1
|
Evolution of SLiM-mediated hijack functions in intrinsically disordered viral proteins. Essays Biochem 2022; 66:945-958. [DOI: 10.1042/ebc20220059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/07/2022]
Abstract
Abstract
Viruses and their hosts are involved in an ‘arms race’ where they continually evolve mechanisms to overcome each other. It has long been proposed that intrinsic disorder provides a substrate for the evolution of viral hijack functions and that short linear motifs (SLiMs) are important players in this process. Here, we review evidence in support of this tenet from two model systems: the papillomavirus E7 protein and the adenovirus E1A protein. Phylogenetic reconstructions reveal that SLiMs appear and disappear multiple times across evolution, providing evidence of convergent evolution within individual viral phylogenies. Multiple functionally related SLiMs show strong coevolution signals that persist across long distances in the primary sequence and occur in unrelated viral proteins. Moreover, changes in SLiMs are associated with changes in phenotypic traits such as host range and tropism. Tracking viral evolutionary events reveals that host switch events are associated with the loss of several SLiMs, suggesting that SLiMs are under functional selection and that changes in SLiMs support viral adaptation. Fine-tuning of viral SLiM sequences can improve affinity, allowing them to outcompete host counterparts. However, viral SLiMs are not always competitive by themselves, and tethering of two suboptimal SLiMs by a disordered linker may instead enable viral hijack. Coevolution between the SLiMs and the linker indicates that the evolution of disordered regions may be more constrained than previously thought. In summary, experimental and computational studies support a role for SLiMs and intrinsic disorder in viral hijack functions and in viral adaptive evolution.
Collapse
|
2
|
Hsu IS, Strome B, Lash E, Robbins N, Cowen LE, Moses AM. A functionally divergent intrinsically disordered region underlying the conservation of stochastic signaling. PLoS Genet 2021; 17:e1009629. [PMID: 34506483 PMCID: PMC8457507 DOI: 10.1371/journal.pgen.1009629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/22/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Stochastic signaling dynamics expand living cells' information processing capabilities. An increasing number of studies report that regulators encode information in their pulsatile dynamics. The evolutionary mechanisms that lead to complex signaling dynamics remain uncharacterized, perhaps because key interactions of signaling proteins are encoded in intrinsically disordered regions (IDRs), whose evolution is difficult to analyze. Here we focused on the IDR that controls the stochastic pulsing dynamics of Crz1, a transcription factor in fungi downstream of the widely conserved calcium signaling pathway. We find that Crz1 IDRs from anciently diverged fungi can all respond transiently to calcium stress; however, only Crz1 IDRs from the Saccharomyces clade support pulsatility, encode extra information, and rescue fitness in competition assays, while the Crz1 IDRs from distantly related fungi do none of the three. On the other hand, we find that Crz1 pulsing is conserved in the distantly related fungi, consistent with the evolutionary model of stabilizing selection on the signaling phenotype. Further, we show that a calcineurin docking site in a specific part of the IDRs appears to be sufficient for pulsing and show evidence for a beneficial increase in the relative calcineurin affinity of this docking site. We propose that evolutionary flexibility of functionally divergent IDRs underlies the conservation of stochastic signaling by stabilizing selection.
Collapse
Affiliation(s)
- Ian S. Hsu
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Bob Strome
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Emma Lash
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Alan M. Moses
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
- Department of Computer Science, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
3
|
Lee KJ, Li Z. The CRK2-CYC13 complex functions as an S-phase cyclin-dependent kinase to promote DNA replication in Trypanosoma brucei. BMC Biol 2021; 19:29. [PMID: 33568178 PMCID: PMC7876812 DOI: 10.1186/s12915-021-00961-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Faithful DNA replication is essential to maintain genomic stability in all living organisms, and the regulatory pathway for DNA replication initiation is conserved from yeast to humans. The evolutionarily ancient human parasite Trypanosoma brucei, however, lacks many of the conserved DNA replication factors and may employ unusual mechanisms for DNA replication. Neither the S-phase cyclin-dependent kinase (CDK) nor the regulatory pathway governing DNA replication has been previously identified in T. brucei. RESULTS Here we report that CRK2 (Cdc2-related kinase 2) complexes with CYC13 (Cyclin13) and functions as an S-phase CDK to promote DNA replication in T. brucei. We further show that CRK2 phosphorylates Mcm3, a subunit of the Mcm2-7 sub-complex of the Cdc45-Mcm2-7-GINS complex, and demonstrate that Mcm3 phosphorylation by CRK2 facilitates interaction with Sld5, a subunit of the GINS sub-complex of the Cdc45-Mcm2-7-GINS complex. CONCLUSIONS These results identify the CRK2-CYC13 complex as an S-phase regulator in T. brucei and reveal its role in regulating DNA replication through promoting the assembly of the Cdc45-Mcm2-7-GINS complex.
Collapse
Affiliation(s)
- Kyu Joon Lee
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
The evolutionary scaling of cellular traits imposed by the drift barrier. Proc Natl Acad Sci U S A 2020; 117:10435-10444. [PMID: 32345718 DOI: 10.1073/pnas.2000446117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Owing to internal homeostatic mechanisms, cellular traits may experience long periods of stable selective pressures, during which the stochastic forces of drift and mutation conspire to generate variation. However, even in the face of invariant selection, the drift barrier defined by the genetic effective population size, which is negatively associated with organism size, can have a substantial influence on the location and dispersion of the long-term steady-state distribution of mean phenotypes. In addition, for multilocus traits, the multiplicity of alternative, functionally equivalent states can draw mean phenotypes away from selective optima, even in the absence of mutation bias. Using a framework for traits with an additive genetic basis, it is shown that 1) optimal phenotypic states may be only rarely achieved; 2) gradients of mean phenotypes with respect to organism size (i.e., allometric relationships) are likely to be molded by differences in the power of random genetic drift across the tree of life; and 3) for any particular set of population-genetic conditions, significant variation in mean phenotypes may exist among lineages exposed to identical selection pressures. These results provide a potentially useful framework for understanding numerous aspects of cellular diversification and illustrate the risks of interpreting such variation in a purely adaptive framework.
Collapse
|
5
|
A Theoretical Framework for Evolutionary Cell Biology. J Mol Biol 2020; 432:1861-1879. [PMID: 32087200 DOI: 10.1016/j.jmb.2020.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/20/2020] [Accepted: 02/04/2020] [Indexed: 11/24/2022]
Abstract
One of the last uncharted territories in evolutionary biology concerns the link with cell biology. Because all phenotypes ultimately derive from events at the cellular level, this connection is essential to building a mechanism-based theory of evolution. Given the impressive developments in cell biological methodologies at the structural and functional levels, the potential for rapid progress is great. The primary challenge for theory development is the establishment of a quantitative framework that transcends species boundaries. Two approaches to the problem are presented here: establishing the long-term steady-state distribution of mean phenotypes under specific regimes of mutation, selection, and drift and evaluating the energetic costs of cellular structures and functions. Although not meant to be the final word, these theoretical platforms harbor potential for generating insight into a diversity of unsolved problems, ranging from genome structure to cellular architecture to aspects of motility in organisms across the Tree of Life.
Collapse
|
6
|
Evidence for Stabilizing Selection Driving Mutational Turnover of Short Motifs in the Eukaryotic Complementary Sex Determiner (Csd) Protein. G3-GENES GENOMES GENETICS 2018; 8:3803-3812. [PMID: 30287489 PMCID: PMC6288827 DOI: 10.1534/g3.118.200527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Short linear motifs (SLiMs) can play pivotal functional roles in proteins, such as targeting proteins to specific subcellular localizations, modulating the efficiency of translation and tagging proteins for degradation. Until recently we had little knowledge about SLiM evolution. Only a few amino acids in these motifs are functionally important, making them likely to evolve ex nihilo and suggesting that they can play key roles in protein evolution. Several reports now suggest that these motifs can appear and disappear while their function in the protein is preserved, a process sometimes referred to as “turnover”. However, there has been a lack of specific experiments to determine whether independently evolved motifs do indeed have the same function, which would conclusively determine whether the process of turnover actually occurs. In this study, we experimentally detected evidence for such a mutational turnover process for nuclear localization signals (NLS) during the post-duplication divergence of the Complementary sex determiner (Csd) and Feminizer (Fem) proteins in the honeybee (Apis mellifera) lineage. Experiments on the nuclear transport activity of protein segments and those of the most recent common ancestor (MRCA) sequences revealed that three new NLS motifs evolved in the Csd protein during the post-duplication divergence while other NLS motifs were lost that existed before duplication. A screen for essential and newly evolved amino acids revealed that new motifs in the Csd protein evolved by one or two missense mutations coding for lysine. Amino acids that were predating the duplication were also essential in the acquisition of the C1 motif suggesting that the ex nihilo origin was constrained by preexisting amino acids in the physical proximity. Our data support a model in which stabilizing selection maintains the constancy of nuclear transport function but allowed mutational turnover of the encoding NLS motifs.
Collapse
|
7
|
McDonald M, Trost B, Napper S. Conservation of kinase-phosphorylation site pairings: Evidence for an evolutionarily dynamic phosphoproteome. PLoS One 2018; 13:e0202036. [PMID: 30106995 PMCID: PMC6091962 DOI: 10.1371/journal.pone.0202036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/26/2018] [Indexed: 12/14/2022] Open
Abstract
Kinase-mediated protein phosphorylation is a central mechanism for regulation of cellular responses and phenotypes. While considerable information is available regarding the evolutionary relationships within the kinase family, as well as the evolutionary conservation of phosphorylation sites, each aspect of this partnership is typically considered in isolation, despite their clear functional relationship. Here, to offer a more holistic perspective on the evolution of protein phosphorylation, the conservation of protein phosphorylation sites is considered in the context of the conservation of the corresponding modifying kinases. Specifically, conservation of defined kinase-phosphorylation site pairings (KPSPs), as well as of each of the component parts (the kinase and the phosphorylation site), were examined across a range of species. As expected, greater evolutionary distance between species was generally associated with lower probability of KPSP conservation, and only a small fraction of KPSPs were maintained across all species, with the vast majority of KPSP losses due to the absence of the phosphorylation site. This supports a model in which a relatively stable kinome promotes the emergence of functional substrates from an evolutionarily malleable phosphoproteome.
Collapse
Affiliation(s)
- Megan McDonald
- Vaccine and Infectious Disease Organization-International Vaccine Research Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Brett Trost
- Vaccine and Infectious Disease Organization-International Vaccine Research Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Scott Napper
- Vaccine and Infectious Disease Organization-International Vaccine Research Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
8
|
Park D, Goh CJ, Kim H, Lee JS, Hahn Y. Loss of conserved ubiquitylation sites in conserved proteins during human evolution. Int J Mol Med 2018; 42:2203-2212. [PMID: 30015863 DOI: 10.3892/ijmm.2018.3772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/06/2018] [Indexed: 11/06/2022] Open
Abstract
Ubiquitylation of lysine residues in proteins serves a pivotal role in the efficient removal of misfolded or unused proteins and in the control of various regulatory pathways by monitoring protein activity that may lead to protein degradation. The loss of ubiquitylated lysines may affect the ubiquitin‑mediated regulatory network and result in the emergence of novel phenotypes. The present study analyzed mouse ubiquitylation data and orthologous proteins from 62 mammals to identify 193 conserved ubiquitylation sites from 169 proteins that were lost in the Euarchonta lineage leading to humans. A total of 8 proteins, including betaine homocysteine S‑methyltransferase, clin and CBS domain divalent metal cation transport mediator 3, ribosome‑binding protein 1 and solute carrier family 37 member 4, lost 1 conserved lysine residue, which was ubiquitylated in the mouse ortholog, following the human‑chimpanzee divergence. A total of 17 of the lost ubiquitylated lysines are also known to be modified by acetylation and/or succinylation in mice. In 8 cases, a novel lysine evolved at positions flanking the lost conserved lysine residues, potentially as a method of compensation. We hypothesize that the loss of ubiquitylation sites during evolution may lead to the development of advantageous phenotypes, which are then fixed by selection. The ancestral ubiquitylation sites identified in the present study may be a useful resource for investigating the association between loss of ubiquitylation sites and the emergence of novel phenotypes during evolution towards modern humans.
Collapse
Affiliation(s)
- Dongbin Park
- Department of Life Science, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Chul Jun Goh
- Department of Life Science, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Hyein Kim
- Department of Life Science, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Ji Seok Lee
- Department of Life Science, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Yoonsoo Hahn
- Department of Life Science, Chung‑Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
9
|
Evolution, dynamics and dysregulation of kinase signalling. Curr Opin Struct Biol 2018; 48:133-140. [DOI: 10.1016/j.sbi.2017.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022]
|
10
|
Liu Z, Zhang J. Most m6A RNA Modifications in Protein-Coding Regions Are Evolutionarily Unconserved and Likely Nonfunctional. Mol Biol Evol 2017; 35:666-675. [PMID: 29228327 DOI: 10.1093/molbev/msx320] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Methylation of the adenosine base at the nitrogen-6 position (m6A) is the most prevalent internal posttranscriptional modification of mRNAs in many eukaryotes. Despite the rapid progress in the transcriptome-wide mapping of m6As, identification of proteins responsible for writing, reading, and erasing m6As, and elucidation of m6A functions in splicing, RNA stability, translation, and other processes, it is unknown whether most observed m6A modifications are functional. To address this question, we respectively analyze the evolutionary conservation of yeast and human m6As in protein-coding regions. Relative to comparable unmethylated As, m6As are overall no more conserved in yeasts and only slightly more conserved in mammals. Furthermore, yeast m6As and comparable unmethylated As have no significant difference in single nucleotide polymorphism (SNP) density or SNP site frequency spectrum. The same is true in human. The methylation status of a gene, not necessarily the specific sites methylated in the gene, is subject to purifying selection for no more than ∼20% of m6A-modified genes. These observations suggest that most m6A modifications in protein-coding regions are nonfunctional and nonadaptive, probably resulting from off-target activities of m6A methyltransferases. In addition, our reanalysis invalidates the recent claim of positive selection for newly acquired m6A modifications in human evolution. Regarding the small number of evolutionarily conserved m6As, evidence suggests that a large proportion of them are likely functional; they should be prioritized in future functional characterizations of m6As. Together, these findings have important implications for understanding the biological significance of m6A and other posttranscriptional modifications.
Collapse
Affiliation(s)
- Zhen Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
11
|
Csizmok V, Montecchio M, Lin H, Tyers M, Sunnerhagen M, Forman-Kay JD. Multivalent Interactions with Fbw7 and Pin1 Facilitate Recognition of c-Jun by the SCF Fbw7 Ubiquitin Ligase. Structure 2017; 26:28-39.e2. [PMID: 29225075 DOI: 10.1016/j.str.2017.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/07/2017] [Accepted: 11/08/2017] [Indexed: 01/09/2023]
Abstract
Many regulatory proteins, including the transcription factor c-Jun, are highly enriched in disordered protein regions that govern growth, division, survival, differentiation, and response to signals. The stability of c-Jun is controlled by poorly understood regulatory interactions of its disordered region with both the E3 ubiquitin ligase SCFFbw7 and prolyl cis-trans isomerase Pin1. We use nuclear magnetic resonance and fluorescence studies of c-Jun to demonstrate that multisite c-Jun phosphorylation is required for high-affinity interaction with Fbw7. We show that the Pin1 WW and PPIase domains interact in a dynamic complex with multiply phosphorylated c-Jun. Importantly, Pin1 isomerizes a pSer-Pro peptide bond at the c-Jun N terminus that affects binding to Fbw7 and thus modulates the ubiquitin-mediated degradation of c-Jun. Our findings support the general principle that multiple weak binding motifs within disordered regions can synergize to yield high-affinity interactions and provide rapidly evolvable means to build and fine-tune regulatory events.
Collapse
Affiliation(s)
- Veronika Csizmok
- Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Meri Montecchio
- Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
| | - Hong Lin
- Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Maria Sunnerhagen
- Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
| | - Julie D Forman-Kay
- Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
12
|
Li Y, Zhou X, Zhai Z, Li T. Co-occurring protein phosphorylation are functionally associated. PLoS Comput Biol 2017; 13:e1005502. [PMID: 28459814 PMCID: PMC5432191 DOI: 10.1371/journal.pcbi.1005502] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 05/15/2017] [Accepted: 04/04/2017] [Indexed: 12/25/2022] Open
Abstract
Post-translational modifications (PTMs) add a further layer of complexity to the proteome and regulate a wide range of cellular protein functions. With the increasing number of known PTM sites, it becomes imperative to understand their functional interplays. In this study, we proposed a novel analytical strategy to explore functional relationships between PTM sites by testing their tendency to be modified together (co-occurrence) under the same condition, and applied it to proteome-wide human phosphorylation data collected under 88 different laboratory or physiological conditions. Co-occurring phosphorylation occurs significantly more frequently than randomly expected and include many known examples of cross-talk or functional connections. Such pairs, either within the same phosphoprotein or between interacting partners, are more likely to be in sequence or structural proximity, be phosphorylated by the same kinases, participate in similar biological processes, and show residue co-evolution across vertebrates. In addition, we also found that their co-occurrence states tend to be conserved in orthologous phosphosites in the mouse proteome. Together, our results support that the co-occurring phosphorylation are functionally associated. Comparison with existing methods further suggests that co-occurrence analysis can be a useful complement to uncover novel functional associations between PTM sites. In addition to gene expression and translation control, post-translational modifications (PTMs) represent another level to regulate proteins functions. Different PTM sites within a protein usually co-operate to fulfill their functional roles. Recent advances in high-throughput mass spectrometry (MS) technologies have facilitated the proteome-wide identification of PTM sites, giving rise to both challenge and opportunity to understand their functional relationships. Previously, several data mining approaches have been developed to explore the global PTM interplays. In this study, we proposed to infer functional associations between PTM sites from the correlation of their modification status across many biological conditions, which was not exploited before. In practice, we tested if a pair of sites are modified together under the same condition significantly more often than expected (co-occurrence). As a proof of principle, we applied this analytical strategy to human phosphorylation because we could collect data sets of proteome-wide coverage under 88 different conditions. We demonstrated that sites with co-occurring phosphorylation status are functionally associated from several lines of evidence. The co-occurrence analysis can also uncover functionally connected phosphosites with clear biological evidence which are missed by other approaches. With increasing proteome-wide data for other types of PTMs under different conditions, the co-occurrence analysis can be integrated with other methods to identify novel PTM associations.
Collapse
Affiliation(s)
- Ying Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xueya Zhou
- Department of Psychiatry and Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zichao Zhai
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- * E-mail:
| |
Collapse
|
13
|
Selection maintains signaling function of a highly diverged intrinsically disordered region. Proc Natl Acad Sci U S A 2017; 114:E1450-E1459. [PMID: 28167781 DOI: 10.1073/pnas.1614787114] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Intrinsically disordered regions (IDRs) are characterized by their lack of stable secondary or tertiary structure and comprise a large part of the eukaryotic proteome. Although these regions play a variety of signaling and regulatory roles, they appear to be rapidly evolving at the primary sequence level. To understand the functional implications of this rapid evolution, we focused on a highly diverged IDR in Saccharomyces cerevisiae that is involved in regulating multiple conserved MAPK pathways. We hypothesized that under stabilizing selection, the functional output of orthologous IDRs could be maintained, such that diverse genotypes could lead to similar function and fitness. Consistent with the stabilizing selection hypothesis, we find that diverged, orthologous IDRs can mostly recapitulate wild-type function and fitness in S. cerevisiae We also find that the electrostatic charge of the IDR is correlated with signaling output and, using phylogenetic comparative methods, find evidence for selection maintaining this quantitative molecular trait despite underlying genotypic divergence.
Collapse
|
14
|
Studer RA, Rodriguez-Mias RA, Haas KM, Hsu JI, Vieitez C, Sole C, Swaney DL, Stanford LB, Liachko I, Bottcher R, Dunham MJ, de Nadal E, Posas F, Beltrao P, Villen J. Evolution of protein phosphorylation across 18 fungal species. Science 2016; 354:229-232. [DOI: 10.1126/science.aaf2144] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 08/16/2016] [Indexed: 12/28/2022]
|
15
|
Trost B, Kusalik A, Napper S. Computational Analysis of the Predicted Evolutionary Conservation of Human Phosphorylation Sites. PLoS One 2016; 11:e0152809. [PMID: 27046079 PMCID: PMC4821552 DOI: 10.1371/journal.pone.0152809] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/19/2016] [Indexed: 11/19/2022] Open
Abstract
Protein kinase-mediated phosphorylation is among the most important post-translational modifications. However, few phosphorylation sites have been experimentally identified for most species, making it difficult to determine the degree to which phosphorylation sites are conserved. The goal of this study was to use computational methods to characterize the conservation of human phosphorylation sites in a wide variety of eukaryotes. Using experimentally-determined human sites as input, homologous phosphorylation sites were predicted in all 432 eukaryotes for which complete proteomes were available. For each pair of species, we calculated phosphorylation site conservation as the number of phosphorylation sites found in both species divided by the number found in at least one of the two species. A clustering of the species based on this conservation measure was concordant with phylogenies based on traditional genomic measures. For a subset of the 432 species, phosphorylation site conservation was compared to conservation of both protein kinases and proteins in general. Protein kinases exhibited the highest degree of conservation, while general proteins were less conserved and phosphorylation sites were least conserved. Although preliminary, these data tentatively suggest that variation in phosphorylation sites may play a larger role in explaining phenotypic differences among organisms than differences in the complements of protein kinases or general proteins.
Collapse
Affiliation(s)
- Brett Trost
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| | - Anthony Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Scott Napper
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
16
|
Van Roey K, Davey NE. Motif co-regulation and co-operativity are common mechanisms in transcriptional, post-transcriptional and post-translational regulation. Cell Commun Signal 2015; 13:45. [PMID: 26626130 PMCID: PMC4666095 DOI: 10.1186/s12964-015-0123-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/24/2015] [Indexed: 01/01/2023] Open
Abstract
A substantial portion of the regulatory interactions in the higher eukaryotic cell are mediated by simple sequence motifs in the regulatory segments of genes and (pre-)mRNAs, and in the intrinsically disordered regions of proteins. Although these regulatory modules are physicochemically distinct, they share an evolutionary plasticity that has facilitated a rapid growth of their use and resulted in their ubiquity in complex organisms. The ease of motif acquisition simplifies access to basal housekeeping functions, facilitates the co-regulation of multiple biomolecules allowing them to respond in a coordinated manner to changes in the cell state, and supports the integration of multiple signals for combinatorial decision-making. Consequently, motifs are indispensable for temporal, spatial, conditional and basal regulation at the transcriptional, post-transcriptional and post-translational level. In this review, we highlight that many of the key regulatory pathways of the cell are recruited by motifs and that the ease of motif acquisition has resulted in large networks of co-regulated biomolecules. We discuss how co-operativity allows simple static motifs to perform the conditional regulation that underlies decision-making in higher eukaryotic biological systems. We observe that each gene and its products have a unique set of DNA, RNA or protein motifs that encode a regulatory program to define the logical circuitry that guides the life cycle of these biomolecules, from transcription to degradation. Finally, we contrast the regulatory properties of protein motifs and the regulatory elements of DNA and (pre-)mRNAs, advocating that co-regulation, co-operativity, and motif-driven regulatory programs are common mechanisms that emerge from the use of simple, evolutionarily plastic regulatory modules.
Collapse
Affiliation(s)
- Kim Van Roey
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany.
- Health Services Research Unit, Operational Direction Public Health and Surveillance, Scientific Institute of Public Health (WIV-ISP), 1050, Brussels, Belgium.
| | - Norman E Davey
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
17
|
Davey NE, Cyert MS, Moses AM. Short linear motifs - ex nihilo evolution of protein regulation. Cell Commun Signal 2015; 13:43. [PMID: 26589632 PMCID: PMC4654906 DOI: 10.1186/s12964-015-0120-z] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 11/13/2015] [Indexed: 12/12/2022] Open
Abstract
Short sequence motifs are ubiquitous across the three major types of biomolecules: hundreds of classes and thousands of instances of DNA regulatory elements, RNA motifs and protein short linear motifs (SLiMs) have been characterised. The increase in complexity of transcriptional, post-transcriptional and post-translational regulation in higher Eukaryotes has coincided with a significant expansion of motif use. But how did the eukaryotic cell acquire such a vast repertoire of motifs? In this review, we curate the available literature on protein motif evolution and discuss the evidence that suggests SLiMs can be acquired by mutations, insertions and deletions in disordered regions. We propose a mechanism of ex nihilo SLiM evolution – the evolution of a novel SLiM from “nothing” – adding a functional module to a previously non-functional region of protein sequence. In our model, hundreds of motif-binding domains in higher eukaryotic proteins connect simple motif specificities with useful functions to create a large functional motif space. Accessible peptides that match the specificity of these motif-binding domains are continuously created and destroyed by mutations in rapidly evolving disordered regions, creating a dynamic supply of new interactions that may have advantageous phenotypic novelty. This provides a reservoir of diversity to modify existing interaction networks. Evolutionary pressures will act on these motifs to retain beneficial instances. However, most will be lost on an evolutionary timescale as negative selection and genetic drift act on deleterious and neutral motifs respectively. In light of the parallels between the presented model and the evolution of motifs in the regulatory segments of genes and (pre-)mRNAs, we suggest our understanding of regulatory networks would benefit from the creation of a shared model describing the evolution of transcriptional, post-transcriptional and post-translational regulation.
Collapse
Affiliation(s)
- Norman E Davey
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 4, Ireland.
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| | - Alan M Moses
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada. .,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada.
| |
Collapse
|
18
|
Johnson JR, Santos SD, Johnson T, Pieper U, Strumillo M, Wagih O, Sali A, Krogan NJ, Beltrao P. Prediction of Functionally Important Phospho-Regulatory Events in Xenopus laevis Oocytes. PLoS Comput Biol 2015; 11:e1004362. [PMID: 26312481 PMCID: PMC4552029 DOI: 10.1371/journal.pcbi.1004362] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 05/27/2015] [Indexed: 01/10/2023] Open
Abstract
The African clawed frog Xenopus laevis is an important model organism for studies in developmental and cell biology, including cell-signaling. However, our knowledge of X. laevis protein post-translational modifications remains scarce. Here, we used a mass spectrometry-based approach to survey the phosphoproteome of this species, compiling a list of 2636 phosphosites. We used structural information and phosphoproteomic data for 13 other species in order to predict functionally important phospho-regulatory events. We found that the degree of conservation of phosphosites across species is predictive of sites with known molecular function. In addition, we predicted kinase-protein interactions for a set of cell-cycle kinases across all species. The degree of conservation of kinase-protein interactions was found to be predictive of functionally relevant regulatory interactions. Finally, using comparative protein structure models, we find that phosphosites within structured domains tend to be located at positions with high conformational flexibility. Our analysis suggests that a small class of phosphosites occurs in positions that have the potential to regulate protein conformation.
Collapse
Affiliation(s)
- Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, United States of America
| | - Silvia D Santos
- Quantitative Cell Biology group, MRC Clinical Sciences Centre, Imperial College, London, United Kingdom
| | - Tasha Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, United States of America
| | - Ursula Pieper
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, Byers Hall at Mission Bay, University of California, San Francisco, San Francisco, California, United States of America; Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall at Mission Bay, University of California, San Francisco, San Francisco, California, United States of America
| | - Marta Strumillo
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany and European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Omar Wagih
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany and European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, Byers Hall at Mission Bay, University of California, San Francisco, San Francisco, California, United States of America; Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall at Mission Bay, University of California, San Francisco, San Francisco, California, United States of America
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, United States of America; Gladstone Institutes, San Francisco, California, United States of America
| | - Pedro Beltrao
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany and European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom; iBiMED and Department of Health Sciences, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
19
|
Convergent evolution and mimicry of protein linear motifs in host–pathogen interactions. Curr Opin Struct Biol 2015; 32:91-101. [DOI: 10.1016/j.sbi.2015.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/09/2015] [Accepted: 03/15/2015] [Indexed: 12/21/2022]
|
20
|
Cairns J, Peng Y, Yee VC, Lou Z, Wang L. Bora downregulation results in radioresistance by promoting repair of double strand breaks. PLoS One 2015; 10:e0119208. [PMID: 25742493 PMCID: PMC4351037 DOI: 10.1371/journal.pone.0119208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/11/2015] [Indexed: 02/07/2023] Open
Abstract
Following DNA double-strand breaks cells activate several DNA-damage response protein kinases, which then trigger histone H2AX phosphorylation and the accumulation of proteins such as MDC1, p53-binding protein 1, and breast cancer gene 1 at the damage site to promote DNA double-strand breaks repair. We identified a novel biomarker, Bora (previously called C13orf34), that is associated with radiosensitivity. In the current study, we set out to investigate how Bora might be involved in response to irradiation. We found a novel function of Bora in DNA damage repair response. Bora down-regulation increased colony formation in cells exposed to irradiation. This increased resistance to irradiation in Bora-deficient cells is likely due to a faster rate of double-strand breaks repair. After irradiation, Bora-knockdown cells displayed increased G2-M cell cycle arrest and increased Chk2 phosphorylation. Furthermore, Bora specifically interacted with the tandem breast cancer gene 1 C-terminal domain of MDC1 in a phosphorylation dependent manner, and overexpression of Bora could abolish irradiation induced MDC1 foci formation. In summary, Bora may play a significant role in radiosensitivity through the regulation of MDC1 and DNA repair.
Collapse
Affiliation(s)
- Junmei Cairns
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, 55905, United States of America
| | - Yi Peng
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America
| | - Vivien C. Yee
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America
| | - Zhenkun Lou
- Department of Oncology and Oncology Research, Mayo Clinic, Rochester, Minnesota, 55905, United States of America
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, 55905, United States of America
- * E-mail:
| |
Collapse
|
21
|
Shi L, Ji B, Kolar-Znika L, Boskovic A, Jadeau F, Combet C, Grangeasse C, Franjevic D, Talla E, Mijakovic I. Evolution of bacterial protein-tyrosine kinases and their relaxed specificity toward substrates. Genome Biol Evol 2015; 6:800-17. [PMID: 24728941 PMCID: PMC4007543 DOI: 10.1093/gbe/evu056] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
It has often been speculated that bacterial protein-tyrosine kinases (BY-kinases) evolve rapidly and maintain relaxed substrate specificity to quickly adopt new substrates when evolutionary pressure in that direction arises. Here, we report a phylogenomic and biochemical analysis of BY-kinases, and their relationship to substrates aimed to validate this hypothesis. Our results suggest that BY-kinases are ubiquitously distributed in bacterial phyla and underwent a complex evolutionary history, affected considerably by gene duplications and horizontal gene transfer events. This is consistent with the fact that the BY-kinase sequences represent a high level of substitution saturation and have a higher evolutionary rate compared with other bacterial genes. On the basis of similarity networks, we could classify BY kinases into three main groups with 14 subgroups. Extensive sequence conservation was observed only around the three canonical Walker motifs, whereas unique signatures proposed the functional speciation and diversification within some subgroups. The relationship between BY-kinases and their substrates was analyzed using a ubiquitous substrate (Ugd) and some Firmicute-specific substrates (YvyG and YjoA) from Bacillus subtilis. No evidence of coevolution between kinases and substrates at the sequence level was found. Seven BY-kinases, including well-characterized and previously uncharacterized ones, were used for experimental studies. Most of the tested kinases were able to phosphorylate substrates from B. subtilis (Ugd, YvyG, and YjoA), despite originating from very distant bacteria. Our results are consistent with the hypothesis that BY-kinases have evolved relaxed substrate specificity and are probably maintained as rapidly evolving platforms for adopting new substrates.
Collapse
Affiliation(s)
- Lei Shi
- INRA-AgroParisTech UMR 1319, Micalis-CBAI, Thiverval-Grignon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Reimand J, Wagih O, Bader GD. Evolutionary constraint and disease associations of post-translational modification sites in human genomes. PLoS Genet 2015; 11:e1004919. [PMID: 25611800 PMCID: PMC4303425 DOI: 10.1371/journal.pgen.1004919] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 11/24/2014] [Indexed: 12/14/2022] Open
Abstract
Interpreting the impact of human genome variation on phenotype is challenging. The functional effect of protein-coding variants is often predicted using sequence conservation and population frequency data, however other factors are likely relevant. We hypothesized that variants in protein post-translational modification (PTM) sites contribute to phenotype variation and disease. We analyzed fraction of rare variants and non-synonymous to synonymous variant ratio (Ka/Ks) in 7,500 human genomes and found a significant negative selection signal in PTM regions independent of six factors, including conservation, codon usage, and GC-content, that is widely distributed across tissue-specific genes and function classes. PTM regions are also enriched in known disease mutations, suggesting that PTM variation is more likely deleterious. PTM constraint also affects flanking sequence around modified residues and increases around clustered sites, indicating presence of functionally important short linear motifs. Using target site motifs of 124 kinases, we predict that at least ∼180,000 motif-breaker amino acid residues that disrupt PTM sites when substituted, and highlight kinase motifs that show specific negative selection and enrichment of disease mutations. We provide this dataset with corresponding hypothesized mechanisms as a community resource. As an example of our integrative approach, we propose that PTPN11 variants in Noonan syndrome aberrantly activate the protein by disrupting an uncharacterized cluster of phosphorylation sites. Further, as PTMs are molecular switches that are modulated by drugs, we study mutated binding sites of PTM enzymes in disease genes and define a drug-disease network containing 413 novel predicted disease-gene links.
Collapse
Affiliation(s)
- Jüri Reimand
- The Donnelly Centre, University of Toronto, Canada
- * E-mail: (JR); (GDB)
| | - Omar Wagih
- The Donnelly Centre, University of Toronto, Canada
| | - Gary D. Bader
- The Donnelly Centre, University of Toronto, Canada
- * E-mail: (JR); (GDB)
| |
Collapse
|
23
|
Zegerman P. Evolutionary conservation of the CDK targets in eukaryotic DNA replication initiation. Chromosoma 2015; 124:309-21. [PMID: 25575982 DOI: 10.1007/s00412-014-0500-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/27/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
Abstract
A fundamental requirement for all organisms is the faithful duplication and transmission of the genetic material. Failure to accurately copy and segregate the genome during cell division leads to loss of genetic information and chromosomal abnormalities. Such genome instability is the hallmark of the earliest stages of tumour formation. Cyclin-dependent kinase (CDK) plays a vital role in regulating the duplication of the genome within the eukaryotic cell cycle. Importantly, this kinase is deregulated in many cancer types and is an emerging target of chemotherapeutics. In this review, I will consider recent advances concerning the role of CDK in replication initiation across eukaryotes. The implications for strict CDK-dependent regulation of genome duplication in the context of the cell cycle will be discussed.
Collapse
Affiliation(s)
- Philip Zegerman
- Department of Biochemistry, Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, The Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, CB2 1QN, UK,
| |
Collapse
|
24
|
Nguyen Ba AN, Strome B, Hua JJ, Desmond J, Gagnon-Arsenault I, Weiss EL, Landry CR, Moses AM. Detecting functional divergence after gene duplication through evolutionary changes in posttranslational regulatory sequences. PLoS Comput Biol 2014; 10:e1003977. [PMID: 25474245 PMCID: PMC4256066 DOI: 10.1371/journal.pcbi.1003977] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/07/2014] [Indexed: 11/18/2022] Open
Abstract
Gene duplication is an important evolutionary mechanism that can result in functional divergence in paralogs due to neo-functionalization or sub-functionalization. Consistent with functional divergence after gene duplication, recent studies have shown accelerated evolution in retained paralogs. However, little is known in general about the impact of this accelerated evolution on the molecular functions of retained paralogs. For example, do new functions typically involve changes in enzymatic activities, or changes in protein regulation? Here we study the evolution of posttranslational regulation by examining the evolution of important regulatory sequences (short linear motifs) in retained duplicates created by the whole-genome duplication in budding yeast. To do so, we identified short linear motifs whose evolutionary constraint has relaxed after gene duplication with a likelihood-ratio test that can account for heterogeneity in the evolutionary process by using a non-central chi-squared null distribution. We find that short linear motifs are more likely to show changes in evolutionary constraints in retained duplicates compared to single-copy genes. We examine changes in constraints on known regulatory sequences and show that for the Rck1/Rck2, Fkh1/Fkh2, Ace2/Swi5 paralogs, they are associated with previously characterized differences in posttranslational regulation. Finally, we experimentally confirm our prediction that for the Ace2/Swi5 paralogs, Cbk1 regulated localization was lost along the lineage leading to SWI5 after gene duplication. Our analysis suggests that changes in posttranslational regulation mediated by short regulatory motifs systematically contribute to functional divergence after gene duplication. How a protein is controlled is intimately linked to its function. Therefore, evolution can drive the functional divergence of proteins by tweaking their regulation, even if enzymatic capacities are preserved. Changes in posttranslational regulation (protein phosphorylation, degradation, subcellular localization, etc.) could therefore represent key mechanisms in functional divergence and lead to different phenotypic outcomes. Since disordered protein regions contain sites of protein modification and interaction (known as short linear motifs) and evolve rapidly relative to domains encoding enzymatic functions, these regions are good candidates to harbour sequence changes that underlie changes in function. In this study, we develop a statistical framework to identify changes in rate of evolution specific to protein regulatory sequences and identify hundreds of short linear motifs in disordered regions that are likely to have diverged after the whole-genome duplication in budding yeast. We show that these divergent motifs are much more frequent in paralogs than in single-copy proteins, and that they are more frequent in duplicate pairs that have functionally diverged. Our analysis suggests that changes in short linear motifs in disordered protein regions could be important molecular mechanisms of functional divergence after gene duplication.
Collapse
Affiliation(s)
- Alex N Nguyen Ba
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada; Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| | - Bob Strome
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Jun Jie Hua
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Jonathan Desmond
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Isabelle Gagnon-Arsenault
- Département de Biologie, IBIS and PROTEO, Pavillon Charles-Eugene-Marchand, Laval University, Québec City, Canada
| | - Eric L Weiss
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Christian R Landry
- Département de Biologie, IBIS and PROTEO, Pavillon Charles-Eugene-Marchand, Laval University, Québec City, Canada
| | - Alan M Moses
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada; Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| |
Collapse
|
25
|
Landry CR, Freschi L, Zarin T, Moses AM. Turnover of protein phosphorylation evolving under stabilizing selection. Front Genet 2014; 5:245. [PMID: 25101120 PMCID: PMC4107968 DOI: 10.3389/fgene.2014.00245] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/08/2014] [Indexed: 12/31/2022] Open
Abstract
Most proteins are regulated by posttranslational modifications and changes in these modifications contribute to evolutionary changes as well as to human diseases. Phosphorylation of serines, threonines, and tyrosines are the most common modifications identified to date in eukaryotic proteomes. While the mode of action and the function of most phosphorylation sites remain unknown, functional studies have shown that phosphorylation affects protein stability, localization and ability to interact. Two broad modes of action have been described for protein phosphorylation. The first mode corresponds to the canonical and qualitative view whereby single phosphorylation sites act as molecular switches that either turn on or off specific protein functions through direct or allosteric effects. The second mode is more akin to a rheostat than a switch. In this case, a group of phosphorylation sites in a given protein region contributes collectively to the modification of the protein, irrespective of the precise position of individual sites, through an aggregate property. Here we discuss these two types of regulation and examine how they affect the rate and patterns of protein phosphorylation evolution. We describe how the evolution of clusters of phosphorylation sites can be studied under the framework of complex traits evolution and stabilizing selection.
Collapse
Affiliation(s)
- Christian R Landry
- Département de Biologie, Université Laval Québec, QC, Canada ; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval Québec, QC, Canada ; Network for Research on Protein Function, Structure, and Engineering (PROTEO), Univeristé Laval Québec, QC, Canada
| | - Luca Freschi
- Département de Biologie, Université Laval Québec, QC, Canada ; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval Québec, QC, Canada ; Network for Research on Protein Function, Structure, and Engineering (PROTEO), Univeristé Laval Québec, QC, Canada
| | - Taraneh Zarin
- Department of Cell and Systems Biology, University of Toronto Toronto, ON, Canada
| | - Alan M Moses
- Department of Cell and Systems Biology, University of Toronto Toronto, ON, Canada ; Department of Ecology and Evolutionary Biology, University of Toronto Toronto, ON, Canada ; Center for Analysis of Genome Evolution and Function, University of Toronto Toronto, ON, Canada
| |
Collapse
|
26
|
Gaggioli V, Zeiser E, Rivers D, Bradshaw CR, Ahringer J, Zegerman P. CDK phosphorylation of SLD-2 is required for replication initiation and germline development in C. elegans. ACTA ACUST UNITED AC 2014; 204:507-22. [PMID: 24535824 PMCID: PMC3926958 DOI: 10.1083/jcb.201310083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Timely phosphorylation of SLD-2 by CDK is essential for proper replication initiation and cell proliferation in the germline of C. elegans. Cyclin-dependent kinase (CDK) plays a vital role in proliferation control across eukaryotes. Despite this, how CDK mediates cell cycle and developmental transitions in metazoa is poorly understood. In this paper, we identify orthologues of Sld2, a CDK target that is important for DNA replication in yeast, and characterize SLD-2 in the nematode worm Caenorhabditis elegans. We demonstrate that SLD-2 is required for replication initiation and the nuclear retention of a critical component of the replicative helicase CDC-45 in embryos. SLD-2 is a CDK target in vivo, and phosphorylation regulates the interaction with another replication factor, MUS-101. By mutation of the CDK sites in sld-2, we show that CDK phosphorylation of SLD-2 is essential in C. elegans. Finally, using a phosphomimicking sld-2 mutant, we demonstrate that timely CDK phosphorylation of SLD-2 is an important control mechanism to allow normal proliferation in the germline. These results determine an essential function of CDK in metazoa and identify a developmental role for regulated SLD-2 phosphorylation.
Collapse
Affiliation(s)
- Vincent Gaggioli
- Wellcome Trust/Cancer Research UK Gurdon Institute, 2 Department of Genetics, and 3 Department of Zoology, University of Cambridge, Cambridge CB2 1QN, England, UK
| | | | | | | | | | | |
Collapse
|
27
|
Functional divergence and evolutionary turnover in mammalian phosphoproteomes. PLoS Genet 2014; 10:e1004062. [PMID: 24465218 PMCID: PMC3900387 DOI: 10.1371/journal.pgen.1004062] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 11/11/2013] [Indexed: 11/29/2022] Open
Abstract
Protein phosphorylation is a key mechanism to regulate protein functions. However, the contribution of this protein modification to species divergence is still largely unknown. Here, we studied the evolution of mammalian phosphoregulation by comparing the human and mouse phosphoproteomes. We found that 84% of the positions that are phosphorylated in one species or the other are conserved at the residue level. Twenty percent of these conserved sites are phosphorylated in both species. This proportion is 2.5 times more than expected by chance alone, suggesting that purifying selection is preserving phosphoregulation. However, we show that the majority of the sites that are conserved at the residue level are differentially phosphorylated between species. These sites likely result from false-negative identifications due to incomplete experimental coverage, false-positive identifications and non-functional sites. In addition, our results suggest that at least 5% of them are likely to be true differentially phosphorylated sites and may thus contribute to the divergence in phosphorylation networks between mouse and humans and this, despite residue conservation between orthologous proteins. We also showed that evolutionary turnover of phosphosites at adjacent positions (in a distance range of up to 40 amino acids) in human or mouse leads to an over estimation of the divergence in phosphoregulation between these two species. These sites tend to be phosphorylated by the same kinases, supporting the hypothesis that they are functionally redundant. Our results support the hypothesis that the evolutionary turnover of phosphorylation sites contributes to the divergence in phosphorylation profiles while preserving phosphoregulation. Overall, our study provides advanced analyses of mammalian phosphoproteomes and a framework for the study of their contribution to phenotypic evolution. Understanding how differences in cellular regulation lead to phenotypic differences between species remains an open challenge in evolutionary genetics. The extensive phosphorylation data currently available allows to compare the human and mouse phosphoproteomes and to measure changes in their phosphoregulation. We found a general conservation of phosphorylation sites between these two species. However, a fraction of sites are conserved at the sequence level (the same amino acid is present in both species) but differ in their phosphorylation status. These sites represent candidate sites that have the potential to explain differences between human and mouse signalling networks that do not depend on the divergence of orthologous residues. Furthermore, we identified several sites where to a phosphorylation site in one species corresponds a non-phosphorylatable residue in the other one. These cases represent clear differences in protein regulation. Recent studies suggest that phosphorylation sites can shift position during evolution, leading to configurations in which pairs of divergent phosphorylation sites are functionally redundant. We identified more than 100 putative such cases, suggesting that divergence in amino acid does not necessarily imply functional divergence when comparing phosphoproteomes. Overall, our study provides new key concepts and data for the study of how regulatory differences may be linked to phenotypic ones at the network level.
Collapse
|
28
|
Beltrao P, Bork P, Krogan NJ, van Noort V. Evolution and functional cross-talk of protein post-translational modifications. Mol Syst Biol 2013; 9:714. [PMID: 24366814 PMCID: PMC4019982 DOI: 10.1002/msb.201304521] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 11/18/2013] [Accepted: 11/22/2013] [Indexed: 12/19/2022] Open
Abstract
Protein post-translational modifications (PTMs) allow the cell to regulate protein activity and play a crucial role in the response to changes in external conditions or internal states. Advances in mass spectrometry now enable proteome wide characterization of PTMs and have revealed a broad functional role for a range of different types of modifications. Here we review advances in the study of the evolution and function of PTMs that were spurred by these technological improvements. We provide an overview of studies focusing on the origin and evolution of regulatory enzymes as well as the evolutionary dynamics of modification sites. Finally, we discuss different mechanisms of altering protein activity via post-translational regulation and progress made in the large-scale functional characterization of PTM function.
Collapse
Affiliation(s)
- Pedro Beltrao
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)CambridgeUK
| | - Peer Bork
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Max‐Delbruck‐Centre for Molecular MedicineBerlin‐BuchGermany
| | - Nevan J. Krogan
- Department of Cellular and Molecular PharmacologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- California Institute for Quantitative BiosciencesSan FranciscoCaliforniaUSA
- J. David Gladstone InstitutesSan FranciscoCaliforniaUSA
| | - Vera van Noort
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| |
Collapse
|
29
|
Luo G, Zhang J, Luca FC, Guo W. Mitotic phosphorylation of Exo84 disrupts exocyst assembly and arrests cell growth. ACTA ACUST UNITED AC 2013; 202:97-111. [PMID: 23836930 PMCID: PMC3704991 DOI: 10.1083/jcb.201211093] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitotic phosphorylation of Exo84 disrupts the assembly of the exocyst complex, thereby inhibiting exocytosis of select secreted cargoes and cell surface expansion. The rate of eukaryotic cell growth is tightly controlled for proper progression through each cell cycle stage and is important for cell size homeostasis. It was previously shown that cell growth is inhibited during mitosis when cells are preparing for division. However, the mechanism for growth arrest at this stage is unknown. Here we demonstrate that exocytosis of a select group of cargoes was inhibited before the metaphase–anaphase transition in the budding yeast Saccharomyces cerevisiae. The cyclin-dependent kinase, Cdk1, when bound to the mitotic cyclin Clb2, directly phosphorylated Exo84, a component of the exocyst complex essential for exocytosis. Mitotic phosphorylation of Exo84 disrupted the assembly of the exocyst complex, thereby affecting exocytosis and cell surface expansion. Our study demonstrates the coordination between membrane trafficking and cell cycle progression and provides a molecular mechanism by which cell growth is controlled during the cell division cycle.
Collapse
Affiliation(s)
- Guangzuo Luo
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
30
|
Harashima H, Dissmeyer N, Schnittger A. Cell cycle control across the eukaryotic kingdom. Trends Cell Biol 2013; 23:345-56. [PMID: 23566594 DOI: 10.1016/j.tcb.2013.03.002] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/28/2013] [Accepted: 03/06/2013] [Indexed: 11/25/2022]
Abstract
Almost two billion years of evolution have generated a vast and amazing variety of eukaryotic life with approximately 8.7 million extant species. Growth and reproduction of all of these organisms depend on faithful duplication and distribution of their chromosomes to the newly forming daughter cells in a process called the cell cycle. However, most of what is known today about cell cycle control comes from a few model species that belong to the unikonts; that is, to only one of five 'supergroups' that comprise the eukaryotic kingdom. Recently, analyzing species from distantly related clades is providing insights into general principles of cell cycle regulation and shedding light on its evolution. Here, referring to animal and fungal as opposed to non-unikont systems, especially flowering plants from the archaeplastid supergroup, we compare the conservation of central cell cycle regulator functions, the structure of network topologies, and the evolutionary dynamics of substrates of core cell cycle kinases.
Collapse
Affiliation(s)
- Hirofumi Harashima
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| | | | | |
Collapse
|
31
|
Xin X, Gfeller D, Cheng J, Tonikian R, Sun L, Guo A, Lopez L, Pavlenco A, Akintobi A, Zhang Y, Rual JF, Currell B, Seshagiri S, Hao T, Yang X, Shen YA, Salehi-Ashtiani K, Li J, Cheng AT, Bouamalay D, Lugari A, Hill DE, Grimes ML, Drubin DG, Grant BD, Vidal M, Boone C, Sidhu SS, Bader GD. SH3 interactome conserves general function over specific form. Mol Syst Biol 2013; 9:652. [PMID: 23549480 PMCID: PMC3658277 DOI: 10.1038/msb.2013.9] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/20/2013] [Indexed: 12/20/2022] Open
Abstract
Src homology 3 (SH3) domains bind peptides to mediate protein-protein interactions that assemble and regulate dynamic biological processes. We surveyed the repertoire of SH3 binding specificity using peptide phage display in a metazoan, the worm Caenorhabditis elegans, and discovered that it structurally mirrors that of the budding yeast Saccharomyces cerevisiae. We then mapped the worm SH3 interactome using stringent yeast two-hybrid and compared it with the equivalent map for yeast. We found that the worm SH3 interactome resembles the analogous yeast network because it is significantly enriched for proteins with roles in endocytosis. Nevertheless, orthologous SH3 domain-mediated interactions are highly rewired. Our results suggest a model of network evolution where general function of the SH3 domain network is conserved over its specific form.
Collapse
Affiliation(s)
- Xiaofeng Xin
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - David Gfeller
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jackie Cheng
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Raffi Tonikian
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lin Sun
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Ailan Guo
- Cell Signaling Technology, Danvers, MA, USA
| | - Lianet Lopez
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Alevtina Pavlenco
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Adenrele Akintobi
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Yingnan Zhang
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Jean-François Rual
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Bridget Currell
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | | | - Tong Hao
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Xinping Yang
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Yun A Shen
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Kourosh Salehi-Ashtiani
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jingjing Li
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Aaron T Cheng
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Dryden Bouamalay
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Adrien Lugari
- IMR Laboratory, UPR 3243, Institut de Microbiologie de la Méditérannée, CNRS and Aix-Marseille Université, Marseille Cedex 20, France
| | - David E Hill
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Mark L Grimes
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT, USA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Charles Boone
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sachdev S Sidhu
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Levy ED, Michnick SW, Landry CR. Protein abundance is key to distinguish promiscuous from functional phosphorylation based on evolutionary information. Philos Trans R Soc Lond B Biol Sci 2012; 367:2594-606. [PMID: 22889910 DOI: 10.1098/rstb.2012.0078] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In eukaryotic cells, protein phosphorylation is an important and widespread mechanism used to regulate protein function. Yet, of the thousands of phosphosites identified to date, only a few hundred at best have a characterized function. It was recently shown that these functional sites are significantly more conserved than phosphosites of unknown function, stressing the importance of considering evolutionary conservation in assessing the global functional landscape of phosphosites. This leads us to review studies that examined the impact of phosphorylation on evolutionary conservation. While all these studies have shown that conservation is greater among phosphorylated sites compared with non-phosphorylated ones, the magnitude of this difference varies greatly. Further, not all studies have considered key factors that may influence the rate of phosphosite evolution. Such key factors are their localization in ordered or disordered regions, their stoichiometry or the abundance of their corresponding protein. Here we take into account all of these factors simultaneously, which reveals remarkable evolutionary patterns. First, while it is well established that protein conservation increases with abundance, we show that phosphosites partly follow an opposite trend. More precisely, Saccharomyces cerevisiae phosphosites present among abundant proteins are 1.5 times more likely to diverge in the closely related species Saccharomyces bayanus when compared with phosphosites present in the 5 per cent least abundant proteins. Second, we show that conservation is coupled to stoichiometry, whereby sites frequently phosphorylated are more conserved than those rarely phosphorylated. Finally, we provide a model of functional and noisy or 'accidental' phosphorylation that explains these observations.
Collapse
Affiliation(s)
- Emmanuel D Levy
- Département de Biochimie, Université de Montréal, Montréal, Québec, Canada.
| | | | | |
Collapse
|
33
|
Kim DS, Hahn Y. Gains of ubiquitylation sites in highly conserved proteins in the human lineage. BMC Bioinformatics 2012; 13:306. [PMID: 23157318 PMCID: PMC3561281 DOI: 10.1186/1471-2105-13-306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 11/14/2012] [Indexed: 01/03/2023] Open
Abstract
Background Post-translational modification of lysine residues of specific proteins by ubiquitin modulates the degradation, localization, and activity of these target proteins. Here, we identified gains of ubiquitylation sites in highly conserved regions of human proteins that occurred during human evolution. Results We analyzed human ubiquitylation site data and multiple alignments of orthologous mammalian proteins including those from humans, primates, other placental mammals, opossum, and platypus. In our analysis, we identified 281 ubiquitylation sites in 252 proteins that first appeared along the human lineage during primate evolution: one protein had four novel sites; four proteins had three sites each; 18 proteins had two sites each; and the remaining 229 proteins had one site each. PML, which is involved in neurodevelopment and neurodegeneration, acquired three sites, two of which have been reported to be involved in the degradation of PML. Thirteen human proteins, including ERCC2 (also known as XPD) and NBR1, gained human-specific ubiquitylated lysines after the human-chimpanzee divergence. ERCC2 has a Lys/Gln polymorphism, the derived (major) allele of which confers enhanced DNA repair capacity and reduced cancer risk compared with the ancestral (minor) allele. NBR1 and eight other proteins that are involved in the human autophagy protein interaction network gained a novel ubiquitylation site. Conclusions The gain of novel ubiquitylation sites could be involved in the evolution of protein degradation and other regulatory networks. Although gains of ubiquitylation sites do not necessarily equate to adaptive evolution, they are useful candidates for molecular functional analyses to identify novel advantageous genetic modifications and innovative phenotypes acquired during human evolution.
Collapse
Affiliation(s)
- Dong Seon Kim
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul, 156-756, Korea.
| | | |
Collapse
|
34
|
Beltrao P, Albanèse V, Kenner LR, Swaney DL, Burlingame A, Villén J, Lim WA, Fraser JS, Frydman J, Krogan NJ. Systematic functional prioritization of protein posttranslational modifications. Cell 2012; 150:413-25. [PMID: 22817900 DOI: 10.1016/j.cell.2012.05.036] [Citation(s) in RCA: 325] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 03/21/2012] [Accepted: 05/18/2012] [Indexed: 11/24/2022]
Abstract
Protein function is often regulated by posttranslational modifications (PTMs), and recent advances in mass spectrometry have resulted in an exponential increase in PTM identification. However, the functional significance of the vast majority of these modifications remains unknown. To address this problem, we compiled nearly 200,000 phosphorylation, acetylation, and ubiquitination sites from 11 eukaryotic species, including 2,500 newly identified ubiquitylation sites for Saccharomyces cerevisiae. We developed methods to prioritize the functional relevance of these PTMs by predicting those that likely participate in cross-regulatory events, regulate domain activity, or mediate protein-protein interactions. PTM conservation within domain families identifies regulatory "hot spots" that overlap with functionally important regions, a concept that we experimentally validated on the HSP70 domain family. Finally, our analysis of the evolution of PTM regulation highlights potential routes for neutral drift in regulatory interactions and suggests that only a fraction of modification sites are likely to have a significant biological role.
Collapse
Affiliation(s)
- Pedro Beltrao
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94107, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lai ACW, Nguyen Ba AN, Moses AM. Predicting kinase substrates using conservation of local motif density. ACTA ACUST UNITED AC 2012; 28:962-9. [PMID: 22302575 DOI: 10.1093/bioinformatics/bts060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
MOTIVATION Protein kinases represent critical links in cell signaling. A central problem in computational biology is to systematically identify their substrates. RESULTS This study introduces a new method to predict kinase substrates by extracting evolutionary information from multiple sequence alignments in a manner that is tolerant to degenerate motif positioning. Given a known consensus, the new method (ConDens) compares the observed density of matches to a null model of evolution and does not require labeled training data. We confirmed that ConDens has improved performance compared with several existing methods in the field. Further, we show that it is generalizable and can predict interesting substrates for several important eukaryotic kinases where training data is not available. AVAILABILITY AND IMPLEMENTATION ConDens can be found at http://www.moseslab.csb.utoronto.ca/andyl/. CONTACT alan.moses@utoronto.ca SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Andy C W Lai
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada M5S 3G5
| | | | | |
Collapse
|
36
|
Amoutzias GD, He Y, Lilley KS, Van de Peer Y, Oliver SG. Evaluation and properties of the budding yeast phosphoproteome. Mol Cell Proteomics 2012; 11:M111.009555. [PMID: 22286756 PMCID: PMC3433898 DOI: 10.1074/mcp.m111.009555] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have assembled a reliable phosphoproteomic data set for budding yeast Saccharomyces cerevisiae and have investigated its properties. Twelve publicly available phosphoproteome data sets were triaged to obtain a subset of high-confidence phosphorylation sites (p-sites), free of “noisy” phosphorylations. Analysis of this combined data set suggests that the inventory of phosphoproteins in yeast is close to completion, but that these proteins may have many undiscovered p-sites. Proteins involved in budding and protein kinase activity have high numbers of p-sites and are highly over-represented in the vast majority of the yeast phosphoproteome data sets. The yeast phosphoproteome is characterized by a few proteins with many p-sites and many proteins with a few p-sites. We confirm a tendency for p-sites to cluster together and find evidence that kinases may phosphorylate off-target amino acids that are within one or two residues of their cognate target. This suggests that the precise position of the phosphorylated amino acid is not a stringent requirement for regulatory fidelity. Compared with nonphosphorylated proteins, phosphoproteins are more ancient, more abundant, have longer unstructured regions, have more genetic interactions, more protein interactions, and are under tighter post-translational regulation. It appears that phosphoproteins constitute the raw material for pathway rewiring and adaptation at various evolutionary rates.
Collapse
Affiliation(s)
- Grigoris D Amoutzias
- Cambridge Systems Biology Centre and Dept Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | |
Collapse
|
37
|
Hagai T, Tóth-Petróczy Á, Azia A, Levy Y. The origins and evolution of ubiquitination sites. MOLECULAR BIOSYSTEMS 2012; 8:1865-77. [DOI: 10.1039/c2mb25052g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Rudashevskaya EL, Ye J, Jensen ON, Fuglsang AT, Palmgren MG. Phosphosite mapping of P-type plasma membrane H+-ATPase in homologous and heterologous environments. J Biol Chem 2011; 287:4904-13. [PMID: 22174420 DOI: 10.1074/jbc.m111.307264] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Phosphorylation is an important posttranslational modification of proteins in living cells and primarily serves regulatory purposes. Several methods were employed for isolating phosphopeptides from proteolytically digested plasma membranes of Arabidopsis thaliana. After a mass spectrometric analysis of the resulting peptides we could identify 10 different phosphorylation sites in plasma membrane H(+)-ATPases AHA1, AHA2, AHA3, and AHA4/11, five of which have not been reported before, bringing the total number of phosphosites up to 11, which is substantially higher than reported so far for any other P-type ATPase. Phosphosites were almost exclusively (9 of 10) in the terminal regulatory domains of the pumps. The AHA2 isoform was subsequently expressed in the yeast Saccharomyces cerevisiae. The plant protein was phosphorylated at multiple sites in yeast, and surprisingly, seven of nine of the phosphosites identified in AHA2 were identical in the plant and fungal systems even though none of the target sequences in AHA2 show homology to proteins of the fungal host. These findings suggest an unexpected accessibility of the terminal regulatory domain of plasma membrane H(+)-ATPase to protein kinase action.
Collapse
Affiliation(s)
- Elena L Rudashevskaya
- Centre for Membrane Pumps in Cells and Disease-PUMPkin, Department of Plant Biology and Biotechnology, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.
| | | | | | | | | |
Collapse
|
39
|
Isoda M, Sako K, Suzuki K, Nishino K, Nakajo N, Ohe M, Ezaki T, Kanemori Y, Inoue D, Ueno H, Sagata N. Dynamic regulation of Emi2 by Emi2-bound Cdk1/Plk1/CK1 and PP2A-B56 in meiotic arrest of Xenopus eggs. Dev Cell 2011; 21:506-19. [PMID: 21871841 DOI: 10.1016/j.devcel.2011.06.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/15/2011] [Accepted: 06/27/2011] [Indexed: 11/29/2022]
Abstract
In vertebrates, unfertilized eggs are arrested at metaphase of meiosis II by Mos and Emi2, an inhibitor of the APC/C ubiquitin ligase. In Xenopus, Cdk1 phosphorylates Emi2 and both destabilizes and inactivates it, whereas Mos recruits PP2A phosphatase to antagonize the Cdk1 phosphorylation. However, how Cdk1 phosphorylation inhibits Emi2 is largely unknown. Here we show that multiple N-terminal Cdk1 phosphorylation motifs bind cyclin B1-Cdk1 itself, Plk1, and CK1δ/ε to inhibit Emi2. Plk1, after rebinding to other sites by self-priming phosphorylation, partially destabilizes Emi2. Cdk1 and CK1δ/ε sequentially phosphorylate the C-terminal APC/C-docking site, thereby cooperatively inhibiting Emi2 from binding the APC/C. In the presence of Mos, however, PP2A-B56β/ε bind to Emi2 and keep dephosphorylating it, particularly at the APC/C-docking site. Thus, Emi2 stability and activity are dynamically regulated by Emi2-bound multiple kinases and PP2A phosphatase. Our data also suggest a general role for Cdk1 substrate phosphorylation motifs in M phase regulation.
Collapse
Affiliation(s)
- Michitaka Isoda
- Department of Biology, Graduate School of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kim DS, Hahn Y. Identification of novel phosphorylation modification sites in human proteins that originated after the human-chimpanzee divergence. ACTA ACUST UNITED AC 2011; 27:2494-501. [PMID: 21775310 DOI: 10.1093/bioinformatics/btr426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
MOTIVATION Phosphorylation modifications of specific protein residues are involved in a wide range of biological processes such as modulation of intracellular signal networks. Here, we present the development and application of a bioinformatics procedure for systematic identification of human-specific phosphorylation sites in proteins that may have occurred after the human-chimpanzee divergence. RESULTS We collected annotated human phosphorylation sites and compared each site to orthologous mammalian proteins across taxa including chimpanzee, orangutan, rhesus macaque, marmoset, mouse, dog, cow, elephant, opossum and platypus. We identified 37 human-specific gains of annotated phosphorylation sites in 35 proteins: 22 serines, 12 threonines and 3 tyrosines. The novel phosphorylation sites are situated in highly conserved segments of the protein. Proteins with novel phosphorylation sites are involved in crucial biological processes such as cell division (AURKB, CASC5, MKI67 and PDCD4) and chromatin remodeling (HIRA, HIRIP3, HIST1H1T, NAP1L4 and LRWD1). Modified phosphorylatable residues produce novel target sites for protein kinases such as cyclin-dependent kinases and casein kinases, possibly resulting in rewiring and fine-tuning of phosphorylation regulatory networks. The potential human-specific phosphorylation sites identified in this study are useful as candidates for functional analysis to identify novel phenotypes in humans. CONTACT hahny@cau.ac.kr SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Dong Seon Kim
- School of Biological Sciences (BK21 Program) and Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 156-756, Korea
| | | |
Collapse
|
41
|
Moses AM, Landry CR. Moving from transcriptional to phospho-evolution: generalizing regulatory evolution? Trends Genet 2010; 26:462-7. [PMID: 20817339 DOI: 10.1016/j.tig.2010.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 07/29/2010] [Accepted: 08/03/2010] [Indexed: 12/31/2022]
Abstract
Much of biological diversity is thought to arise from changes in regulatory networks. Although the role of transcriptional regulation has been well established, the contribution to evolution of changes at other levels of regulation has yet to be addressed. Using examples from the literature and recent studies on the evolution of protein phosphorylation, we argue that protein regulatory networks also play a prime role in generating diversity within and between species. Because there are several analogies between the regulation of protein functions by kinases and the regulation of gene expression by transcription factors, the principles that guide transcriptional regulatory evolution can also be explored in kinase-substrate networks. These comparisons will allow us to generalize existing models of evolution across the complex layers of the cell's regulatory links.
Collapse
Affiliation(s)
- Alan M Moses
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | | |
Collapse
|
42
|
Nguyen Ba AN, Moses AM. Evolution of Characterized Phosphorylation Sites in Budding Yeast. Mol Biol Evol 2010; 27:2027-37. [DOI: 10.1093/molbev/msq090] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
43
|
Abstract
The Mcm2-7 complex serves as the eukaryotic replicative helicase, the molecular motor that both unwinds duplex DNA and powers fork progression during DNA replication. Consistent with its central role in this process, much prior work has illustrated that Mcm2-7 loading and activation are landmark events in the regulation of DNA replication. Unlike any other hexameric helicase, Mcm2-7 is composed of six unique and essential subunits. Although the unusual oligomeric nature of this complex has long hampered biochemical investigations, recent advances with both the eukaryotic as well as the simpler archaeal Mcm complexes provide mechanistic insight into their function. In contrast to better-studied homohexameric helicases, evidence suggests that the six Mcm2-7 complex ATPase active sites are functionally distinct and are likely specialized to accommodate the regulatory constraints of the eukaryotic process.
Collapse
|
44
|
Schweiger R, Linial M. Cooperativity within proximal phosphorylation sites is revealed from large-scale proteomics data. Biol Direct 2010; 5:6. [PMID: 20100358 PMCID: PMC2828979 DOI: 10.1186/1745-6150-5-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 01/26/2010] [Indexed: 12/14/2022] Open
Abstract
Background Phosphorylation is the most prevalent post-translational modification on eukaryotic proteins. Multisite phosphorylation enables a specific combination of phosphosites to determine the speed, specificity and duration of biological response. Until recent years, the lack of high quality data limited the possibility for analyzing the properties of phosphorylation at the proteome scale and in the context of a wide range of conditions. Thanks to advances of mass spectrometry technologies, thousands of phosphosites from in-vivo experiments were identified and archived in the public domain. Such resource is appropriate to derive an unbiased view on the phosphosites properties in eukaryotes and on their functional relevance. Results We present statistically rigorous tests on the spatial and functional properties of a collection of ~70,000 reported phosphosites. We show that the distribution of phosphosites positioning along the protein tends to occur as dense clusters of Serine/Threonines (pS/pT) and between Serine/Threonines and Tyrosines, but generally not as much between Tyrosines (pY) only. This phenomenon is more ubiquitous than anticipated and is pertinent for most eukaryotic proteins: for proteins with ≥ 2 phosphosites, 54% of all pS/pT sites are within 4 amino acids of another site. We found a strong tendency for clustered pS/pT to be activated by the same kinase. Large-scale analyses of phosphopeptides are thus consistent with a cooperative function within the cluster. Conclusions We present evidence supporting the notion that clusters of pS/pT but generally not pY should be considered as the elementary building blocks in phosphorylation regulation. Indeed, closely positioned sites tend to be activated by the same kinase, a signal that overrides the tendency of a protein to be activated by a single or only few kinases. Within these clusters, coordination and positional dependency is evident. We postulate that cellular regulation takes advantage of such design. Specifically, phosphosite clusters may increase the robustness of the effectiveness of phosphorylation-dependent response. Reviewers Reviewed by Joel Bader, Frank Eisenhaber, Emmanuel Levy (nominated by Sarah Teichmann). For the full reviews, please go to the Reviewers' comments section.
Collapse
Affiliation(s)
- Regev Schweiger
- School of Computer Science and Engineering, Hebrew University of Jerusalem, 91904, Israel
| | | |
Collapse
|
45
|
Holt LJ, Tuch BB, Villén J, Johnson AD, Gygi SP, Morgan DO. Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 2009; 325:1682-6. [PMID: 19779198 DOI: 10.1126/science.1172867] [Citation(s) in RCA: 716] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To explore the mechanisms and evolution of cell-cycle control, we analyzed the position and conservation of large numbers of phosphorylation sites for the cyclin-dependent kinase Cdk1 in the budding yeast Saccharomyces cerevisiae. We combined specific chemical inhibition of Cdk1 with quantitative mass spectrometry to identify the positions of 547 phosphorylation sites on 308 Cdk1 substrates in vivo. Comparisons of these substrates with orthologs throughout the ascomycete lineage revealed that the position of most phosphorylation sites is not conserved in evolution; instead, clusters of sites shift position in rapidly evolving disordered regions. We propose that the regulation of protein function by phosphorylation often depends on simple nonspecific mechanisms that disrupt or enhance protein-protein interactions. The gain or loss of phosphorylation sites in rapidly evolving regions could facilitate the evolution of kinase-signaling circuits.
Collapse
Affiliation(s)
- Liam J Holt
- Departments of Physiology and Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Mark O Collins
- Proteomic Mass Spectrometry Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.
| |
Collapse
|
47
|
Tan CSH, Bodenmiller B, Pasculescu A, Jovanovic M, Hengartner MO, Jørgensen C, Bader GD, Aebersold R, Pawson T, Linding R. Comparative analysis reveals conserved protein phosphorylation networks implicated in multiple diseases. Sci Signal 2009; 2:ra39. [PMID: 19638616 DOI: 10.1126/scisignal.2000316] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Protein kinases enable cellular information processing. Although numerous human phosphorylation sites and their dynamics have been characterized, the evolutionary history and physiological importance of many signaling events remain unknown. Using target phosphoproteomes determined with a similar experimental and computational pipeline, we investigated the conservation of human phosphorylation events in distantly related model organisms (fly, worm, and yeast). With a sequence-alignment approach, we identified 479 phosphorylation events in 344 human proteins that appear to be positionally conserved over approximately 600 million years of evolution and hence are likely to be involved in fundamental cellular processes. This sequence-alignment analysis suggested that many phosphorylation sites evolve rapidly and therefore do not display strong evolutionary conservation in terms of sequence position in distantly related organisms. Thus, we devised a network-alignment approach to reconstruct conserved kinase-substrate networks, which identified 778 phosphorylation events in 698 human proteins. Both methods identified proteins tightly regulated by phosphorylation as well as signal integration hubs, and both types of phosphoproteins were enriched in proteins encoded by disease-associated genes. We analyzed the cellular functions and structural relationships for these conserved signaling events, noting the incomplete nature of current phosphoproteomes. Assessing phosphorylation conservation at both site and network levels proved useful for exploring both fast-evolving and ancient signaling events. We reveal that multiple complex diseases seem to converge within the conserved networks, suggesting that disease development might rely on common molecular networks.
Collapse
Affiliation(s)
- Chris Soon Heng Tan
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Beltrao P, Trinidad JC, Fiedler D, Roguev A, Lim WA, Shokat KM, Burlingame AL, Krogan NJ. Evolution of phosphoregulation: comparison of phosphorylation patterns across yeast species. PLoS Biol 2009; 7:e1000134. [PMID: 19547744 PMCID: PMC2691599 DOI: 10.1371/journal.pbio.1000134] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 05/12/2009] [Indexed: 12/27/2022] Open
Abstract
Analysis of the phosphoproteomes and the gene interaction networks of divergent yeast species defines the relative contribution of changes in protein phosphorylation pathways to the generation of phenotypic diversity. The extent by which different cellular components generate phenotypic diversity is an ongoing debate in evolutionary biology that is yet to be addressed by quantitative comparative studies. We conducted an in vivo mass-spectrometry study of the phosphoproteomes of three yeast species (Saccharomyces cerevisiae, Candida albicans, and Schizosaccharomyces pombe) in order to quantify the evolutionary rate of change of phosphorylation. We estimate that kinase–substrate interactions change, at most, two orders of magnitude more slowly than transcription factor (TF)–promoter interactions. Our computational analysis linking kinases to putative substrates recapitulates known phosphoregulation events and provides putative evolutionary histories for the kinase regulation of protein complexes across 11 yeast species. To validate these trends, we used the E-MAP approach to analyze over 2,000 quantitative genetic interactions in S. cerevisiae and Sc. pombe, which demonstrated that protein kinases, and to a greater extent TFs, show lower than average conservation of genetic interactions. We propose therefore that protein kinases are an important source of phenotypic diversity. Natural selection at a population level requires phenotypic diversity, which at the molecular level arises by mutation of the genome of each individual. What kinds of changes at the level of the DNA are most important for the generation of phenotypic differences remains a fundamental question in evolutionary biology. One well-studied source of phenotypic diversity is mutation in gene regulatory regions that results in changes in gene expression, but what proportion of phenotypic diversity is due to such mutations is not entirely clear. We investigated the relative contribution to phenotypic diversity of mutations in protein-coding regions compared to mutations in gene regulatory sequences. Given the important regulatory role played by phosphorylation across biological systems, we focused on mutations in protein-coding regions that alter protein–protein interactions involved in the binding of kinases to their substrate proteins. We studied the evolution of this “phosphoregulation” by analyzing the in vivo complement of phosphorylated proteins (the “phosphoproteome”) in three highly diverged yeast species—the budding yeast Saccharomyces cerevisiae, the pathogenic yeast Candida albicans, and the fission yeast Schizosaccharomyces pombe—and integrating those data with existing data on thousands of known genetic interactions from S. cerevisiae and Sc. pombe. We show that kinase–substrate interactions are altered at a rate that is at most two orders of magnitude slower than the alteration of transcription factor (TF)–promoter interactions, whereas TFs and kinases both show a faster than average rate of functional divergence estimated by the cross-species analysis of genetic interactions. Our data provide a quantitative estimate of the relative frequencies of different kinds of functionally relevant mutations and demonstrate that, like mutations in gene regulatory regions, mutations that result in changes in kinase–substrate interactions are an important source of phenotypic diversity.
Collapse
Affiliation(s)
- Pedro Beltrao
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (PB); (NJK)
| | - Jonathan C. Trinidad
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Dorothea Fiedler
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Assen Roguev
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
| | - Wendell A. Lim
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, United States of America
- Cell Propulsion Laboratory (a National Institutes of Health Nanomedicine Development Center), University of California San Francisco, San Francisco, California, United States of America
| | - Kevan M. Shokat
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (PB); (NJK)
| |
Collapse
|
49
|
Drury LS, Diffley JFX. Factors affecting the diversity of DNA replication licensing control in eukaryotes. Curr Biol 2009; 19:530-5. [PMID: 19285403 DOI: 10.1016/j.cub.2009.02.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 01/16/2009] [Accepted: 02/10/2009] [Indexed: 02/05/2023]
Abstract
Replication of eukaryotic genomes is limited to once per cell cycle, by a two-step mechanism. DNA replication origins are first "licensed" during G1 phase by loading of an inactive DNA helicase (Mcm2-7) into pre-replicative complexes (pre-RCs). Initiation then occurs during S phase, triggered by cyclin-dependent kinases (CDKs), which promote recruitment of proteins required for helicase activation and replisome assembly. CDKs and the anaphase promoting complex/cyclosome (APC/C) restrict licensing to G1 phase by directly and indirectly regulating pre-RC components, including ORC, Cdc6, Cdt1, and Mcm2-7. Despite the fundamental importance of licensing regulation, the mechanisms by which pre-RC components are regulated differ widely across Eukarya. Here we show that even within the genus Saccharomyces, Cdc6 is regulated differently in different species. We propose that two factors contribute to the rapid evolution of licensing regulation. The first is redundancy: eliminating any single pre-RC-regulatory mechanism has very little affect on viability. The second is interchangeability: we show that regulatory mechanisms can be swapped between pre-RC components without compromising the block to re-replication. These experiments provide a framework for understanding the diversity of licensing regulation in eukaryotes and provide new tools for manipulating the chromosome-replication cycle.
Collapse
Affiliation(s)
- Lucy S Drury
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK
| | | |
Collapse
|
50
|
Genotype-phenotype mapping developmental biology confronts the toolkit paradox. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 278:119-48. [PMID: 19815178 DOI: 10.1016/s1937-6448(09)78003-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The quest to understand the relationship between an organism's DNA sequence and three-dimensional form is an interdisciplinary task, integrating diverse fields of the life sciences. The relevance of the metaphor of a genotype-phenotype map is explored from a developmental perspective, in light of the recent concept of a "molecular toolkit" of protein-coding genes, and the widespread view that analyzing the logic and mechanics of gene regulation at multiple levels is key to explaining how morphology is genetically encoded. We discuss the challenges of decoding genomes despite variable genetic backgrounds, the dynamically changing physical and molecular contexts of the internal environment during development, and the impact of external forces on morphogenesis.
Collapse
|