1
|
Of mice and men - and guinea pigs? Ann Anat 2021; 238:151765. [PMID: 34000371 DOI: 10.1016/j.aanat.2021.151765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/31/2022]
Abstract
This year marks the twentieth anniversary of the publication of the first draft of the human genome and its broad availability to the scientific community. In parallel, the annotation of the mouse genome led to the identification and analysis of countless genes by means of genetic manipulation. Today, when comparing both genomes, it might surprise that some genes are still seeking their respective homologs in either species. In this review, we aim at raising awareness for the remarkable differences between the researcher's favorite rodents, i.e., mice and rats, when it comes to the generation of rodent research models regarding genes with a particular delicate localization, namely the pseudoautosomal region on both sex chromosomes. Many of these genes are of utmost clinical relevance in humans and still miss a rodent disease model giving their absence in mice and rats or low sequence similarity compared to humans. The abundance of rodents within mammals prompted us to investigate different branches of rodents leading us to the re-discovery of the guinea pig as a mammalian research model for a distinct group of genes.
Collapse
|
2
|
Maxeiner S, Benseler F, Krasteva-Christ G, Brose N, Südhof TC. Evolution of the Autism-Associated Neuroligin-4 Gene Reveals Broad Erosion of Pseudoautosomal Regions in Rodents. Mol Biol Evol 2021; 37:1243-1258. [PMID: 32011705 PMCID: PMC7182215 DOI: 10.1093/molbev/msaa014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Variants in genes encoding synaptic adhesion proteins of the neuroligin family, most notably neuroligin-4, are a significant cause of autism spectrum disorders in humans. Although human neuroligin-4 is encoded by two genes, NLGN4X and NLGN4Y, that are localized on the X-specific and male-specific regions of the two sex chromosomes, the chromosomal localization and full genomic sequence of the mouse Nlgn4 gene remain elusive. Here, we analyzed the neuroligin-4 genes of numerous rodent species by direct sequencing and bioinformatics, generated complete drafts of multiple rodent neuroligin-4 genes, and examined their evolution. Surprisingly, we find that the murine Nlgn4 gene is localized to the pseudoautosomal region (PAR) of the sex chromosomes, different from its human orthologs. We show that the sequence differences between various neuroligin-4 proteins are restricted to hotspots in which rodent neuroligin-4 proteins contain short repetitive sequence insertions compared with neuroligin-4 proteins from other species, whereas all other protein sequences are highly conserved. Evolutionarily, these sequence insertions initiate in the clade eumuroidea of the infraorder myomorpha and are additionally associated with dramatic changes in noncoding sequences and gene size. Importantly, these changes are not exclusively restricted to neuroligin-4 genes but reflect major evolutionary changes that substantially altered or even deleted genes from the PARs of both sex chromosomes. Our results show that despite the fact that the PAR in rodents and the neuroligin-4 genes within the rodent PAR underwent massive evolutionary changes, neuroligin-4 proteins maintained a highly conserved core structure, consistent with a substantial evolutionary pressure preserving its physiological function.
Collapse
Affiliation(s)
- Stephan Maxeiner
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA.,Institute for Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Fritz Benseler
- Department of Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | | | - Nils Brose
- Department of Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
3
|
Singchat W, Ahmad SF, Laopichienpong N, Suntronpong A, Panthum T, Griffin DK, Srikulnath K. Snake W Sex Chromosome: The Shadow of Ancestral Amniote Super-Sex Chromosome. Cells 2020; 9:cells9112386. [PMID: 33142713 PMCID: PMC7692289 DOI: 10.3390/cells9112386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
: Heteromorphic sex chromosomes, particularly the ZZ/ZW sex chromosome system of birds and some reptiles, undergo evolutionary dynamics distinct from those of autosomes. The W sex chromosome is a unique karyological member of this heteromorphic pair, which has been extensively studied in snakes to explore the origin, evolution, and genetic diversity of amniote sex chromosomes. The snake W sex chromosome offers a fascinating model system to elucidate ancestral trajectories that have resulted in genetic divergence of amniote sex chromosomes. Although the principal mechanism driving evolution of the amniote sex chromosome remains obscure, an emerging hypothesis, supported by studies of W sex chromosomes of squamate reptiles and snakes, suggests that sex chromosomes share varied genomic blocks across several amniote lineages. This implies the possible split of an ancestral super-sex chromosome via chromosomal rearrangements. We review the major findings pertaining to sex chromosomal profiles in amniotes and discuss the evolution of an ancestral super-sex chromosome by collating recent evidence sourced mainly from the snake W sex chromosome analysis. We highlight the role of repeat-mediated sex chromosome conformation and present a genomic landscape of snake Z and W chromosomes, which reveals the relative abundance of major repeats, and identifies the expansion of certain transposable elements. The latest revolution in chromosomics, i.e., complete telomere-to-telomere assembly, offers mechanistic insights into the evolutionary origin of sex chromosomes.
Collapse
Affiliation(s)
- Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Syed Farhan Ahmad
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Nararat Laopichienpong
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Aorarat Suntronpong
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Thitipong Panthum
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | | | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, (CASTNAR, NRU-KU, Thailand), Bangkok 10900, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Amphibian Research Center, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima 739-8526, Japan
- Correspondence: ; Tel.: +66-2562-5644
| |
Collapse
|
4
|
Furman BLS, Metzger DCH, Darolti I, Wright AE, Sandkam BA, Almeida P, Shu JJ, Mank JE. Sex Chromosome Evolution: So Many Exceptions to the Rules. Genome Biol Evol 2020; 12:750-763. [PMID: 32315410 PMCID: PMC7268786 DOI: 10.1093/gbe/evaa081] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2020] [Indexed: 01/10/2023] Open
Abstract
Genomic analysis of many nonmodel species has uncovered an incredible diversity of sex chromosome systems, making it possible to empirically test the rich body of evolutionary theory that describes each stage of sex chromosome evolution. Classic theory predicts that sex chromosomes originate from a pair of homologous autosomes and recombination between them is suppressed via inversions to resolve sexual conflict. The resulting degradation of the Y chromosome gene content creates the need for dosage compensation in the heterogametic sex. Sex chromosome theory also implies a linear process, starting from sex chromosome origin and progressing to heteromorphism. Despite many convergent genomic patterns exhibited by independently evolved sex chromosome systems, and many case studies supporting these theoretical predictions, emerging data provide numerous interesting exceptions to these long-standing theories, and suggest that the remarkable diversity of sex chromosomes is matched by a similar diversity in their evolution. For example, it is clear that sex chromosome pairs are not always derived from homologous autosomes. In addition, both the cause and the mechanism of recombination suppression between sex chromosome pairs remain unclear, and it may be that the spread of recombination suppression is a more gradual process than previously thought. It is also clear that dosage compensation can be achieved in many ways, and displays a range of efficacy in different systems. Finally, the remarkable turnover of sex chromosomes in many systems, as well as variation in the rate of sex chromosome divergence, suggest that assumptions about the inevitable linearity of sex chromosome evolution are not always empirically supported, and the drivers of the birth-death cycle of sex chromosome evolution remain to be elucidated. Here, we concentrate on how the diversity in sex chromosomes across taxa highlights an equal diversity in each stage of sex chromosome evolution.
Collapse
Affiliation(s)
- Benjamin L S Furman
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David C H Metzger
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Iulia Darolti
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alison E Wright
- Department of Animal and Plant Sciences, University of Sheffield, United Kingdom
| | - Benjamin A Sandkam
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pedro Almeida
- Department of Genetics, Evolution and Environment, University College London, United Kingdom
| | - Jacelyn J Shu
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Judith E Mank
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Genetics, Evolution and Environment, University College London, United Kingdom
| |
Collapse
|
5
|
Liu R, Low WY, Tearle R, Koren S, Ghurye J, Rhie A, Phillippy AM, Rosen BD, Bickhart DM, Smith TPL, Hiendleder S, Williams JL. New insights into mammalian sex chromosome structure and evolution using high-quality sequences from bovine X and Y chromosomes. BMC Genomics 2019; 20:1000. [PMID: 31856728 PMCID: PMC6923926 DOI: 10.1186/s12864-019-6364-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/02/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Mammalian X chromosomes are mainly euchromatic with a similar size and structure among species whereas Y chromosomes are smaller, have undergone substantial evolutionary changes and accumulated male specific genes and genes involved in sex determination. The pseudoautosomal region (PAR) is conserved on the X and Y and pair during meiosis. The structure, evolution and function of mammalian sex chromosomes, particularly the Y chromsome, is still poorly understood because few species have high quality sex chromosome assemblies. RESULTS Here we report the first bovine sex chromosome assemblies that include the complete PAR spanning 6.84 Mb and three Y chromosome X-degenerate (X-d) regions. The PAR comprises 31 genes, including genes that are missing from the X chromosome in current cattle, sheep and goat reference genomes. Twenty-nine PAR genes are single-copy genes and two are multi-copy gene families, OBP, which has 3 copies and BDA20, which has 4 copies. The Y chromosome X-d1, 2a and 2b regions contain 11, 2 and 2 gametologs, respectively. CONCLUSIONS The ruminant PAR comprises 31 genes and is similar to the PAR of pig and dog but extends further than those of human and horse. Differences in the pseudoautosomal boundaries are consistent with evolutionary divergence times. A bovidae-specific expansion of members of the lipocalin gene family in the PAR reported here, may affect immune-modulation and anti-inflammatory responses in ruminants. Comparison of the X-d regions of Y chromosomes across species revealed that five of the X-Y gametologs, which are known to be global regulators of gene activity and candidate sexual dimorphism genes, are conserved.
Collapse
Affiliation(s)
- Ruijie Liu
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, Australia
| | - Wai Yee Low
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, Australia
| | - Rick Tearle
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, Australia
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Jay Ghurye
- Center for Bioinformatics and Computational Biology, Lab 3104A, Biomolecular Science Building, University of Maryland, College Park, MD, USA
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, ARS USDA, Beltsville, MD, USA
| | - Derek M Bickhart
- Cell Wall Biology and Utilization Laboratory, ARS USDA, Madison, WI, USA
| | | | - Stefan Hiendleder
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, Australia
| | - John L Williams
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, Australia.
| |
Collapse
|
6
|
Maxeiner S, Sester M, Krasteva-Christ G. Novel human sex-typing strategies based on the autism candidate gene NLGN4X and its male-specific gametologue NLGN4Y. Biol Sex Differ 2019; 10:62. [PMID: 31852540 PMCID: PMC6921425 DOI: 10.1186/s13293-019-0279-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022] Open
Abstract
Background Since the early days of PCR techniques, sex identification, “sex-typing,” of genomic DNA samples has been a fundamental part of human forensic analysis but also in animal genetics aiming at strategic livestock breeding. Most analyses are employing the AMELX/AMELY gene loci on the X and Y chromosomes present in most mammals. We hypothesize that sex-typing in humans is also possible based on the genes NLGN4X and NLGN4Y, which represent X and Y chromosome-specific copies of a common ancestral neuroligin-4 orthologue. Methods Genomic DNA was isolated from human blood and buccal cell samples (total n = 111) and submitted to two different strategies: (a) a traditional two-primer PCR approach detecting an insertion/deletion (indel) polymorphism immediately upstream of the translational start on exon 1 and (b) detection of a single nucleotide polymorphism, SNP, on the translational stop carrying exon 7. The SNP detection was based on a quantitative PCR approach (rhAMP genotyping) employing DNA/RNA hybrid oligonucleotides that were blocked and which could only be activated upon perfect annealing to the target DNA sequence. Results All indel PCR-tested human DNA samples showed two bands for males representing X- and Y-specific copies of NLGN4 and a single band for female samples, i.e., homozygosity of NLGN4X and absence of NLGN4Y, in accordance with the self-reported sex of the donors. These results were in perfect agreement with the results of the rhAMP-based SNP-detection method: all males were consequently positive for both alleles, representing either SNP variant, and females were interpreted as homozygous regarding the SNP variant found in NLGN4X. Both methods have shown reliable and consistent results that enabled us to infer the sex of donor DNA samples across different ethnicities. Conclusions These results indicate that the detection of human NLGN4X/Y is a suitable alternative to previously reported methods employing gene loci such as AMELX/Y. Furthermore, this is the first report applying successfully the rhAMP-genotyping strategy as a means for SNP-based sex-typing, which consequently will be applicable to other gene loci or different species as well.
Collapse
Affiliation(s)
- Stephan Maxeiner
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany.
| | - Martina Sester
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| | | |
Collapse
|
7
|
The Evolution of Unusually Small Amelogenin Genes in Cetaceans; Pseudogenization, X-Y Gene Conversion, and Feeding Strategy. J Mol Evol 2019; 88:122-135. [PMID: 31754761 DOI: 10.1007/s00239-019-09917-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022]
Abstract
Among extant cetaceans, mysticetes are filter feeders that do not possess teeth and use their baleen for feeding, while most odontocetes are considered suction feeders, which capture prey by suction without biting or chewing with teeth. In the present study, we address the functionality of amelogenin (AMEL) genes in cetaceans. AMEL encodes a protein that is specifically involved in dental enamel formation and is located on the sex chromosomes in eutherians. The X-copy AMELX is functional in enamel-bearing eutherians, whereas the Y-copy AMELY appears to have undergone decay and was completely lost in some species. Consistent with these premises, we detected various deleterious mutations and/or non-canonical splice junctions in AMELX of mysticetes and four suction feeding odontocetes, Delphinapterus leucas, Monodon monoceros, Kogia breviceps, and Physeter macrocephalus, and in AMELY of mysticetes and odontocetes. Regardless of the functionality, both AMELX and AMELY are equally and unusually small in cetaceans, and even their functional AMELX genes presumably encode a degenerate core region, which is thought to be essential for enamel matrix assembly and enamel crystal growth. Furthermore, our results suggest that the most recent common ancestors of extant cetaceans had functional AMELX and AMELY, both of which are similar to AMELX of Platanista minor. Similar small AMELX and AMELY in archaic cetaceans can be explained by gene conversion between AMELX and AMELY. We speculate that common ancestors of modern cetaceans employed a degenerate AMELX, transferred from a decaying AMELY by gene conversion, at an early stage of their transition to suction feeders.
Collapse
|
8
|
Fu Y, Li S, Guo Q, Zheng W, Yang R, Li H. Genetic diversity and population structure of two endemic Cupressus (Cupressaceae) species on the Qinghai-Tibetan plateau. J Genet 2019; 98:14. [PMID: 30945670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cupressus gigantea and C. torulosa are ecologically and economically important endemic species of the conifer family Cupressaceae on the Qinghai-Tibetan plateau. C. gigantea was previously classified as a subspecies of C. torulosa because of their similar morphological characteristics and close distribution. In this study, 401 individuals were sampled from 16 populations of the two Cupressus species. The specimens were genotyped using 10 polymorphic microsatellite loci through fluorescence polymerase chain reaction (PCR). The genetic diversity of C. gigantea and C. torulosa populations was generally low, with the highest genetic diversity detected in the population LLS of C. gigantea. Distance-based phylogenetic and principal co-ordinates analyses indicated a clear genetic structures for the 16 populations of the two Cupressus species. Moreover, Mantel test results showed indistinctive correlations between population-pairwise Fst values and geographic distances, as well as between genetic distances and geographic distances in C. gigantea and C. torulosa, respectively. AMOVA suggested that genetic variation mostly resided within populations. Sixteen naturalpopulations were evidently clustered into two major groups in the constructed neighbour-joining tree. The results demonstrated that C. gigantea and C. torulosa are different Cupressus species. The genetic information provided important theoretical references for conservation and management of the two endangered Cupressus species.
Collapse
Affiliation(s)
- Yaru Fu
- Tibet Agricultural and Animal Husbandry College, Nyingchi 860000, Tibet, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Nash C, Boufaied N, Mills IG, Franco OE, Hayward SW, Thomson AA. Genome-wide analysis of AR binding and comparison with transcript expression in primary human fetal prostate fibroblasts and cancer associated fibroblasts. Mol Cell Endocrinol 2018; 471:1-14. [PMID: 28483704 DOI: 10.1016/j.mce.2017.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/27/2017] [Accepted: 05/04/2017] [Indexed: 12/31/2022]
Abstract
The androgen receptor (AR) is a transcription factor, and key regulator of prostate development and cancer, which has discrete functions in stromal versus epithelial cells. AR expressed in mesenchyme is necessary and sufficient for prostate development while loss of stromal AR is predictive of prostate cancer progression. Many studies have characterized genome-wide binding of AR in prostate tumour cells but none have used primary mesenchyme or stroma. We applied ChIPseq to identify genomic AR binding sites in primary human fetal prostate fibroblasts and patient derived cancer associated fibroblasts, as well as the WPMY1 cell line overexpressing AR. We identified AR binding sites that were specific to fetal prostate fibroblasts (7534), cancer fibroblasts (629), WPMY1-AR (2561) as well as those common among all (783). Primary fibroblasts had a distinct AR binding profile versus prostate cancer cell lines and tissue, and showed a localisation to gene promoter binding sites 1 kb upstream of the transcriptional start site, as well as non-classical AR binding sequence motifs. We used RNAseq to define transcribed genes associated with AR binding sites and derived cistromes for embryonic and cancer fibroblasts as well as a cistrome common to both. These were compared to several in vivo ChIPseq and transcript expression datasets; which identified subsets of AR targets that were expressed in vivo and regulated by androgens. This analysis enabled us to deconvolute stromal AR targets active in stroma within tumour samples. Taken together, our data suggest that the AR shows significantly different genomic binding site locations in primary prostate fibroblasts compared to that observed in tumour cells. Validation of our AR binding site data with transcript expression in vitro and in vivo suggests that the AR target genes we have identified in primary fibroblasts may contribute to clinically significant and biologically important AR-regulated changes in prostate tissue.
Collapse
Affiliation(s)
- Claire Nash
- Department of Surgery, Division of Urology, McGill University and the Cancer Research Program of the McGill University Health Centre Research Institute, Montreal, Quebec, H4A 3J1, Canada
| | - Nadia Boufaied
- Department of Surgery, Division of Urology, McGill University and the Cancer Research Program of the McGill University Health Centre Research Institute, Montreal, Quebec, H4A 3J1, Canada
| | - Ian G Mills
- Movember/Prostate Cancer UK Centre of Excellence for Prostate Cancer Research, Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Omar E Franco
- Department of Surgery, NorthShore University HealthSystem Research Institute, 1001 University Place, Evanston, IL 60201, USA
| | - Simon W Hayward
- Department of Surgery, NorthShore University HealthSystem Research Institute, 1001 University Place, Evanston, IL 60201, USA
| | - Axel A Thomson
- Department of Surgery, Division of Urology, McGill University and the Cancer Research Program of the McGill University Health Centre Research Institute, Montreal, Quebec, H4A 3J1, Canada.
| |
Collapse
|
11
|
Sun Y, Svedberg J, Hiltunen M, Corcoran P, Johannesson H. Large-scale suppression of recombination predates genomic rearrangements in Neurospora tetrasperma. Nat Commun 2017; 8:1140. [PMID: 29074958 PMCID: PMC5658415 DOI: 10.1038/s41467-017-01317-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022] Open
Abstract
A common feature of eukaryote genomes is large chromosomal regions where recombination is absent or strongly reduced, but the factors that cause this reduction are not well understood. Genomic rearrangements have often been implicated, but they may also be a consequence of recombination suppression rather than a cause. In this study, we generate eight high-quality genomic data sets of the filamentous ascomycete Neurospora tetrasperma, a fungus that lacks recombination over most of its largest chromosome. The genomes surprisingly reveal collinearity of the non-recombining regions and although large inversions are enriched in these regions, we conclude these inversions to be derived and not the cause of the suppression. To our knowledge, this is the first time that non-recombining, genic regions as large as 86% of a full chromosome (or 8 Mbp), are shown to be collinear. These findings are of significant interest for our understanding of the evolution of sex chromosomes and other supergene complexes.
Collapse
Affiliation(s)
- Yu Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jesper Svedberg
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Markus Hiltunen
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Pádraic Corcoran
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Hanna Johannesson
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden.
| |
Collapse
|
12
|
Lacruz RS, Habelitz S, Wright JT, Paine ML. DENTAL ENAMEL FORMATION AND IMPLICATIONS FOR ORAL HEALTH AND DISEASE. Physiol Rev 2017; 97:939-993. [PMID: 28468833 DOI: 10.1152/physrev.00030.2016] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/16/2022] Open
Abstract
Dental enamel is the hardest and most mineralized tissue in extinct and extant vertebrate species and provides maximum durability that allows teeth to function as weapons and/or tools as well as for food processing. Enamel development and mineralization is an intricate process tightly regulated by cells of the enamel organ called ameloblasts. These heavily polarized cells form a monolayer around the developing enamel tissue and move as a single forming front in specified directions as they lay down a proteinaceous matrix that serves as a template for crystal growth. Ameloblasts maintain intercellular connections creating a semi-permeable barrier that at one end (basal/proximal) receives nutrients and ions from blood vessels, and at the opposite end (secretory/apical/distal) forms extracellular crystals within specified pH conditions. In this unique environment, ameloblasts orchestrate crystal growth via multiple cellular activities including modulating the transport of minerals and ions, pH regulation, proteolysis, and endocytosis. In many vertebrates, the bulk of the enamel tissue volume is first formed and subsequently mineralized by these same cells as they retransform their morphology and function. Cell death by apoptosis and regression are the fates of many ameloblasts following enamel maturation, and what cells remain of the enamel organ are shed during tooth eruption, or are incorporated into the tooth's epithelial attachment to the oral gingiva. In this review, we examine key aspects of dental enamel formation, from its developmental genesis to the ever-increasing wealth of data on the mechanisms mediating ionic transport, as well as the clinical outcomes resulting from abnormal ameloblast function.
Collapse
Affiliation(s)
- Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Stefan Habelitz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - J Timothy Wright
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Michael L Paine
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| |
Collapse
|
13
|
Soria-Boix C, Donat-Torres MP, Urios V. Contacts in the last 90,000 years over the Strait of Gibraltar evidenced by genetic analysis of wild boar (Sus scrofa). PLoS One 2017; 12:e0181929. [PMID: 28742834 PMCID: PMC5526546 DOI: 10.1371/journal.pone.0181929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/10/2017] [Indexed: 12/04/2022] Open
Abstract
Contacts across the Strait of Gibraltar in the Pleistocene have been studied in different research papers, which have demonstrated that this apparent barrier has been permeable to human and fauna movements in both directions. Our study, based on the genetic analysis of wild boar (Sus scrofa), suggests that there has been contact between Africa and Europe through the Strait of Gibraltar in the Late Pleistocene (at least in the last 90,000 years), as shown by the partial analysis of mitochondrial DNA. Cytochrome b and the control region from North African wild boar indicate a close relationship with European wild boar, and even some specimens belong to a common haplotype in Europe. The analyses suggest the transformation of the wild boar phylogeography in North Africa by the emergence of a natural communication route in times when sea levels fell due to climatic changes, and possibly through human action, since contacts coincide with both the Last Glacial period and the increasing human dispersion via the strait.
Collapse
Affiliation(s)
- Carmen Soria-Boix
- Estación Biológica Terra Natura, Grupo de Investigación Zoología de Vertebrados, Universidad de Alicante, San Vicente del Raspeig, Alicante, Spain
- * E-mail: (CSB); (MPDT); (VU)
| | - Maria P. Donat-Torres
- Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Universidad Politécnica de Valencia, Gandia, Valencia, Spain
- * E-mail: (CSB); (MPDT); (VU)
| | - Vicente Urios
- Estación Biológica Terra Natura, Grupo de Investigación Zoología de Vertebrados, Universidad de Alicante, San Vicente del Raspeig, Alicante, Spain
- * E-mail: (CSB); (MPDT); (VU)
| |
Collapse
|
14
|
Ikawa T, Kakegawa A, Nagano T, Ando H, Yamakoshi Y, Tanabe T, Simmer JP, Hu CC, Fukae M, Oida S. Porcine Amelogenin is Expressed from the X and Y Chromosomes. J Dent Res 2016; 84:144-8. [PMID: 15668331 DOI: 10.1177/154405910508400207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Amelogenin is the major enamel matrix component in developing teeth. In eutherian mammals, amelogenin is expressed from the X chromosome only, or from both the X and Y chromosomes. Two classes of porcine amelogenin cDNA clones have been characterized, but the chromosomal localization of the gene(s) encoding them is unknown. To determine if there are sex-based differences in the expression of porcine amelogenin, we paired PCR primers for exons 1a, 1b, 7a, and 7b, and amplified enamel organ-derived cDNA separately from porcine males and females. The results show that exons 1a/2a and 7a are always together and can be amplified from both males (XY) and females (XX). Exons 1b/2b and 7b are also always paired, but can be amplified only from females. We conclude that porcine amelogenin is expressed from separate genes on the X and Y chromosomes, and not, as previously proposed, from a single gene with two promoters.
Collapse
Affiliation(s)
- T Ikawa
- Department of Biochemistry, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Raudsepp T, Chowdhary BP. The Eutherian Pseudoautosomal Region. Cytogenet Genome Res 2016; 147:81-94. [PMID: 26730606 DOI: 10.1159/000443157] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2015] [Indexed: 11/19/2022] Open
Abstract
The pseudoautosomal region (PAR) is a unique segment of sequence homology between differentiated sex chromosomes where recombination occurs during meiosis. Molecular and functional properties of the PAR are distinctive from the autosomes and the remaining regions of the sex chromosomes. These include a higher rate of recombination than genome average, bias towards GC-substitutions and increased interindividual nucleotide divergence and mutations. As yet, the PAR has been physically demarcated in only 28 eutherian species representing 6 mammalian orders. Murid rodents have the smallest, gene-poorest and most diverged PARs. Other eutherian PARs are largely homologous but differ in size and gene content, being the smallest in equids and human/simian primates and much larger in other eutherians. Because pseudoautosomal genes escape X inactivation, their dosage changes with sex chromosome aneuploidies, whereas phenotypic effects of the latter depend on the size and gene content of the PAR. Thus, X monosomy is more viable in mice, humans and horses than in species with larger PARs. Presently, little is known about the functions of PAR genes in individual species, though human studies suggest their involvement in early embryonic development. The PAR is, thus, of evolutionary, genetic and biomedical significance and a 'research hotspot' in eutherian genomes.
Collapse
Affiliation(s)
- Terje Raudsepp
- Department of Veterinary Integrative Biosciences, CVM, Texas A&M University, College Station, Tex., USA
| | | |
Collapse
|
16
|
Cao PR, Wang L, Jiang YC, Yi YS, Qu F, Liu TC, Lv Y. De novo origin of VCY2 from autosome to Y-transposed amplicon. PLoS One 2015; 10:e0119651. [PMID: 25799347 PMCID: PMC4370482 DOI: 10.1371/journal.pone.0119651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 02/02/2015] [Indexed: 12/02/2022] Open
Abstract
The formation of new genes is a primary driving force of evolution in all organisms. The de novo evolution of new genes from non-protein-coding genomic regions is emerging as an important additional mechanism for novel gene creation. Y chromosomes underlie sex determination in mammals and contain genes that are required for male-specific functions. In this study, a search was undertaken for Y chromosome de novo genes derived from non-protein-coding sequences. The Y chromosome orphan gene variable charge, Y-linked (VCY)2, is an autosome-derived gene that has sequence similarity to large autosomal fragments but lacks an autosomal protein-coding homolog. VCY2 locates in the amplicon containing long DNA fragments that were transposed from autosomes to the Y chromosome before the ape-monkey split. We confirmed that VCY2cannot be encoded by autosomes due to the presence of multiple disablers that disrupt the open reading frame, such as the absence of start or stop codons and the presence of premature stop codons. Similar observations have been made for homologs in the autosomes of the chimpanzee, gorilla, rhesus macaque, baboon and out-group marmoset, which suggests that there was a non-protein-coding ancestral VCY2 that was common to apes and monkeys that predated the transposition event. Furthermore, while protein-coding orthologs are absent, a putative non-protein-coding VCY2 with conserved disablers was identified in the rhesus macaque Y chromosome male-specific region. This finding implies that VCY2 might have not acquired its protein-coding ability before the ape-monkey split. VCY2 encodes a testis-specific expressed protein and is involved in the pathologic process of male infertility, and the acquisition of this gene might improve male fertility. This is the first evidence that de novo genes can be generated from transposed autosomal non-protein-coding segments, and this evidence provides novel insights into the evolutionary history of the Y chromosome.
Collapse
Affiliation(s)
- Peng-Rong Cao
- Department of Epidemiology, Medical College of Hunan Normal University, Changsha, China
| | - Lei Wang
- Department of Epidemiology, Medical College of Hunan Normal University, Changsha, China
| | - Yu-Chao Jiang
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology School of Life Sciences, Fudan University, Shanghai, China
| | - Yin-Sha Yi
- Department of Epidemiology, Medical College of Hunan Normal University, Changsha, China
| | - Fang Qu
- Department of Epidemiology, Medical College of Hunan Normal University, Changsha, China
| | - Tao-Cheng Liu
- Department of Epidemiology, Medical College of Hunan Normal University, Changsha, China
| | - Yuan Lv
- Department of Epidemiology, Medical College of Hunan Normal University, Changsha, China
- * E-mail:
| |
Collapse
|
17
|
Abstract
Sex chromosomes are the most dynamic entity in any genome having unique morphology, gene content, and evolution. They have evolved multiple times and independently throughout vertebrate evolution. One of the major genomic changes that pertain to sex chromosomes involves the amplification of common repeats. It is hypothesized that such amplification of repeats facilitates the suppression of recombination, leading to the evolution of heteromorphic sex chromosomes through genetic degradation of Y or W chromosomes. Although contrasting evidence is available, it is clear that amplification of simple repetitive sequences played a major role in the evolution of Y and W chromosomes in vertebrates. In this review, we present a brief overview of the repetitive DNA classes that accumulated during sex chromosome evolution, mainly focusing on vertebrates, and discuss their possible role and potential function in this process.
Collapse
|
18
|
Bellott DW, Hughes JF, Skaletsky H, Brown LG, Pyntikova T, Cho TJ, Koutseva N, Zaghlul S, Graves T, Rock S, Kremitzki C, Fulton RS, Dugan S, Ding Y, Morton D, Khan Z, Lewis L, Buhay C, Wang Q, Watt J, Holder M, Lee S, Nazareth L, Alföldi J, Rozen S, Muzny DM, Warren WC, Gibbs RA, Wilson RK, Page DC. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 2014; 508:494-9. [PMID: 24759411 PMCID: PMC4139287 DOI: 10.1038/nature13206] [Citation(s) in RCA: 464] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/06/2014] [Indexed: 12/31/2022]
Abstract
The human X and Y chromosomes evolved from an ordinary pair of autosomes, but
millions of years ago genetic decay ravaged the Y chromosome, and only three percent of
its ancestral genes survived. We reconstructed the evolution of the Y chromosome across
eight mammals to identify biases in gene content and the selective pressures that
preserved the surviving ancestral genes. Our findings indicate that survival was
non-random, and in two cases, convergent across placental and marsupial mammals. We
conclude that the Y chromosome's gene content became specialized through selection
to maintain the ancestral dosage of homologous X-Y gene pairs that function as broadly
expressed regulators of transcription, translation and protein stability. We propose that
beyond its roles in testis determination and spermatogenesis, the Y chromosome is
essential for male viability, and plays unappreciated roles in Turner syndrome and in
phenotypic differences between the sexes in health and disease.
Collapse
Affiliation(s)
- Daniel W Bellott
- Whitehead Institute, Howard Hughes Medical Institute, & Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Jennifer F Hughes
- Whitehead Institute, Howard Hughes Medical Institute, & Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Helen Skaletsky
- Whitehead Institute, Howard Hughes Medical Institute, & Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Laura G Brown
- Whitehead Institute, Howard Hughes Medical Institute, & Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Tatyana Pyntikova
- Whitehead Institute, Howard Hughes Medical Institute, & Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Ting-Jan Cho
- Whitehead Institute, Howard Hughes Medical Institute, & Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Natalia Koutseva
- Whitehead Institute, Howard Hughes Medical Institute, & Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Sara Zaghlul
- Whitehead Institute, Howard Hughes Medical Institute, & Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Tina Graves
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Susie Rock
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Colin Kremitzki
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Robert S Fulton
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yan Ding
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Donna Morton
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ziad Khan
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Lora Lewis
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Christian Buhay
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Qiaoyan Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jennifer Watt
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Michael Holder
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sandy Lee
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Lynne Nazareth
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jessica Alföldi
- Whitehead Institute, Howard Hughes Medical Institute, & Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Steve Rozen
- Whitehead Institute, Howard Hughes Medical Institute, & Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Wesley C Warren
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Richard K Wilson
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - David C Page
- Whitehead Institute, Howard Hughes Medical Institute, & Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
19
|
Gokulakrishnan P, Kumar RR, Sharma BD, Mendiratta SK, Malav O, Sharma D. Determination of sex origin of meat and meat products on the DNA basis: a review. Crit Rev Food Sci Nutr 2014; 55:1303-14. [PMID: 24915321 DOI: 10.1080/10408398.2012.690095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Sex determination of domestic animal's meat is of potential value in meat authentication and quality control studies. Methods aiming at determining the sex origin of meat may be based either on the analysis of hormone or on the analysis of nucleic acids. At the present time, sex determination of meat and meat products based on hormone analysis employ gas chromatography-mass spectrometry (GC-MS), high-performance liquid chromatography-mass spectrometry/mass spectrometry (HPLC-MS/MS), and enzyme-linked immunosorbent assay (ELISA). Most of the hormone-based methods proved to be highly specific and sensitive but were not performed on a regular basis for meat sexing due to the technical limitations or the expensive equipments required. On the other hand, the most common methodology to determine the sex of meat is unquestionably traditional polymerase chain reaction (PCR) that involves gel electrophoresis of DNA amplicons. This review is intended to provide an overview of the DNA-based methods for sex determination of meat and meat products.
Collapse
Affiliation(s)
- Palanisamy Gokulakrishnan
- a Division of Livestock Products Technology , Indian Veterinary Research Institute , Izatnagar, Bareilly , Uttar Pradesh , India
| | | | | | | | | | | |
Collapse
|
20
|
Pandey RS, Wilson Sayres MA, Azad RK. Detecting evolutionary strata on the human x chromosome in the absence of gametologous y-linked sequences. Genome Biol Evol 2014; 5:1863-71. [PMID: 24036954 PMCID: PMC3814197 DOI: 10.1093/gbe/evt139] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mammalian sex chromosomes arose from a pair of homologous autosomes that differentiated into the X and Y chromosomes following a series of recombination suppression events between the X and Y. The stepwise recombination suppressions from the distal long arm to the distal short arm of the chromosomes are reflected as regions with distinct X-Y divergence, referred to as evolutionary strata on the X. All current methods for stratum detection depend on X-Y comparisons but are severely limited by the paucity of X-Y gametologs. We have developed an integrative method that combines a top-down, recursive segmentation algorithm with a bottom-up, agglomerative clustering algorithm to decipher compositionally distinct regions on the X, which reflect regions of unique X-Y divergence. In application to human X chromosome, our method correctly classified a concatenated set of 35 previously assayed X-linked gene sequences by evolutionary strata. We then extended our analysis, applying this method to the entire sequence of the human X chromosome, in an effort to define stratum boundaries. The boundaries of more recently formed strata on X-added region, namely the fourth and fifth strata, have been defined by previous studies and are recapitulated with our method. The older strata, from the first up to the third stratum, have remained poorly resolved due to paucity of X-Y gametologs. By analyzing the entire X sequence, our method identified seven evolutionary strata in these ancient regions, where only three could previously be assayed, thus demonstrating the robustness of our method in detecting the evolutionary strata.
Collapse
|
21
|
New insights into the functions of enamel matrices in calcified tissues. JAPANESE DENTAL SCIENCE REVIEW 2014. [DOI: 10.1016/j.jdsr.2014.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
22
|
shRNA-mediated silencing of ZFX attenuated the proliferation of breast cancer cells. Cancer Chemother Pharmacol 2014; 73:569-76. [DOI: 10.1007/s00280-014-2379-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 01/08/2014] [Indexed: 11/27/2022]
|
23
|
Rapid degeneration of noncoding DNA regions surrounding SlAP3X/Y after recombination suppression in the dioecious plant Silene latifolia. G3-GENES GENOMES GENETICS 2013; 3:2121-30. [PMID: 24122056 PMCID: PMC3852375 DOI: 10.1534/g3.113.008599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Silene latifolia is a dioecious plant with heteromorphic XY sex chromosomes. Previous studies of sex chromosome–linked genes have suggested a gradual divergence between the X-linked and the Y-linked genes in proportion to the distance from the pseudoautosomal region. However, such a comparison has yet to be made for the noncoding regions. To better characterize the nonrecombining region of the X and Y chromosomes, we sequenced bacterial artificial chromosome clones containing the sex chromosome–linked paralogs SlAP3X and SlAP3Y, including 115 kb and 73 kb of sequences, respectively, flanking these genes. The synonymous nucleotide divergence between SlAP3X and SlAP3Y indicated that recombination stopped approximately 3.4 million years ago. Sequence homology analysis revealed the presence of six long terminal repeat retrotransposon-like elements. Using the nucleotide divergence calculated between left and right long terminal repeat sequences, insertion dates were estimated to be 0.083–1.6 million years ago, implying that all elements detected were inserted after recombination stopped. A reciprocal sequence homology search facilitated the identification of four homologous noncoding DNA regions between the X and Y chromosomes, spanning 6.7% and 10.6% of the X chromosome–derived and Y chromosome–derived sequences, respectively, investigated. Genomic Southern blotting and fluorescence in situ hybridization showed that the noncoding DNA flanking SlAP3X/Y has homology to many regions throughout the genome, regardless of whether they were homologous between the X and Y chromosomes. This finding suggests that most noncoding DNA regions rapidly lose their counterparts because of the introduction of transposable elements and indels (insertion–deletions) after recombination has stopped.
Collapse
|
24
|
Bartlett JD. Dental enamel development: proteinases and their enamel matrix substrates. ISRN DENTISTRY 2013; 2013:684607. [PMID: 24159389 PMCID: PMC3789414 DOI: 10.1155/2013/684607] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/15/2013] [Indexed: 12/31/2022]
Abstract
This review focuses on recent discoveries and delves in detail about what is known about each of the proteins (amelogenin, ameloblastin, and enamelin) and proteinases (matrix metalloproteinase-20 and kallikrein-related peptidase-4) that are secreted into the enamel matrix. After an overview of enamel development, this review focuses on these enamel proteins by describing their nomenclature, tissue expression, functions, proteinase activation, and proteinase substrate specificity. These proteins and their respective null mice and human mutations are also evaluated to shed light on the mechanisms that cause nonsyndromic enamel malformations termed amelogenesis imperfecta. Pertinent controversies are addressed. For example, do any of these proteins have a critical function in addition to their role in enamel development? Does amelogenin initiate crystallite growth, does it inhibit crystallite growth in width and thickness, or does it do neither? Detailed examination of the null mouse literature provides unmistakable clues and/or answers to these questions, and this data is thoroughly analyzed. Striking conclusions from this analysis reveal that widely held paradigms of enamel formation are inadequate. The final section of this review weaves the recent data into a plausible new mechanism by which these enamel matrix proteins support and promote enamel development.
Collapse
Affiliation(s)
- John D. Bartlett
- Harvard School of Dental Medicine & Chair, Department of Mineralized Tissue Biology, The Forsyth Institute, 245 First Street, Cambridge MA 02142, USA
| |
Collapse
|
25
|
Hallast P, Balaresque P, Bowden GR, Ballereau S, Jobling MA. Recombination dynamics of a human Y-chromosomal palindrome: rapid GC-biased gene conversion, multi-kilobase conversion tracts, and rare inversions. PLoS Genet 2013; 9:e1003666. [PMID: 23935520 PMCID: PMC3723533 DOI: 10.1371/journal.pgen.1003666] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/07/2013] [Indexed: 11/19/2022] Open
Abstract
The male-specific region of the human Y chromosome (MSY) includes eight large inverted repeats (palindromes) in which arm-to-arm similarity exceeds 99.9%, due to gene conversion activity. Here, we studied one of these palindromes, P6, in order to illuminate the dynamics of the gene conversion process. We genotyped ten paralogous sequence variants (PSVs) within the arms of P6 in 378 Y chromosomes whose evolutionary relationships within the SNP-defined Y phylogeny are known. This allowed the identification of 146 historical gene conversion events involving individual PSVs, occurring at a rate of 2.9–8.4×10−4 events per generation. A consideration of the nature of nucleotide change and the ancestral state of each PSV showed that the conversion process was significantly biased towards the fixation of G or C nucleotides (GC-biased), and also towards the ancestral state. Determination of haplotypes by long-PCR allowed likely co-conversion of PSVs to be identified, and suggested that conversion tract lengths are large, with a mean of 2068 bp, and a maximum in excess of 9 kb. Despite the frequent formation of recombination intermediates implied by the rapid observed gene conversion activity, resolution via crossover is rare: only three inversions within P6 were detected in the sample. An analysis of chimpanzee and gorilla P6 orthologs showed that the ancestral state bias has existed in all three species, and comparison of human and chimpanzee sequences with the gorilla outgroup confirmed that GC bias of the conversion process has apparently been active in both the human and chimpanzee lineages. The sex-determining role of the human Y chromosome makes it male-specific, and always present in only a single copy. This solo lifestyle has endowed it with some bizarre features, among which are eight large DNA units constituting about a quarter of the chromosome's length, and containing many genes important for sperm production. These units are called palindromes, since, taking into account the polarity of the DNA strands, the sequence is the same read from either end of the unit. We investigated the details of a process (gene conversion) that transfers sequence variants in one half of a palindrome into the other, thereby maintaining >99.9% similarity between the halves. We analysed patterns of sequence variants within one palindrome in a set of Y chromosomes whose evolutionary relationships are known. This allowed us to identify past gene conversion events, and to demonstrate a bias towards events that eliminate new variants, and retain old ones. Gene conversion has therefore acted during human evolution to retard sequence change in these regions. Analysis of the chimpanzee and gorilla versions of the palindrome shows that the dynamic processes we see in human Y chromosomes have a deep evolutionary history.
Collapse
Affiliation(s)
- Pille Hallast
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | | | - Georgina R. Bowden
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Stéphane Ballereau
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Mark A. Jobling
- Department of Genetics, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
|
27
|
Abstract
Several studies based on a variety of genetic markers have attempted to establish the origins of horse domestication. Thus far a discrepancy between the results of mitochondrial DNA analysis, which show high levels of diversity, and results from the Y-chromosome, with almost no genetic variability, has been identified. Most previous work on the horse Y-chromosome has focused on widespread, popular breeds or local Asian breeds. It is possible that these breeds represent a reduced set of the genetic variation present in the species. Additional genetic variation may be present in local breeds and ancient feral populations, such as the Retuertas horse in Spain. In this study we analyzed the Y-chromosome of the Retuertas horse, a feral horse population on the Iberian Peninsula that is at least several hundred years old, and whose genetic diversity and morphology suggests that it has been reproductively isolated for a long time. Data from the Retuertas horse was compared to another 11 breeds from the region (Portugal, Spain and France) or likely of Iberian origin, and then to data from 15 more breeds from around the globe. We sequenced 31 introns, Zinc finger Y-chromosomal protein (ZFY) and anonymous Y-linked fragments and genotyped 6 microsatellite loci found on the Y-chromosome. We found no sequence variation among all individuals and all breeds studied. However, fifteen differences were discovered between our data set and reference sequences in GenBank. We show that these likely represent errors within the deposited sequences, and suggest that they should not be used as comparative data for future projects.
Collapse
|
28
|
Das PJ, Mishra DK, Ghosh S, Avila F, Johnson GA, Chowdhary BP, Raudsepp T. Comparative organization and gene expression profiles of the porcine pseudoautosomal region. Cytogenet Genome Res 2013; 141:26-36. [PMID: 23735614 DOI: 10.1159/000351310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2013] [Indexed: 11/19/2022] Open
Abstract
The pseudoautosomal region (PAR) has important biological functions in spermatogenesis, male fertility and early development. Even though pig (Sus scrofa, SSC) is an agriculturally and biomedically important species, and its genome is sequenced, current knowledge about the porcine PAR is sparse. Here we defined the PAR in SSCXp/Yp by demarcating the sequence of the pseudoautosomal boundary at X:6,743,567 bp in intron 3-4 of SHROOM2 and showed that SHROOM2 is truncated in SSCY. Cytogenetic mapping of 20 BAC clones containing 15 PAR and X-specific genes revealed that the pig PAR is largely collinear with other mammalian PARs or Xp terminal regions. The results improved the current SSCX sequence assembly and facilitated distinction between the PAR and X-specific genes to study their expression in adult and embryonic tissues. A pilot analysis showed that the PAR genes are expressed at higher levels than X-specific genes during early development, whereas the expression of PAR genes was higher at day 60 compared to day 26, and higher in embryonic tissues compared to placenta. The findings advance the knowledge about the comparative organization of the PAR in mammals and suggest that the region might have important functions in early development in pigs.
Collapse
Affiliation(s)
- P J Das
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Ando H, Inage T, Oida S. Amelogenin in Frog Species, Xenopus tropicalis: A Gene Evolutionary Approach. J HARD TISSUE BIOL 2013. [DOI: 10.2485/jhtb.22.189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Katsura Y, Satta Y. No evidence for a second evolutionary stratum during the early evolution of mammalian sex chromosomes. PLoS One 2012; 7:e45488. [PMID: 23094017 PMCID: PMC3477149 DOI: 10.1371/journal.pone.0045488] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/20/2012] [Indexed: 11/19/2022] Open
Abstract
Mammalian sex chromosomes originated from a pair of autosomes, and homologous genes on the sex chromosomes (gametologs) differentiated through recombination arrest between the chromosomes. It was hypothesized that this differentiation in eutherians took place in a stepwise fashion and left a footprint on the X chromosome termed "evolutionary strata." The evolutionary stratum hypothesis claims that strata 1 and 2 (which correspond to the first two steps of chromosomal differentiation) were generated in the stem lineage of Theria or before the divergence between eutherians and marsupials. However, this prediction relied solely on the molecular clock hypothesis between pairs of human gametologs, and molecular evolution of marsupial sex chromosomal genes has not yet been investigated. In this study, we analyzed the following 7 pairs of marsupial gametologs, together with their eutherian orthologs that reside in stratum 1 or 2: SOX3/SRY, RBMX/Y, RPS4X/Y, HSFX/Y, XKRX/Y, SMCX/Y (KDM5C/D, JARID1C/D), and UBE1X/Y (UBA1/UBA1Y). Phylogenetic analyses and estimated divergence time of these gametologs reveal that they all differentiated at the same time in the therian ancestor. We have also provided strong evidence for gene conversion that occurred in the 3' region of the eutherian stratum 2 genes (SMCX/Y and UBE1X/Y). The results of the present study show that (1) there is no compelling evidence for the second stratum in the stem lineage of Theria; (2) gene conversion, which may have occurred between SMCX/Y and UBE1X/Y in the eutherian lineage, potentially accounts for their apparently lower degree of overall divergence.
Collapse
Affiliation(s)
| | - Yoko Satta
- Department of Evolutionary Study of Biosystems, The Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
31
|
Katsura Y, Iwase M, Satta Y. Evolution of genomic structures on Mammalian sex chromosomes. Curr Genomics 2012; 13:115-23. [PMID: 23024603 PMCID: PMC3308322 DOI: 10.2174/138920212799860625] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/13/2011] [Accepted: 10/19/2011] [Indexed: 11/22/2022] Open
Abstract
Throughout mammalian evolution, recombination between the two sex chromosomes was suppressed in a stepwise manner. It is thought that the suppression of recombination led to an accumulation of deleterious mutations and frequent genomic rearrangements on the Y chromosome. In this article, we review three evolutionary aspects related to genomic rearrangements and structures, such as inverted repeats (IRs) and palindromes (PDs), on the mammalian sex chromosomes. First, we describe the stepwise manner in which recombination between the X and Y chromosomes was suppressed in placental mammals and discuss a genomic rearrangement that might have led to the formation of present pseudoautosomal boundaries (PAB). Second, we describe ectopic gene conversion between the X and Y chromosomes, and propose possible molecular causes. Third, we focus on the evolutionary mode and timing of PD formation on the X and Y chromosomes. The sequence of the chimpanzee Y chromosome was recently published by two groups. Both groups suggest that rapid evolution of genomic structure occurred on the Y chromosome. Our re-analysis of the sequences confirmed the species-specific mode of human and chimpanzee Y chromosomal evolution. Finally, we present a general outlook regarding the rapid evolution of mammalian sex chromosomes.
Collapse
Affiliation(s)
- Yukako Katsura
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
| | | | | |
Collapse
|
32
|
Knockdown of zinc finger protein X-linked inhibits prostate cancer cell proliferation and induces apoptosis by activating caspase-3 and caspase-9. Cancer Gene Ther 2012; 19:684-9. [DOI: 10.1038/cgt.2012.53] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
A Quantitative Real-Time PCR Method Using an X-Linked Gene for Sex Typing in Pigs. Mol Biotechnol 2012; 54:493-6. [DOI: 10.1007/s12033-012-9589-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
A pronounced evolutionary shift of the pseudoautosomal region boundary in house mice. Mamm Genome 2012; 23:454-66. [PMID: 22763584 DOI: 10.1007/s00335-012-9403-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
The pseudoautosomal region (PAR) is essential for the accurate pairing and segregation of the X and Y chromosomes during meiosis. Despite its functional significance, the PAR shows substantial evolutionary divergence in structure and sequence between mammalian species. An instructive example of PAR evolution is the house mouse Mus musculus domesticus (represented by the C57BL/6J strain), which has the smallest PAR among those that have been mapped. In C57BL/6J, the PAR boundary is located just ~700 kb from the distal end of the X chromosome, whereas the boundary is found at a more proximal position in Mus spretus, a species that diverged from house mice 2-4 million years ago. In this study we used a combination of genetic and physical mapping to document a pronounced shift in the PAR boundary in a second house mouse subspecies, Mus musculus castaneus (represented by the CAST/EiJ strain), ~430 kb proximal of the M. m. domesticus boundary. We demonstrate molecular evolutionary consequences of this shift, including a marked lineage-specific increase in sequence divergence within Mid1, a gene that resides entirely within the M. m. castaneus PAR but straddles the boundary in other subspecies. Our results extend observations of structural divergence in the PAR to closely related subspecies, pointing to major evolutionary changes in this functionally important genomic region over a short time period.
Collapse
|
35
|
Perucatti A, Genualdo V, Iannuzzi A, Rebl A, Di Berardino D, Goldammer T, Iannuzzi L. Advanced comparative cytogenetic analysis of X chromosomes in river buffalo, cattle, sheep, and human. Chromosome Res 2012; 20:413-25. [DOI: 10.1007/s10577-012-9285-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 01/08/2023]
|
36
|
Feng J, McDaniel JS, Chuang HH, Huang O, Rakian A, Xu X, Steffensen B, Donly KJ, MacDougall M, Chen S. Binding of amelogenin to MMP-9 and their co-expression in developing mouse teeth. J Mol Histol 2012; 43:473-85. [PMID: 22648084 PMCID: PMC3460178 DOI: 10.1007/s10735-012-9423-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 04/29/2012] [Indexed: 12/02/2022]
Abstract
Amelogenin is the most abundant matrix protein in enamel. Proper amelogenin processing by proteinases is necessary for its biological functions during amelogenesis. Matrix metalloproteinase 9 (MMP-9) is responsible for the turnover of matrix components. The relationship between MMP-9 and amelogenin during tooth development remains unknown. We tested the hypothesis that MMP-9 binds to amelogenin and they are co-expressed in ameloblasts during amelogenesis. We evaluated the distribution of both proteins in the mouse teeth using immunohistochemistry and confocal microscopy. At postnatal day 2, the spatial distribution of amelogenin and MMP-9 was co-localized in preameloblasts, secretory ameloblasts, enamel matrix and odontoblasts. At the late stages of mouse tooth development, expression patterns of amelogenin and MMP-9 were similar to that seen in postnatal day 2. Their co-expression was further confirmed by RT-PCR, Western blot and enzymatic zymography analyses in enamel organ epithelial and odontoblast-like cells. Immunoprecipitation assay revealed that MMP-9 binds to amelogenin. The MMP-9 cleavage sites in amelogenin proteins across species were found using bio-informative software program. Analyses of these data suggest that MMP-9 may be involved in controlling amelogenin processing and enamel formation.
Collapse
Affiliation(s)
- Junsheng Feng
- Department of Developmental Dentistry, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Burgos-Paz W, Souza CA, Castelló A, Mercadé A, Okumura N, Sheremet'eva IN, Huang LS, Cho IC, Paiva SR, Ramos-Onsins S, Pérez-Enciso M. Worldwide genetic relationships of pigs as inferred from X chromosome SNPs. Anim Genet 2012; 44:130-8. [PMID: 22590984 DOI: 10.1111/j.1365-2052.2012.02374.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2012] [Indexed: 02/04/2023]
Abstract
The phylogeography of the porcine X chromosome has not been studied despite the unique characteristics of this chromosome. Here, we genotyped 59 single nucleotide polymorphisms (SNPs) in 312 pigs from around the world, representing 39 domestic breeds and wild boars in 30 countries. Overall, widespread commercial breeds showed the highest heterozygosity values, followed by African and American populations. Structuring, as inferred from FST and analysis of molecular variance, was consistently larger in the non-pseudoautosomal (NPAR) than in the pseudoautosomal regions (PAR). Our results show that genetic relationships between populations can vary widely between the NPAR and the PAR, underscoring the fact that their genetic trajectories can be quite different. NPAR showed an increased commercial-like genetic component relative to the PAR, probably because human selection processes to obtain individuals with high productive parameters were mediated by introgressing boars rather than sows.
Collapse
Affiliation(s)
- W Burgos-Paz
- Center for Research in Agricultural Genomics, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Otto SP, Pannell JR, Peichel CL, Ashman TL, Charlesworth D, Chippindale AK, Delph LF, Guerrero RF, Scarpino SV, McAllister BF. About PAR: the distinct evolutionary dynamics of the pseudoautosomal region. Trends Genet 2012; 27:358-67. [PMID: 21962971 DOI: 10.1016/j.tig.2011.05.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/03/2011] [Accepted: 05/04/2011] [Indexed: 01/05/2023]
Abstract
Sex chromosomes differ from other chromosomes in the striking divergence they often show in size, structure, and gene content. Not only do they possess genes controlling sex determination that are restricted to either the X or Y (or Z or W) chromosomes, but in many taxa they also include recombining regions. In these 'pseudoautosomal regions' (PARs), sequence homology is maintained by meiotic pairing and exchange in the heterogametic sex. PARs are unique genomic regions, exhibiting some features of autosomes, but they are also influenced by their partial sex linkage. Here we review the distribution and structure of PARs among animals and plants, the theoretical predictions concerning their evolutionary dynamics, the reasons for their persistence, and the diversity and content of genes that reside within them. It is now clear that the evolution of the PAR differs in important ways from that of genes in either the non-recombining regions of sex chromosomes or the autosomes.
Collapse
Affiliation(s)
- Sarah P Otto
- Department of Zoology, 6270 University Boulevard, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Synapsis, recombination, and chromatin remodeling in the XY body of armadillos. Chromosome Res 2012; 20:293-302. [DOI: 10.1007/s10577-012-9273-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/27/2011] [Accepted: 12/30/2011] [Indexed: 12/11/2022]
|
40
|
Svensson EM, Telldahl Y, Sjöling E, Sundkvist A, Hulth H, Sjøvold T, Götherström A. Coat colour and sex identification in horses from Iron Age Sweden. Ann Anat 2012; 194:82-7. [PMID: 22154005 DOI: 10.1016/j.aanat.2011.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 11/04/2011] [Accepted: 11/04/2011] [Indexed: 10/15/2022]
Abstract
Domestication of animals and plants marked a turning point in human prehistory. To date archaeology, archaeozoology and genetics have shed light on when and where all of our major livestock species were domesticated. Phenotypic changes associated with domestication have occurred in all farm animals. Coat colour is one of the traits that have been subjected to the strongest human selection throughout history. Here we use genotyping of coat colour SNPs in horses to investigate whether there were any regional differences or preferences for specific colours associated with specific cultural traditions in Iron Age Sweden. We do this by identifying the sex and coat colour of horses sacrificed at Skedemosse, Öland (Sweden) during the Iron Age, as well as in horses from two sites in Uppland, Ultuna and Valsgärde (dated to late Iron Age). We show that bay, black and chestnut colours were all common and two horses with tobiano spotting were found. We also show how the combination of sex identification with genotyping of just a few SNPs underlying the basic coat colours can be used to identify the minimum number of individuals at a site on a higher level than morphological methods alone. Although separated by 500 km and from significantly different archaeological contexts the horses at Skedemosse and Ultuna are quite homogenous when it comes to coat colour phenotypes, indicating that there were no clear geographical variation in coat colouration in Sweden during the late Iron Age and early Viking Age.
Collapse
Affiliation(s)
- Emma M Svensson
- Department of Evolutionary Biology, EBC, Uppsala University, Sweden.
| | | | | | | | | | | | | |
Collapse
|
41
|
Gokulakrishnan P, Kumar RR, Sharma B, Mendiratta SK, Sharma D. A Duplex PCR Assay for Sex Determination of Cattle Meat by Simultaneous Amplification of SRY, AMELX and AMELY Genes. FOOD BIOTECHNOL 2012. [DOI: 10.1080/08905436.2011.645940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
42
|
Abstract
Among species within a phylogenetic group, genomic GC% values can cover a wide range that is particularly evident at third codon positions. However, among genes within a genome, genic GC% values can also cover a wide range that is, again, particularly evident at third codon positions. Individual genes and genomes each have a "homostabilizing propensity" to adopt a relatively uniform GC%. Each gene (a "microisochore") occupies a discrete GC% niche of relatively uniform base composition amongst its fellow genes, which can collectively span a wide GC% range. Homostabilization serves to recombinationally isolate both genome sectors (facilitating gene duplication and differentiation) and genomes (facilitating genome duplication and differentiation; e.g., speciation). Although they may sometimes be in conflict, the individualities of genomes, and of genes within those genomes, are separately sustained by a common mechanism, uniformity of GC%. The protection against inadvertent recombination afforded by GC% differentiation is, in the general case, a prerequisite for phenotypic differentiation.
Collapse
Affiliation(s)
- D. R. FORSDYKE
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L3N6, Canada
| |
Collapse
|
43
|
Tsai TC, Wu SH, Chen HL, Tung YT, Cheng WTK, Huang JC, Chen CM. Identification of sex-specific polymorphic sequences in the goat amelogenin gene for embryo sexing. J Anim Sci 2011; 89:2407-14. [PMID: 21421829 DOI: 10.2527/jas.2010-3698] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Amelogenin (AMEL) is a conserved gene located on the sex chromosomes of mammals. It is involved in the formation of enamel, which is the hard, white material that forms the protective outer layer of each tooth. In this study, we first cloned and determined the intron sequences of the goat AMELX and AMELY genes from female and male ear tissues. The polymorphic AMEL alleles were further analyzed by PCR-based RFLP and Southern blot hybridization analyses. Results showed that intron 5 nucleotide sequences of the goat AMELY gene contains multiple deletions/insertions and shares only 48.5% identity to intron 5 of the goat AMELX gene. Based on the polymorphic AMEL intron sequences, a set of sex-specific triplex primers was designed to PCR amplify a single fragment of 264 bp from the X chromosome of female goats and 2 fragments of 264 and 206 bp from the X and Y chromosomes, respectively, of male goats. An increased sensitivity for sex determination was reached with a single blastomere at the blastula stage isolated from goat embryos. A total of 43 goat embryos were used to estimate a 100% accuracy rate of this method confirmed by chromosomal karyotyping and live births. The embryo sexing technique has been successfully applied in different strains of goats including Alpine, Saanen, Nubian, and Taiwan goats.
Collapse
Affiliation(s)
- T C Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | | | | | | | | | | | | |
Collapse
|
44
|
Iwase M, Satta Y, Hirai H, Hirai Y, Takahata N. Frequent gene conversion events between the X and Y homologous chromosomal regions in primates. BMC Evol Biol 2010; 10:225. [PMID: 20650009 PMCID: PMC3055243 DOI: 10.1186/1471-2148-10-225] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Accepted: 07/23/2010] [Indexed: 01/22/2023] Open
Abstract
Background Mammalian sex-chromosomes originated from a pair of autosomes. A step-wise cessation of recombination is necessary for the proper maintenance of sex-determination and, consequently, generates a four strata structure on the X chromosome. Each stratum shows a specific per-site nucleotide sequence difference (p-distance) between the X and Y chromosomes, depending on the time of recombination arrest. Stratum 4 covers the distal half of the human X chromosome short arm and the p-distance of the stratum is ~10%, on average. However, a 100-kb region, which includes KALX and VCX, in the middle of stratum 4 shows a significantly lower p-distance (1-5%), suggesting frequent sequence exchanges or gene conversions between the X and Y chromosomes in humans. To examine the evolutionary mechanism for this low p-distance region, sequences of a corresponding region including KALX/Y from seven species of non-human primates were analyzed. Results Phylogenetic analysis of this low p-distance region in humans and non-human primate species revealed that gene conversion like events have taken place at least ten times after the divergence of New World monkeys and Catarrhini (i.e., Old World monkeys and hominoids). A KALY-converted KALX allele in white-handed gibbons also suggests a possible recent gene conversion between the X and Y chromosomes. In these primate sequences, the proximal boundary of this low p-distance region is located in a LINE element shared between the X and Y chromosomes, suggesting the involvement of this element in frequent gene conversions. Together with a palindrome on the Y chromosome, a segmental palindrome structure on the X chromosome at the distal boundary near VCX, in humans and chimpanzees, may mediate frequent sequence exchanges between X and Y chromosomes. Conclusion Gene conversion events between the X and Y homologous regions have been suggested, mainly in humans. Here, we found frequent gene conversions in the evolutionary course of primates. An insertion of a LINE element at the proximal end of the region may be a cause for these frequent conversions. This gene conversion in humans may also be one of the genetic causes of Kallmann syndrome.
Collapse
Affiliation(s)
- Mineyo Iwase
- The Center for the Promotion of Integrated Sciences, The Graduate University for Advanced Studies Sokendai, Shonan Village, Hayama, Kanagawa 240-0193, Japan.
| | | | | | | | | |
Collapse
|
45
|
Langen M, Peters U, Körner U, Gissel C, Stanislawski D, Klein G. Semiquantitative detection of male pork tissue in meat and meat products by PCR. Meat Sci 2010; 86:821-4. [PMID: 20675061 DOI: 10.1016/j.meatsci.2010.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/05/2010] [Accepted: 07/05/2010] [Indexed: 10/19/2022]
Abstract
Consumer awareness has increased concerning castration of piglets without analgesia or anaesthesia. On the other hand the occurrence of boar taint is not tolerated by consumers. Currently no reliable methods exist for the on-line detection of boar taint in the slaughterhouse or for genetic sexing of pigs. Therefore, as an alternative the detection of male pork meat was sought. Based on detection of a length polymorphism of the sex chromosomal amelogenin gene a reliable, specific and highly sensitive PCR method for qualitative and semi-quantitative determination of male pork tissue in meat and meat products was determined. A set of 25 male and 25 female meat samples could be correctly identified and mixtures with as little as 0.1% male meat content could be detected. Therefore the method can be used for production and control of specific meat products containing low amounts of male pork meat and thus avoiding boar taint.
Collapse
Affiliation(s)
- Marcus Langen
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Marais GAB, Campos PRA, Gordo I. Can intra-Y gene conversion oppose the degeneration of the human Y chromosome? A simulation study. Genome Biol Evol 2010; 2:347-57. [PMID: 20624739 PMCID: PMC2997549 DOI: 10.1093/gbe/evq026] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The human Y is a genetically degenerate chromosome, which has lost about 97% of the genes originally present. Most of the remaining human Y genes are in large duplicated segments (ampliconic regions) undergoing intense Y–Y gene conversion. It has been suggested that Y–Y gene conversion may help these genes getting rid of deleterious mutations that would inactivate them otherwise. Here, we tested this idea by simulating the evolution of degenerating Y chromosomes with or without gene conversion using the most up-to-date population genetics parameters for humans. We followed the fate of a variant with Y–Y gene conversion in a population of Y chromosomes where Y–Y gene conversion is originally absent. We found that this variant gets fixed more frequently than the neutral expectation, which supports the idea that gene conversion is beneficial for a degenerating Y chromosome. Interestingly, a very high rate of gene conversion is needed for an effect of gene conversion to be observed. This suggests that high levels of Y-Y gene conversion observed in humans may have been selected to oppose the Y degeneration. We also studied with a similar approach the evolution of ampliconic regions on the Y chromosomes and found that the fixation of many copies at once is unlikely, which suggest these regions probably evolved gradually unless selection for increased dosage favored large-scale duplication events. Exploring the parameter space showed that Y–Y gene conversion may be beneficial in most mammalian species, which is consistent with recent data in chimpanzees and mice.
Collapse
Affiliation(s)
- Gabriel A B Marais
- Université Lyon 1, Centre National de la Recherche Scientifique, UMR5558, Laboratoire de Biométrie et Biologie évolutive, Villeurbanne, France.
| | | | | |
Collapse
|
47
|
Lee SC, Corradi N, Doan S, Dietrich FS, Keeling PJ, Heitman J. Evolution of the sex-related locus and genomic features shared in microsporidia and fungi. PLoS One 2010; 5:e10539. [PMID: 20479876 PMCID: PMC2866331 DOI: 10.1371/journal.pone.0010539] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 04/15/2010] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Microsporidia are obligate intracellular, eukaryotic pathogens that infect a wide range of animals from nematodes to humans, and in some cases, protists. The preponderance of evidence as to the origin of the microsporidia reveals a close relationship with the fungi, either within the kingdom or as a sister group to it. Recent phylogenetic studies and gene order analysis suggest that microsporidia share a particularly close evolutionary relationship with the zygomycetes. METHODOLOGY/PRINCIPAL FINDINGS Here we expanded this analysis and also examined a putative sex-locus for variability between microsporidian populations. Whole genome inspection reveals a unique syntenic gene pair (RPS9-RPL21) present in the vast majority of fungi and the microsporidians but not in other eukaryotic lineages. Two other unique gene fusions (glutamyl-prolyl tRNA synthetase and ubiquitin-ribosomal subunit S30) that are present in metazoans, choanoflagellates, and filasterean opisthokonts are unfused in the fungi and microsporidians. One locus previously found to be conserved in many microsporidian genomes is similar to the sex locus of zygomycetes in gene order and architecture. Both sex-related and sex loci harbor TPT, HMG, and RNA helicase genes forming a syntenic gene cluster. We sequenced and analyzed the sex-related locus in 11 different Encephalitozoon cuniculi isolates and the sibling species E. intestinalis (3 isolates) and E. hellem (1 isolate). There was no evidence for an idiomorphic sex-related locus in this Encephalitozoon species sample. According to sequence-based phylogenetic analyses, the TPT and RNA helicase genes flanking the HMG genes are paralogous rather than orthologous between zygomycetes and microsporidians. CONCLUSION/SIGNIFICANCE The unique genomic hallmarks between microsporidia and fungi are independent of sequence based phylogenetic comparisons and further contribute to define the borders of the fungal kingdom and support the classification of microsporidia as unusual derived fungi. And the sex/sex-related loci appear to have been subject to frequent gene conversion and translocations in microsporidia and zygomycetes.
Collapse
Affiliation(s)
- Soo Chan Lee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Nicolas Corradi
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada
| | - Sylvia Doan
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada
| | - Fred S. Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
| | - Patrick J. Keeling
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
48
|
|
49
|
Abstract
Sex chromosomes have evolved multiple times in many taxa. The recent explosion in the availability of whole genome sequences from a variety of organisms makes it possible to investigate sex chromosome evolution within and across genomes. Comparative genomic studies have shown that quite distant species may share fundamental properties of sex chromosome evolution, while very similar species can evolve unique sex chromosome systems. Furthermore, within-species genomic analyses can illuminate chromosome-wide sequence and expression polymorphisms. Here, we explore recent advances in the study of vertebrate sex chromosomes achieved using genomic analyses.
Collapse
Affiliation(s)
- Melissa A Wilson
- Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
50
|
Physical mapping of the elephant X chromosome: conservation of gene order over 105 million years. Chromosome Res 2009; 17:917-26. [DOI: 10.1007/s10577-009-9079-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 09/01/2009] [Indexed: 10/20/2022]
|