; 7:13596. [PMID: 27922000 PMCID: PMC5150537 DOI: 10.1038/ncomms13596] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/18/2016] [Indexed: 11/08/2022] Open
Abstract
Membrane-bound pyrophosphatases (M-PPases), which couple proton/sodium ion transport to pyrophosphate synthesis/hydrolysis, are important in abiotic stress resistance and in the infectivity of protozoan parasites. Here, three M-PPase structures in different catalytic states show that closure of the substrate-binding pocket by helices 5-6 affects helix 13 in the dimer interface and causes helix 12 to move down. This springs a 'molecular mousetrap', repositioning a conserved aspartate and activating the nucleophilic water. Corkscrew motion at helices 6 and 16 rearranges the key ionic gate residues and leads to ion pumping. The pumped ion is above the ion gate in one of the ion-bound structures, but below it in the other. Electrometric measurements show a single-turnover event with a non-hydrolysable inhibitor, supporting our model that ion pumping precedes hydrolysis. We propose a complete catalytic cycle for both proton and sodium-pumping M-PPases, and one that also explains the basis for ion specificity.
Collapse
|
23
|
Gutiérrez-Luna FM, Navarro de la Sancha E, Valencia-Turcotte LG, Vázquez-Santana S, Rodríguez-Sotres R. Evidence for a non-overlapping subcellular localization of the family I isoforms of soluble inorganic pyrophosphatase in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 253:229-242. [PMID: 27968992 DOI: 10.1016/j.plantsci.2016.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/01/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
Pyrophosphate is a byproduct of macromolecular biosynthesis and its degradation gives a thermodynamic impulse to cell growth. Soluble inorganic pyrophosphatases (PPa) are present in all living cells, but in plants and other Eukaryotes membrane-bound H+-pumping pyrophosphatases may compete with these soluble counterparts for the substrate. In Arabidopsis thaliana there are six genes encoding for classic family I PPa isoforms, five cytoplasmic, and one considered to be organellar. Here, six transgenic stable A. thaliana lines, each expressing one of the PPa isoforms from this same plant species in fusion with a fluorescent protein, were obtained and analyzed under confocal and immunogold transmission electron microscopy. The results confirmed the cytoplasmic localization for isoforms 1-5, and showed an exclusive chloroplastic localization for isoform 6. In contrast to previous reports, the data presented here revealed a differential distribution pattern for the isoforms 1 and 5, in comparison to isoforms 2 and 3, and also the presence of isoform 4 in the intercellular space and cell wall, in addition to its presence in cytoplasm. To the best of our knowledge, this is the first report of a PPa family I protein localized in the intercellular space in plants.
Collapse
Affiliation(s)
- Francisca Morayna Gutiérrez-Luna
- Departamento De Bioquímica, Facultad De Química, UNAM, Av. Universidad 3000, Col. Cd. Universitaria. C.p. 04510, Ciudad De Mexico, Mexico; Universidad Nacional Autónoma De México, Av. Universidad 3000, Col. Cd. Universitaria. C.p. 04510, Ciudad De Mexico, Mexico
| | - Ernesto Navarro de la Sancha
- Departamento De Bioquímica, Facultad De Química, UNAM, Av. Universidad 3000, Col. Cd. Universitaria. C.p. 04510, Ciudad De Mexico, Mexico; Universidad Nacional Autónoma De México, Av. Universidad 3000, Col. Cd. Universitaria. C.p. 04510, Ciudad De Mexico, Mexico
| | - Lilián Gabriela Valencia-Turcotte
- Departamento De Bioquímica, Facultad De Química, UNAM, Av. Universidad 3000, Col. Cd. Universitaria. C.p. 04510, Ciudad De Mexico, Mexico; Universidad Nacional Autónoma De México, Av. Universidad 3000, Col. Cd. Universitaria. C.p. 04510, Ciudad De Mexico, Mexico
| | - Sonia Vázquez-Santana
- Departamento De Biología Comparada, Facultad De Ciencias, UNAM, Av. Universidad 3000, Col. Cd. Universitaria. C.p. 04510, Ciudad De Mexico, Mexico; Universidad Nacional Autónoma De México, Av. Universidad 3000, Col. Cd. Universitaria. C.p. 04510, Ciudad De Mexico, Mexico
| | - Rogelio Rodríguez-Sotres
- Departamento De Bioquímica, Facultad De Química, UNAM, Av. Universidad 3000, Col. Cd. Universitaria. C.p. 04510, Ciudad De Mexico, Mexico; Universidad Nacional Autónoma De México, Av. Universidad 3000, Col. Cd. Universitaria. C.p. 04510, Ciudad De Mexico, Mexico.
| |
Collapse
|
24
|
Lapenta F, Montón Silva A, Brandimarti R, Lanzi M, Gratani FL, Vellosillo Gonzalez P, Perticarari S, Hochkoeppler A. Escherichia coli DnaE Polymerase Couples Pyrophosphatase Activity to DNA Replication. PLoS One 2016; 11:e0152915. [PMID: 27050298 PMCID: PMC4822814 DOI: 10.1371/journal.pone.0152915] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/21/2016] [Indexed: 11/19/2022] Open
Abstract
DNA Polymerases generate pyrophosphate every time they catalyze a step of DNA elongation. This elongation reaction is generally believed as thermodynamically favoured by the hydrolysis of pyrophosphate, catalyzed by inorganic pyrophosphatases. However, the specific action of inorganic pyrophosphatases coupled to DNA replication in vivo was never demonstrated. Here we show that the Polymerase-Histidinol-Phosphatase (PHP) domain of Escherichia coli DNA Polymerase III α subunit features pyrophosphatase activity. We also show that this activity is inhibited by fluoride, as commonly observed for inorganic pyrophosphatases, and we identified 3 amino acids of the PHP active site. Remarkably, E. coli cells expressing variants of these catalytic residues of α subunit feature aberrant phenotypes, poor viability, and are subject to high mutation frequencies. Our findings indicate that DNA Polymerases can couple DNA elongation and pyrophosphate hydrolysis, providing a mechanism for the control of DNA extension rate, and suggest a promising target for novel antibiotics.
Collapse
Affiliation(s)
- Fabio Lapenta
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Alejandro Montón Silva
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Renato Brandimarti
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Massimiliano Lanzi
- Department of Industrial Chemistry, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Fabio Lino Gratani
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | | | - Sofia Perticarari
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Alejandro Hochkoeppler
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
- CSGI, University of Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy
| |
Collapse
|
25
|
Ruggiero MT, Korter TM. The crucial role of water in shaping low-barrier hydrogen bonds. Phys Chem Chem Phys 2016; 18:5521-8. [DOI: 10.1039/c5cp07760e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low-barrier hydrogen bonds (LBHBs) are key components in a range of chemical processes, often appearing in metal-mediated catalytic applications.
Collapse
|
26
|
R. Shah N, Vidilaseris K, Xhaard H, Goldman A. Integral membrane pyrophosphatases: a novel drug target for human pathogens? AIMS BIOPHYSICS 2016. [DOI: 10.3934/biophy.2016.1.171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
27
|
Sartoris RP, Nascimento OR, Santana RC, Perec M, Baggio RF, Calvo R. Structure and magnetism of a binuclear Cu(II) pyrophosphate: transition to a 3D magnetic behaviour studied by single crystal EPR. Dalton Trans 2015; 44:4732-43. [PMID: 25666395 DOI: 10.1039/c4dt03616f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A binuclear Cu(II) compound [Cu2(bpa)2(P2O7)(H2O)2]·2.5H2O, 1, (bpa = 2,2'-bipyridylamine), with pairs of Cu(II) ions bridged by one pyrophosphate tetra-anion, was synthesized and crystallized. Its triclinic structure was determined by single-crystal X-ray diffraction. Electron paramagnetic resonance (EPR) spectra of single crystal samples of 1 were recorded for a fixed orientation of the magnetic field (B0) as a function of temperature (T) between 4.7 and 293 K, and at T = 4.7, 50 and 293 K, as a function of the orientation of B0. Below ∼8 K, the spectra are assigned to two types of mononuclear crystal defects hyperfine-coupled to one copper and two nitrogen nuclei. The g-matrices and hyperfine couplings at these T provide information about the structures of these defects. Above 10 K, the spectrum is dominated by the response of the bulk binuclear Cu(II) material, showing hyperfine interactions with two copper nuclei, collapsing to a single peak above 18 K when the units are magnetically connected, and the magnetic behaviour becomes 3D. We attribute the results above 10 K to the interplay of an AFM intrabinuclear exchange interaction J0 = -28(3) cm(-1) (defined as Hex = -J0S1·S2), and three orders of magnitude weaker exchange coupling with average magnitude |J1| ≥ 0.022 cm(-1) between Cu(II) ions in neighbouring binuclear units. The interplays between structure, exchange couplings, magnetic dimension and spin dynamics in the binuclear compound are discussed. A previously unreported situation, where the structure of the spectra arising from the anisotropic spin-spin interaction term (D) within the binuclear unit is averaged out, but the forbidden half field transition is not, is observed and explained.
Collapse
Affiliation(s)
- Rosana P Sartoris
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000 Santa Fe, Argentina.
| | | | | | | | | | | |
Collapse
|
28
|
Archaeal Inorganic Pyrophosphatase Displays Robust Activity under High-Salt Conditions and in Organic Solvents. Appl Environ Microbiol 2015; 82:538-48. [PMID: 26546423 DOI: 10.1128/aem.03055-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/02/2015] [Indexed: 11/20/2022] Open
Abstract
Soluble inorganic pyrophosphatases (PPAs) that hydrolyze inorganic pyrophosphate (PPi) to orthophosphate (Pi) are commonly used to accelerate and detect biosynthetic reactions that generate PPi as a by-product. Current PPAs are inactivated by high salt concentrations and organic solvents, which limits the extent of their use. Here we report a class A type PPA of the haloarchaeon Haloferax volcanii (HvPPA) that is thermostable and displays robust PPi-hydrolyzing activity under conditions of 25% (vol/vol) organic solvent and salt concentrations from 25 mM to 3 M. HvPPA was purified to homogeneity as a homohexamer by a rapid two-step method and was found to display non-Michaelis-Menten kinetics with a Vmax of 465 U · mg(-1) for PPi hydrolysis (optimal at 42°C and pH 8.5) and Hill coefficients that indicated cooperative binding to PPi and Mg(2+). Similarly to other class A type PPAs, HvPPA was inhibited by sodium fluoride; however, hierarchical clustering and three-dimensional (3D) homology modeling revealed HvPPA to be distinct in structure from characterized PPAs. In particular, HvPPA was highly negative in surface charge, which explained its extreme resistance to organic solvents. To demonstrate that HvPPA could drive thermodynamically unfavorable reactions to completion under conditions of reduced water activity, a novel coupled assay was developed; HvPPA hydrolyzed the PPi by-product generated in 2 M NaCl by UbaA (a "salt-loving" noncanonical E1 enzyme that adenylates ubiquitin-like proteins in the presence of ATP). Overall, we demonstrate HvPPA to be useful for hydrolyzing PPi under conditions of reduced water activity that are a hurdle to current PPA-based technologies.
Collapse
|
29
|
Soner S, Ozbek P, Garzon JI, Ben-Tal N, Haliloglu T. DynaFace: Discrimination between Obligatory and Non-obligatory Protein-Protein Interactions Based on the Complex's Dynamics. PLoS Comput Biol 2015; 11:e1004461. [PMID: 26506003 PMCID: PMC4623975 DOI: 10.1371/journal.pcbi.1004461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/08/2015] [Indexed: 12/31/2022] Open
Abstract
Protein-protein interfaces have been evolutionarily-designed to enable transduction between the interacting proteins. Thus, we hypothesize that analysis of the dynamics of the complex can reveal details about the nature of the interaction, and in particular whether it is obligatory, i.e., persists throughout the entire lifetime of the proteins, or not. Indeed, normal mode analysis, using the Gaussian network model, shows that for the most part obligatory and non-obligatory complexes differ in their decomposition into dynamic domains, i.e., the mobile elements of the protein complex. The dynamic domains of obligatory complexes often mix segments from the interacting chains, and the hinges between them do not overlap with the interface between the chains. In contrast, in non-obligatory complexes the interface often hinges between dynamic domains, held together through few anchor residues on one side of the interface that interact with their counterpart grooves in the other end. In automatic analysis, 117 of 139 obligatory (84.2%) and 203 of 246 non-obligatory (82.5%) complexes are correctly classified by our method: DynaFace. We further use DynaFace to predict obligatory and non-obligatory interactions among a set of 300 putative protein complexes. DynaFace is available at: http://safir.prc.boun.edu.tr/dynaface.
Collapse
Affiliation(s)
- Seren Soner
- Department of Computer Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey
| | - Pemra Ozbek
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Jose Ignacio Garzon
- Departments of Biochemistry and Molecular Biophysics and Systems Biology and Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Turkan Haliloglu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
30
|
Structural and computational dissection of the catalytic mechanism of the inorganic pyrophosphatase from Mycobacterium tuberculosis. J Struct Biol 2015; 192:76-87. [DOI: 10.1016/j.jsb.2015.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/04/2015] [Accepted: 08/17/2015] [Indexed: 02/01/2023]
|
31
|
Chawla M, Credendino R, Poater A, Oliva R, Cavallo L. Structural stability, acidity, and halide selectivity of the fluoride riboswitch recognition site. J Am Chem Soc 2014; 137:299-306. [PMID: 25487435 DOI: 10.1021/ja510549b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Using static and dynamics DFT methods we show that the Mg(2+)/F(-)/phosphate/water cluster at the center of the fluoride riboswitch is stable by its own and, once assembled, does not rely on any additional factor from the overall RNA fold. Further, we predict that the pKa of the water molecule bridging two Mg cations is around 8.4. We also demonstrate that the halide selectivity of the fluoride riboswitch is determined by the stronger Mg-F bond, which is capable of keeping together the cluster. Replacing F(-) with Cl(-) results in a cluster that is unstable under dynamic conditions. Similar conclusions on the structure and energetics of the cluster in the binding pocket of fluoride-inhibited pyrophosphatase suggest that the peculiarity of fluoride is in its ability to establish much stronger metal-halide bonds.
Collapse
Affiliation(s)
- Mohit Chawla
- KAUST Catalysis Research Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology , Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | | | | | | | |
Collapse
|
32
|
Xu K, Chen Z, Zhou L, Zheng O, Wu X, Guo L, Qiu B, Lin Z, Chen G. Fluorometric Method for Inorganic Pyrophosphatase Activity Detection and Inhibitor Screening Based on Click Chemistry. Anal Chem 2014; 87:816-20. [DOI: 10.1021/ac503958r] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kefeng Xu
- Ministry of Education Key Laboratory
of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory
of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zhonghui Chen
- Ministry of Education Key Laboratory
of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory
of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ling Zhou
- Ministry of Education Key Laboratory
of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory
of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ou Zheng
- Ministry of Education Key Laboratory
of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory
of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Xiaoping Wu
- Ministry of Education Key Laboratory
of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory
of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Longhua Guo
- Ministry of Education Key Laboratory
of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory
of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Bin Qiu
- Ministry of Education Key Laboratory
of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory
of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory
of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory
of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Guonan Chen
- Ministry of Education Key Laboratory
of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory
of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
33
|
Baykov AA, Malinen AM, Luoto HH, Lahti R. Pyrophosphate-fueled Na+ and H+ transport in prokaryotes. Microbiol Mol Biol Rev 2013; 77:267-76. [PMID: 23699258 PMCID: PMC3668671 DOI: 10.1128/mmbr.00003-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In its early history, life appeared to depend on pyrophosphate rather than ATP as the source of energy. Ancient membrane pyrophosphatases that couple pyrophosphate hydrolysis to active H(+) transport across biological membranes (H(+)-pyrophosphatases) have long been known in prokaryotes, plants, and protists. Recent studies have identified two evolutionarily related and widespread prokaryotic relics that can pump Na(+) (Na(+)-pyrophosphatase) or both Na(+) and H(+) (Na(+),H(+)-pyrophosphatase). Both these transporters require Na(+) for pyrophosphate hydrolysis and are further activated by K(+). The determination of the three-dimensional structures of H(+)- and Na(+)-pyrophosphatases has been another recent breakthrough in the studies of these cation pumps. Structural and functional studies have highlighted the major determinants of the cation specificities of membrane pyrophosphatases and their potential use in constructing transgenic stress-resistant organisms.
Collapse
Affiliation(s)
- Alexander A. Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anssi M. Malinen
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Heidi H. Luoto
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Reijo Lahti
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| |
Collapse
|
34
|
Kajander T, Kellosalo J, Goldman A. Inorganic pyrophosphatases: one substrate, three mechanisms. FEBS Lett 2013; 587:1863-9. [PMID: 23684653 DOI: 10.1016/j.febslet.2013.05.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
Abstract
Soluble inorganic pyrophosphatases (PPases) catalyse an essential reaction, the hydrolysis of pyrophosphate to inorganic phosphate. In addition, an evolutionarily ancient family of membrane-integral pyrophosphatases couple this hydrolysis to Na(+) and/or H(+) pumping, and so recycle some of the free energy from the pyrophosphate. The structures of the H(+)-pumping mung bean PPase and the Na(+)-pumping Thermotoga maritima PPase solved last year revealed an entirely novel membrane protein containing 16 transmembrane helices. The hydrolytic centre, well above the membrane, is linked by a charged "coupling funnel" to the ionic gate about 20Å away. By comparing the active sites, fluoride inhibition data and the various models for ion transport, we conclude that membrane-integral PPases probably use binding of pyrophosphate to drive pumping.
Collapse
Affiliation(s)
- Tommi Kajander
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | | | | |
Collapse
|
35
|
Tezuka Y, Okada M, Tada Y, Yamauchi J, Nishigori H, Sanbe A. Regulation of neurite growth by inorganic pyrophosphatase 1 via JNK dephosphorylation. PLoS One 2013; 8:e61649. [PMID: 23626709 PMCID: PMC3633968 DOI: 10.1371/journal.pone.0061649] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/12/2013] [Indexed: 02/07/2023] Open
Abstract
Neural cell differentiation during development is controlled by multiple signaling pathways, in which protein phosphorylation and dephosphorylation play an important role. In this study, we examined the role of pyrophosphatase1 (PPA1) in neuronal differentiation using the loss and gain of function analysis. Neuronal differentiation induced by external factors was studied using a mouse neuroblastoma cell line (N1E115). The neuronal like differentiation in N1E115 cells was determined by morphological analysis based on neurite growth length. In order to analyze the loss of the PPA1 function in N1E115, si-RNA specifically targeting PPA1 was generated. To study the effect of PPA1 overexpression, an adenoviral gene vector containing the PPA1 gene was utilized to infect N1E115 cells. To address the need for pyrophosphatase activity in PPA1, D117A PPA1, which has inactive pyrophosphatase, was overexpressed in N1E115 cells. We used valproic acid (VPA) as a neuronal differentiator to examine the effect of PPA1 in actively differentiated N1E115 cells. Si-PPA1 treatment reduced the PPA1 protein level and led to enhanced neurite growth in N1E115 cells. In contrast, PPA1 overexpression suppressed neurite growth in N1E115 cells treated with VPA, whereas this effect was abolished in D117A PPA1. PPA1 knockdown enhanced the JNK phosphorylation level, and PPA1 overexpression suppressed it in N1E115 cells. It seems that recombinant PPA1 can dephosphorylate JNK while no alteration of JNK phosphorylation level was seen after treatment with recombinant PPA1 D117A. Enhanced neurite growth by PPA1 knockdown was also observed in rat cortical neurons. Thus, PPA1 may play a role in neuronal differentiation via JNK dephosphorylation.
Collapse
Affiliation(s)
- Yu Tezuka
- Department of Pharmacotherapeutics, School of Pharmacy, Iwate Medical University, Iwate, Japan
| | - Mizuki Okada
- Department of Pharmacotherapeutics, School of Pharmacy, Iwate Medical University, Iwate, Japan
| | - Yuka Tada
- Department of Pharmacotherapeutics, School of Pharmacy, Iwate Medical University, Iwate, Japan
| | - Junji Yamauchi
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hideo Nishigori
- Department of Pharmacotherapeutics, School of Pharmacy, Iwate Medical University, Iwate, Japan
| | - Atsushi Sanbe
- Department of Pharmacotherapeutics, School of Pharmacy, Iwate Medical University, Iwate, Japan
- * E-mail:
| |
Collapse
|
36
|
Hughes RC, Coates L, Blakeley MP, Tomanicek SJ, Langan P, Kovalevsky AY, García-Ruiz JM, Ng JD. Inorganic pyrophosphatase crystals from Thermococcus thioreducens for X-ray and neutron diffraction. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012. [PMID: 23192028 DOI: 10.1107/s1744309112032447] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Inorganic pyrophosphatase (IPPase) from the archaeon Thermococcus thioreducens was cloned, overexpressed in Escherichia coli, purified and crystallized in restricted geometry, resulting in large crystal volumes exceeding 5 mm3. IPPase is thermally stable and is able to resist denaturation at temperatures above 348 K. Owing to the high temperature tolerance of the enzyme, the protein was amenable to room-temperature manipulation at the level of protein preparation, crystallization and X-ray and neutron diffraction analyses. A complete synchrotron X-ray diffraction data set to 1.85 Å resolution was collected at room temperature from a single crystal of IPPase (monoclinic space group C2, unit-cell parameters a=106.11, b=95.46, c=113.68 Å, α=γ=90.0, β=98.12°). As large-volume crystals of IPPase can be obtained, preliminary neutron diffraction tests were undertaken. Consequently, Laue diffraction images were obtained, with reflections observed to 2.1 Å resolution with I/σ(I) greater than 2.5. The preliminary crystallographic results reported here set in place future structure-function and mechanism studies of IPPase.
Collapse
Affiliation(s)
- Ronny C Hughes
- Department of Biological Sciences and Laboratory for Structural Biology, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Fluoride ion encapsulation by Mg2+ ions and phosphates in a fluoride riboswitch. Nature 2012; 486:85-9. [PMID: 22678284 PMCID: PMC3744881 DOI: 10.1038/nature11152] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 04/23/2012] [Indexed: 12/23/2022]
Abstract
Significant advances in our understanding of RNA architecture, folding and recognition have emerged from structure-function studies on riboswitches, non-coding RNAs whose sensing domains bind small ligands and whose adjacent expression platforms contain RNA elements involved in the control of gene regulation. We now report on the ligand-bound structure of the Thermotoga petrophila fluoride riboswitch, which adopts a higher-order RNA architecture stabilized by pseudoknot and long-range reversed Watson-Crick and Hoogsteen A•U pair formation. The bound fluoride ion is encapsulated within the junctional architecture, anchored in place through direct coordination to three Mg(2+) ions, which in turn are octahedrally coordinated to water molecules and five inwardly pointing backbone phosphates. Our structure of the fluoride riboswitch in the bound state shows how RNA can form a binding pocket selective for fluoride, while discriminating against larger halide ions. The T. petrophila fluoride riboswitch probably functions in gene regulation through a transcription termination mechanism.
Collapse
|
38
|
Delvaux D, Murty MRVS, Gabelica V, Lakaye B, Lunin VV, Skarina T, Onopriyenko O, Kohn G, Wins P, De Pauw E, Bettendorff L. A specific inorganic triphosphatase from Nitrosomonas europaea: structure and catalytic mechanism. J Biol Chem 2011; 286:34023-35. [PMID: 21840996 PMCID: PMC3190801 DOI: 10.1074/jbc.m111.233585] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 08/09/2011] [Indexed: 01/03/2023] Open
Abstract
The CYTH superfamily of proteins is named after its two founding members, the CyaB adenylyl cyclase from Aeromonas hydrophila and the human 25-kDa thiamine triphosphatase. Because these proteins often form a closed β-barrel, they are also referred to as triphosphate tunnel metalloenzymes (TTM). Functionally, they are characterized by their ability to bind triphosphorylated substrates and divalent metal ions. These proteins exist in most organisms and catalyze different reactions depending on their origin. Here we investigate structural and catalytic properties of the recombinant TTM protein from Nitrosomonas europaea (NeuTTM), a 19-kDa protein. Crystallographic data show that it crystallizes as a dimer and that, in contrast to other TTM proteins, it has an open β-barrel structure. We demonstrate that NeuTTM is a highly specific inorganic triphosphatase, hydrolyzing tripolyphosphate (PPP(i)) with high catalytic efficiency in the presence of Mg(2+). These data are supported by native mass spectrometry analysis showing that the enzyme binds PPP(i) (and Mg-PPP(i)) with high affinity (K(d) < 1.5 μm), whereas it has a low affinity for ATP or thiamine triphosphate. In contrast to Aeromonas and Yersinia CyaB proteins, NeuTTM has no adenylyl cyclase activity, but it shares several properties with other enzymes of the CYTH superfamily, e.g. heat stability, alkaline pH optimum, and inhibition by Ca(2+) and Zn(2+) ions. We suggest a catalytic mechanism involving a catalytic dyad formed by Lys-52 and Tyr-28. The present data provide the first characterization of a new type of phosphohydrolase (unrelated to pyrophosphatases or exopolyphosphatases), able to hydrolyze inorganic triphosphate with high specificity.
Collapse
Affiliation(s)
| | | | - Valérie Gabelica
- the GIGA Systems Biology and Chemical Biology, University of Liège, B-4000 Liège, Belgium and
| | | | - Vladimir V. Lunin
- the Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Tatiana Skarina
- the Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Olena Onopriyenko
- the Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | - Edwin De Pauw
- the GIGA Systems Biology and Chemical Biology, University of Liège, B-4000 Liège, Belgium and
| | | |
Collapse
|
39
|
Stockbridge RB, Wolfenden R. Enhancement of the rate of pyrophosphate hydrolysis by nonenzymatic catalysts and by inorganic pyrophosphatase. J Biol Chem 2011; 286:18538-46. [PMID: 21460215 DOI: 10.1074/jbc.m110.214510] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To estimate the proficiency of inorganic pyrophosphatase as a catalyst, (31)P NMR was used to determine rate constants and thermodynamics of activation for the spontaneous hydrolysis of inorganic pyrophosphate (PP(i)) in the presence and absence of Mg(2+) at elevated temperatures. These values were compared with rate constants and activation parameters determined for the reaction catalyzed by Escherichia coli inorganic pyrophosphatase using isothermal titration calorimetry. At 25 °C and pH 8.5, the hydrolysis of MgPP(i)(2-) proceeds with a rate constant of 2.8 × 10(-10) s(-1), whereas E. coli pyrophosphatase was found to have a turnover number of 570 s(-1) under the same conditions. The resulting rate enhancement (2 × 10(12)-fold) is achieved entirely by reducing the enthalpy of activation (ΔΔH(‡) = -16.6 kcal/mol). The presence of Mg(2+) ions or the transfer of the substrate from bulk water to dimethyl sulfoxide was found to increase the rate of pyrophosphate hydrolysis by as much as ∼ 10(6)-fold. Transfer to dimethyl sulfoxide accelerated PP(i) hydrolysis by reducing the enthalpy of activation. Mg(2+) increased the rate of PP(i) hydrolysis by both increasing the entropy of activation and reducing the enthalpy of activation.
Collapse
Affiliation(s)
- Randy B Stockbridge
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
40
|
May A, Berger S, Hertel T, Köck M. The Arabidopsis thaliana phosphate starvation responsive gene AtPPsPase1 encodes a novel type of inorganic pyrophosphatase. Biochim Biophys Acta Gen Subj 2010; 1810:178-85. [PMID: 21122813 DOI: 10.1016/j.bbagen.2010.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/03/2010] [Accepted: 11/17/2010] [Indexed: 11/30/2022]
Abstract
BACKGROUND Low inorganic phosphate (Pi) availability triggers metabolic responses to maintain the intracellular phosphate homeostasis in plants. One crucial adaptive mechanism is the immediate cleavage of Pi from phosphorylated substrates; however, phosphohydrolases that function in the cytosol and putative substrates have not been characterized yet. One candidate gene is Arabidopsis thaliana At1g73010 encoding an uncharacterized enzyme with homology to the haloacid dehalogenase (HAD) superfamily. METHODS AND RESULTS This work reports the molecular cloning of At1g73010, its expression in Escherichia coli, and the enzymatic characterisation of the recombinant protein (33.5 kD). The Mg²(+)-dependent enzyme named AtPPsPase1 catalyzes the specific cleavage of pyrophosphate (K(m) 38.8 μM) with an alkaline catalytic pH optimum. Gel filtration revealed a tetrameric structure of the soluble cytoplasmic protein. Modelling of the active site and assay of the recombinant protein variant D19A demonstrated that the enzyme shares the catalytic mechanism of the HAD superfamily including a phosphorylated enzyme intermediate. CONCLUSIONS The tight control of AtPPsPase1 gene expression underlines its important role in the Pi starvation response and suggests that cleavage of pyrophosphate is an immediate metabolic adaptation reaction. GENERAL SIGNIFICANCE The novel enzyme, the first pyrophosphatase in the HAD superfamily, differs from classical pyrophosphatases with respect to structure and catalytic mechanism. The enzyme function could be used to discover unknown aspects of pyrophosphate metabolism in general.
Collapse
Affiliation(s)
- Anett May
- Biocenter of the University, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | | | | | | |
Collapse
|
41
|
Oksanen E, Dauvergne F, Goldman A, Budayova-Spano M. Design of a novel Peltier-based cooling device and its use in neutron diffraction data collection of perdeuterated yeast pyrophosphatase. J Appl Crystallogr 2010. [DOI: 10.1107/s0021889810027111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
H atoms play a central role in enzymatic mechanisms, but H-atom positions cannot generally be determined by X-ray crystallography. Neutron crystallography, on the other hand, can be used to determine H-atom positions but it is experimentally very challenging. Yeast inorganic pyrophosphatase (PPase) is an essential enzyme that has been studied extensively by X-ray crystallography, yet the details of the catalytic mechanism remain incompletely understood. The temperature instability of PPase crystals has in the past prevented the collection of a neutron diffraction data set. This paper reports how the crystal growth has been optimized in temperature-controlled conditions. To stabilize the crystals during neutron data collection a Peltier cooling device that minimizes the temperature gradient along the capillary has been developed. This device allowed the collection of a full neutron diffraction data set.
Collapse
|
42
|
Sartoris RP, Santana RC, Baggio RF, Peña O, Perec M, Calvo R. Pyrophosphate-bridged Cu(II) chain magnet: {[Na3Cu(P2O7)(NO3)].3H2O}n. Inorg Chem 2010; 49:5650-7. [PMID: 20462277 DOI: 10.1021/ic100398k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A Cu(II)...Cu(II) pyrophosphate-bridged compound of formula {[Na(3)Cu(P(2)O(7))(NO(3))].3H(2)O}(n) (1) has been characterized. X-ray diffraction measurements show that it crystallizes in the monoclinic space group P2(1)/m, with unit cell dimensions a = 7.2492(5) A, b = 8.2446(6) A, c = 9.9050(7) A, beta = 107.123(1) degrees, and Z = 2. The structure consists of chains of Cu(II) cations at inversion symmetry sites bound to four equatorial oxygen atoms provided by two pyrophosphate anions halved by a symmetry plane and two axial oxygen atoms of nitrate anions. The molar magnetic susceptibility chi(0) of a powdered sample was measured in the temperature range 2 K < T < 273 K, and an isothermal magnetization curve, M(B(0),T), was obtained at T = 30 K, with the magnetic field B(0) between 0 and 5 T. Fitting a spin-chain model to the susceptibility data, we evaluate an antiferromagnetic exchange coupling 2J = -24.3(1) cm(-1) (defined as H(ex) = -2JS(i)S(j)) between Cu(II) neighbors. For any orientation of B(0), single-crystal electron paramagnetic resonance (EPR) spectra obtained at 9.8 and 33.9 GHz at 300 K display a single signal having a g matrix with orthorhombic symmetry, arising from the merger produced by the exchange interaction of the resonances corresponding to the two rotated Cu(II) sites. The g matrices of the individual molecules calculated assuming axial symmetry yielded principal values g(parallel) = 2.367(1) and g(perpendicular) = 2.074(1) at both frequencies, indicating a d(x(2)-y(2)) ground-state orbital for the Cu(II) ions. The angular variation of the EPR line width suggests exchange narrowing in a system with one-dimensional spin dynamics, as expected from the structure and susceptibility data. The results, discussed in terms of the crystal and electronic structures and of the spin dynamics of the compound, are compared with those obtained in other materials.
Collapse
Affiliation(s)
- Rosana P Sartoris
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and INTEC (CONICET-UNL), Güemes 3450, 3000 Santa Fe, Argentina
| | | | | | | | | | | |
Collapse
|
43
|
Koutsioulis D, Lyskowski A, Mäki S, Guthrie E, Feller G, Bouriotis V, Heikinheimo P. Coordination sphere of the third metal site is essential to the activity and metal selectivity of alkaline phosphatases. Protein Sci 2010; 19:75-84. [PMID: 19916164 DOI: 10.1002/pro.284] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Alkaline phosphatases (APs) are commercially applied enzymes that catalyze the hydrolysis of phosphate monoesters by a reaction involving three active site metal ions. We have previously identified H135 as the key residue for controlling activity of the psychrophilic TAB5 AP (TAP). In this article, we describe three X-ray crystallographic structures on TAP variants H135E and H135D in complex with a variety of metal ions. The structural analysis is supported by thermodynamic and kinetic data. The AP catalysis essentially requires octahedral coordination in the M3 site, but stability is adjusted with the conformational freedom of the metal ion. Comparison with the mesophilic Escherichia coli, AP shows differences in the charge transfer network in providing the chemically optimal metal combination for catalysis. Our results provide explanation why the TAB5 and E. coli APs respond in an opposite way to mutagenesis in their active sites. They provide a lesson on chemical fine tuning and the importance of the second coordination sphere in defining metal specificity in enzymes. Understanding the framework of AP catalysis is essential in the efforts to design even more powerful tools for modern biotechnology.
Collapse
|
44
|
Cleland W. The low-barrier hydrogen bond in enzymic catalysis. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2010. [DOI: 10.1016/s0065-3160(08)44001-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Yang L, Liao RZ, Yu JG, Liu RZ. DFT study on the mechanism of Escherichia coli inorganic pyrophosphatase. J Phys Chem B 2009; 113:6505-10. [PMID: 19366250 DOI: 10.1021/jp810003w] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli inorganic pyrophosphatase (E-PPase) is a tetranuclear divalent metal dependent enzyme that catalyzes the reversible interconversion of pyrophosphate (PPi) and orthophosphate (Pi), with Mg(2+) conferring the highest activity. In the present work, the reaction mechanism of E-PPase is investigated using the hybrid density functional theory (DFT) method B3LYP with a large model of the active site. Our calculated results shed further light on the detailed reaction mechanism. In particular, the important residue Asp67, either protonated or unprotonated, was taken into account in the present calculations. Our calculations indicated that a protonated Asp67 is crucial for the reverse reaction to take place; however, it is lost sight of in the forward reaction. The bridging hydroxide is shown to be capable of performing nucleophilic in-line attack on the substrate from its bridging position in the presence of four Mg(2+) ions. During the catalysis, the roles of the four magnesium ions are suggested to provide a necessary conformation of the active site, facilitate the nucleophile formation and substrate orientation, and stabilize the trigonal bipyramid transition state, thereby lowering the barrier for the nucleophilic attack.
Collapse
Affiliation(s)
- Ling Yang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | | | | | | |
Collapse
|
46
|
Vadivel K, Namasivayam G. An estimate of the numbers and density of low-energy structures (or decoys) in the conformational landscape of proteins. PLoS One 2009; 4:e5148. [PMID: 19357778 PMCID: PMC2663821 DOI: 10.1371/journal.pone.0005148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 03/02/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The conformational energy landscape of a protein, as calculated by known potential energy functions, has several minima, and one of these corresponds to its native structure. It is however difficult to comprehensively estimate the actual numbers of low energy structures (or decoys), the relationships between them, and how the numbers scale with the size of the protein. METHODOLOGY We have developed an algorithm to rapidly and efficiently identify the low energy conformers of oligo peptides by using mutually orthogonal Latin squares to sample the potential energy hyper surface. Using this algorithm, and the ECEPP/3 potential function, we have made an exhaustive enumeration of the low-energy structures of peptides of different lengths, and have extrapolated these results to larger polypeptides. CONCLUSIONS AND SIGNIFICANCE We show that the number of native-like structures for a polypeptide is, in general, an exponential function of its sequence length. The density of these structures in conformational space remains more or less constant and all the increase appears to come from an expansion in the volume of the space. These results are consistent with earlier reports that were based on other models and techniques.
Collapse
Affiliation(s)
- Kanagasabai Vadivel
- Centre of Advanced Study in Crystallography & Biophysics, University of Madras, Tamilnadu, India
| | - Gautham Namasivayam
- Centre of Advanced Study in Crystallography & Biophysics, University of Madras, Tamilnadu, India
- * E-mail:
| |
Collapse
|
47
|
Sulfate Activation Enzymes: Phylogeny and Association with Pyrophosphatase. J Mol Evol 2008; 68:1-13. [DOI: 10.1007/s00239-008-9181-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 07/10/2008] [Accepted: 10/20/2008] [Indexed: 10/21/2022]
|
48
|
Ikotun OF, Ouellette W, Lloret F, Kruger PE, Julve M, Doyle RP. Synthesis, Structural, Thermal and Magnetic Characterization of a Pyrophosphato-Bridged Cobalt(II) Complex. Eur J Inorg Chem 2008. [DOI: 10.1002/ejic.200800196] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Marino N, Mastropietro TF, Armentano D, De Munno G, Doyle RP, Lloret F, Julve M. Spin canting in an unprecedented three-dimensional pyrophosphate- and 2,2′-bipyrimidine-bridged cobalt(ii) framework. Dalton Trans 2008:5152-4. [DOI: 10.1039/b813097n] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Ikotun OF, Armatus NG, Julve M, Kruger PE, Lloret F, Nieuwenhuyzen M, Doyle RP. Synthesis and Structural and Magnetic Characterization of {[(phen)2Ni]2(μ-P2O7)}·27H2O and {[(phen)2Mn]2(μ-P2O7)}·13H2O: Rare Examples of Coordination Complexes with the Pyrophosphate Ligand. Inorg Chem 2007; 46:6668-74. [PMID: 17636894 DOI: 10.1021/ic700439a] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reaction in water of M(II) [M = Ni or Mn] with 1,10-phenanthroline (phen) and sodium pyrophosphate (Na4P2O7) in a 2:4:1 stoichiometry resulted in the crystallization of dinuclear complexes featuring the heretofore rare bridging pyrophosphate. Single-crystal X-ray diffraction studies revealed the complexes to be {[(phen)2Ni]2(micro-P2O7)} . 27H2O (1) and {[(phen)2Mn]2(micro-P2O7)} . 13H2O (2) where the asymmetric M(phen)2 units are bridged by bis-bidentate pyrophosphate, each metal ion exhibiting a distorted octahedral geometry. The bridging pyrophosphate places adjacent metal centers at 5.031 A in 1 and 4.700 A in 2, and its conformation also gives rise to an intramolecular pi-pi interaction between two adjacent phen ligands. Intermolecular pi-pi interactions between phen ligands from adjacent dinuclear complexes create an ornate 3D network in 1, whereas a 2D sheet results in 2. The hydrophilic nature of the pyrophosphate ligand leads to heavy hydration with the potential solvent-accessible area for 1 and 2 accounting for 45.7% and 26.4% of their unit cell volumes, respectively. Variable-temperature magnetic susceptibility measurements on polycrystalline samples of 1 and 2 revealed net weak intramolecular antiferromagnetic coupling between metal centers in both compounds with J = -3.77 cm(-1) in 1 and J = -0.88 cm(-1) in 2, the Hamiltonian being defined as H = -JSA.SB. The ability of the bis-bidentate pyrophosphate to mediate magnetic interactions between divalent first row transition metal ions is discussed bearing in mind the number and nature of the interacting magnetic orbitals.
Collapse
Affiliation(s)
- Oluwatayo F Ikotun
- Department of Chemistry, Syracuse University, Syracuse, NY 13244-4100, USA
| | | | | | | | | | | | | |
Collapse
|