1
|
Wen L, Rong F, Dai G, Liu Y, Lv Y, Luo Q, Liu DX, Chen R. Proteomic analysis of the nonstructural protein 2-host protein interactome reveals a novel regulatory role of SH3 domain-containing kinase-binding protein 1 in porcine reproductive and respiratory syndrome virus replication and apoptosis. Int J Biol Macromol 2025; 295:139218. [PMID: 39755310 DOI: 10.1016/j.ijbiomac.2024.139218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Virus-host protein interaction is critical for successful completion of viral replication cycles. As the largest nonstructural protein (NSP) of porcine reproductive and respiratory syndrome virus (PRRSV), NSP2 plays multiple and critical roles in viral replication, antiviral immunity, cellular tropism and virulence. An interactome of this protein with host proteins would be instrumental in full understanding of these multifunctional roles. In this study, we report the identification of 120 NSP2-interacting host proteins by co-immunoprecipitation coupled liquid chromatography mass spectrometry, via rescuing and utilizing a recombinant PRRSV expressing an HA-tagged NSP2. By comparing and subtracting with cells infected with parental virus, a comprehensive interactome was constructed. Bioinformatics analysis revealed that these host factors are mainly involved in translation regulation, metabolism, signal transduction and innate immunity signaling pathways. Selection of five host proteins (CtBP1, CtBP2, HSPA2, PPP1CA, SH3KBP1) for further verification and characterization confirmed their interactions with NSP2 and differential effects on PRRSV replication. Intriguingly, interaction of NSP2 and SH3KBP1 led to specific cleavage of SH3KBP1, antagonizing its pro-apoptotic activity. Taken together, this study provides overarching views on the NSP2-host interactome, paving a solid foundation for functional studies of host proteins in PRRSV biology and their potential as targets for novel therapeutics development.
Collapse
Affiliation(s)
- Lianghai Wen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China; Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing 526238, China
| | - Fang Rong
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Guo Dai
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yufu Liu
- School of Life Sciences, Zhaoqing University, Zhaoqing 526061, China
| | - Yadi Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Qiong Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Wens Dahuanong Bio-Pharmaceutical Co., Ltd., Xinxing 527400, China
| | - Ding Xiang Liu
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China; Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China.
| | - Ruiai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China; Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing 526238, China; Guangdong Wens Dahuanong Bio-Pharmaceutical Co., Ltd., Xinxing 527400, China.
| |
Collapse
|
2
|
Poddar A, Satthiyasilan N, Wang PH, Chen C, Yi R, Chandru K, Jia TZ. Reactions Driven by Primitive Nonbiological Polyesters. Acc Chem Res 2024; 57:2048-2057. [PMID: 39013010 DOI: 10.1021/acs.accounts.4c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
ConspectusAll life on Earth is composed of cells, which are built from and run by biological reactions and structures. These reactions and structures are generally the result of action by cellular biomolecules, which are indispensable for the function and survival of all living organisms. Specifically, biological catalysis, namely by protein enzymes, but also by other biomolecules including nucleic acids, is an essential component of life. How the biomolecules themselves that perform biological catalysis came to exist in the first place is a major unanswered question that plagues researchers to this day, which is generally the focus of the origins of life (OoL) research field. Based on current knowledge, it is generally postulated that early Earth was full of a myriad of different chemicals, and that these chemicals reacted in specific ways that led to the emergence of biochemistry, cells, and later, life. In particular, a significant part of OoL research focuses on the synthesis, evolution, and function of biomolecules potentially present under early Earth conditions, as a way to understand their eventual transition into modern life. However, this narrative overlooks possibilities that other molecules contributed to the OoL, as while biomolecules that led to life were certainly present on early Earth, at the same time, other molecules that may not have strict, direct biological lineage were also widely and abundantly present. For example, hydroxy acids, although playing a role in metabolism or as parts of certain biological structures, are not generally considered to be as essential to modern biology as amino acids (a chemically similar monomer), and thus research in the OoL field tends to perhaps focus more on amino acids than hydroxy acids. However, their likely abundance on early Earth coupled with their ability to spontaneously condense into polymers (i.e., polyesters) make hydroxy acids, and their subsequent products, functions, and reactions, a reasonable target of investigation for prebiotic chemists. Whether "non-biological" hydroxy acids or polyesters can contribute to the emergence of life on early Earth is an inquiry that deserves attention within the OoL community, as this knowledge can also contribute to our understanding of the plausibility of extraterrestrial life that does not exactly use the biochemical set found in terrestrial organisms. While some demonstrations have been made with respect to compartment assembly, compartmentalization, and growth of primitive polyester-based systems, whether these "non-biological" polymers can contribute any catalytic function and/or drive primitive reactions is still an important step toward the development of early life. Here, we review research both from the OoL field as well as from industry and applied sciences regarding potential catalysis or reaction driven by "non-biological" polyesters in various forms: as linear polymers, as hyperbranched polyesters, and as membraneless microdroplets.
Collapse
Affiliation(s)
- Arunava Poddar
- Blue Marble Space Institute of Science, 600 First Ave, Floor 1, Seattle, Washington 98104, United States
- Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Areatza Pasealekua, 48620 Plentzia Bizkaia, Basque Country, Spain
| | - Nirmell Satthiyasilan
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia, Bandar Baru Bangi, Selangor 43600, Malaysia
| | - Po-Hsiang Wang
- Graduate Institute of Environmental Engineering, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan 32001, Taiwan (Republic of China)
- Department of Chemical and Materials Engineering, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan 32001, Taiwan (R.O.C.)
| | - Chen Chen
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ruiqin Yi
- State Key Laboratory of Isotope Geochemistry and Chinese Academy of Sciences Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia, Bandar Baru Bangi, Selangor 43600, Malaysia
- Polymer Research Center (PORCE), Faculty of Science and Technology, National University of Malaysia, Bandar Baru Bangi, Selangor 43600, Malaysia
| | - Tony Z Jia
- Blue Marble Space Institute of Science, 600 First Ave, Floor 1, Seattle, Washington 98104, United States
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
3
|
Petkowski JJ, Seager MD, Bains W, Seager S. General instability of dipeptides in concentrated sulfuric acid as relevant for the Venus cloud habitability. Sci Rep 2024; 14:17083. [PMID: 39048621 PMCID: PMC11269616 DOI: 10.1038/s41598-024-67342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Recent renewed interest in the possibility of life in the acidic clouds of Venus has led to new studies on organic chemistry in concentrated sulfuric acid. We have previously found that the majority of amino acids are stable in the range of Venus' cloud sulfuric acid concentrations (81% and 98% w/w, the rest being water). The natural next question is whether dipeptides, as precursors to larger peptides and proteins, could be stable in this environment. We investigated the reactivity of the peptide bond using 20 homodipeptides and find that the majority of them undergo solvolysis within a few weeks, at both sulfuric acid concentrations. Notably, a few exceptions exist. HH and GG dipeptides are stable in 98% w/w sulfuric acid for at least 4 months, while II, LL, VV, PP, RR and KK resist hydrolysis in 81% w/w sulfuric acid for at least 5 weeks. Moreover, the breakdown process of the dipeptides studied in 98% w/w concentrated sulfuric acid is different from the standard acid-catalyzed hydrolysis that releases monomeric amino acids. Despite a few exceptions at a single concentration, no homodipeptides have demonstrated stability across both acid concentrations studied. This indicates that any hypothetical life on Venus would likely require a functional substitute for the peptide bond that can maintain stability throughout the range of sulfuric acid concentrations present.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 50-370, Wroclaw, Poland.
- JJ Scientific, 02-792, Mazowieckie, Warsaw, Poland.
| | - Maxwell D Seager
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
- Nanoplanet Consulting, Concord, MA, 01742, USA
| | - William Bains
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- School of Physics and Astronomy, Cardiff University, 4 The Parade, Cardiff, CF24 3AA, UK
- Rufus Scientific, Melbourn, Herts, SG8 6ED, UK
| | - Sara Seager
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Nanoplanet Consulting, Concord, MA, 01742, USA
- Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
4
|
Forget S, Juillé M, Duboué-Dijon E, Stirnemann G. Simulation-Guided Conformational Space Exploration to Assess Reactive Conformations of a Ribozyme. J Chem Theory Comput 2024; 20:6263-6277. [PMID: 38958594 DOI: 10.1021/acs.jctc.4c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Self-splicing ribozymes are small ribonucleic acid (RNA) enzymes that catalyze their own cleavage through a transphosphoesterification reaction. While this process is involved in some specific steps of viral RNA replication and splicing, it is also of importance in the context of the (putative) first autocatalytic RNA-based systems that could have preceded the emergence of modern life. The uncatalyzed phosphoester bond formation is thermodynamically very unfavorable, and many experimental studies have focused on understanding the molecular features of catalysis in these ribozymes. However, chemical reaction paths are short-lived and not easily characterized by experimental approaches, so molecular simulation approaches appear as an ideal tool to unveil the molecular details of the reaction. Here, we focus on the model hairpin ribozyme. We show that identifying a relevant initial conformation for reactivity studies, which is frequently overlooked in mixed quantum-classical studies that predominantly concentrate on the chemical reaction itself, can be highly challenging. These challenges stem from limitations in both available experimental structures (which are chemically altered to prevent self-cleavage) and the accuracy of force fields, together with the necessity for comprehensive sampling. We show that molecular dynamics simulations, combined with extensive conformational phase space exploration with Hamiltonian replica-exchange simulations, enable us to characterize the relevant conformational basins of the minimal hairpin ribozyme in the ligated state prior to self-cleavage. We find that what is usually considered a canonical reactive conformation with active site geometries and hydrogen-bond patterns that are optimal for the addition-elimination reaction with general acid/general base catalysis is metastable and only marginally populated. The thermodynamically stable conformation appears to be consistent with the expectations of a mechanism that does not require the direct participation of ribozyme residues in the reaction. While these observations may suffer from forcefield inaccuracies, all investigated forcefields lead to the same conclusions upon proper sampling, contrasting with previous investigations on shorter timescales suggesting that at least one reparametrization of the Amber99 forcefield allowed to stabilize aligned active site conformations. Our study demonstrates that identifying the most pertinent reactant state conformation holds equal importance alongside the accurate determination of the thermodynamics and kinetics of the chemical steps of the reaction.
Collapse
Affiliation(s)
- Sélène Forget
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Marie Juillé
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005 Paris, France
- Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Elise Duboué-Dijon
- Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Guillaume Stirnemann
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
5
|
Benayad Z, David R, Stirnemann G. Prebiotic chemical reactivity in solution with quantum accuracy and microsecond sampling using neural network potentials. Proc Natl Acad Sci U S A 2024; 121:e2322040121. [PMID: 38809704 PMCID: PMC11161780 DOI: 10.1073/pnas.2322040121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
While RNA appears as a good candidate for the first autocatalytic systems preceding the emergence of modern life, the synthesis of RNA oligonucleotides without enzymes remains challenging. Because the uncatalyzed reaction is extremely slow, experimental studies bring limited and indirect information on the reaction mechanism, the nature of which remains debated. Here, we develop neural network potentials (NNPs) to study the phosphoester bond formation in water. While NNPs are becoming routinely applied to nonreactive systems or simple reactions, we demonstrate how they can systematically be trained to explore the reaction phase space for complex reactions involving several proton transfers and exchanges of heavy atoms. We then propagate at moderate computational cost hundreds of nanoseconds of a variety of enhanced sampling simulations with quantum accuracy in explicit solvent conditions. The thermodynamically preferred reaction pathway is a concerted, dissociative mechanism, with the transient formation of a metaphosphate transition state and direct participation of water solvent molecules that facilitate the exchange of protons through the nonbridging phosphate oxygens. Associative-dissociative pathways, characterized by a much tighter pentacoordinated phosphate, are higher in free energy. Our simulations also suggest that diprotonated phosphate, whose reactivity is never directly assessed in the experiments, is significantly less reactive than the monoprotonated species, suggesting that it is probably never the reactive species in normal pH conditions. These observations rationalize unexplained experimental results and the temperature dependence of the reaction rate, and they pave the way for the design of more efficient abiotic catalysts and activating groups.
Collapse
Affiliation(s)
- Zakarya Benayad
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, Université Paris-Cité, 75005Paris, France
- PASTEUR, Département de Chimie, École Normale Supérieure, Paris Sciences et Lettres University, Sorbonne University, CNRS, 75005Paris, France
| | - Rolf David
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, Université Paris-Cité, 75005Paris, France
- PASTEUR, Département de Chimie, École Normale Supérieure, Paris Sciences et Lettres University, Sorbonne University, CNRS, 75005Paris, France
| | - Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, Université Paris-Cité, 75005Paris, France
- PASTEUR, Département de Chimie, École Normale Supérieure, Paris Sciences et Lettres University, Sorbonne University, CNRS, 75005Paris, France
| |
Collapse
|
6
|
Nardi AN, Olivieri A, D'Abramo M, Amadei A. A Theoretical-Computational Study of Phosphodiester Bond Cleavage Kinetics as a Function of the Temperature. Chemphyschem 2024; 25:e202300952. [PMID: 38372713 DOI: 10.1002/cphc.202300952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
The hydrolysis of the phosphodiester bond is an important chemical reaction involved in several biological processes. Here, we study the cleavage of this bond by means of a theoretical-computational method in a model system, the dineopentyl phosphate. By such an approach, we reconstructed the kinetics and related thermodynamics of this chemical reaction along an isochore. In particular, we evaluated the kinetic constants of all the reaction steps within a wide range of temperatures, mostly corresponding to conditions where no experimental measures are available due to the extremely slow kinetics. Our results, in good agreement with the experimental data, show the robustness of our theoretical-computational methodology which can be easily extended to more complex systems.
Collapse
Affiliation(s)
| | - Alessio Olivieri
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Marco D'Abramo
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Andrea Amadei
- Department of Technological and Chemical Sciences, Tor Vergata University of Rome, Italy
| |
Collapse
|
7
|
Xu T, Chen J, Xia D, Tang W, Cui J, Liu C, Li S. Prediction model on hydrolysis kinetics of phthalate monoester: A density functional theory study. J Environ Sci (China) 2024; 135:51-58. [PMID: 37778823 DOI: 10.1016/j.jes.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 10/03/2023]
Abstract
As primary degradation products of phthalate esters, phthalate monoesters (MPEs) have been widely detected in various aquatic environments and drawn growing toxicological concerns. Hydrolysis kinetics that is of importance for assessing environmental persistence of chemicals remain elusive for MPEs. Herein, kinetics of base-catalyzed and neutral hydrolysis for 18 MPEs with different leaving groups was investigated by density functional theory calculation. Results indicate that MPEs with leaving groups having pKa of <10 prefer dissociative transition states. MPEs are more persistent than their parents, and their hydrolysis half-lives were calculated to vary from 3.4 min to 79.2 years (pH = 7-9). A quantitative structure-activity relationship model was developed for predicting the hydrolysis kinetics parameters. It was found that pKa of the leaving groups and electronegativity of the MPEs are key factors determining the hydrolysis kinetics. This work may lay a theoretical foundation for better understanding the chemical process that governs MPE persistence in aquatic environments.
Collapse
Affiliation(s)
- Tong Xu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Deming Xia
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Weihao Tang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jiansheng Cui
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Chun Liu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Shuangjiang Li
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
| |
Collapse
|
8
|
Kowalski K. Synthesis and chemical transformations of glycol nucleic acid (GNA) nucleosides. Bioorg Chem 2023; 141:106921. [PMID: 37871392 DOI: 10.1016/j.bioorg.2023.106921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Xeno nucleic acids (XNA) are an increasingly important class of hypermodified nucleic acids with great potential in bioorganic chemistry and synthetic biology. Glycol nucleic acid (GNA) is constructed from a three-carbon 1,2-propanediol (propylene glycol) backbone attached to a nucleobase entity, representing the simplest known XNA. This review is intended to present GNA nucleosides from a synthetic chemistry perspective-a perspective that serves as a starting point for biological studies. Therefore this account focuses on synthetic methods for GNA nucleoside synthesis, as well as their postsynthetic chemical transformations. The properties and biological activity of GNA constituents are also highlighted. A literature survey shows four major approaches toward GNA nucleoside scaffold synthesis. These approaches pertain to glycidol ring-opening, Mitsunobu, SN2, and dihydroxylation reactions. The general arsenal of reactions used in GNA chemistry is versatile and encompasses the Sonogashira reaction, Michael addition, silyl-Hilbert-Johnson reaction, halogenation, alkylation, cyclization, Rh-catalyzed N-allylation, Sharpless catalytic dihydroxylation, and Yb(OTf)3-catalyzed etherification. Additionally, various phosphorylation reactions have enabled the synthesis of diverse types of GNA nucleotides, dinucleoside phosphates, phosphordiamidites, and oligos. Furthermore, recent advances in GNA chemistry have resulted in the synthesis of previously unknown redox-active (ferrocenyl) and luminescent (pyrenyl and phenanthrenyl) GNA nucleosides, which are also covered in this review.
Collapse
Affiliation(s)
- Konrad Kowalski
- University of Lodz, Faculty of Chemistry, Department of Organic Chemistry, Tamka 12, PL-91403 Lodz, Poland.
| |
Collapse
|
9
|
Grimm PR, Tatomir A, Rosenbaek LL, Kim BY, Li D, Delpire EJ, Fenton RA, Welling PA. Dietary potassium stimulates Ppp1Ca-Ppp1r1a dephosphorylation of kidney NaCl cotransporter and reduces blood pressure. J Clin Invest 2023; 133:e158498. [PMID: 37676724 PMCID: PMC10617769 DOI: 10.1172/jci158498] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/06/2023] [Indexed: 09/09/2023] Open
Abstract
Consumption of low dietary potassium, common with ultraprocessed foods, activates the thiazide-sensitive sodium chloride cotransporter (NCC) via the with no (K) lysine kinase/STE20/SPS1-related proline-alanine-rich protein kinase (WNK/SPAK) pathway to induce salt retention and elevate blood pressure (BP). However, it remains unclear how high-potassium "DASH-like" diets (dietary approaches to stop hypertension) inactivate the cotransporter and whether this decreases BP. A transcriptomics screen identified Ppp1Ca, encoding PP1A, as a potassium-upregulated gene, and its negative regulator Ppp1r1a, as a potassium-suppressed gene in the kidney. PP1A directly binds to and dephosphorylates NCC when extracellular potassium is elevated. Using mice genetically engineered to constitutively activate the NCC-regulatory kinase SPAK and thereby eliminate the effects of the WNK/SPAK kinase cascade, we confirmed that PP1A dephosphorylated NCC directly in a potassium-regulated manner. Prior adaptation to a high-potassium diet was required to maximally dephosphorylate NCC and lower BP in constitutively active SPAK mice, and this was associated with potassium-dependent suppression of Ppp1r1a and dephosphorylation of its cognate protein, inhibitory subunit 1 (I1). In conclusion, potassium-dependent activation of PP1A and inhibition of I1 drove NCC dephosphorylation, providing a mechanism to explain how high dietary K+ lowers BP. Shifting signaling of PP1A in favor of activation of WNK/SPAK may provide an improved therapeutic approach for treating salt-sensitive hypertension.
Collapse
Affiliation(s)
- P. Richard Grimm
- Department of Medicine (Nephrology), Johns Hopkins University School of Medicine Baltimore, Maryland, USA
- The LeDucq Potassium in Hypertension Research Network of Excellence is detailed in Supplemental Acknowledgments
| | - Anamaria Tatomir
- Department of Medicine (Nephrology), Johns Hopkins University School of Medicine Baltimore, Maryland, USA
| | - Lena L. Rosenbaek
- The LeDucq Potassium in Hypertension Research Network of Excellence is detailed in Supplemental Acknowledgments
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Bo Young Kim
- Department of Medicine (Nephrology), Johns Hopkins University School of Medicine Baltimore, Maryland, USA
- The LeDucq Potassium in Hypertension Research Network of Excellence is detailed in Supplemental Acknowledgments
| | - Dimin Li
- Department of Medicine (Nephrology), Johns Hopkins University School of Medicine Baltimore, Maryland, USA
| | - Eric J. Delpire
- The LeDucq Potassium in Hypertension Research Network of Excellence is detailed in Supplemental Acknowledgments
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennssee, USA
| | - Robert A. Fenton
- The LeDucq Potassium in Hypertension Research Network of Excellence is detailed in Supplemental Acknowledgments
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Paul A. Welling
- Department of Medicine (Nephrology), Johns Hopkins University School of Medicine Baltimore, Maryland, USA
- The LeDucq Potassium in Hypertension Research Network of Excellence is detailed in Supplemental Acknowledgments
- Department of Physiology, Johns Hopkins University School of Medicine Baltimore, Maryland, USA
| |
Collapse
|
10
|
Markin CJ, Mokhtari DA, Du S, Doukov T, Sunden F, Cook JA, Fordyce PM, Herschlag D. Decoupling of catalysis and transition state analog binding from mutations throughout a phosphatase revealed by high-throughput enzymology. Proc Natl Acad Sci U S A 2023; 120:e2219074120. [PMID: 37428919 PMCID: PMC10629569 DOI: 10.1073/pnas.2219074120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/14/2023] [Indexed: 07/12/2023] Open
Abstract
Using high-throughput microfluidic enzyme kinetics (HT-MEK), we measured over 9,000 inhibition curves detailing impacts of 1,004 single-site mutations throughout the alkaline phosphatase PafA on binding affinity for two transition state analogs (TSAs), vanadate and tungstate. As predicted by catalytic models invoking transition state complementary, mutations to active site and active-site-contacting residues had highly similar impacts on catalysis and TSA binding. Unexpectedly, most mutations to more distal residues that reduced catalysis had little or no impact on TSA binding and many even increased tungstate affinity. These disparate effects can be accounted for by a model in which distal mutations alter the enzyme's conformational landscape, increasing the occupancy of microstates that are catalytically less effective but better able to accommodate larger transition state analogs. In support of this ensemble model, glycine substitutions (rather than valine) were more likely to increase tungstate affinity (but not more likely to impact catalysis), presumably due to increased conformational flexibility that allows previously disfavored microstates to increase in occupancy. These results indicate that residues throughout an enzyme provide specificity for the transition state and discriminate against analogs that are larger only by tenths of an Ångström. Thus, engineering enzymes that rival the most powerful natural enzymes will likely require consideration of distal residues that shape the enzyme's conformational landscape and fine-tune active-site residues. Biologically, the evolution of extensive communication between the active site and remote residues to aid catalysis may have provided the foundation for allostery to make it a highly evolvable trait.
Collapse
Affiliation(s)
- Craig J. Markin
- Department of Biochemistry, Stanford University, Stanford, CA94305
| | | | - Siyuan Du
- Department of Biochemistry, Stanford University, Stanford, CA94305
- Department of Chemistry, Stanford University, Stanford, CA94305
| | - Tzanko Doukov
- Stanford Synchrotron Radiation Light Source, Stanford Linear Accelerator Centre National Accelerator Laboratory, Menlo Park, CA94025
| | - Fanny Sunden
- Department of Biochemistry, Stanford University, Stanford, CA94305
| | - Jordan A. Cook
- Department of Biochemistry, Stanford University, Stanford, CA94305
| | - Polly M. Fordyce
- ChEM-H Institute, Stanford University, Stanford, CA94305
- Department of Bioengineering, Stanford University, Stanford, CA94305
- Department of Genetics, Stanford University, Stanford, CA94305
- Chan Zuckerberg Biohub, San Francisco, CA94110
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA94305
- ChEM-H Institute, Stanford University, Stanford, CA94305
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
| |
Collapse
|
11
|
Lewis CA, Wolfenden R. Aldol Cleavage in Water and the Power of Citrate Lyase as a Catalyst. Biochemistry 2023; 62:1026-1031. [PMID: 36847340 DOI: 10.1021/acs.biochem.2c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Citrate lyase allows Klebsiella aerogenes to grow anaerobically on citrate as the sole carbon source. Arrhenius analysis of experiments at high temperatures indicates that citrate is cleaved nonenzymatically to acetate and oxaloacetate with a t1/2 of 6.9 million years in neutral solution at 25 °C, while malate cleavage occurs even more slowly (t1/2 = 280 million years). However, t1/2 is only 10 days for the nonenzymatic cleavage of 4-hydroxy-2-ketoglutarate, indicating that the introduction of an α-keto group enhances the rate of aldol cleavage of malate by a factor of 1010. The aldol cleavages of citrate and malate, like the decarboxylation of malonate (t1/2 = 180 years), are associated with a near-zero entropy of activation, and their extreme differences in rate reflect differences between their heats of activation. Citrate lyase enhances the rate of substrate cleavage 6 × 1015-fold, comparable in magnitude with the rate enhancement produced by OMP decarboxylase, although these enzymes are strikingly different in their mechanisms of action.
Collapse
Affiliation(s)
- Charles A Lewis
- Department of Biochemistry and Biophysics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, North Carolina 27154, United States
| | - Richard Wolfenden
- Department of Biochemistry and Biophysics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, North Carolina 27154, United States
| |
Collapse
|
12
|
Liáng LL, Kirschbaum MUF, Arcus VL, Schipper LA. The carbon-quality temperature hypothesis: Fact or artefact? GLOBAL CHANGE BIOLOGY 2023; 29:935-942. [PMID: 36420956 PMCID: PMC10099867 DOI: 10.1111/gcb.16539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 05/25/2023]
Abstract
Climate warming can reduce global soil carbon stocks by enhancing microbial decomposition. However, the magnitude of this loss remains uncertain because the temperature sensitivity of the decomposition of the major fraction of soil carbon, namely resistant carbon, is not fully known. It is now believed that the resistance of soil carbon mostly depends on microbial accessibility of soil carbon with physical protection being the primary control of the decomposition of protected carbon, which is insensitive to temperature changes. However, it is still unclear whether the temperature sensitivity of the decomposition of unprotected carbon, for example, carbon that is not protected by the soil mineral matrix, may depend on the chemical recalcitrance of carbon compounds. In particular, the carbon-quality temperature (CQT) hypothesis asserts that recalcitrant low-quality carbon is more temperature-sensitive to decomposition than labile high-quality carbon. If the hypothesis is correct, climate warming could amplify the loss of unprotected, but chemically recalcitrant, carbon and the resultant CO2 release from soils to the atmosphere. Previous research has supported this hypothesis based on reported negative relationships between temperature sensitivity and carbon quality, defined as the decomposition rate at a reference temperature. Here we show that negative relationships can arise simply from the arbitrary choice of reference temperature, inherently invalidating those tests. To avoid this artefact, we defined the carbon quality of different compounds as their uncatalysed reaction rates in the absence of enzymes. Taking the uncatalysed rate as the carbon quality index, we found that the CQT hypothesis is not supported for enzyme-catalysed reactions, which showed no relationship between carbon quality and temperature sensitivity. The lack of correlation in enzyme-catalysed reactions implies similar temperature sensitivity for microbial decomposition of soil carbon, regardless of its quality, thereby allaying concerns of acceleration of warming-induced decomposition of recalcitrant carbon.
Collapse
Affiliation(s)
- Lìyǐn L. Liáng
- Manaaki Whenua − Landcare ResearchPalmerston NorthNew Zealand
| | | | - Vickery L. Arcus
- Te Aka Mātuatua ‐ School of ScienceUniversity of WaikatoHamiltonNew Zealand
| | - Louis A. Schipper
- Te Aka Mātuatua ‐ School of ScienceUniversity of WaikatoHamiltonNew Zealand
| |
Collapse
|
13
|
Onyido I, Obumselu OF, Egwuatu CI, Okoye NH. Solvent and solvation effects on reactivities and mechanisms of phospho group transfers from phosphate and phosphinate esters to nucleophiles. Front Chem 2023; 11:1176746. [PMID: 37179775 PMCID: PMC10172589 DOI: 10.3389/fchem.2023.1176746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
Organophosphorus esters fulfil many industrial, agricultural, and household roles. Nature has deployed phosphates and their related anhydrides as energy carriers and reservoirs, as constituents of genetic materials in the form of DNA and RNA, and as intermediates in key biochemical conversions. The transfer of the phosphoryl (PO3) group is thus a ubiquitous biological process that is involved in a variety of transformations at the cellular level such as bioenergy and signals transductions. Significant attention has been paid in the last seven decades to understanding the mechanisms of uncatalyzed (solution) chemistry of the phospho group transfer because of the notion that enzymes convert the dissociative transition state structures in the uncatalyzed reactions into associative ones in the biological processes. In this regard, it has also been proposed that the rate enhancements enacted by enzymes result from the desolvation of the ground state in the hydrophobic active site environments, although theoretical calculations seem to disagree with this position. As a result, some attention has been paid to the study of the effects of solvent change, from water to less polar solvents, in uncatalyzed phospho transfer reactions. Such changes have consequences on the stabilities of the ground and the transition states of reactions which affect reactivities and, sometimes, the mechanisms of reactions. This review seeks to collate and evaluate what is known about solvent effects in this domain, especially their effects on rates of reactions of different classes of organophosphorus esters. The outcome of this exercise shows that a systematized study of solvent effects needs to be undertaken to fully understand the physical organic chemistry of the transfer of phosphates and related molecules from aqueous to substantially hydrophobic environments, since significant knowledge gaps exist.
Collapse
|
14
|
Hydrolytic (in)stability of phosphate isosteres. Eur J Med Chem 2022; 244:114836. [DOI: 10.1016/j.ejmech.2022.114836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/18/2022]
|
15
|
Robertson AJ, Cruz-Navarrete FA, Wood HP, Vekaria N, Hounslow AM, Bisson C, Cliff MJ, Baxter NJ, Waltho JP. An Enzyme with High Catalytic Proficiency Utilizes Distal Site Substrate Binding Energy to Stabilize the Closed State but at the Expense of Substrate Inhibition. ACS Catal 2022; 12:3149-3164. [PMID: 35692864 PMCID: PMC9171722 DOI: 10.1021/acscatal.1c05524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/10/2022] [Indexed: 02/05/2023]
Abstract
Understanding the factors that underpin the enormous catalytic proficiencies of enzymes is fundamental to catalysis and enzyme design. Enzymes are, in part, able to achieve high catalytic proficiencies by utilizing the binding energy derived from nonreacting portions of the substrate. In particular, enzymes with substrates containing a nonreacting phosphodianion group coordinated in a distal site have been suggested to exploit this binding energy primarily to facilitate a conformational change from an open inactive form to a closed active form, rather than to either induce ground state destabilization or stabilize the transition state. However, detailed structural evidence for the model is limited. Here, we use β-phosphoglucomutase (βPGM) to investigate the relationship between binding a phosphodianion group in a distal site, the adoption of a closed enzyme form, and catalytic proficiency. βPGM catalyzes the isomerization of β-glucose 1-phosphate to glucose 6-phosphate via phosphoryl transfer reactions in the proximal site, while coordinating a phosphodianion group of the substrate(s) in a distal site. βPGM has one of the largest catalytic proficiencies measured and undergoes significant domain closure during its catalytic cycle. We find that side chain substitution at the distal site results in decreased substrate binding that destabilizes the closed active form but is not sufficient to preclude the adoption of a fully closed, near-transition state conformation. Furthermore, we reveal that binding of a phosphodianion group in the distal site stimulates domain closure even in the absence of a transferring phosphoryl group in the proximal site, explaining the previously reported β-glucose 1-phosphate inhibition. Finally, our results support a trend whereby enzymes with high catalytic proficiencies involving phosphorylated substrates exhibit a greater requirement to stabilize the closed active form.
Collapse
Affiliation(s)
- Angus J. Robertson
- School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | | | - Henry P. Wood
- School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Nikita Vekaria
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Andrea M. Hounslow
- School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Claudine Bisson
- School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Matthew J. Cliff
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Nicola J. Baxter
- School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Jonathan P. Waltho
- School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
16
|
Robertson AJ, Wilson AL, Burn MJ, Cliff MJ, Popelier PLA, Waltho JP. The Relationship between Enzyme Conformational Change, Proton Transfer, and Phosphoryl Transfer in β-Phosphoglucomutase. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Angus J. Robertson
- Department of Molecular Biology and Biotechnology, Krebs Institute for Biomolecular Research, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Alex L. Wilson
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Matthew J. Burn
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Matthew J. Cliff
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Paul L. A. Popelier
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Jonathan P. Waltho
- Department of Molecular Biology and Biotechnology, Krebs Institute for Biomolecular Research, The University of Sheffield, Sheffield S10 2TN, United Kingdom
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| |
Collapse
|
17
|
Lei WL, Qian WP, Sun QY. Critical Functions of PP2A-Like Protein Phosphotases in Regulating Meiotic Progression. Front Cell Dev Biol 2021; 9:638559. [PMID: 33718377 PMCID: PMC7947259 DOI: 10.3389/fcell.2021.638559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/08/2021] [Indexed: 01/31/2023] Open
Abstract
Meiosis is essential to the continuity of life in sexually-reproducing organisms through the formation of haploid gametes. Unlike somatic cells, the germ cells undergo two successive rounds of meiotic divisions after a single cycle of DNA replication, resulting in the decrease in ploidy. In humans, errors in meiotic progression can cause infertility and birth defects. Post-translational modifications, such as phosphorylation, ubiquitylation and sumoylation have emerged as important regulatory events in meiosis. There are dynamic equilibrium of protein phosphorylation and protein dephosphorylation in meiotic cell cycle process, regulated by a conservative series of protein kinases and protein phosphatases. Among these protein phosphatases, PP2A, PP4, and PP6 constitute the PP2A-like subfamily within the serine/threonine protein phosphatase family. Herein, we review recent discoveries and explore the role of PP2A-like protein phosphatases during meiotic progression.
Collapse
Affiliation(s)
- Wen-Long Lei
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wei-Ping Qian
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
18
|
Hu X, Wang B, Feng H, Zhou M, Lin Y, Cao H. Protein Phosphatase PP1 Negatively Regulates IRF3 in Response to GCRV Infection in Grass Carp ( Ctenopharyngodon idella). Front Immunol 2021; 11:609890. [PMID: 33584687 PMCID: PMC7873974 DOI: 10.3389/fimmu.2020.609890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Protein phosphatase-1 (PP1) has an important role in many cell functions, such as cell differentiation, development, immune response and tumorigenesis. However, the specific role of PP1 in the antiviral response in fish remains to be elucidated. In this study, the PPP1R3G homolog was identified in the grass carp (Ctenopharyngodon idella) and its role in defence against the GCRV infection was investigated. Phylogenetic analysis demonstrated that CiPPP1R3G clustered with homologues from other teleosts. Temporal expression analysis in vivo revealed that the expression level of CiPPP1R3G was significantly up-regulated in response to GCRV infection in grass carps, especially in the intestine and head-kidney. Cellular distribution analysis revealed that CiPPP1R3G was located in the nucleus and cytoplasm. Overexpression of CiPPP1R3G significantly negatively regulated the expression of CiIRF3, thus inhibiting its activation. In summary, we systematically analyzed the PPP1R3G gene in grass carp and illustrated its function as a negative regulator in the anti-GCRV immune responses.
Collapse
Affiliation(s)
- Xudong Hu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Haohao Feng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Man Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yusheng Lin
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hong Cao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Development of metallosupramolecular phosphatases based on the combinatorial self-assembly of metal complexes and organic building blocks for the catalytic hydrolysis of phosphate monoesters. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
20
|
Mandal A, Sarkar A, Adhikary A, Samanta D, Das D. Structure and synthesis of copper-based Schiff base and reduced Schiff base complexes: a combined experimental and theoretical investigation of biomimetic catalytic activity. Dalton Trans 2020; 49:15461-15472. [PMID: 33141130 DOI: 10.1039/d0dt02784g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three copper(ii) complexes, [Cu(L1)(NCS)]n (1), [Cu(L1)(N3)]n (2) and [Cu(L2)(N3)] (3) were synthesized from one Schiff base ligand and one reduced Schiff base ligand, (E)-4-chloro-2-[(2-propylaminoethylimino)methyl]phenol (HL1) and 4-chloro-2-[(2-(propylaminoethylamino) methyl]phenol (HL2), respectively. All complexes were characterized by various physicochemical studies, such as FT-IR, UV-Vis, ESI-MS, EPR and single crystal X-ray diffraction. Complexes 1 and 2 have 1D polymeric chain-like structures bridging through thiocyanate and azide anions, whereas complex 3 has a mononuclear structure in the solid state. All the complexes are active towards mimicking two well-known proteins, phosphatase and phenoxazinone synthase, using the disodium salt of 4-nitrophenylphosphate (4-NPP) and 2-aminophenol (OAP) as the substrate in DMF medium. Complexes 2 and 3 show the highest activity towards phosphatase and phenoxazinone synthase activity with kcat values of 22.6 s-1 and 134.4 h-1, respectively. EPR studies confirmed that for complex 1, the OAP oxidation goes through the generation of an organic radical at g = 1.99, which is due to an imine radical formation, whereas the metal center redox pathway is followed for complex 3. Extensive DFT calculations have been performed for both catalytic studies to put forward the most probable mechanistic pathways.
Collapse
Affiliation(s)
- Arnab Mandal
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India.
| | - Abani Sarkar
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India.
| | - Amit Adhikary
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India.
| | - Debabrata Samanta
- Department of Chemistry, Dukhulal Nibaran Chandra (DNC) College, Aurangabad, West Bengal 742201, India
| | - Debasis Das
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India.
| |
Collapse
|
21
|
Khalife J, Fréville A, Gnangnon B, Pierrot C. The Multifaceted Role of Protein Phosphatase 1 in Plasmodium. Trends Parasitol 2020; 37:154-164. [PMID: 33036936 DOI: 10.1016/j.pt.2020.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 11/29/2022]
Abstract
Protein phosphatase type 1 (PP1) forms a wide range of Ser/Thr-specific phosphatase holoenzymes which contain one catalytic subunit (PP1c), present in all eukaryotic cells, associated with variable subunits known as regulatory proteins. It has recently been shown that regulators take a leading role in the organization and the control of PP1 functions. Many studies have addressed the role of these regulators in diverse organisms, including humans, and investigated their link to diseases. In this review we summarize recent advances on the role of PP1c in Plasmodium, its interactome and regulators. As a proof of concept, peptides interfering with the regulator binding capacity of PP1c were shown to inhibit the growth of P. falciparum, suggesting their potential as drug precursors.
Collapse
Affiliation(s)
- Jamal Khalife
- Center for Infection and Immunity of Lille, Biology of Apicomplexan Parasites, UMR 9017 CNRS, U1019 INSERM, Université de Lille, Institut Pasteur de Lille, Lille, France.
| | - Aline Fréville
- Center for Infection and Immunity of Lille, Biology of Apicomplexan Parasites, UMR 9017 CNRS, U1019 INSERM, Université de Lille, Institut Pasteur de Lille, Lille, France
| | - Bénédicte Gnangnon
- Center for Infection and Immunity of Lille, Biology of Apicomplexan Parasites, UMR 9017 CNRS, U1019 INSERM, Université de Lille, Institut Pasteur de Lille, Lille, France
| | - Christine Pierrot
- Center for Infection and Immunity of Lille, Biology of Apicomplexan Parasites, UMR 9017 CNRS, U1019 INSERM, Université de Lille, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
22
|
Islam T, Majumder M, Kalita B, Bhattacharjee A, Mukhopadhyay R, Mukherjee AK. Transcriptomic, proteomic, and biochemical analyses reveal a novel neuritogenesis mechanism of
Naja naja
venom α‐elapitoxin post binding to TrkA receptor of rat pheochromocytoma cells. J Neurochem 2020; 155:612-637. [DOI: 10.1111/jnc.15153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Taufikul Islam
- Microbial Biotechnology and Protein Research Laboratory Department of Molecular Biology and Biotechnology School of Sciences Tezpur University Tezpur Assam India
| | - Munmi Majumder
- Cellular, Molecular, and Environmental Biotechnology Laboratory Department of Molecular Biology and Biotechnology School of Sciences Tezpur University Tezpur Assam India
| | - Bhargab Kalita
- Microbial Biotechnology and Protein Research Laboratory Department of Molecular Biology and Biotechnology School of Sciences Tezpur University Tezpur Assam India
| | - Atanu Bhattacharjee
- Department of Biotechnology and Bioinformatics North Eastern Hill University Shillong Meghalaya India
| | - Rupak Mukhopadhyay
- Cellular, Molecular, and Environmental Biotechnology Laboratory Department of Molecular Biology and Biotechnology School of Sciences Tezpur University Tezpur Assam India
| | - Ashis K. Mukherjee
- Microbial Biotechnology and Protein Research Laboratory Department of Molecular Biology and Biotechnology School of Sciences Tezpur University Tezpur Assam India
| |
Collapse
|
23
|
Chowdhury T, Dasgupta S, Khatua S, Acharya K, Das D. Executing a Series of Zinc(II) Complexes of Homologous Schiff Base Ligands for a Comparative Analysis on Hydrolytic, Antioxidant, and Antibacterial Activities. ACS APPLIED BIO MATERIALS 2020; 3:4348-4357. [PMID: 35025433 DOI: 10.1021/acsabm.0c00372] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Six zinc(II) complexes, namely, [Zn(HL1H)Cl2] (1), [Zn(HL1H)Br2] (2), [Zn2(HL1H)2(OH)I2]·I (3), [Zn(HL2)Cl] (4), [Zn2(HL2)Br3] (5), and [Zn(HL2)I] (6) have been manufactured by using two homologous Schiff base ligands H2L1 and H2L2 for the purpose of perlustrating their phosphatase-like activity, antioxidant activity, and antibacterial activity. Complexes 1, 2, 4, and 5 have been reported earlier by us, whereas complexes 3 and 6 have been synthesized and structurally characterized by regular physicochemical methods The hydrolytic property of the six complexes has been evaluated by checking the hydrolysis of the P-O bond of a widely used substrate, namely, disodium salt of (para-nitrophenyl)phosphate (PNPP) in 97.5% (v/v) mixture of N,N-dimethylformamide and water (DMF-water). Complexes 2-5 have profound efficiency toward hydrolysis of phosphate ester bonds, and complexes 1 and 6 were noted to be inactive toward hydrolysis. Complex 3 displayed the highest efficacy among the six complexes. Additionally, antioxidant and antibacterial activities of the complexes were studied thoroughly. A detailed study of their antioxidant property revealed that complex 3 manifested superior radical scavenging activity, thus exhibiting the highest antioxidant property. The antibacterial activity was tested using four investigating bacteria, specifically Listeria monocytogenes ATCC19111, Staphylococcus aureus ATCC 700699, Salmonella typhimurium ATCC 23564, and Escherichia coli ATCC 25922 by determining minimum inhibitory concentration (MIC) values using the microdilution method. Here as well, complex 3 exhibited the highest activity to both Gram positive and Gram negative bacteria. The chemistry behind these experimental findings has been manifested by shedding light upon the structural features of the complexes. The suitable choice of ligand H2L1 where one methylene group is less than its homologous ligand and metal precursor (ZnI2) imparts a unique hydroxo-bridged molecular geometry and 2D hydrogen bonding network which in turn probably enhances the hydrolytic and biological activities of complex 3.
Collapse
Affiliation(s)
- Tania Chowdhury
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Sanchari Dasgupta
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Somanjana Khatua
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019 West Bengal, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019 West Bengal, India
| | - Debasis Das
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
24
|
Phosphorylation Dynamics of JNK Signaling: Effects of Dual-Specificity Phosphatases (DUSPs) on the JNK Pathway. Int J Mol Sci 2019; 20:ijms20246157. [PMID: 31817617 PMCID: PMC6941053 DOI: 10.3390/ijms20246157] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/30/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
Protein phosphorylation affects conformational change, interaction, catalytic activity, and subcellular localization of proteins. Because the post-modification of proteins regulates diverse cellular signaling pathways, the precise control of phosphorylation states is essential for maintaining cellular homeostasis. Kinases function as phosphorylating enzymes, and phosphatases dephosphorylate their target substrates, typically in a much shorter time. The c-Jun N-terminal kinase (JNK) signaling pathway, a mitogen-activated protein kinase pathway, is regulated by a cascade of kinases and in turn regulates other physiological processes, such as cell differentiation, apoptosis, neuronal functions, and embryonic development. However, the activation of the JNK pathway is also implicated in human pathologies such as cancer, neurodegenerative diseases, and inflammatory diseases. Therefore, the proper balance between activation and inactivation of the JNK pathway needs to be tightly regulated. Dual specificity phosphatases (DUSPs) regulate the magnitude and duration of signal transduction of the JNK pathway by dephosphorylating their substrates. In this review, we will discuss the dynamics of phosphorylation/dephosphorylation, the mechanism of JNK pathway regulation by DUSPs, and the new possibilities of targeting DUSPs in JNK-related diseases elucidated in recent studies.
Collapse
|
25
|
Zhou X, Zhang XP, Li W, Jiang J, Xu H, Ke Z, Phillips DL, Zhao C. Unraveling mechanisms of the uncoordinated nucleophiles: theoretical elucidations of the cleavage of bis( p-nitrophenyl) phosphate mediated by zinc-complexes with apical nucleophiles. RSC Adv 2019; 9:37696-37704. [PMID: 35541823 PMCID: PMC9075727 DOI: 10.1039/c9ra06737j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/01/2019] [Indexed: 02/01/2023] Open
Abstract
A theoretical approach was used to investigate the hydrolytic cleavage mechanisms of the bis(p-nitrophenyl) phosphate (BNPP-) catalyzed by Zn(ii)-complexes featuring uncoordinated nucleophiles. Ligand-based and alternative solvent-based nucleophilic attack reaction models are proposed. The pK a values of the Zn(ii)-bound water molecules or ligands in the [Zn(L n H)(η-H2O)(H2O)]2+ (n = 1, 2 and 3) complexes, as well as the dimerization tendency of the mononuclear Zn(ii)-complexes, were found to significantly influence the reaction mechanisms. The Zn(ii)-L3 complexes were found to be more favorable for the hydrolytic cleavage of the BNPP- via a ligand-based nucleophilic attack pathway. This was due to the lower pK a value for the deprotonation of the oxime ligand, the hard dimerization of the mononuclear Zn(ii)-L3 species, and the presence of an uncoordinated nucleophile. The origins of the uncoordinated reactions were systematically elucidated. The theoretical results reported here are in good agreement with experimental observations and more importantly, help to elucidate the factors that influence intermolecular nucleophilic attack reactions with coordinated/uncoordinated nucleophiles.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xue-Peng Zhang
- School of Chemisty and Chemical Engineering, Shaanxi Normal University Xi'an 710119 P. R. China
| | - Weikang Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jingxing Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, School of Materials Science and Engineering, Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Huiying Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Zhuofeng Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, School of Materials Science and Engineering, Sun Yat-sen University Guangzhou 510275 P. R. China
| | - David Lee Phillips
- Department of Chemistry, University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Cunyuan Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
26
|
Affiliation(s)
- Gary B Smejkal
- a Core Services Laboratory , Focus Proteomics , Hudson , NH , USA
| | | |
Collapse
|
27
|
Buschiazzo A, Trajtenberg F. Two-Component Sensing and Regulation: How Do Histidine Kinases Talk with Response Regulators at the Molecular Level? Annu Rev Microbiol 2019; 73:507-528. [PMID: 31226026 DOI: 10.1146/annurev-micro-091018-054627] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Perceiving environmental and internal information and reacting in adaptive ways are essential attributes of living organisms. Two-component systems are relevant protein machineries from prokaryotes and lower eukaryotes that enable cells to sense and process signals. Implicating sensory histidine kinases and response regulator proteins, both components take advantage of protein phosphorylation and flexibility to switch conformations in a signal-dependent way. Dozens of two-component systems act simultaneously in any given cell, challenging our understanding about the means that ensure proper connectivity. This review dives into the molecular level, attempting to summarize an emerging picture of how histidine kinases and cognate response regulators achieve required efficiency, specificity, and directionality of signaling pathways, properties that rely on protein:protein interactions. α helices that carry information through long distances, the fine combination of loose and specific kinase/regulator interactions, and malleable reaction centers built when the two components meet emerge as relevant universal principles.
Collapse
Affiliation(s)
- Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; , .,Integrative Microbiology of Zoonotic Agents, Department of Microbiology, Institut Pasteur, Paris 75015, France
| | - Felipe Trajtenberg
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; ,
| |
Collapse
|
28
|
Erxleben A. Mechanistic Studies of Homo- and Heterodinuclear Zinc Phosphoesterase Mimics: What Has Been Learned? Front Chem 2019; 7:82. [PMID: 30847339 PMCID: PMC6393734 DOI: 10.3389/fchem.2019.00082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/30/2019] [Indexed: 11/13/2022] Open
Abstract
Phosphoesterases hydrolyze the phosphorus oxygen bond of phosphomono-, di- or triesters and are involved in various important biological processes. Carboxylate and/or hydroxido-bridged dizinc(II) sites are a widespread structural motif in this enzyme class. Much effort has been invested to unravel the mechanistic features that provide the enormous rate accelerations observed for enzymatic phosphate ester hydrolysis and much has been learned by using simple low-molecular-weight model systems for the biological dizinc(II) sites. This review summarizes the knowledge and mechanistic understanding of phosphoesterases that has been gained from biomimetic dizinc(II) complexes, showing the power as well as the limitations of model studies.
Collapse
Affiliation(s)
- Andrea Erxleben
- School of Chemistry, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
29
|
Martí S, Bastida A, Świderek K. Theoretical Studies on Mechanism of Inactivation of Kanamycin A by 4'-O-Nucleotidyltransferase. Front Chem 2019; 6:660. [PMID: 30761287 PMCID: PMC6361787 DOI: 10.3389/fchem.2018.00660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/18/2018] [Indexed: 01/31/2023] Open
Abstract
This work is focused on mechanistic studies of the transfer of an adenylyl group (Adenoside-5'-monophosfate) from adenosine 5'-triphosphate (ATP) to a OH-4' hydroxyl group of an antibiotic. Using hybrid quantum mechanics/molecular mechanics (QM/MM) techniques, we study the substrate and base-assisted mechanisms of the inactivation process of kanamycin A (KAN) catalyzed by 4'-O-Nucleotidyltransferase [ANT(4')], an active enzyme against almost all aminoglycoside antibiotics. Free energy surfaces, obtained with Free Energy Perturbation methods at the M06-2X/MM level of theory, show that the most favorable reaction path presents a barrier of 12.2 kcal·mol-1 that corresponds to the concerted activation of O4' from KAN by Glu145. In addition, the primary and secondary 18O kinetic isotope effects (KIEs) have been computed for bridge O3α, and non-bridge O1α, O2α, and O5' atoms of ATP. The observed normal 1°-KIE of 1.2% and 2°-KIE of 0.07% for the Glu145-assisted mechanism are in very good agreement with experimentally measured data. Additionally, based on the obtained results, the role of electrostatic and compression effects in enzymatic catalysis is discussed.
Collapse
Affiliation(s)
- Sergio Martí
- Departament de Química Física i Analítica, Universitat Jaume I, Castelló de La Plana, Spain
| | - Agatha Bastida
- Departamento de Química Bio-orgánica, Instituto de Química Orgánica General (CSIC), Madrid, Spain
| | - Katarzyna Świderek
- Departament de Química Física i Analítica, Universitat Jaume I, Castelló de La Plana, Spain
| |
Collapse
|
30
|
Raj P, Singh A, Singh A, Singh A, Garg N, Kaur N, Singh N. Pyrophosphate Prompted Aggregation-Induced Emission: Chemosensor Studies, Cell Imaging, Cytotoxicity, and Hydrolysis of the Phosphoester Bond with Alkaline Phosphatase. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Pushap Raj
- Department of Chemistry; Indian Institute Technology Ropar; 140001 Punjab India
| | - Amanpreet Singh
- Department of Chemistry; Indian Institute Technology Ropar; 140001 Punjab India
| | - Ajnesh Singh
- Department of Applied Sciences and Humanities; Jawaharlal Nehru Govt. Engineering College; 175018 India
| | - Ashutosh Singh
- School of Basic Sciences; Indian Institute of Technology Mandi; 175005 India
| | - Neha Garg
- School of Basic Sciences; Indian Institute of Technology Mandi; 175005 India
| | - Navneet Kaur
- Department of Chemistry; Panjab University Chandigarh; 160014 Chandigarh India
| | - Narinder Singh
- Department of Chemistry; Indian Institute Technology Ropar; 140001 Punjab India
| |
Collapse
|
31
|
Dasgupta S, Aullón G, Zangrando E, Das D. Mapping the working route of phosphate monoester hydrolysis catalyzed by copper based models with special emphasis on the role of oxoanions by experimental and theoretical studies. NEW J CHEM 2019. [DOI: 10.1039/c8nj04018d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanistic pathway of phosphate-ester bond hydrolysis with special emphasis on the role of oxoanions was explored by experimental and theoretical study.
Collapse
Affiliation(s)
| | - Gabriel Aullón
- Departament de Química Inorgànica i Orgànica (Secció de Química Inorgànica) and Institut de QuímicaTeorica i Computacional
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences
- University of Trieste
- 34127 Trieste
- Italy
| | - Debasis Das
- Department of Chemistry
- University of Calcutta
- Kolkata 700009
- India
| |
Collapse
|
32
|
Swingle MR, Honkanen RE. Inhibitors of Serine/Threonine Protein Phosphatases: Biochemical and Structural Studies Provide Insight for Further Development. Curr Med Chem 2019; 26:2634-2660. [PMID: 29737249 PMCID: PMC10013172 DOI: 10.2174/0929867325666180508095242] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/05/2018] [Accepted: 03/29/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The reversible phosphorylation of proteins regulates many key functions in eukaryotic cells. Phosphorylation is catalyzed by protein kinases, with the majority of phosphorylation occurring on side chains of serine and threonine residues. The phosphomonoesters generated by protein kinases are hydrolyzed by protein phosphatases. In the absence of a phosphatase, the half-time for the hydrolysis of alkyl phosphate dianions at 25º C is over 1 trillion years; knon ~2 x 10-20 sec-1. Therefore, ser/thr phosphatases are critical for processes controlled by reversible phosphorylation. METHODS This review is based on the literature searched in available databases. We compare the catalytic mechanism of PPP-family phosphatases (PPPases) and the interactions of inhibitors that target these enzymes. RESULTS PPPases are metal-dependent hydrolases that enhance the rate of hydrolysis ([kcat/kM]/knon ) by a factor of ~1021, placing them among the most powerful known catalysts on earth. Biochemical and structural studies indicate that the remarkable catalytic proficiencies of PPPases are achieved by 10 conserved amino acids, DXH(X)~26DXXDR(X)~20- 26NH(X)~50H(X)~25-45R(X)~30-40H. Six act as metal-coordinating residues. Four position and orient the substrate phosphate. Together, two metal ions and the 10 catalytic residues position the phosphoryl group and an activated bridging water/hydroxide nucleophile for an inline attack upon the substrate phosphorous atom. The PPPases are conserved among species, and many structurally diverse natural toxins co-evolved to target these enzymes. CONCLUSION Although the catalytic site is conserved, opportunities for the development of selective inhibitors of this important group of metalloenzymes exist.
Collapse
Affiliation(s)
- Mark R Swingle
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile AL 36688, United States
| | - Richard E Honkanen
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile AL 36688, United States
| |
Collapse
|
33
|
Wilson CJ, Bommarius AS, Champion JA, Chernoff YO, Lynn DG, Paravastu AK, Liang C, Hsieh MC, Heemstra JM. Biomolecular Assemblies: Moving from Observation to Predictive Design. Chem Rev 2018; 118:11519-11574. [PMID: 30281290 PMCID: PMC6650774 DOI: 10.1021/acs.chemrev.8b00038] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biomolecular assembly is a key driving force in nearly all life processes, providing structure, information storage, and communication within cells and at the whole organism level. These assembly processes rely on precise interactions between functional groups on nucleic acids, proteins, carbohydrates, and small molecules, and can be fine-tuned to span a range of time, length, and complexity scales. Recognizing the power of these motifs, researchers have sought to emulate and engineer biomolecular assemblies in the laboratory, with goals ranging from modulating cellular function to the creation of new polymeric materials. In most cases, engineering efforts are inspired or informed by understanding the structure and properties of naturally occurring assemblies, which has in turn fueled the development of predictive models that enable computational design of novel assemblies. This Review will focus on selected examples of protein assemblies, highlighting the story arc from initial discovery of an assembly, through initial engineering attempts, toward the ultimate goal of predictive design. The aim of this Review is to highlight areas where significant progress has been made, as well as to outline remaining challenges, as solving these challenges will be the key that unlocks the full power of biomolecules for advances in technology and medicine.
Collapse
Affiliation(s)
- Corey J. Wilson
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andreas S. Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Julie A. Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yury O. Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Laboratory of Amyloid Biology & Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - David G. Lynn
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Anant K. Paravastu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chen Liang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Chien Hsieh
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M. Heemstra
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
34
|
Krachtus D, Smith JC, Imhof P. Quantum Mechanical/Molecular Mechanical Analysis of the Catalytic Mechanism of Phosphoserine Phosphatase. Molecules 2018; 23:E3342. [PMID: 30563005 PMCID: PMC6321591 DOI: 10.3390/molecules23123342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 11/25/2022] Open
Abstract
Phosphoserine phosphatase (PSP), a member of the haloacid dehalogenase (HAD) superfamily that comprises the vast majority of phosphotransferases, is likely a steady-state regulator of the level of d-serine in the brain. The proposed catalytic cycle of PSP consists of a two-step mechanism: formation of a phospho-enzyme intermediate by phosphate transfer to Asp11 and its subsequent hydrolysis. Our combined quantum mechanical/molecular mechanical (QM/MM) calculations of the reaction pathways favour a dissociative mechanism of nucleophilic substitution via a trigonal-planar metaphosphate-like configuration for both steps, associated with proton transfer to the leaving group or from the nucleophile. This proton transfer is facilitated by active site residue Asp13 that acts as both a general base and a general acid. Free energy calculation on the reaction pathways further support the structural role of the enzymatic environment and the active site architecture. The choice of a proper reaction coordinate along which to bias the free energy calculations can be guided by a projection of the canonical reaction coordinate obtained from a chain-of-state optimisation onto important internal coordinates.
Collapse
Affiliation(s)
- Dieter Krachtus
- Computational Molecular Biophysics Group, Interdisciplinary Center for Scientific Computing (IWR), Im Neuenheimer Feld 368, 69120 Heidelberg, Germany.
| | - Jeremy C Smith
- Computational Molecular Biophysics Group, Interdisciplinary Center for Scientific Computing (IWR), Im Neuenheimer Feld 368, 69120 Heidelberg, Germany.
- University of Tennessee/Oak Ridge National Laboratory, Center for Molecular Biophysics, One Bethel Valley Road, P.O. Box 2008, Oak Ridge, TN 37831-6255, USA.
| | - Petra Imhof
- Freie Universität Berlin, Institute for Theoretical Physics, Arnimallee 14, 14195 Berlin, Germany.
| |
Collapse
|
35
|
Iorgu AI, Baxter NJ, Cliff MJ, Levy C, Waltho JP, Hay S, Scrutton NS. Nonequivalence of Second Sphere "Noncatalytic" Residues in Pentaerythritol Tetranitrate Reductase in Relation to Local Dynamics Linked to H-Transfer in Reactions with NADH and NADPH Coenzymes. ACS Catal 2018; 8:11589-11599. [PMID: 31119061 PMCID: PMC6516726 DOI: 10.1021/acscatal.8b02810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/23/2018] [Indexed: 11/28/2022]
Abstract
![]()
Many enzymes that
catalyze hydride transfer reactions work via
a mechanism dominated by quantum mechanical tunneling. The involvement
of fast vibrational modes of the reactive complex is often inferred
in these reactions, as in the case of the NAD(P)H-dependent pentaerythritol
tetranitrate reductase (PETNR). Herein, we interrogated the H-transfer
mechanism in PETNR by designing conservative (L25I and I107L) and
side chain shortening (L25A and I107A) PETNR variants and using a
combination of experimental approaches (stopped-flow rapid kinetics,
X-ray crystallography, isotope/temperature dependence studies of H-transfer
and NMR spectroscopy). X-ray data show subtle changes in the local
environment of the targeted side chains but no major structural perturbation
caused by mutagenesis of these two second sphere active site residues.
However, temperature dependence studies of H-transfer revealed a coenzyme-specific
and complex thermodynamic equilibrium between different reactive configurations
in PETNR–coenzyme complexes. We find that mutagenesis of these
second sphere “noncatalytic” residues affects differently
the reactivity of PETNR with NADPH and NADH coenzymes. We attribute
this to subtle, dynamic structural changes in the PETNR active site,
the effects of which impact differently in the nonequivalent reactive
geometries of PETNR−NADH and PETNR−NADPH complexes.
This inference is confirmed through changes observed in the NMR chemical
shift data for PETNR complexes with unreactive 1,4,5,6-tetrahydro-NAD(P)
analogues. We show that H-transfer rates can (to some extent) be buffered
through entropy–enthalpy compensation, but that use of integrated
experimental tools reveals hidden complexities that implicate a role
for dynamics in this relatively simple H-transfer reaction. Similar
approaches are likely to be informative in other enzymes to understand
the relative importance of (distal) hydrophobic side chains and dynamics
in controlling the rates of enzymatic H-transfer.
Collapse
Affiliation(s)
- Andreea I. Iorgu
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Nicola J. Baxter
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Matthew J. Cliff
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Colin Levy
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Jonathan P. Waltho
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Sam Hay
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
36
|
Nilsson J. Protein phosphatases in the regulation of mitosis. J Cell Biol 2018; 218:395-409. [PMID: 30446607 PMCID: PMC6363451 DOI: 10.1083/jcb.201809138] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022] Open
Abstract
The accurate segregation of genetic material to daughter cells during mitosis depends on the precise coordination and regulation of hundreds of proteins by dynamic phosphorylation. Mitotic kinases are major regulators of protein function, but equally important are protein phosphatases that balance their actions, their coordinated activity being essential for accurate chromosome segregation. Phosphoprotein phosphatases (PPPs) that dephosphorylate phosphoserine and phosphothreonine residues are increasingly understood as essential regulators of mitosis. In contrast to kinases, the lack of a pronounced peptide-binding cleft on the catalytic subunit of PPPs suggests that these enzymes are unlikely to be specific. However, recent exciting insights into how mitotic PPPs recognize specific substrates have revealed that they are as specific as kinases. Furthermore, the activities of PPPs are tightly controlled at many levels to ensure that they are active only at the proper time and place. Here, I will discuss substrate selection and regulation of mitotic PPPs focusing mainly on animal cells and explore how these actions control mitosis, as well as important unanswered questions.
Collapse
Affiliation(s)
- Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Abstract
The concept of cell signaling in the context of nonenzyme-assisted protein modifications by reactive electrophilic and oxidative species, broadly known as redox signaling, is a uniquely complex topic that has been approached from numerous different and multidisciplinary angles. Our Review reflects on five aspects critical for understanding how nature harnesses these noncanonical post-translational modifications to coordinate distinct cellular activities: (1) specific players and their generation, (2) physicochemical properties, (3) mechanisms of action, (4) methods of interrogation, and (5) functional roles in health and disease. Emphasis is primarily placed on the latest progress in the field, but several aspects of classical work likely forgotten/lost are also recollected. For researchers with interests in getting into the field, our Review is anticipated to function as a primer. For the expert, we aim to stimulate thought and discussion about fundamentals of redox signaling mechanisms and nuances of specificity/selectivity and timing in this sophisticated yet fascinating arena at the crossroads of chemistry and biology.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Pharmacology and Toxicology, College of
Pharmacy, University of Utah, Salt Lake City, Utah, 84112, USA
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Marcus J. C. Long
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Jesse R. Poganik
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Yimon Aye
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
- Department of Biochemistry, Weill Cornell Medicine, New
York, New York, 10065, USA
| |
Collapse
|
38
|
Chagas MA, Pereira ES, Da Silva JCS, Rocha WR. Theoretical investigation of the neutral hydrolysis of diethyl 4-nitrophenyl phosphate (paraoxon) in aqueous solution. J Mol Model 2018; 24:259. [DOI: 10.1007/s00894-018-3798-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/15/2018] [Indexed: 10/28/2022]
|
39
|
Abstract
Phosphotransferases catalyze reactions on chemically diverse molecules in organisms from all domains of life. The haloalkanoate dehalogenase superfamily (HADSF) is a model system for phosphoryl transfer enzymes as members catalyze phosphoester hydrolase, phosphonate hydrolase, and phosphomutase reactions on sugars, lipids, nucleotides, and peptides. Because these reactions are fundamental to essential metabolic transformations, understanding the mechanism and determinants of substrate specificity in the HADSF is critical. Structure/function relationships in the superfamily have also been leveraged in the development of methodologies for the assignment of enzyme function. Enzyme complexes with substrate, product, and analogs of the ground state or intermediate/transition state can be studied via high-resolution macromolecular crystallography to provide insight to the relative location of residues and ligands, as well as associated enzyme conformational states. This knowledge can aid in inhibitor design for phosphohydrolase reactions and target-specific therapeutics. Here we describe experimental approaches to capture liganded X-ray crystallographic structures of HADSF members. A number of these methods can be employed generally, including other families of phosphohydrolases and enzymes catalyzing phosphoryl transfer.
Collapse
|
40
|
|
41
|
Johnson LA, Robertson AJ, Baxter NJ, Trevitt CR, Bisson C, Jin Y, Wood HP, Hounslow AM, Cliff MJ, Blackburn GM, Bowler MW, Waltho JP. van der Waals Contact between Nucleophile and Transferring Phosphorus Is Insufficient To Achieve Enzyme Transition-State Architecture. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01612] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luke A. Johnson
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Angus J. Robertson
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Nicola J. Baxter
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Clare R. Trevitt
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Claudine Bisson
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Yi Jin
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Henry P. Wood
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Andrea M. Hounslow
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Matthew J. Cliff
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - G. Michael Blackburn
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Matthew W. Bowler
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, F-38042 Grenoble, France
| | - Jonathan P. Waltho
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester M1 7DN, United Kingdom
| |
Collapse
|
42
|
Riel AMS, Decato DA, Sun J, Massena CJ, Jessop MJ, Berryman OB. The intramolecular hydrogen bonded-halogen bond: a new strategy for preorganization and enhanced binding. Chem Sci 2018; 9:5828-5836. [PMID: 30079195 PMCID: PMC6050591 DOI: 10.1039/c8sc01973h] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/13/2018] [Indexed: 01/02/2023] Open
Abstract
Natural and synthetic molecules use weak noncovalent forces to preorganize structure and enable remarkable function. Herein, we introduce the intramolecular hydrogen bonded-halogen bond (HB-XB) as a novel method to preorganize halogen bonding (XBing) molecules, while generating a polarization-enhanced XB. Positioning a fluoroaniline between two iodopyridinium XB donors engendered intramolecular hydrogen bonding (HBing) to the electron-rich belt of both XB donors. NMR solution studies established the efficacy of the HB-XB. The receptor with HB-XBs (G2XB) displayed a nearly 9-fold increase in halide binding over control receptors. Gas-phase density functional theory conformational analysis indicated that the amine stabilizes the bidentate conformation. Furthermore, gas-phase interaction energies showed that the bidentate HB-XBs of G2XBme2+ are more than 3.2 kcal mol-1 stronger than the XBs in a control without the intramolecular HB. Additionally, crystal structures confirm that HB-XBs form tighter contacts with I- and Br- and produce receptors that are more planar. Collectively the results establish the intramolecular HB-XB as a tractable strategy to preorganize XB molecules and regulate XB strength.
Collapse
Affiliation(s)
| | - Daniel A Decato
- University of Montana , 32 Campus Drive , Missoula , MT , USA .
| | - Jiyu Sun
- University of Montana , 32 Campus Drive , Missoula , MT , USA .
| | - Casey J Massena
- University of Montana , 32 Campus Drive , Missoula , MT , USA .
| | - Morly J Jessop
- University of Montana , 32 Campus Drive , Missoula , MT , USA .
| | | |
Collapse
|
43
|
Hamlin TA, Swart M, Bickelhaupt FM. Nucleophilic Substitution (S N 2): Dependence on Nucleophile, Leaving Group, Central Atom, Substituents, and Solvent. Chemphyschem 2018; 19:1315-1330. [PMID: 29542853 PMCID: PMC6001448 DOI: 10.1002/cphc.201701363] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 11/12/2022]
Abstract
The reaction potential energy surface (PES), and thus the mechanism of bimolecular nucleophilic substitution (SN 2), depends profoundly on the nature of the nucleophile and leaving group, but also on the central, electrophilic atom, its substituents, as well as on the medium in which the reaction takes place. Here, we provide an overview of recent studies and demonstrate how changes in any one of the aforementioned factors affect the SN 2 mechanism. One of the most striking effects is the transition from a double-well to a single-well PES when the central atom is changed from a second-period (e. g. carbon) to a higher-period element (e.g, silicon, germanium). Variations in nucleophilicity, leaving group ability, and bulky substituents around a second-row element central atom can then be exploited to change the single-well PES back into a double-well. Reversely, these variations can also be used to produce a single-well PES for second-period elements, for example, a stable pentavalent carbon species.
Collapse
Affiliation(s)
- Trevor A. Hamlin
- Department of Theoretical Chemistry andAmsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Marcel Swart
- Department of Theoretical Chemistry andAmsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Institut de Química Computacional I Catàlisi and Department de QuímicaUniversitat de Girona17003GironaSpain
- ICREAPg. Lluís Companys 2308010BarcelonaSpain
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry andAmsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Institute of Molecules and Materials (IMM)Radboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| |
Collapse
|
44
|
QM/MM free energy Simulations of an efficient Gluten Hydrolase (Kuma030) Implicate for a Reactant-State Based Protein-Design Strategy for General Acid/Base Catalysis. Sci Rep 2018; 8:7042. [PMID: 29728674 PMCID: PMC5935664 DOI: 10.1038/s41598-018-25471-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/23/2018] [Indexed: 01/16/2023] Open
Abstract
It is a grand attraction for contemporary biochemists to computationally design enzymes for novel chemical transformation or improved catalytic efficiency. Rosetta by Baker et al. is no doubt the leading software in the protein design society. Generally, optimization of the transition state (TS) is part of the Rosetta’s protocol to enhance the catalytic efficiency of target enzymes, since TS stabilization is the determining factor for catalytic efficiency based on the TS theory (TST). However, it is confusing that optimization of the reactant state (RS) also results in significant improvement of catalytic efficiency in some cases, such as design of gluten hydrolase (Kuma030). Therefore, it is interesting to uncover underlying reason why a better binding in the RS leading to an increased kcat. In this study, the combined quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) and free energy (PMF) simulations, pKa calculation, and the statistical analysis such as the ANOVA test were carried out to shed light on the interesting but elusive question. By integration of our computational results and general acid/base theory, we answered the question why optimization of RS stabilization leads to a better TS stabilization in the general acid/base catalysis. In addition, a new and simplified protein-design strategy is proposed for the general acid/base catalysis. The idea, that application of traditional well-defined enzyme mechanism to protein design strategy, would be a great help for methodology development of protein design.
Collapse
|
45
|
van Bochove MA, Roos G, Fonseca Guerra C, Hamlin TA, Bickelhaupt FM. How Mg 2+ ions lower the S N2@P barrier in enzymatic triphosphate hydrolysis. Chem Commun (Camb) 2018. [PMID: 29537051 DOI: 10.1039/c8cc00700d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our quantum chemical activation strain analyses demonstrate how Mg2+ lowers the barrier of the enzymatic triphosphate hydrolysis through two distinct mechanisms: (a) weakening of the leaving-group bond, thereby decreasing activation strain; and (b) transition state (TS) stabilization through enhanced electrophilicity of the triphosphate PPP substrate, thereby strengthening the interaction with the nucleophile.
Collapse
Affiliation(s)
- Marc A van Bochove
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Vrije Universiteit Amsterdam, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
46
|
Makwana MV, Muimo R, Jackson RF. Advances in development of new tools for the study of phosphohistidine. J Transl Med 2018; 98:291-303. [PMID: 29200202 DOI: 10.1038/labinvest.2017.126] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/27/2017] [Accepted: 09/03/2017] [Indexed: 01/04/2023] Open
Abstract
Protein phosphorylation is an important post-translational modification that is an integral part of cellular function. The O-phosphorylated amino-acid residues, such as phosphoserine (pSer), phosphothreonine (pThr) and phosphotyrosine (pTyr), have dominated the literature while the acid labile N-linked phosphorylated amino acids, such as phosphohistidine (pHis), have largely been historically overlooked because of the acidic conditions routinely used in amino-acid detection and analysis. This review highlights some misinterpretations that have arisen in the existing literature, pinpoints outstanding questions and potential future directions to clarify the role of pHis in mammalian signalling systems. Particular emphasis is placed on pHis isomerization and the hybrid functionality for both pHis and pTyr of the proposed τ-pHis analogue bearing the triazole residue.
Collapse
Affiliation(s)
- Mehul V Makwana
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK.,Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2RX, UK
| | - Richmond Muimo
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2RX, UK
| | | |
Collapse
|
47
|
Petrović D, Szeler K, Kamerlin SCL. Challenges and advances in the computational modeling of biological phosphate hydrolysis. Chem Commun (Camb) 2018; 54:3077-3089. [PMID: 29412205 DOI: 10.1039/c7cc09504j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphate ester hydrolysis is fundamental to many life processes, and has been the topic of substantial experimental and computational research effort. However, even the simplest of phosphate esters can be hydrolyzed through multiple possible pathways that can be difficult to distinguish between, either experimentally, or computationally. Therefore, the mechanisms of both the enzymatic and non-enzymatic reactions have been historically controversial. In the present contribution, we highlight a number of technical issues involved in reliably modeling these computationally challenging reactions, as well as proposing potential solutions. We also showcase examples of our own work in this area, discussing both the non-enzymatic reaction in aqueous solution, as well as insights obtained from the computational modeling of organophosphate hydrolysis and catalytic promiscuity amongst enzymes that catalyze phosphoryl transfer.
Collapse
Affiliation(s)
- Dušan Petrović
- Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden.
| | - Klaudia Szeler
- Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden.
| | | |
Collapse
|
48
|
Brás NF, Fernandes PA, Ramos MJ, Schwartz SD. Mechanistic Insights on Human Phosphoglucomutase Revealed by Transition Path Sampling and Molecular Dynamics Calculations. Chemistry 2018; 24:1978-1987. [PMID: 29131453 DOI: 10.1002/chem.201705090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Indexed: 12/27/2022]
Abstract
Human α-phosphoglucomutase 1 (α-PGM) catalyzes the isomerization of glucose-1-phosphate into glucose-6-phosphate (G6P) through two sequential phosphoryl transfer steps with a glucose-1,6-bisphosphate (G16P) intermediate. Given that the release of G6P in the gluconeogenesis raises the glucose output levels, α-PGM represents a tempting pharmacological target for type 2 diabetes. Here, we provide the first theoretical study of the catalytic mechanism of human α-PGM. We performed transition-path sampling simulations to unveil the atomic details of the two catalytic chemical steps, which could be key for developing transition state (TS) analogue molecules with inhibitory properties. Our calculations revealed that both steps proceed through a concerted SN 2-like mechanism, with a loose metaphosphate-like TS. Even though experimental data suggests that the two steps are identical, we observed noticeable differences: 1) the transition state ensemble has a well-defined TS region and a late TS for the second step, and 2) larger coordinated protein motions are required to reach the TS of the second step. We have identified key residues (Arg23, Ser117, His118, Lys389), and the Mg2+ ion that contribute in different ways to the reaction coordinate. Accelerated molecular dynamics simulations suggest that the G16P intermediate may reorient without leaving the enzymatic binding pocket, through significant conformational rearrangements of the G16P and of specific loop regions of the human α-PGM.
Collapse
Affiliation(s)
- Natércia F Brás
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.,Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona, 85721, USA
| | - Pedro A Fernandes
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Maria J Ramos
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona, 85721, USA
| |
Collapse
|
49
|
Barrozo A, Liao Q, Esguerra M, Marloie G, Florián J, Williams NH, Kamerlin SCL. Computer simulations of the catalytic mechanism of wild-type and mutant β-phosphoglucomutase. Org Biomol Chem 2018; 16:2060-2073. [DOI: 10.1039/c8ob00312b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
β-Phosphoglucomutase (β-PGM) has served as an important model system for understanding biological phosphoryl transfer.
Collapse
Affiliation(s)
- Alexandre Barrozo
- Science for Life Laboratory
- Department of Cell and Molecular Biology
- Uppsala University
- S-75124 Uppsala
- Sweden
| | - Qinghua Liao
- Science for Life Laboratory
- Department of Cell and Molecular Biology
- Uppsala University
- S-75124 Uppsala
- Sweden
| | - Mauricio Esguerra
- Science for Life Laboratory
- Department of Cell and Molecular Biology
- Uppsala University
- S-75124 Uppsala
- Sweden
| | - Gaël Marloie
- Science for Life Laboratory
- Department of Cell and Molecular Biology
- Uppsala University
- S-75124 Uppsala
- Sweden
| | - Jan Florián
- Department of Chemistry and Biochemistry
- Loyola University Chicago
- Chicago
- USA
| | | | | |
Collapse
|
50
|
Bhengu TT, Wood TP, Shumane M, Tafesse F. Detection of metaphosphate intermediates in reaction solutions of phosphate esters: Chromatographic and spectroscopic studies. PHOSPHORUS SULFUR 2017. [DOI: 10.1080/10426507.2017.1354208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- T. T. Bhengu
- Protechnik Laboratories, a division of Armscor SOC Limited, Pretoria, South Africa
| | - T. P. Wood
- Protechnik Laboratories, a division of Armscor SOC Limited, Pretoria, South Africa
| | - M. Shumane
- Protechnik Laboratories, a division of Armscor SOC Limited, Pretoria, South Africa
| | - F. Tafesse
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, South Africa
| |
Collapse
|