1
|
Goldshtein A, Chen X, Amichai E, Boonman A, Harten L, Yinon O, Orchan Y, Nathan R, Toledo S, Couzin ID, Yovel Y. Acoustic cognitive map-based navigation in echolocating bats. Science 2024; 386:561-567. [PMID: 39480949 DOI: 10.1126/science.adn6269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/16/2024] [Indexed: 11/02/2024]
Abstract
Bats are known for their ability to use echolocation for obstacle avoidance and orientation. However, the extent to which bats utilize their highly local and directional echolocation for kilometer-scale navigation is unknown. In this study, we translocated wild Kuhl's pipistrelle bats and tracked their homing abilities while manipulating their visual, magnetic, and olfactory sensing and accurately tracked them using a new reverse GPS system. We show that bats can identify their location after translocation and conduct several-kilometer map-based navigation using solely echolocation. This proposition was further supported by a large-scale echolocation model disclosing how bats use environmental acoustic information to perform acoustic cognitive map-based navigation. We also demonstrate that navigation is improved when using both echolocation and vision.
Collapse
Affiliation(s)
- Aya Goldshtein
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, 78464 Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Xing Chen
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eran Amichai
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Ecology, Evolution, Environment and Society Graduate Program, Dartmouth College, Hanover, NH 03766, USA
| | - Arjan Boonman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lee Harten
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Omer Yinon
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yotam Orchan
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ran Nathan
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Sivan Toledo
- Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Iain D Couzin
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, 78464 Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
2
|
Fischer LF, Xu L, Murray KT, Harnett MT. Learning to use landmarks for navigation amplifies their representation in retrosplenial cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.18.607457. [PMID: 39229229 PMCID: PMC11370392 DOI: 10.1101/2024.08.18.607457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Visual landmarks provide powerful reference signals for efficient navigation by altering the activity of spatially tuned neurons, such as place cells, head direction cells, and grid cells. To understand the neural mechanism by which landmarks exert such strong influence, it is necessary to identify how these visual features gain spatial meaning. In this study, we characterized visual landmark representations in mouse retrosplenial cortex (RSC) using chronic two-photon imaging of the same neuronal ensembles over the course of spatial learning. We found a pronounced increase in landmark-referenced activity in RSC neurons that, once established, remained stable across days. Changing behavioral context by uncoupling treadmill motion from visual feedback systematically altered neuronal responses associated with the coherence between visual scene flow speed and self-motion. To explore potential underlying mechanisms, we modeled how burst firing, mediated by supralinear somatodendritic interactions, could efficiently mediate context- and coherence-dependent integration of landmark information. Our results show that visual encoding shifts to landmark-referenced and context-dependent codes as these cues take on spatial meaning during learning.
Collapse
Affiliation(s)
- Lukas F. Fischer
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Liane Xu
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Keith T. Murray
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Mark T. Harnett
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| |
Collapse
|
3
|
Regan CE, Bogdanova MI, Newell M, Gunn C, Wanless S, Harris MP, Lopez SL, Benninghaus E, Bolton M, Daunt F, Searle KR. Seabirds show foraging site and route fidelity but demonstrate flexibility in response to local information. MOVEMENT ECOLOGY 2024; 12:46. [PMID: 38872225 DOI: 10.1186/s40462-024-00467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/03/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Fidelity to a given foraging location or route may be beneficial when environmental conditions are predictable but costly if conditions deteriorate or become unpredictable. Understanding the magnitude of fidelity displayed by different species and the processes that drive or erode it is therefore vital for understanding how fidelity may shape the demographic consequences of anthropogenic change. In particular, understanding the information that individuals may use to adjust their fidelity will facilitate improved predictions of how fidelity may change as environments change and the extent to which it will buffer individuals against such changes. METHODS We used movement data collected during the breeding season across eight years for common guillemots, Atlantic puffins, razorbills, and black-legged kittiwakes breeding on the Isle of May, Scotland to understand: (1) whether foraging site/route fidelity occurred within and between years, (2) whether the degree of fidelity between trips was predicted by personal foraging effort, and (3) whether different individuals made more similar trips when they overlapped in time at the colony prior to departure and/or when out at sea suggesting the use of the same local environmental cues or information on the decisions made by con- and heterospecifics. RESULTS All species exhibited site and route fidelity both within- and between-years, and fidelity between trips in guillemots and razorbills was related to metrics of foraging effort, suggesting they adjust fidelity to their personal foraging experience. We also found evidence that individuals used local environmental cues of prey location or availability and/or information gained by observing conspecifics when choosing foraging routes, particularly in puffins, where trips of individuals that overlapped temporally at the colony or out at sea were more similar. CONCLUSIONS The fidelity shown by these seabird species has the potential to put them at greater risk in the face of environmental change by driving individuals to continue using areas being degraded by anthropogenic pressures. However, our results suggest that individuals show some flexibility in their fidelity, which may promote resilience under environmental change. The benefits of this flexibility are likely to depend on numerous factors, including the rapidity and spatial scale of environmental change and the reliability of the information individuals use to choose foraging sites or routes, thus highlighting the need to better understand how organisms combine cues, prior experience, and other sources of information to make movement decisions.
Collapse
Affiliation(s)
- Charlotte E Regan
- UK Centre for Ecology & Hydrology, Bush Estate, EH26 0QB, Penicuik, Midlothian, UK.
| | - Maria I Bogdanova
- UK Centre for Ecology & Hydrology, Bush Estate, EH26 0QB, Penicuik, Midlothian, UK
| | - Mark Newell
- UK Centre for Ecology & Hydrology, Bush Estate, EH26 0QB, Penicuik, Midlothian, UK
| | - Carrie Gunn
- UK Centre for Ecology & Hydrology, Bush Estate, EH26 0QB, Penicuik, Midlothian, UK
| | - Sarah Wanless
- UK Centre for Ecology & Hydrology, Bush Estate, EH26 0QB, Penicuik, Midlothian, UK
| | - Mike P Harris
- UK Centre for Ecology & Hydrology, Bush Estate, EH26 0QB, Penicuik, Midlothian, UK
| | | | - Ella Benninghaus
- UK Centre for Ecology & Hydrology, Bush Estate, EH26 0QB, Penicuik, Midlothian, UK
| | - Mark Bolton
- RSPB Centre for Conservation Science, AB15 6GZ, Aberdeen, UK
| | - Francis Daunt
- UK Centre for Ecology & Hydrology, Bush Estate, EH26 0QB, Penicuik, Midlothian, UK
| | - Kate R Searle
- UK Centre for Ecology & Hydrology, Bush Estate, EH26 0QB, Penicuik, Midlothian, UK
| |
Collapse
|
4
|
Gagliardo A, Bingman VP. The avian olfactory system and hippocampus: Complementary roles in the olfactory and visual guidance of homing pigeon navigation. Curr Opin Neurobiol 2024; 86:102870. [PMID: 38552546 DOI: 10.1016/j.conb.2024.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/19/2024] [Accepted: 03/07/2024] [Indexed: 06/11/2024]
Abstract
The homing pigeon is the foundational model species used to investigate the neural control of avian navigation. The olfactory system is critically involved in implementing the so-called olfactory map, used to locate position relative to home from unfamiliar locations. The hippocampal formation supports a complementary navigational system based on familiar visual landmarks. Insight into the neural control of pigeon navigation has been revolutionised by GPS-tracking technology, which has been crucial for both detailing the critical role of environmental odours for navigation over unfamiliar areas as well as offering unprecedented insight into the role of the hippocampal formation in visual landscape/landmark-based navigation, including a possible, unexpected role in visual-spatial perception.
Collapse
Affiliation(s)
- Anna Gagliardo
- Department of Biology, University of Pisa, 56126 Pisa, Italy.
| | - Verner P Bingman
- Department of Psychology, J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA
| |
Collapse
|
5
|
Fang K, Guo X, Tang Y, Wang W, Wang Z, Dai Z. High-Frequency Local Field Potential Oscillations for Pigeons in Effective Turning. Animals (Basel) 2024; 14:509. [PMID: 38338152 PMCID: PMC10854807 DOI: 10.3390/ani14030509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Flexible turning behavior endows Homing Pigeons (Columba livia domestica) with high adaptability and intelligence in long-distance flight, foraging, hazard avoidance, and social interactions. The present study recorded the activity pattern of their local field potential (LFP) oscillations and explored the relationship between different bands of oscillations and turning behaviors in the formatio reticularis medialis mesencephali (FRM). The results showed that the C (13-60 Hz) and D (61-130 Hz) bands derived from FRM nuclei oscillated significantly in active turning, while the D and E (131-200 Hz) bands oscillated significantly in passive turning. Additionally, compared with lower-frequency stimulation (40 Hz and 60 Hz), 80 Hz stimulation can effectively activate the turning function of FRM nuclei. Electrical stimulation elicited stronger oscillations of neural activity, which strengthened the pigeons' turning locomotion willingness, showing an enhanced neural activation effect. These findings suggest that different band oscillations play different roles in the turning behavior; in particular, higher-frequency oscillations (D and E bands) enhance the turning behavior. These findings will help us decode the complex relationship between bird brains and behaviors and are expected to facilitate the development of neuromodulation techniques for animal robotics.
Collapse
Affiliation(s)
- Ke Fang
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210001, China; (K.F.); (X.G.); (Y.T.); (W.W.)
| | - Xiaofei Guo
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210001, China; (K.F.); (X.G.); (Y.T.); (W.W.)
| | - Yezhong Tang
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210001, China; (K.F.); (X.G.); (Y.T.); (W.W.)
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu 610041, China
| | - Wenbo Wang
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210001, China; (K.F.); (X.G.); (Y.T.); (W.W.)
| | - Zhouyi Wang
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210001, China; (K.F.); (X.G.); (Y.T.); (W.W.)
| | - Zhendong Dai
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210001, China; (K.F.); (X.G.); (Y.T.); (W.W.)
| |
Collapse
|
6
|
Gagliardo A, Pollonara E, Casini G, Bingman VP. Unilateral hippocampal lesions and the navigational performance of homing pigeons as revealed by GPS-tracking. ETHOL ECOL EVOL 2022. [DOI: 10.1080/03949370.2022.2152105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anna Gagliardo
- Department of Biology, University of Pisa, Pisa 56126, Italy
| | | | - Giovanni Casini
- Department of Biology, University of Pisa, Pisa 56126, Italy
| | - Verner P. Bingman
- Department of Psychology, Bowling Green State University, Bowling Green, OH 43403, USA
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green, OH 43403, USA
| |
Collapse
|
7
|
An artificial neural network explains how bats might use vision for navigation. Commun Biol 2022; 5:1325. [PMID: 36463311 PMCID: PMC9719490 DOI: 10.1038/s42003-022-04260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
Animals navigate using various sensory information to guide their movement. Miniature tracking devices now allow documenting animals' routes with high accuracy. Despite this detailed description of animal movement, how animals translate sensory information to movement is poorly understood. Recent machine learning advances now allow addressing this question with unprecedented statistical learning tools. We harnessed this power to address visual-based navigation in fruit bats. We used machine learning and trained a convolutional neural network to navigate along a bat's route using visual information that would have been available to the real bat, which we collected using a drone. We show that a simple feed-forward network can learn to guide the agent towards a goal based on sensory input, and can generalize its learning both in time and in space. Our analysis suggests how animals could potentially use visual input for navigation and which features might be useful for this purpose.
Collapse
|
8
|
Further Reading. Anim Welf 2022. [DOI: 10.1002/9781119857099.furread] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Rueda-Uribe C, Lötberg U, Åkesson S. Foraging on the wing for fish while migrating over changing landscapes: traveling behaviors vary with available aquatic habitat for Caspian terns. MOVEMENT ECOLOGY 2022; 10:9. [PMID: 35236399 PMCID: PMC8892754 DOI: 10.1186/s40462-022-00307-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Birds that forage while covering distance during migration should adjust traveling behaviors as the availability of foraging habitat changes. Particularly, the behavior of those species that depend on bodies of water to find food yet manage to migrate over changing landscapes may be limited by the substantial variation in feeding opportunities along the route. METHODS Using GPS tracking data, we studied how traveling behaviors vary with available foraging habitat during the long-distance migration of Caspian terns (Hydroprogne caspia), a bird with a specialized diet based on fish that needs bodies of water to forage. We measured individual variation in five traveling behaviors related to foraging along the route and used linear mixed effects models to test the following variables as predictors of traveling behaviors: proportion of overlap with water bodies, weather conditions, days at previous stopover and days of migration. Also, we tested if during traveling days flight height and speed varied with time of day and if birds were in areas with greater proportion of water bodies compared to what would be expected by chance from the landscape. RESULTS We found variation in migratory traveling behaviors that was mainly related to the proportion of overlap with water bodies and experienced tailwinds. Suggesting a mixed migratory strategy with fly-and-foraging, Caspian terns reduced travel speed, flew fewer hours of the day, had lower flight heights and increased diurnal over nocturnal migratory flight hours as the proportion of overlap with water bodies increased. Birds had lower flight speeds and higher flight heights during the day, were in foraging habitats with greater proportions of water than expected by chance but avoided foraging detours. Instead, route tortuosity was associated with lower wind support and cloudier skies. CONCLUSIONS Our findings show how birds may adjust individual behavior as foraging habitat availability changes during migration and contribute to the growing knowledge on mixed migratory strategies of stopover use and fly-and-forage.
Collapse
Affiliation(s)
- C Rueda-Uribe
- Department of Biology, Centre for Animal Movement Research, Lund University, Ecology Building, 223 62, Lund, Sweden.
| | - U Lötberg
- BirdLife Sweden, Stenhusa gård, Lilla Brunneby 106, 386 62, Mörbylånga, Sweden
| | - S Åkesson
- Department of Biology, Centre for Animal Movement Research, Lund University, Ecology Building, 223 62, Lund, Sweden.
| |
Collapse
|
10
|
Hou H, Wang X, Yang C, Cai X, Lv W, Tu Y, Bao A, Wu Q, Zhao W, Yao J, Ding W. Comparative Genome and Transcriptome Integration Studies Reveal the Mechanism of Pectoral Muscle Development and Function in Pigeons. Front Genet 2022; 12:735795. [PMID: 34987544 PMCID: PMC8721168 DOI: 10.3389/fgene.2021.735795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Pigeon breed resources provide a genetic model for the study of phenomics. The pectoral muscles play a key role for the meat production performance of the meat pigeon and the athletic ability of the High flyers. Euro-pigeons and Silver King pigeons are commercial varieties that exhibit good meat production performance. In contrast to the domestication direction of meat pigeons, the traditional Chinese ornamental pigeon breed, High flyers, has a small and light body. Here, we investigate the molecular mechanism of the pectoral muscle development and function of pigeons using whole-genome and RNA sequencing data. The selective sweep analysis (FST and log2 (θπ ratio)) revealed 293 and 403 positive selection genes in Euro-pigeons and Silver King, respectively, of which 65 genes were shared. With the Silver King and Euro-pigeon as the control group, the High flyers were selected for 427 and 566 genes respectively. There were 673 differentially expressed genes in the breast muscle transcriptome between the commercial meat pigeons and ornamental pigeons. Pigeon genome selection signal combined with the breast muscle transcriptome revealed that six genes (SLC16A10, S100B, SYNE1, HECW2, CASQ2 and LOC110363470) from commercial varieties of pigeons and five genes (INSC, CALCB, ZBTB21, B2M and LOC110356506) from Chinese traditional ornamental pigeons were positively selected which were involved in pathways related to muscle development and function. This study provides new insights into the selection of different directions and the genetic mechanism related to muscle development in pigeons.
Collapse
Affiliation(s)
- Haobin Hou
- Shanghai Academy of Agricultural Sciences, Shanghai, China.,National Poultry Engineer Research Center, Shanghai, China
| | - Xiaoliang Wang
- Shanghai Academy of Agricultural Sciences, Shanghai, China.,National Poultry Engineer Research Center, Shanghai, China
| | - Changsuo Yang
- Shanghai Academy of Agricultural Sciences, Shanghai, China.,National Poultry Engineer Research Center, Shanghai, China
| | - Xia Cai
- Shanghai Academy of Agricultural Sciences, Shanghai, China.,National Poultry Engineer Research Center, Shanghai, China
| | - Wenwei Lv
- National Poultry Engineer Research Center, Shanghai, China
| | - Yingying Tu
- National Poultry Engineer Research Center, Shanghai, China
| | | | - Quanli Wu
- Shanghai Jinhuang Pigeon Company, Shanghai, China
| | - Weimin Zhao
- Shanghai Jinhuang Pigeon Company, Shanghai, China
| | - Junfeng Yao
- Shanghai Academy of Agricultural Sciences, Shanghai, China.,National Poultry Engineer Research Center, Shanghai, China
| | - Weixing Ding
- Shanghai Academy of Agricultural Sciences, Shanghai, China.,National Poultry Engineer Research Center, Shanghai, China
| |
Collapse
|
11
|
Collet J, Sasaki T, Biro D. Pigeons retain partial memories of homing paths years after learning them individually, collectively or culturally. Proc Biol Sci 2021; 288:20212110. [PMID: 34784759 PMCID: PMC8595992 DOI: 10.1098/rspb.2021.2110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/22/2021] [Indexed: 11/24/2022] Open
Abstract
Memory of past experience is central to many animal decisions, but how long specific memories can influence behaviour is poorly understood. Few studies have reported memories retrieved after several years in non-human animals, especially for spatial tasks, and whether the social context during learning could affect long-term memory retention. We investigated homing pigeons' spatial memory by GPS-recording their homing paths from a site 9 km from their loft. We compared solo flights of naive pigeons with those of pigeons that had last homed from this site 3-4 years earlier, having learnt a homing route either alone (individual learning), together with a naive partner (collective learning) or within cultural transmission chains (cultural learning). We used as a control a second release site unfamiliar to all pigeons. Pigeons from all learning treatments outperformed naive birds at the familiar (but not the unfamiliar) site, but the idiosyncratic routes they formerly used several years before were now partially forgotten. Our results show that non-human animals can use their memory to solve a spatial task years after they last performed it, irrespective of the social context during learning. They also suggest that without reinforcement, landmarks and culturally acquired 'route traditions' are gradually forgotten.
Collapse
Affiliation(s)
- Julien Collet
- Oxford Navigation Group, Department of Zoology, University of Oxford, 11A Mansfield Road, Oxford OX1 3SZ, UK
| | - Takao Sasaki
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Dora Biro
- Oxford Navigation Group, Department of Zoology, University of Oxford, 11A Mansfield Road, Oxford OX1 3SZ, UK
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| |
Collapse
|
12
|
Dixit N, Sarkar U, Trejo E, Couey P, Rivadeneira NA, Ciccarelli B, Burke N. Catalyzing Navigation for Breast Cancer Survivorship (CaNBCS) in Safety-Net Settings: A Mixed Methods Study. Cancer Control 2021; 28:10732748211038734. [PMID: 34657452 PMCID: PMC8521758 DOI: 10.1177/10732748211038734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Purpose The current number of breast cancer survivors (BCS) in the United States is approximately 3.8 million, and this number is further expected to increase with improvement in treatments. Survivorship care plans (SCPs) are patient-centered tools that are designed to meet cancer survivors' informational needs about their treatment history, recommended health care, and health maintenance. However, the data on SCP benefits remain uncertain, especially in low-income and racial and ethnic minority cancer survivors. Patient navigation is an effective intervention to improve patient adherence and experience of interdisciplinary breast cancer treatment. Objectives This study sought to understand the role of lay patient navigators (LPN) in survivorship care planning for BCS in safety-net settings. Methods This study is a mixed methods pilot randomized clinical trial to understand the role of patient navigation in cancer survivorship care planning in a public hospital. We invited BCS who had completed active breast cancer treatment within 5 years. LPNs discussed survivorship care planning and survivorship care-related issues with BCS in the intervention arm over a 6-month intervention period and accompanied patients to their primary care appointment. LPNs also encouraged survivors to discuss health care issues with oncology and primary care providers. The primary objective was to assess BCS’ health-related quality of life (HRQOL). The secondary objectives were self-efficacy and implementation. We assessed implementation with 45–60-min semi-structured interviews with 15 BCS recruited from the intervention arm and 60-min focus groups with the oncologists and separately with LPNs. Results We enrolled 40 patients, 20 randomized to usual care and 20 randomized to LPN navigation. We did not find a statistically significant difference between the two arms in HRQOL. There was also no difference in self-efficacy between the two arms. Qualitative analysis identified implementation barriers to intervention that may have contributed to less effective intervention. Implications for Cancer Survivors Future survivorship care planning interventions need to consider: Cancer survivors’ needs and preferences, the need for dedicated resources, and the role of electronic health records in survivorship care plan delivery.
Collapse
Affiliation(s)
- Niharika Dixit
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Urmimala Sarkar
- Division of General Internal Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA.,Center for Vulnerable Populations, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Evelin Trejo
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Paul Couey
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Natalie A Rivadeneira
- Division of General Internal Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA.,Center for Vulnerable Populations, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Barbara Ciccarelli
- Cancer Navigation Program, San Francisco Department of Public Health, San Francisco, California, USA
| | - Nancy Burke
- School of Social Sciences, Humanities, and Arts, University of California Merced, Merced, California, USA
| |
Collapse
|
13
|
Kashetsky T, Avgar T, Dukas R. The Cognitive Ecology of Animal Movement: Evidence From Birds and Mammals. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.724887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cognition, defined as the processes concerned with the acquisition, retention and use of information, underlies animals’ abilities to navigate their local surroundings, embark on long-distance seasonal migrations, and socially learn information relevant to movement. Hence, in order to fully understand and predict animal movement, researchers must know the cognitive mechanisms that generate such movement. Work on a few model systems indicates that most animals possess excellent spatial learning and memory abilities, meaning that they can acquire and later recall information about distances and directions among relevant objects. Similarly, field work on several species has revealed some of the mechanisms that enable them to navigate over distances of up to several thousand kilometers. Key behaviors related to movement such as the choice of nest location, home range location and migration route are often affected by parents and other conspecifics. In some species, such social influence leads to the formation of aggregations, which in turn may lead to further social learning about food locations or other resources. Throughout the review, we note a variety of topics at the interface of cognition and movement that invite further investigation. These include the use of social information embedded in trails, the likely important roles of soundscapes and smellscapes, the mechanisms that large mammals rely on for long-distance migration, and the effects of expertise acquired over extended periods.
Collapse
|
14
|
Lewis MA, Fagan WF, Auger-Méthé M, Frair J, Fryxell JM, Gros C, Gurarie E, Healy SD, Merkle JA. Learning and Animal Movement. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.681704] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Integrating diverse concepts from animal behavior, movement ecology, and machine learning, we develop an overview of the ecology of learning and animal movement. Learning-based movement is clearly relevant to ecological problems, but the subject is rooted firmly in psychology, including a distinct terminology. We contrast this psychological origin of learning with the task-oriented perspective on learning that has emerged from the field of machine learning. We review conceptual frameworks that characterize the role of learning in movement, discuss emerging trends, and summarize recent developments in the analysis of movement data. We also discuss the relative advantages of different modeling approaches for exploring the learning-movement interface. We explore in depth how individual and social modalities of learning can matter to the ecology of animal movement, and highlight how diverse kinds of field studies, ranging from translocation efforts to manipulative experiments, can provide critical insight into the learning process in animal movement.
Collapse
|
15
|
|
16
|
Gagliardo A, Colombo S, Pollonara E, Casini G, Rossino MG, Wikelski M, Bingman VP. GPS-profiling of retrograde navigational impairments associated with hippocampal lesion in homing pigeons. Behav Brain Res 2021; 412:113408. [PMID: 34111471 DOI: 10.1016/j.bbr.2021.113408] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/28/2021] [Accepted: 06/05/2021] [Indexed: 11/16/2022]
Abstract
The avian hippocampal formation (HF) is homologous to the mammalian hippocampus and plays a central role in the control of spatial cognition. In homing pigeons, HF supports navigation by familiar landmarks and landscape features. However, what has remained relatively unexplored is the importance of HF for the retention of previously acquired spatial information. For example, to date, no systematic GPS-tracking studies on the retention of HF-dependent navigational memory in homing pigeons have been performed. Therefore, the current study was designed to compare the pre- and post-surgical navigational performance of sham-lesioned control and HF-lesioned pigeons tracked from three different sites located in different directions with respect to home. The pre- and post-surgical comparison of the pigeons' flight paths near the release sites and before reaching the area surrounding the home loft (4 km radius from the loft) revealed that the control and HF-lesioned pigeons displayed similarly successful retention. By contrast, the HF-lesioned pigeons displayed dramatically and consistently impaired retention in navigating to their home loft during the terminal phase of the homing flight near home, i.e., where navigation is supported by memory for landmark and landscape features. The data demonstrate that HF lesions lead to a dramatic loss of pre-surgically acquired landmark and landscape navigational information while sparing those mechanisms associated with navigation from locations distant from home.
Collapse
Affiliation(s)
| | | | | | | | | | - Martin Wikelski
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Verner P Bingman
- Department of Psychology, 4Department of Psychology, Bowling Green State University, Bowling Green, OH 43403, USA; J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green, OH 43403, USA
| |
Collapse
|
17
|
Rook N, Tuff JM, Isparta S, Masseck OA, Herlitze S, Güntürkün O, Pusch R. AAV1 is the optimal viral vector for optogenetic experiments in pigeons (Columba livia). Commun Biol 2021; 4:100. [PMID: 33483632 PMCID: PMC7822860 DOI: 10.1038/s42003-020-01595-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/13/2020] [Indexed: 01/30/2023] Open
Abstract
Although optogenetics has revolutionized rodent neuroscience, it is still rarely used in other model organisms as the efficiencies of viral gene transfer differ between species and comprehensive viral transduction studies are rare. However, for comparative research, birds offer valuable model organisms as they have excellent visual and cognitive capabilities. Therefore, the following study establishes optogenetics in pigeons on histological, physiological, and behavioral levels. We show that AAV1 is the most efficient viral vector in various brain regions and leads to extensive anterograde and retrograde ChR2 expression when combined with the CAG promoter. Furthermore, transient optical stimulation of ChR2 expressing cells in the entopallium decreases pigeons' contrast sensitivity during a grayscale discrimination task. This finding demonstrates causal evidence for the involvement of the entopallium in contrast perception as well as a proof of principle for optogenetics in pigeons and provides the groundwork for various other methods that rely on viral gene transfer in birds.
Collapse
Affiliation(s)
- Noemi Rook
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| | - John Michael Tuff
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Sevim Isparta
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
- Department of Genetics, Faculty of Veterinary Medicine, Ankara University, Şht. Ömer Halisdemir Blv, 06110, Ankara, Turkey
| | | | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Roland Pusch
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
18
|
Gupta S, Marchetto PM, Bee MA. Customizable Recorder of Animal Kinesis (CRoAK): A multi-axis instrumented enclosure for measuring animal movements. HARDWAREX 2020; 8:e00116. [PMID: 35498259 PMCID: PMC9041217 DOI: 10.1016/j.ohx.2020.e00116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 05/20/2023]
Abstract
Accurately quantifying animal activity and movements is of fundamental importance in a broad range of disciplines, from biomedical research to behavioral ecology. In many instances, it is desirable to measure natural movements in controlled sensory environments in which the animals are not physically or chemically restrained, but their movements are nevertheless constrained to occur within a fixed volume. Here, we describe a novel device to quantify the movements of small animals in response to sensory stimulation. The device consists of an Arduino controlled inertial measurement unit that senses angular velocity (along three axes) of a suspended mesh enclosure that temporarily houses the animal subject. We validated the device by measuring the phonotaxis behavior of gravid female frogs in response to acoustic broadcasts of male mating calls. The system, as designed, proved effective at measuring natural movements made in response to acoustic stimulation.
Collapse
Affiliation(s)
- Saumya Gupta
- Department of Ecology, Evolution, and Behavior, University of Minnesota - Twin Cities, St. Paul, MN 55108, United States
- Corresponding author.
| | - Peter M. Marchetto
- Department of Bioproducts and Biosystems Engineering, University of Minnesota - Twin Cities, St. Paul, MN 55108, United States
- Sensing, LLC, Roseville, MN 55113, United States
| | - Mark A. Bee
- Department of Ecology, Evolution, and Behavior, University of Minnesota - Twin Cities, St. Paul, MN 55108, United States
- Graduate Program in Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN 55455, United States
| |
Collapse
|
19
|
|
20
|
Birds’ gap-crossing in open matrices depends on landscape structure, tree size, and predation risk. Perspect Ecol Conserv 2020. [DOI: 10.1016/j.pecon.2020.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
21
|
McCoy DE, Schiestl M, Neilands P, Hassall R, Gray RD, Taylor AH. New Caledonian Crows Behave Optimistically after Using Tools. Curr Biol 2019; 29:2737-2742.e3. [PMID: 31378612 DOI: 10.1016/j.cub.2019.06.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/28/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022]
Abstract
Are complex, species-specific behaviors in animals reinforced by material reward alone or do they also induce positive emotions? Many adaptive human behaviors are intrinsically motivated: they not only improve our material outcomes, but improve our affect as well [1-8]. Work to date on animal optimism, as an indicator of positive affect, has generally focused on how animals react to change in their circumstances, such as when their environment is enriched [9-14] or they are manipulated by humans [15-23], rather than whether complex actions improve emotional state. Here, we show that wild New Caledonian crows are optimistic after tool use, a complex, species-specific behavior. We further demonstrate that this finding cannot be explained by the crows needing to put more effort into gaining food. Our findings therefore raise the possibility that intrinsic motivation (enjoyment) may be a fundamental proximate cause in the evolution of tool use and other complex behaviors. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Dakota E McCoy
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
| | - Martina Schiestl
- School of Psychology, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - Patrick Neilands
- School of Psychology, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Rebecca Hassall
- School of Psychology, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Russell D Gray
- School of Psychology, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - Alex H Taylor
- School of Psychology, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
22
|
Torney CJ, Hopcraft JGC, Morrison TA, Couzin ID, Levin SA. From single steps to mass migration: the problem of scale in the movement ecology of the Serengeti wildebeest. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0012. [PMID: 29581397 DOI: 10.1098/rstb.2017.0012] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2017] [Indexed: 11/12/2022] Open
Abstract
A central question in ecology is how to link processes that occur over different scales. The daily interactions of individual organisms ultimately determine community dynamics, population fluctuations and the functioning of entire ecosystems. Observations of these multiscale ecological processes are constrained by various technological, biological or logistical issues, and there are often vast discrepancies between the scale at which observation is possible and the scale of the question of interest. Animal movement is characterized by processes that act over multiple spatial and temporal scales. Second-by-second decisions accumulate to produce annual movement patterns. Individuals influence, and are influenced by, collective movement decisions, which then govern the spatial distribution of populations and the connectivity of meta-populations. While the field of movement ecology is experiencing unprecedented growth in the availability of movement data, there remain challenges in integrating observations with questions of ecological interest. In this article, we present the major challenges of addressing these issues within the context of the Serengeti wildebeest migration, a keystone ecological phenomena that crosses multiple scales of space, time and biological complexity.This article is part of the theme issue 'Collective movement ecology'.
Collapse
Affiliation(s)
- Colin J Torney
- School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8SQ, UK
| | - J Grant C Hopcraft
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Thomas A Morrison
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Iain D Couzin
- Department of Collective Behaviour, Max Planck Institute for Ornithology, 78464 Konstanz, Germany.,Chair of Biodiversity and Collective Behaviour, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Simon A Levin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
23
|
Ramadan S, Miyake T, Yamaura J, Inoue-Murayama M. LDHA gene is associated with pigeon survivability during racing competitions. PLoS One 2018; 13:e0195121. [PMID: 29775483 PMCID: PMC5959059 DOI: 10.1371/journal.pone.0195121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 03/17/2018] [Indexed: 02/05/2023] Open
Abstract
Pigeon racing is a popular sport worldwide. Pigeons are under continuous selection to improve speed, spatial orientation, and endurance during long flights. However, numerous genetic and non-genetic factors affect survivability and homing ability, making such traits difficult for breeders to control. Polymorphisms in the lactate dehydrogenase A gene (LDHA) likely affects pigeon racing and homing abilities, due to its role in physical and mental performance. Additionally, the adenylate cyclase activating polypeptide 1 gene (ADCYAP1) has been associated with physiological and behavioral shifts that occur during avian migration. In this study, we examined the association between LDHA and ADCYAP1 genotypes with pigeon survivability during racing competitions. Survivability was evaluated through the estimated breeding value (EBV) of each individual's total race distances during its athletic life. ADCYAP1 was not polymorphic among our samples, while LDHA genotypes were significantly associated with deviated EBV values of longer total race distance; individuals carrying the S+ genotype had higher EBV (i.e., greater survivability). Thus, the LDHA locus might be useful for marker-assisted selection, empowering breeders and trainers to maximize pigeon quality. Moreover, data obtained from breeding will also improve our understanding of the genetic mechanism underlying navigation and flight for wild migrating bird species.
Collapse
Affiliation(s)
- Sherif Ramadan
- Wildlife Research Center, Kyoto University, Kyoto, Japan
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Benha University, Moshtohor, Egypt
| | - Takeshi Miyake
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Miho Inoue-Murayama
- Wildlife Research Center, Kyoto University, Kyoto, Japan
- Wildlife Genome Collaborative Research Group, National Institute for Environmental Studies, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
24
|
Portugal SJ, Ricketts RL, Chappell J, White CR, Shepard EL, Biro D. Boldness traits, not dominance, predict exploratory flight range and homing behaviour in homing pigeons. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0234. [PMID: 28673912 DOI: 10.1098/rstb.2016.0234] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2017] [Indexed: 12/14/2022] Open
Abstract
Group living has been proposed to yield benefits that enhance fitness above the level that would be achieved through living as solitary individuals. Dominance hierarchies occur commonly in these social assemblages, and result, by definition, in resources not being evenly distributed between group members. Determinants of rank within a dominance hierarchy can be associated with morphological characteristics, previous experience of the individual, or personality traits such as exploration tendencies. The purpose of this study was to investigate whether greater exploration and positive responses to novel objects in homing pigeons (Columba livia) measured under laboratory conditions were associated with (i) greater initial exploration of the local area around the home loft during spontaneous exploration flights (SEF), (ii) faster and more efficient homing flights when released from further afield, and (iii) whether the traits of greater exploration and more positive responses to novel objects were more likely to be exhibited by the more dominant individuals within the group. There was no relationship between laboratory-based novel object exploration and position within the dominance hierarchy. Pigeons that were neophobic under laboratory conditions did not explore the local area during SEF opportunities. When released from sites further from home, neophobic pigeons took longer routes to home compared to those birds that had not exhibited neophobic traits under laboratory conditions, and had spontaneously explored to a greater extent. The lack of exploration in the neophobic birds is likely to have resulted in the increased costs of homing following release: unfamiliarity with the landscape likely led to the greater distances travelled and less efficient routes taken. Birds that demonstrated a lack of neophobia were not the dominant individuals inside the loft, and thus would have less access to resources such as food and potentially mates. However, a lack of neophobia makes the subordinate position possible, because subordinate birds that incur high travel costs would become calorie restricted and lose condition. Our results address emerging questions linking individual variation in behaviour with energetics and fitness consequences.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'.
Collapse
Affiliation(s)
- Steven J Portugal
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Rhianna L Ricketts
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Jackie Chappell
- Biosciences, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK
| | - Craig R White
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Emily L Shepard
- Department of Biosciences, Swansea University, Swansea SA2 8PP, UK
| | - Dora Biro
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
25
|
Padget O, Bond SL, Kavelaars MM, van Loon E, Bolton M, Fayet AL, Syposz M, Roberts S, Guilford T. In Situ Clock Shift Reveals that the Sun Compass Contributes to Orientation in a Pelagic Seabird. Curr Biol 2018; 28:275-279.e2. [PMID: 29337074 DOI: 10.1016/j.cub.2017.11.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 10/30/2017] [Accepted: 11/28/2017] [Indexed: 10/18/2022]
Abstract
Compass orientation is central to the control of animal movement from the scale of local food-caching movements around a familiar area in parids [1] and corvids [2, 3] to the first autumn vector navigation of songbirds embarking on long-distance migration [4-6]. In the study of diurnal birds, where the homing pigeon, Columba livia, has been the main model, a time-compensated sun compass [7] is central to the two-step map-and-compass process of navigation from unfamiliar places, as well as guiding movement via a representation of familiar area landmarks [8-12]. However, its use by an actively navigating wild bird is yet to be shown. By phase shifting an animal's endogenous clock, known as clock-shifting [13-15], sun-compass use can be demonstrated when the animal incorrectly consults the sun's azimuthal position while homing after experimental displacement [15-17]. By applying clock-shift techniques at the nest of a wild bird during natural incubation, we show here that an oceanic navigator-the Manx shearwater, Puffinus puffinus-incorporates information from a time-compensated sun compass during homeward guidance to the breeding colony after displacement. Consistently with homing pigeons navigating within their familiar area [8, 9, 11, 18], we find that the effect of clock shift, while statistically robust, is partial in nature, possibly indicating the incorporation of guidance from landmarks into movement decisions.
Collapse
Affiliation(s)
- Oliver Padget
- Department of Zoology, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK.
| | - Sarah L Bond
- Department of Zoology, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
| | - Marwa M Kavelaars
- Behavioural Ecology and Ecophysiology Group, University of Antwerp, Universiteitsplein, Wilrijk, Antwerp, Belgium
| | - Emiel van Loon
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, Netherlands
| | - Mark Bolton
- RSPB Centre for Conservation Science, The Lodge, Sandy, Bedfordshire SG19 2DL, UK
| | - Annette L Fayet
- Department of Zoology, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
| | - Martyna Syposz
- Department of Zoology, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
| | - Stephen Roberts
- Machine Learning Research Group, Information Engineering Building, Engineering Science, Parks Rd., University of Oxford, Oxford OX1 3PJ, UK
| | - Tim Guilford
- Department of Zoology, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK.
| |
Collapse
|
26
|
Silva NFDS, Fowler-Finn K, Ribeiro Mortara S, Hirata Willemart R. A Neotropical armored harvestman (Arachnida, Opiliones) uses proprioception and vision for homing. BEHAVIOUR 2018. [DOI: 10.1163/1568539x-00003503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Animals use external and/or internal cues to navigate and can show flexibility in cue use if one type of cue is unavailable. We studied the homing ability of the harvestman Heteromitobates discolor (Arachnida, Opiliones) by moving egg-guarding females from their clutches. We tested the importance of vision, proprioception, and olfaction. We predicted that homing would be negatively affected in the absence of these cues, with success being measured by the return of females to their clutches. We restricted proprioception by not allowing females to walk, removed vision by painting the eyes, and removed the odours by removing the clutch and cleaning its surroundings. We found that vision is important for homing, and in the absence of visual cues, proprioception is important. Finally, we found increased homing when eggs were present, and that the time of the day also influenced homing. We highlight vision as a previously overlooked sensory modality in Opiliones.
Collapse
Affiliation(s)
- Norton Felipe dos Santos Silva
- aLaboratório de Ecologia Sensorial e Comportamento de Artrópodes, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Avenida Arlindo Béttio 1000, Ermelino Matarazzo, São Paulo, SP 03828-000, Brazil
- bPrograma de Pós-Graduação em Ecologia e Evolução, Universidade Federal de São Paulo, Campus Diadema, Rua Professor Artur Riedel. 275, Jardim Eldorado, Diadema, SP 09972-270, Brazil
| | - Kasey Fowler-Finn
- cDepartment of Biology, Saint Louis University, 3507 Laclede Avenue, Saint Louis, MO, USA
| | - Sara Ribeiro Mortara
- dPrograma de Pós-Graduação em Ecologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 321, Travessa 14, São Paulo, SP 05508-090, Brazil
| | - Rodrigo Hirata Willemart
- aLaboratório de Ecologia Sensorial e Comportamento de Artrópodes, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Avenida Arlindo Béttio 1000, Ermelino Matarazzo, São Paulo, SP 03828-000, Brazil
- bPrograma de Pós-Graduação em Ecologia e Evolução, Universidade Federal de São Paulo, Campus Diadema, Rua Professor Artur Riedel. 275, Jardim Eldorado, Diadema, SP 09972-270, Brazil
- ePrograma de Pós-Graduação em Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 101, Travessa 14, São Paulo, SP 05508-090, Brazil
| |
Collapse
|
27
|
Palavalli-Nettimi R, Narendra A. Miniaturisation decreases visual navigational competence in ants. J Exp Biol 2018; 221:jeb.177238. [DOI: 10.1242/jeb.177238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/15/2018] [Indexed: 12/25/2022]
Abstract
Evolution of smaller body size in a given lineage, called miniaturisation, is commonly observed in many animals including ants. It affects various morphological features and is hypothesized to result in inferior behavioural capabilities, possibly owing to smaller sensory organs. To test this hypothesis, we studied whether reduced spatial resolution of compound eyes influences obstacle detection or obstacle avoidance in five different species of ants. We trained all ant species to travel to a sugar feeder. During their return journeys, we placed an obstacle close to the nest entrance. We found that ants with higher spatial resolution exited the corridor, the area covered between either ends of the obstacle, on average 10 cm earlier suggesting they detected the obstacle earlier in their path. Ants with the lowest spatial resolution changed their viewing directions only when they were close to the obstacle. We discuss the effects of miniaturisation on visual navigational competence in ants.
Collapse
Affiliation(s)
| | - Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
28
|
The orientation of homing pigeons (Columba livia f.d.) with and without navigational experience in a two-dimensional environment. PLoS One 2017; 12:e0188483. [PMID: 29176875 PMCID: PMC5703563 DOI: 10.1371/journal.pone.0188483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 11/08/2017] [Indexed: 11/19/2022] Open
Abstract
Homing pigeons are known for their excellent homing ability, and their brains seem to be functionally adapted to homing. It is known that pigeons with navigational experience show a larger hippocampus and also a more lateralised brain than pigeons without navigational experience. So we hypothesized that experience may have an influence also on orientation ability. We examined two groups of pigeons (11 with navigational experience and 17 without) in a standard operant chamber with a touch screen monitor showing a 2-D schematic of a rectangular environment (as “geometric” information) and one uniquely shaped and colored feature in each corner (as “landmark” information). Pigeons were trained first for pecking on one of these features and then we examined their ability to encode geometric and landmark information in four tests by modifying the rectangular environment. All tests were done under binocular and monocular viewing to test hemispheric dominance. The number of pecks was counted for analysis. Results show that generally both groups orientate on the basis of landmarks and the geometry of environment, but landmark information was preferred. Pigeons with navigational experience did not perform better on the tests but showed a better conjunction of the different kinds of information. Significant differences between monocular and binocular viewing were detected particularly in pigeons without navigational experience on two tests with reduced information. Our data suggest that the conjunction of geometric and landmark information might be integrated after processing separately in each hemisphere and that this process is influenced by experience.
Collapse
|
29
|
Padget O, Dell'Ariccia G, Gagliardo A, González-Solís J, Guilford T. Anosmia impairs homing orientation but not foraging behaviour in free-ranging shearwaters. Sci Rep 2017; 7:9668. [PMID: 28851985 PMCID: PMC5575321 DOI: 10.1038/s41598-017-09738-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/27/2017] [Indexed: 11/09/2022] Open
Abstract
Shearwaters deprived of their olfactory sense before being displaced to distant sites have impaired homing ability but it is unknown what the role of olfaction is when birds navigate freely without their sense of smell. Furthermore, treatments used to induce anosmia and to disrupt magneto-reception in displacement experiments might influence non-specific factors not directly related to navigation and, as a consequence, the results of displacement experiments can have multiple interpretations. To address this, we GPS-tracked the free-ranging foraging trips of incubating Scopoli's shearwaters within the Mediterranean Sea. As in previous experiments, shearwaters were either made anosmic with 4% zinc sulphate solution, magnetically impaired by attachment of a strong neodymium magnet or were controls. We found that birds from all three treatments embarked on foraging trips, had indistinguishable at-sea schedules of behaviour and returned to the colony having gained mass. However, we found that in the pelagic return stage of their foraging trips, anosmic birds were not oriented towards the colony though coastal navigation was unaffected. These results support the case for zinc sulphate having a specific effect on the navigational ability of shearwaters and thus the view that seabirds consult an olfactory map to guide them across seascapes.
Collapse
Affiliation(s)
- O Padget
- Oxford Navigation Group, Department of Zoology, University of Oxford, Oxford, OX1 3PS, Oxfordshire, United Kingdom.
| | - G Dell'Ariccia
- Biodiversity Research Institute (IRBio) & Department of Animal Biology, University of Barcelona, Barcelona, Spain
| | - A Gagliardo
- Department of Biology, University of Pisa, Pisa, Italy
| | - J González-Solís
- Biodiversity Research Institute (IRBio) & Department of Animal Biology, University of Barcelona, Barcelona, Spain
| | - T Guilford
- Oxford Navigation Group, Department of Zoology, University of Oxford, Oxford, OX1 3PS, Oxfordshire, United Kingdom.
| |
Collapse
|
30
|
Narendra A, Kamhi JF, Ogawa Y. Moving in Dim Light: Behavioral and Visual Adaptations in Nocturnal Ants. Integr Comp Biol 2017; 57:1104-1116. [DOI: 10.1093/icb/icx096] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
31
|
Barkan S, Yom-Tov Y, Barnea A. Exploring the Relationship between Brain Plasticity, Migratory Lifestyle, and Social Structure in Birds. Front Neurosci 2017; 11:139. [PMID: 28396621 PMCID: PMC5367377 DOI: 10.3389/fnins.2017.00139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/07/2017] [Indexed: 12/28/2022] Open
Abstract
Studies in Passerines have found that migrating species recruit more new neurons into brain regions that process spatial information, compared with resident species. This was explained by the greater exposure of migrants to spatial information, indicating that this phenomenon enables enhanced navigational abilities. The aim of the current study was to test this hypothesis in another order-the Columbiformes - using two closely-related dove species-the migrant turtle-dove (Streptopelia turtur) and the resident laughing dove (S. senegalensis), during spring, summer, and autumn. Wild birds were caught, treated with BrdU, and sacrificed 5 weeks later. New neurons were recorded in the hyperpallium apicale, hippocampus and nidopallium caudolaterale regions. We found that in doves, unlike passerines, neuronal recruitment was lower in brains of the migratory species compared with the resident one. This might be due to the high sociality of doves, which forage and migrate in flocks, and therefore can rely on communal spatial knowledge that might enable a reduction in individual navigation efforts. This, in turn, might enable reduced levels of neuronal recruitment. Additionally, we found that unlike in passerines, seasonality does not affect neuronal recruitment in doves. This might be due to their non-territorial and explorative behavior, which exposes them to substantial spatial information all year round. Finally, we discuss the differences in neuronal recruitment between Columbiformes and Passeriformes and their possible evolutionary explanations. Our study emphasizes the need to further investigate this phenomenon in other avian orders and in additional species.
Collapse
Affiliation(s)
- Shay Barkan
- Department of Zoology, Tel-Aviv University Tel-Aviv, Israel
| | - Yoram Yom-Tov
- Department of Zoology, Tel-Aviv University Tel-Aviv, Israel
| | - Anat Barnea
- Department of Natural and Life Sciences, The Open University of Israel Ra'anana, Israel
| |
Collapse
|
32
|
Kinoshita M, Homberg U. Insect Brains: Minute Structures Controlling Complex Behaviors. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-4-431-56469-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Vansteelant WMG, Shamoun-Baranes J, van Manen W, van Diermen J, Bouten W. Seasonal detours by soaring migrants shaped by wind regimes along the East Atlantic Flyway. J Anim Ecol 2016; 86:179-191. [PMID: 27757959 DOI: 10.1111/1365-2656.12593] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/12/2016] [Indexed: 11/30/2022]
Abstract
Avian migrants often make substantial detours between their seasonal destinations. It is likely some species do this to make the most of predictable wind regimes along their respective flyways. We test this hypothesis by studying orientation behaviour of a long-distance soaring migrant in relation to prevailing winds along the East Atlantic Flyway. We tracked 62 migratory journeys of 12 adult European Honey Buzzards Pernis apivorus with GPS loggers. Hourly fixes were annotated with local wind vectors from a global atmospheric model to determine orientation behaviours with respect to the buzzards' seasonal goal destinations. This enabled us to determine hot spots where buzzards overdrifted and overcompensated for side winds. We then determined whether winds along the buzzards' detours differed from winds prevailing elsewhere in the flyway. Honey Buzzards cross western Africa using different routes in autumn and spring. In autumn, they overcompensated for westward winds to circumvent the Atlas Mountains on the eastern side and then overdrifted with south-westward winds while crossing the Sahara. In spring, however, they frequently overcompensated for eastward winds to initiate a westward detour at the start of their journey. They later overdrifted with side winds north-westward over the Sahel and north-eastward over the Sahara, avoiding adverse winds over the central Sahara. We conclude that Honey Buzzards make seasonal detours to utilize more supportive winds further en route and thereby expend less energy while crossing the desert. Lifelong tracking studies will be helpful to elucidate how honey buzzards and other migrants learn complex routes to exploit atmospheric circulation patterns from local to synoptic scales.
Collapse
Affiliation(s)
- Wouter M G Vansteelant
- Computational Geo-ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE, Amsterdam, The Netherlands
| | - Judy Shamoun-Baranes
- Computational Geo-ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE, Amsterdam, The Netherlands
| | - Willem van Manen
- Treetop Foundation, Talmastraat 112, 9406 KN, Assen, The Netherlands
| | - Jan van Diermen
- Treetop Foundation, Talmastraat 112, 9406 KN, Assen, The Netherlands
| | - Willem Bouten
- Computational Geo-ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Use of the sun as a heading indicator when caching and recovering in a wild rodent. Sci Rep 2016; 6:32570. [PMID: 27580797 PMCID: PMC5007651 DOI: 10.1038/srep32570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 08/10/2016] [Indexed: 11/19/2022] Open
Abstract
A number of diurnal species have been shown to use directional information from the sun to orientate. The use of the sun in this way has been suggested to occur in either a time-dependent (relying on specific positional information) or a time-compensated manner (a compass that adjusts itself over time with the shifts in the sun’s position). However, some interplay may occur between the two where a species could also use the sun in a time-limited way, whereby animals acquire certain information about the change of position, but do not show full compensational abilities. We tested whether Cape ground squirrels (Xerus inauris) use the sun as an orientation marker to provide information for caching and recovery. This species is a social sciurid that inhabits arid, sparsely vegetated habitats in Southern Africa, where the sun is nearly always visible during the diurnal period. Due to the lack of obvious landmarks, we predicted that they might use positional cues from the sun in the sky as a reference point when caching and recovering food items. We provide evidence that Cape ground squirrels use information from the sun’s position while caching and reuse this information in a time-limited way when recovering these caches.
Collapse
|
35
|
Kumar R, Singh D, Rani S, Malik S. Seasonal trend in movement directions at dawn and dusk: a study on crow and white herons. BIOL RHYTHM RES 2016. [DOI: 10.1080/09291016.2016.1164282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Beason RC, Wiltschko W. Cues indicating location in pigeon navigation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:961-7. [PMID: 26149606 DOI: 10.1007/s00359-015-1027-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/06/2015] [Accepted: 06/19/2015] [Indexed: 11/24/2022]
Abstract
Domesticated Rock Pigeons (Columba livia f. domestica) have been selected for returning home after being displaced. They appear to use many of the physical cue sources available in the natural environment for Map-and-Compass navigation. Two compass mechanisms that have been well documented in pigeons are a time-compensated sun compass and a magnetic inclination compass. Location-finding, or map, mechanisms have been more elusive. Visual landmarks, magnetic fields, odors, gravity and now also infrasound have been proposed as sources of information on location. Even in highly familiar locations, pigeons appear to neither use nor need landmarks and can even return to the loft while wearing frosted lenses. Direct and indirect evidence indicates magnetic field information influences pigeon navigation in ways that are consistent with magnetic map components. The role of odors is unclear; it might be motivational in nature rather than navigational. The influence of gravity must be further analyzed. Experiments with infrasound have been interpreted in the sense that they provide information on the home direction, but this hypothesis is inconsistent with the Map-and-Compass Model. All these factors appear to be components of a multifactorial system, with the pigeons being opportunistic, preferring those cues that prove most suitable in their home region. This has made understanding the roles of individual cues challenging.
Collapse
Affiliation(s)
| | - Wolfgang Wiltschko
- FB Biowissenschaften, Goethe-Universität Frankfurt, Max-von-Laue-Straße 113, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
37
|
Croft S, Budgey R, Pitchford JW, Wood AJ. Obstacle avoidance in social groups: new insights from asynchronous models. J R Soc Interface 2015; 12:rsif.2015.0178. [PMID: 25833245 DOI: 10.1098/rsif.2015.0178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
For moving animals, the successful avoidance of hazardous obstacles is an important capability. Despite this, few models of collective motion have addressed the relationship between behavioural and social features and obstacle avoidance. We develop an asynchronous individual-based model for social movement which allows social structure within groups to be included. We assess the dynamics of group navigation and resulting collision risk in the context of information transfer through the system. In agreement with previous work, we find that group size has a nonlinear effect on collision risk. We implement examples of possible network structures to explore the impact social preferences have on collision risk. We show that any social heterogeneity induces greater obstacle avoidance with further improvements corresponding to groups containing fewer influential individuals. The model provides a platform for both further theoretical investigation and practical application. In particular, we argue that the role of social structures within bird flocks may have an important role to play in assessing the risk of collisions with wind turbines, but that new methods of data analysis are needed to identify these social structures.
Collapse
Affiliation(s)
- Simon Croft
- Department of Biology, University of York, Heslington, York YO10 5DD, UK National Wildlife Management Centre, Animal and Plant Health Agency (APHA), Sand Hutton Campus, York YO41 1LZ, UK
| | - Richard Budgey
- National Wildlife Management Centre, Animal and Plant Health Agency (APHA), Sand Hutton Campus, York YO41 1LZ, UK
| | - Jonathan W Pitchford
- Department of Biology, University of York, Heslington, York YO10 5DD, UK Department of Mathematics, University of York, Heslington, York YO10 5DD, UK
| | - A Jamie Wood
- Department of Biology, University of York, Heslington, York YO10 5DD, UK Department of Mathematics, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
38
|
Wiltschko R, Wiltschko W. Avian Navigation: A Combination of Innate and Learned Mechanisms. ADVANCES IN THE STUDY OF BEHAVIOR 2015. [DOI: 10.1016/bs.asb.2014.12.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Schiffner I, Wiltschko R. Pigeon navigation: different routes lead to Frankfurt. PLoS One 2014; 9:e112439. [PMID: 25391144 PMCID: PMC4229201 DOI: 10.1371/journal.pone.0112439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 10/15/2014] [Indexed: 11/18/2022] Open
Abstract
Background Tracks of pigeons homing to the Frankfurt loft revealed an odd phenomenon: whereas birds returning from the North approach their loft more or less directly in a broad front, pigeons returning from the South choose, from 25 km from home onward, either of two corridors, a direct one and one with a considerable detour to the West. This implies differences in the navigational process. Methodology/Principle Findings Pigeons released at sites at the beginning of the westerly corridor and in this corridor behave just like pigeons returning from farther south, deviating to the west before turning towards their loft. Birds released at sites within the straight corridors, in contrast, take more or less straight routes. The analysis of the short-term correlation dimension, a quantity reflecting the complexity of the system and with it, the number of factors involved in the navigational process, reveals that it is significantly larger in pigeons choosing the westerly corridor than in the birds flying straight - 3.03 vs. 2.85. The difference is small, however, suggesting a different interpretation of the same factors, with some birds apparently preferring particular factors over others. Conclusions The specific regional distribution of the factors which pigeons use to determine their home course seems to provide ambiguous information in the area 25 km south of the loft, resulting in the two corridors. Pigeons appear to navigate by deriving their routes directly from the locally available navigational factors which they interpret in an individual way. The fractal nature of the correlation dimensions indicates that the navigation process of pigeons is chaotic-deterministic; published tracks of migratory birds suggest that this may apply to avian navigation in general.
Collapse
Affiliation(s)
- Ingo Schiffner
- FB Biowissenschaften der Goethe-Universität Frankfurt, Siesmayerstraße 70, Frankfurt am Main, Germany
- Queensland Brain Institute, University of Queensland, Building #79, St. Lucia, Queensland, Australia
| | - Roswitha Wiltschko
- FB Biowissenschaften der Goethe-Universität Frankfurt, Siesmayerstraße 70, Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|
40
|
Guilford T, Taylor GK. The sun compass revisited. Anim Behav 2014; 97:135-143. [PMID: 25389374 PMCID: PMC4222775 DOI: 10.1016/j.anbehav.2014.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/15/2014] [Accepted: 08/08/2014] [Indexed: 02/04/2023]
Abstract
Many animals, and birds in particular, are thought to use directional information from the sun in the form of a time-compensated sun compass, with predictably deviated orientation under clock shift being regarded as the litmus test of this. We suggest that this paradigm obscures a number of other ways in which solar-derived information could be important in animal orientation. We distinguish between the known use of the sun's azimuth to provide absolute geographical direction (compass mechanism) and its possible use to detect changes in heading (heading indicator mechanism). Just as in an aircraft, these two kinds of information may be provided by separate mechanisms and used for different functions, for example for navigation versus steering. We also argue that although a solar compass must be time-referenced to account for the sun's apparent diurnal movement, this need not entail full time compensation. This is because animals might also use time-dependent solar information in an associatively acquired, and hence time-limited, way. Furthermore, we show that a solar heading indicator, when used on a sufficiently short timescale, need not require time compensation at all. Finally, we suggest that solar-derived cues, such as shadows, could also be involved in navigation in ways that depend explicitly upon position, and are therefore not strictly compass-related. This could include giving directionality to landmarks, or acting as time-dependent landmarks involved in place recognition. We conclude that clock shift experiments alone are neither necessary nor sufficient to identify the occurrence of all conceivable uses of solar information in animal orientation, so that a predictable response to clock shift should not be regarded as an acid test of the use of solar information in navigation.
Collapse
Affiliation(s)
- Tim Guilford
- Animal Behaviour Research Group, Department of Zoology, University of Oxford, Oxford, U.K
| | - Graham K Taylor
- Animal Behaviour Research Group, Department of Zoology, University of Oxford, Oxford, U.K
| |
Collapse
|
41
|
Abstract
Homing pigeons (Columba livia) have been the central model of avian navigation research for many decades, but only more recently has research extended into understanding their mechanisms of orientation in the familiar area. The discovery (facilitated by GPS tracking) that pigeons gradually acquire with experience individually idiosyncratic routes home to which they remain faithful on repeated releases, even if displaced off-route, has helped uncover the fundamental role of familiar visual landmarks in the avian familiar area map. We evaluate the robustness and generality of the route-following phenomenon by examining extant studies in depth, including the single published counter-example, providing a detailed comparison of route efficiencies, flight corridor widths and fidelity. We combine this analysis with a review of inferences that can be drawn from other experimental approaches to understanding the nature of familiar area orientation in pigeons, including experiments on landmark recognition, and response to clock-shift, to build the first detailed picture of how bird orientation develops with experience of the familiar area. We articulate alternative hypotheses for how guidance might be controlled during route following, concluding that although much remains unknown, the details of route following strongly support a pilotage interpretation. Predictable patterns of efficiency increase, but limited to the local route, typical corridor widths of 100-200 m, high-fidelity pinch-points on route, attraction to landscape edges, and a robustness to clock-shift procedures, all demonstrate that birds can associatively acquire a map of their familiar area guided (at least partially) by direct visual control from memorised local landscape features.
Collapse
Affiliation(s)
- Tim Guilford
- Animal Behaviour Research Group, Department of Zoology, South Parks Road, Oxford OX1 3PS, UK
| | | |
Collapse
|
42
|
Schiffner I, Siegmund B, Wiltschko R. Following the sun: a mathematical analysis of the tracks of clock-shifted homing pigeons. J Exp Biol 2014; 217:2643-9. [PMID: 24803461 DOI: 10.1242/jeb.104182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We analysed the tracks of clock-shifted pigeons from six releases to determine how they cope with the conflict between their sun compass and other navigational cues. Time-lag embedding was used to calculate the short-term correlation dimension, a parameter that reflects the complexity of the navigational system, and with it, the number of factors involved. Initially, while pigeons were still at the release site, the short-term correlation dimension was low; it increased as the birds left the site, indicating that the birds were now actively navigating. Clock-shifted pigeons showed more scatter than the control birds, and their short-term correlation dimension became significantly smaller than that of the controls, remaining lower until the experimental birds reached their loft. This difference was small, but consistent, and suggests a different rating and ranking of the navigational cues. Clock-shifted pigeons do not seem to simply ignore the information from their manipulated sun compass altogether, but appear to merely downgrade it in favour of other cues, like their magnetic compass. This is supported by the observation that the final part of the tracks still showed a small deviation in the expected direction, indicating an effect of clock-shifting until the end of the homing flight.
Collapse
Affiliation(s)
- Ingo Schiffner
- Fachbereich Biowissenschaften, Goethe-Universität Frankfurt, Siesmayerstrasse 70, D-60054 Frankfurt am Main, Germany Queensland Brain Institute, University of Queensland, Building #79, St Lucia, QLD 4072, Australia
| | - Bettina Siegmund
- Fachbereich Biowissenschaften, Goethe-Universität Frankfurt, Siesmayerstrasse 70, D-60054 Frankfurt am Main, Germany
| | - Roswitha Wiltschko
- Fachbereich Biowissenschaften, Goethe-Universität Frankfurt, Siesmayerstrasse 70, D-60054 Frankfurt am Main, Germany
| |
Collapse
|
43
|
Barkan S, Yom-Tov Y, Barnea A. A possible relation between new neuronal recruitment and migratory behavior inAcrocephaluswarblers. Dev Neurobiol 2014; 74:1194-209. [DOI: 10.1002/dneu.22198] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/28/2014] [Accepted: 06/02/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Shay Barkan
- Department of Zoology; Tel-Aviv University; Tel-Aviv 61391 Israel
| | - Yoram Yom-Tov
- Department of Zoology; Tel-Aviv University; Tel-Aviv 61391 Israel
| | - Anat Barnea
- Department of Natural and Life Sciences; The Open University of Israel; Ra'anana 43107 Israel
| |
Collapse
|
44
|
Schiffner I, Fuhrmann P, Wiltschko R. Homing flights of pigeons in the Frankfurt region: the effect of distance and local experience. Anim Behav 2013. [DOI: 10.1016/j.anbehav.2013.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Armstrong C, Wilkinson H, Meade J, Biro D, Freeman R, Guilford T. Homing pigeons respond to time-compensated solar cues even in sight of the loft. PLoS One 2013; 8:e63130. [PMID: 23717401 PMCID: PMC3663752 DOI: 10.1371/journal.pone.0063130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 03/27/2013] [Indexed: 12/02/2022] Open
Abstract
The sun has long been thought to guide bird navigation as the second step in a two-stage process, in which determining position using a map is followed by course setting using a compass, both over unfamiliar and familiar terrain. The animal’s endogenous clock time-compensates the solar compass for the sun’s apparent movement throughout the day, and this allows predictable deflections in orientation to test for the compass’ influence using clock-shift manipulations. To examine the influence of the solar compass during a highly familiar navigational task, 24 clock-shifted homing pigeons were precision-tracked from a release site close to and in sight of their final goal, the colony loft. The resulting trajectories displayed significant partial deflection from the loft direction as predicted by either fast or slow clock-shift treatments. The partial deflection was also found to be stable along the entire trajectory indicating regular updating of orientation via input from the solar compass throughout the final approach flight to the loft. Our results demonstrate that time-compensated solar cues are deeply embedded in the way birds orient during homing flight, are accessed throughout the journey and on a remarkably fine-grained scale, and may be combined effectively simultaneously with direct guidance from familiar landmarks, even when birds are flying towards a directly visible goal.
Collapse
Affiliation(s)
- Chris Armstrong
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Helen Wilkinson
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Jessica Meade
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Dora Biro
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Robin Freeman
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- CoMPLEX, UCL Gower Street, London, United Kingdom
| | - Tim Guilford
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
46
|
Filannino C, Armstrong C, Guilford T, Gagliardo A. Individual strategies and release site features determine the extent of deviation in clock-shifted pigeons at familiar sites. Anim Cogn 2013; 17:33-43. [DOI: 10.1007/s10071-013-0635-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/10/2013] [Accepted: 04/12/2013] [Indexed: 11/30/2022]
|
47
|
Schiffner I, Wiltschko R. Development of the navigational system in homing pigeons: increase in complexity of the navigational map. ACTA ACUST UNITED AC 2013; 216:2675-81. [PMID: 23580726 DOI: 10.1242/jeb.085662] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study we analysed GPS-recorded tracks from pigeons of different ages from 11 sites between 3.6 and 22.1 km from the home loft, which revealed changes in the navigational system as the birds grew older and became more experienced. The efficiency of juveniles in their first year of life, at only 0.27, was rather low, indicating that the young birds covered more than three times the direct distance home. In the second year, after a standard training programme, the efficiency of the same birds increased to 0.80 and was no longer different from that of older pigeons. The short-term correlation dimension, a variable that reflects the number of factors involved in the navigational process, also increased with age. In juveniles, it was markedly lower than in the other two groups, but even in yearlings it was still significantly lower than that of old pigeons, indicating that the navigational map of yearlings is still developing. Our results indicate that the map system, although functional in the first year of life, continues to become more complex - older pigeons seem to either consider more navigational factors than younger ones or at least weigh the same factors differently.
Collapse
Affiliation(s)
- Ingo Schiffner
- Fachbereich Biowissenschaften, Goethe-Universität Frankfurt, Siesmayerstrasse 70, D-60054 Frankfurt am Main, Germany.
| | | |
Collapse
|
48
|
Lihoreau M, Raine NE, Reynolds AM, Stelzer RJ, Lim KS, Smith AD, Osborne JL, Chittka L. Radar tracking and motion-sensitive cameras on flowers reveal the development of pollinator multi-destination routes over large spatial scales. PLoS Biol 2012; 10:e1001392. [PMID: 23049479 PMCID: PMC3462218 DOI: 10.1371/journal.pbio.1001392] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 08/09/2012] [Indexed: 11/18/2022] Open
Abstract
Automated tracking of bumblebees and computer simulations reveal how bees locate a series of flowers and optimize their routes to visit them all. Central place foragers, such as pollinating bees, typically develop circuits (traplines) to visit multiple foraging sites in a manner that minimizes overall travel distance. Despite being taxonomically widespread, these routing behaviours remain poorly understood due to the difficulty of tracking the foraging history of animals in the wild. Here we examine how bumblebees (Bombus terrestris) develop and optimise traplines over large spatial scales by setting up an array of five artificial flowers arranged in a regular pentagon (50 m side length) and fitted with motion-sensitive video cameras to determine the sequence of visitation. Stable traplines that linked together all the flowers in an optimal sequence were typically established after a bee made 26 foraging bouts, during which time only about 20 of the 120 possible routes were tried. Radar tracking of selected flights revealed a dramatic decrease by 80% (ca. 1500 m) of the total travel distance between the first and the last foraging bout. When a flower was removed and replaced by a more distant one, bees engaged in localised search flights, a strategy that can facilitate the discovery of a new flower and its integration into a novel optimal trapline. Based on these observations, we developed and tested an iterative improvement heuristic to capture how bees could learn and refine their routes each time a shorter route is found. Our findings suggest that complex dynamic routing problems can be solved by small-brained animals using simple learning heuristics, without the need for a cognitive map. Many food resources, such as flowers refilling with nectar or fruits ripening on a tree, replenish over time, so animals that depend on them need to develop strategies to reduce the energy they use during foraging. Here we placed five artificial flowers in a field and set out to examine how bumblebees optimize their foraging routes between distant locations. We tracked the flight paths of individual bees with harmonic radar and recorded all their visits to flowers with motion-sensitive video cameras. This dataset allowed us to study how bees gradually discover flowers, learn their exact position in the landscape, and then find the shortest route to collect nectar from each flower in turn. Using computer simulations, we show that the level of optimisation performance shown by bees can be replicated by a simple learning algorithm that could be implemented in a bee brain. We postulate that this mechanism allows bumblebees to optimise their foraging routes in more complex natural conditions, where the number and productivity of flowers vary.
Collapse
Affiliation(s)
- Mathieu Lihoreau
- Biological and Experimental Psychology Group, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Nigel E. Raine
- Biological and Experimental Psychology Group, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | | | - Ralph J. Stelzer
- Biological and Experimental Psychology Group, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Ka S. Lim
- Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Alan D. Smith
- Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | | | - Lars Chittka
- Biological and Experimental Psychology Group, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
49
|
Lanzone MJ, Miller TA, Turk P, Brandes D, Halverson C, Maisonneuve C, Tremblay J, Cooper J, O'Malley K, Brooks RP, Katzner T. Flight responses by a migratory soaring raptor to changing meteorological conditions. Biol Lett 2012; 8:710-3. [PMID: 22593085 DOI: 10.1098/rsbl.2012.0359] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Soaring birds that undertake long-distance migration should develop strategies to minimize the energetic costs of endurance flight. This is relevant because condition upon completion of migration has direct consequences for fecundity, fitness and thus, demography. Therefore, strong evolutionary pressures are expected for energy minimization tactics linked to weather and topography. Importantly, the minute-by-minute mechanisms birds use to subsidize migration in variable weather are largely unknown, in large part because of the technological limitations in studying detailed long-distance bird flight. Here, we show golden eagle (Aquila chrysaetos) migratory response to changing meteorological conditions as monitored by high-resolution telemetry. In contrast to expectations, responses to meteorological variability were stereotyped across the 10 individuals studied. Eagles reacted to increased wind speed by using more orographic lift and less thermal lift. Concomitantly, as use of thermals decreased, variation in flight speed and altitude also decreased. These results demonstrate how soaring migrant birds can minimize energetic expenditures, they show the context for avian decisions and choices of specific instantaneous flight mechanisms and they have important implications for design of bird-friendly wind energy.
Collapse
|
50
|
Mora CV, Ross JD, Gorsevski PV, Chowdhury B, Bingman VP. Evidence for discrete landmark use by pigeons during homing. J Exp Biol 2012; 215:3379-87. [DOI: 10.1242/jeb.071225] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Considerable efforts have been made to investigate how homing pigeons (Columba livia f. domestica) are able to return to their loft from distant, unfamiliar sites while the mechanisms underlying navigation in familiar territory have received less attention. With the recent advent of Global-Positioning-System (GPS) data-loggers small enough to be carried by pigeons, the role of visual environmental features in guiding navigation over familiar areas is beginning to be understood, yet surprisingly, we still know very little about whether homing pigeons can rely on discrete, visual landmarks to guide navigation. To assess a possible role of discrete, visual landmarks in navigation, homing pigeons were first trained to home from a site with four wind turbines as salient landmarks as well as from a control site without any distinctive, discrete landmark features. The GPS-recorded flight paths of the pigeons on the last training release were straighter and more similar among birds from the turbine site compared to the control site. The pigeons were then released from both sites following a clock-shift manipulation. Vanishing bearings from the turbine site continued to be homeward oriented as 13 of 14 pigeons returned home. By contrast, at the control site the vanishing bearings were deflected in the expected clock-shift direction and only 5 of 13 pigeons returned home. Taken together, our results offer the first strong evidence that discrete, visual landmarks are one source of spatial information homing pigeons can utilize to navigate when flying over a familiar area.
Collapse
|