1
|
Wilkinson ME, Li D, Gao A, Macrae RK, Zhang F. Phage-triggered reverse transcription assembles a toxic repetitive gene from a noncoding RNA. Science 2024; 386:eadq3977. [PMID: 39208082 DOI: 10.1126/science.adq3977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Reverse transcription has frequently been co-opted for cellular functions and in prokaryotes is associated with protection against viral infection, but the underlying mechanisms of defense are generally unknown. Here, we show that in the DRT2 defense system, the reverse transcriptase binds a neighboring pseudoknotted noncoding RNA. Upon bacteriophage infection, a template region of this RNA is reverse transcribed into an array of tandem repeats that reconstitute a promoter and open reading frame, allowing expression of a toxic repetitive protein and an abortive infection response. Biochemical reconstitution of this activity and cryo-electron microscopy provide a molecular basis for repeat synthesis. Gene synthesis from a noncoding RNA is a previously unknown mode of genetic regulation in prokaryotes.
Collapse
Affiliation(s)
- Max E Wilkinson
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David Li
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Alex Gao
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Rhiannon K Macrae
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Feng Zhang
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Nowell RW, Rodriguez F, Hecox-Lea BJ, Mark Welch DB, Arkhipova IR, Barraclough TG, Wilson CG. Bdelloid rotifers deploy horizontally acquired biosynthetic genes against a fungal pathogen. Nat Commun 2024; 15:5787. [PMID: 39025839 PMCID: PMC11258130 DOI: 10.1038/s41467-024-49919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Coevolutionary antagonism generates relentless selection that can favour genetic exchange, including transfer of antibiotic synthesis and resistance genes among bacteria, and sexual recombination of disease resistance alleles in eukaryotes. We report an unusual link between biological conflict and DNA transfer in bdelloid rotifers, microscopic animals whose genomes show elevated levels of horizontal gene transfer from non-metazoan taxa. When rotifers were challenged with a fungal pathogen, horizontally acquired genes were over twice as likely to be upregulated as other genes - a stronger enrichment than observed for abiotic stressors. Among hundreds of upregulated genes, the most markedly overrepresented were clusters resembling bacterial polyketide and nonribosomal peptide synthetases that produce antibiotics. Upregulation of these clusters in a pathogen-resistant rotifer species was nearly ten times stronger than in a susceptible species. By acquiring, domesticating, and expressing non-metazoan biosynthetic pathways, bdelloids may have evolved to resist natural enemies using antimicrobial mechanisms absent from other animals.
Collapse
Affiliation(s)
- Reuben W Nowell
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
- Department of Life Sciences, Imperial College London; Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
- Institute of Ecology and Evolution, University of Edinburgh; Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Fernando Rodriguez
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Bette J Hecox-Lea
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - David B Mark Welch
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Timothy G Barraclough
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
- Department of Life Sciences, Imperial College London; Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Christopher G Wilson
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
- Department of Life Sciences, Imperial College London; Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK.
| |
Collapse
|
3
|
Wilson CG, Pieszko T, Nowell RW, Barraclough TG. Recombination in bdelloid rotifer genomes: asexuality, transfer and stress. Trends Genet 2024; 40:422-436. [PMID: 38458877 DOI: 10.1016/j.tig.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/10/2024]
Abstract
Bdelloid rotifers constitute a class of microscopic animals living in freshwater habitats worldwide. Several strange features of bdelloids have drawn attention: their ability to tolerate desiccation and other stresses, a lack of reported males across the clade despite centuries of study, and unusually high numbers of horizontally acquired, non-metazoan genes. Genome sequencing is transforming our understanding of their lifestyle and its consequences, while in turn providing wider insights about recombination and genome organisation in animals. Many questions remain, not least how to reconcile apparent genomic signatures of sex with the continued absence of reported males, why bdelloids have so many horizontally acquired genes, and how their remarkable ability to survive stress interacts with recombination and other genomic processes.
Collapse
Affiliation(s)
- Christopher G Wilson
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.
| | - Tymoteusz Pieszko
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Reuben W Nowell
- Institute of Ecology and Evolution, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | | |
Collapse
|
4
|
Frydrychová RČ, Konopová B, Peska V, Brejcha M, Sábová M. Telomeres and telomerase: active but complex players in life-history decisions. Biogerontology 2024; 25:205-226. [PMID: 37610666 DOI: 10.1007/s10522-023-10060-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023]
Abstract
Studies on human telomeres have established that telomeres exert a significant influence on lifespan and health of organisms. However, recent research has indicated that the original idea that telomeres affect lifespan in a universal and central manner across all eukaryotic species is an oversimplification. Indeed, findings from a variety of animal species revealed that the role of telomere biology in aging is more subtle and intricate than previously recognized. Here, we show how telomere biology varies depending on the taxon. We also show how telomere biology corresponds to basic life history traits and affects the life table of a species and investments in growth, body size, reproduction, and lifespan; telomeres are hypothesized to shape evolutionary perspectives for species in an active but complex manner. Our evaluation is based on telomere biology data from many examples from throughout the animal kingdom that vary according to the degree of organismal complexity and life history strategies.
Collapse
Affiliation(s)
- Radmila Čapková Frydrychová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, Ceske Budejovice, Czech Republic.
| | - Barbora Konopová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| | - Vratislav Peska
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
| | - Miloslav Brejcha
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, Ceske Budejovice, Czech Republic
| | - Michala Sábová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| |
Collapse
|
5
|
Liu X, Zhao L, Majid M, Huang Y. Orthoptera-TElib: a library of Orthoptera transposable elements for TE annotation. Mob DNA 2024; 15:5. [PMID: 38486291 PMCID: PMC10941475 DOI: 10.1186/s13100-024-00316-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/08/2024] [Indexed: 03/17/2024] Open
Abstract
Transposable elements (TEs) are a major component of eukaryotic genomes and are present in almost all eukaryotic organisms. TEs are highly dynamic between and within species, which significantly affects the general applicability of the TE databases. Orthoptera is the only known group in the class Insecta with a significantly enlarged genome (0.93-21.48 Gb). When analyzing the large genome using the existing TE public database, the efficiency of TE annotation is not satisfactory. To address this limitation, it becomes imperative to continually update the available TE resource library and the need for an Orthoptera-specific library as more insect genomes are publicly available. Here, we used the complete genome data of 12 Orthoptera species to de novo annotate TEs, then manually re-annotate the unclassified TEs to construct a non-redundant Orthoptera-specific TE library: Orthoptera-TElib. Orthoptera-TElib contains 24,021 TE entries including the re-annotated results of 13,964 unknown TEs. The naming of TE entries in Orthoptera-TElib adopts the same naming as RepeatMasker and Dfam and is encoded as the three-level form of "level1/level2-level3". Orthoptera-TElib can be directly used as an input reference database and is compatible with mainstream repetitive sequence analysis software such as RepeatMasker and dnaPipeTE. When analyzing TEs of Orthoptera species, Orthoptera-TElib performs better TE annotation as compared to Dfam and Repbase regardless of using low-coverage sequencing or genome assembly data. The most improved TE annotation result is Angaracris rhodopa, which has increased from 7.89% of the genome to 53.28%. Finally, Orthoptera-TElib is stored in Sqlite3 for the convenience of data updates and user access.
Collapse
Affiliation(s)
- Xuanzeng Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Lina Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Muhammad Majid
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
6
|
Kalmykova A. Telomere Checkpoint in Development and Aging. Int J Mol Sci 2023; 24:15979. [PMID: 37958962 PMCID: PMC10647821 DOI: 10.3390/ijms242115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
The maintenance of genome integrity through generations is largely determined by the stability of telomeres. Increasing evidence suggests that telomere dysfunction may trigger changes in cell fate, independently of telomere length. Telomeric multiple tandem repeats are potentially highly recombinogenic. Heterochromatin formation, transcriptional repression, the suppression of homologous recombination and chromosome end protection are all required for telomere stability. Genetic and epigenetic defects affecting telomere homeostasis may cause length-independent internal telomeric DNA damage. Growing evidence, including that based on Drosophila research, points to a telomere checkpoint mechanism that coordinates cell fate with telomere state. According to this scenario, telomeres, irrespective of their length, serve as a primary sensor of genome instability that is capable of triggering cell death or developmental arrest. Telomeric factors released from shortened or dysfunctional telomeres are thought to mediate these processes. Here, we discuss a novel signaling role for telomeric RNAs in cell fate and early development. Telomere checkpoint ensures genome stability in multicellular organisms but aggravates the aging process, promoting the accumulation of damaged and senescent cells.
Collapse
Affiliation(s)
- Alla Kalmykova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
7
|
Kalmykova AI, Sokolova OA. Retrotransposons and Telomeres. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1739-1753. [PMID: 38105195 DOI: 10.1134/s0006297923110068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 08/12/2023] [Indexed: 12/19/2023]
Abstract
Transposable elements (TEs) comprise a significant part of eukaryotic genomes being a major source of genome instability and mutagenesis. Cellular defense systems suppress the TE expansion at all stages of their life cycle. Piwi proteins and Piwi-interacting RNAs (piRNAs) are key elements of the anti-transposon defense system, which control TE activity in metazoan gonads preventing inheritable transpositions and developmental defects. In this review, we discuss various regulatory mechanisms by which small RNAs combat TE activity. However, active transposons persist, suggesting these powerful anti-transposon defense mechanisms have a limited capacity. A growing body of evidence suggests that increased TE activity coincides with genome reprogramming and telomere lengthening in different species. In the Drosophila fruit fly, whose telomeres consist only of retrotransposons, a piRNA-mediated mechanism is required for telomere maintenance and their length control. Therefore, the efficacy of protective mechanisms must be finely balanced in order not only to suppress the activity of transposons, but also to maintain the proper length and stability of telomeres. Structural and functional relationship between the telomere homeostasis and LINE1 retrotransposon in human cells indicates a close link between selfish TEs and the vital structure of the genome, telomere. This relationship, which permits the retention of active TEs in the genome, is reportedly a legacy of the retrotransposon origin of telomeres. The maintenance of telomeres and the execution of other crucial roles that TEs acquired during the process of their domestication in the genome serve as a type of payment for such a "service."
Collapse
Affiliation(s)
- Alla I Kalmykova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Olesya A Sokolova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
8
|
Liao X, Zhu W, Zhou J, Li H, Xu X, Zhang B, Gao X. Repetitive DNA sequence detection and its role in the human genome. Commun Biol 2023; 6:954. [PMID: 37726397 PMCID: PMC10509279 DOI: 10.1038/s42003-023-05322-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023] Open
Abstract
Repetitive DNA sequences playing critical roles in driving evolution, inducing variation, and regulating gene expression. In this review, we summarized the definition, arrangement, and structural characteristics of repeats. Besides, we introduced diverse biological functions of repeats and reviewed existing methods for automatic repeat detection, classification, and masking. Finally, we analyzed the type, structure, and regulation of repeats in the human genome and their role in the induction of complex diseases. We believe that this review will facilitate a comprehensive understanding of repeats and provide guidance for repeat annotation and in-depth exploration of its association with human diseases.
Collapse
Affiliation(s)
- Xingyu Liao
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Wufei Zhu
- Department of Endocrinology, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, 443000, Yichang, P.R. China
| | - Juexiao Zhou
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Haoyang Li
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Xiaopeng Xu
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Bin Zhang
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
9
|
Berteli TS, Wang F, Navarro PA, Kohlrausch FB, Keefe DL. A pilot study of LINE-1 copy number and telomere length with aging in human sperm. J Assist Reprod Genet 2023; 40:1845-1854. [PMID: 37382785 PMCID: PMC10371944 DOI: 10.1007/s10815-023-02857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/03/2023] [Indexed: 06/30/2023] Open
Abstract
PURPOSE Unlike other cells in the body, in sperm, telomere length (TL) increases with age. TL can regulate nearby genes, and the subtelomeric region is rich in retrotransposons. We hypothesized that age-related telomere lengthening in sperm might suppress Long Interspersed Element 1 (LINE-1/L1), the only competent retrotransposon in humans. METHODS We measured L1 copy number (L1-CN) and sperm telomere length (STL) from young and older men to evaluate the relationship between age, TL and L1-CN. We also evaluated L1-CN and TL in individual sperm to determine whether these variables influence sperm morphology. STL was assayed by Multiplex quantitative polymerase chain reaction method (mmqPCR) and L1-CN by Quantitative polymerase chain reaction (qPCR). RESULTS We found that STL increased, and L1-CN decreased significantly with paternal age. STL in normal single sperm was significantly higher than in abnormal sperm. L1-CN did not differ between normal and abnormal sperm. Furthermore, morphologically normal sperm have longer telomeres than abnormal sperm. CONCLUSIONS Elongation of telomeres in the male germline could repress retrotransposition, which tends to increase with cellular aging. More studies in larger cohorts across a wide age span are needed to confirm our conclusions and explore their biological and clinical significance.
Collapse
Affiliation(s)
- Thalita S Berteli
- Department of Obstetrics and Gynecology, Langone Medical Center, New York University, 462, 1st Avenue, New York, NY, 10016, USA.
- Human Reproduction Division, Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| | - Fang Wang
- Department of Obstetrics and Gynecology, Langone Medical Center, New York University, 462, 1st Avenue, New York, NY, 10016, USA
| | - Paula A Navarro
- Human Reproduction Division, Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Fabiana B Kohlrausch
- Department of Obstetrics and Gynecology, Langone Medical Center, New York University, 462, 1st Avenue, New York, NY, 10016, USA
- Human Genetics Laboratory, Fluminense Federal University, Niteroi, RJ, Brazil
| | - David L Keefe
- Department of Obstetrics and Gynecology, Langone Medical Center, New York University, 462, 1st Avenue, New York, NY, 10016, USA
| |
Collapse
|
10
|
Jedlička P, Tokan V, Kejnovská I, Hobza R, Kejnovský E. Telomeric retrotransposons show propensity to form G-quadruplexes in various eukaryotic species. Mob DNA 2023; 14:3. [PMID: 37038191 PMCID: PMC10088271 DOI: 10.1186/s13100-023-00291-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/07/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Canonical telomeres (telomerase-synthetised) are readily forming G-quadruplexes (G4) on the G-rich strand. However, there are examples of non-canonical telomeres among eukaryotes where telomeric tandem repeats are invaded by specific retrotransposons. Drosophila melanogaster represents an extreme example with telomeres composed solely by three retrotransposons-Het-A, TAHRE and TART (HTT). Even though non-canonical telomeres often show strand biased G-distribution, the evidence for the G4-forming potential is limited. RESULTS Using circular dichroism spectroscopy and UV absorption melting assay we have verified in vitro G4-formation in the HTT elements of D. melanogaster. Namely 3 in Het-A, 8 in TART and 2 in TAHRE. All the G4s are asymmetrically distributed as in canonical telomeres. Bioinformatic analysis showed that asymmetric distribution of potential quadruplex sequences (PQS) is common in telomeric retrotransposons in other Drosophila species. Most of the PQS are located in the gag gene where PQS density correlates with higher DNA sequence conservation and codon selection favoring G4-forming potential. The importance of G4s in non-canonical telomeres is further supported by analysis of telomere-associated retrotransposons from various eukaryotic species including green algae, Diplomonadida, fungi, insects and vertebrates. Virtually all analyzed telomere-associated retrotransposons contained PQS, frequently with asymmetric strand distribution. Comparison with non-telomeric elements showed independent selection of PQS-rich elements from four distinct LINE clades. CONCLUSION Our findings of strand-biased G4-forming motifs in telomere-associated retrotransposons from various eukaryotic species support the G4-formation as one of the prerequisites for the recruitment of specific retrotransposons to chromosome ends and call for further experimental studies.
Collapse
Affiliation(s)
- Pavel Jedlička
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61200, Brno, Czech Republic
| | - Viktor Tokan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61200, Brno, Czech Republic.
| | - Iva Kejnovská
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61200, Brno, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61200, Brno, Czech Republic
| | - Eduard Kejnovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61200, Brno, Czech Republic.
| |
Collapse
|
11
|
Chesnokova E, Beletskiy A, Kolosov P. The Role of Transposable Elements of the Human Genome in Neuronal Function and Pathology. Int J Mol Sci 2022; 23:5847. [PMID: 35628657 PMCID: PMC9148063 DOI: 10.3390/ijms23105847] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) have been extensively studied for decades. In recent years, the introduction of whole-genome and whole-transcriptome approaches, as well as single-cell resolution techniques, provided a breakthrough that uncovered TE involvement in host gene expression regulation underlying multiple normal and pathological processes. Of particular interest is increased TE activity in neuronal tissue, and specifically in the hippocampus, that was repeatedly demonstrated in multiple experiments. On the other hand, numerous neuropathologies are associated with TE dysregulation. Here, we provide a comprehensive review of literature about the role of TEs in neurons published over the last three decades. The first chapter of the present review describes known mechanisms of TE interaction with host genomes in general, with the focus on mammalian and human TEs; the second chapter provides examples of TE exaptation in normal neuronal tissue, including TE involvement in neuronal differentiation and plasticity; and the last chapter lists TE-related neuropathologies. We sought to provide specific molecular mechanisms of TE involvement in neuron-specific processes whenever possible; however, in many cases, only phenomenological reports were available. This underscores the importance of further studies in this area.
Collapse
Affiliation(s)
- Ekaterina Chesnokova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (P.K.)
| | | | | |
Collapse
|
12
|
Constitutive Heterochromatin in Eukaryotic Genomes: A Mine of Transposable Elements. Cells 2022; 11:cells11050761. [PMID: 35269383 PMCID: PMC8909793 DOI: 10.3390/cells11050761] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 12/22/2022] Open
Abstract
Transposable elements (TEs) are abundant components of constitutive heterochromatin of the most diverse evolutionarily distant organisms. TEs enrichment in constitutive heterochromatin was originally described in the model organism Drosophila melanogaster, but it is now considered as a general feature of this peculiar portion of the genomes. The phenomenon of TE enrichment in constitutive heterochromatin has been proposed to be the consequence of a progressive accumulation of transposable elements caused by both reduced recombination and lack of functional genes in constitutive heterochromatin. However, this view does not take into account classical genetics studies and most recent evidence derived by genomic analyses of heterochromatin in Drosophila and other species. In particular, the lack of functional genes does not seem to be any more a general feature of heterochromatin. Sequencing and annotation of Drosophila melanogaster constitutive heterochromatin have shown that this peculiar genomic compartment contains hundreds of transcriptionally active genes, generally larger in size than that of euchromatic ones. Together, these genes occupy a significant fraction of the genomic territory of heterochromatin. Moreover, transposable elements have been suggested to drive the formation of heterochromatin by recruiting HP1 and repressive chromatin marks. In addition, there are several pieces of evidence that transposable elements accumulation in the heterochromatin might be important for centromere and telomere structure. Thus, there may be more complexity to the relationship between transposable elements and constitutive heterochromatin, in that different forces could drive the dynamic of this phenomenon. Among those forces, preferential transposition may be an important factor. In this article, we present an overview of experimental findings showing cases of transposon enrichment into the heterochromatin and their positive evolutionary interactions with an impact to host genomes.
Collapse
|
13
|
Viviani A, Ventimiglia M, Fambrini M, Vangelisti A, Mascagni F, Pugliesi C, Usai G. Impact of transposable elements on the evolution of complex living systems and their epigenetic control. Biosystems 2021; 210:104566. [PMID: 34718084 DOI: 10.1016/j.biosystems.2021.104566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
Transposable elements (TEs) contribute to genomic innovations, as well as genome instability, across a wide variety of species. Popular designations such as 'selfish DNA' and 'junk DNA,' common in the 1980s, may be either inaccurate or misleading, while a more enlightened view of the TE-host relationship covers a range from parasitism to mutualism. Both plant and animal hosts have evolved epigenetic mechanisms to reduce the impact of TEs, both by directly silencing them and by reducing their ability to transpose in the genome. However, TEs have also been co-opted by both plant and animal genomes to perform a variety of physiological functions, ranging from TE-derived proteins acting directly in normal biological functions to innovations in transcription factor activity and also influencing gene expression. Their presence, in fact, can affect a range of features at genome, phenotype, and population levels. The impact TEs have had on evolution is multifaceted, and many aspects still remain unexplored. In this review, the epigenetic control of TEs is contextualized according to the evolution of complex living systems.
Collapse
Affiliation(s)
- Ambra Viviani
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Maria Ventimiglia
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy.
| | - Gabriele Usai
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| |
Collapse
|
14
|
Craig RJ, Yushenova IA, Rodriguez F, Arkhipova IR. An ancient clade of Penelope-like retroelements with permuted domains is present in the green lineage and protists, and dominates many invertebrate genomes. Mol Biol Evol 2021; 38:5005-5020. [PMID: 34320655 PMCID: PMC8557442 DOI: 10.1093/molbev/msab225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Penelope-like elements (PLEs) are an enigmatic clade of retrotransposons whose reverse transcriptases (RTs) share a most recent common ancestor with telomerase RTs. The single ORF of canonical endonuclease (EN)+ PLEs encodes RT and a C-terminal GIY–YIG EN that enables intrachromosomal integration, whereas EN− PLEs lack EN and are generally restricted to chromosome termini. EN+ PLEs have only been found in animals, except for one case of horizontal transfer to conifers, whereas EN− PLEs occur in several kingdoms. Here, we report a new, deep-branching PLE clade with a permuted domain order, whereby an N-terminal GIY–YIG EN is linked to a C-terminal RT by a short domain with a characteristic CxC motif. These N-terminal EN+ PLEs share a structural organization, including pseudo-LTRs and complex tandem/inverted insertions, with canonical EN+ PLEs from Penelope/Poseidon, Neptune, and Nematis clades, and show insertion bias for microsatellites, but lack canonical hammerhead ribozyme motifs. However, their phylogenetic distribution is much broader. The Naiads, found in numerous invertebrate phyla, can reach tens of thousands of copies per genome. In spiders and clams, Naiads independently evolved to encode selenoproteins containing multiple selenocysteines. Chlamys, which lack the CCHH motif universal to PLE ENs, occur in green algae, spike mosses (targeting ribosomal DNA), and slime molds. Unlike canonical PLEs, RTs of N-terminal EN+ PLEs contain the insertion-in-fingers domain (IFD), strengthening the link between PLEs and telomerases. Additionally, we describe Hydra, a novel metazoan C-terminal EN+ clade. Overall, we conclude that PLE diversity, taxonomic distribution, and abundance are comparable with non-LTR and LTR-retrotransposons.
Collapse
Affiliation(s)
- Rory J Craig
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Irina A Yushenova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Fernando Rodriguez
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
15
|
A Survey of Transposon Landscapes in the Putative Ancient Asexual Ostracod Darwinula stevensoni. Genes (Basel) 2021; 12:genes12030401. [PMID: 33799706 PMCID: PMC7998251 DOI: 10.3390/genes12030401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 11/17/2022] Open
Abstract
How asexual reproduction shapes transposable element (TE) content and diversity in eukaryotic genomes remains debated. We performed an initial survey of TE load and diversity in the putative ancient asexual ostracod Darwinula stevensoni. We examined long contiguous stretches of DNA in clones from a genomic fosmid library, totaling about 2.5 Mb, and supplemented these data with results on TE abundance and diversity from an Illumina draft genome. In contrast to other TE studies in putatively ancient asexuals, which revealed relatively low TE content, we found that at least 19% of the fosmid dataset and 26% of the genome assembly corresponded to known transposons. We observed a high diversity of transposon families, including LINE, gypsy, PLE, mariner/Tc, hAT, CMC, Sola2, Ginger, Merlin, Harbinger, MITEs and helitrons, with the prevalence of DNA transposons. The predominantly low levels of sequence diversity indicate that many TEs are or have recently been active. In the fosmid data, no correlation was found between telomeric repeats and non-LTR retrotransposons, which are present near telomeres in other taxa. Most TEs in the fosmid data were located outside of introns and almost none were found in exons. We also report an N-terminal Myb/SANT-like DNA-binding domain in site-specific R4/Dong non-LTR retrotransposons. Although initial results on transposable loads need to be verified with high quality draft genomes, this study provides important first insights into TE dynamics in putative ancient asexual ostracods.
Collapse
|
16
|
Nowell RW, Wilson CG, Almeida P, Schiffer PH, Fontaneto D, Becks L, Rodriguez F, Arkhipova IR, Barraclough TG. Evolutionary dynamics of transposable elements in bdelloid rotifers. eLife 2021; 10:e63194. [PMID: 33543711 PMCID: PMC7943196 DOI: 10.7554/elife.63194] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/04/2021] [Indexed: 12/17/2022] Open
Abstract
Transposable elements (TEs) are selfish genomic parasites whose ability to spread autonomously is facilitated by sexual reproduction in their hosts. If hosts become obligately asexual, TE frequencies and dynamics are predicted to change dramatically, but the long-term outcome is unclear. Here, we test current theory using whole-genome sequence data from eight species of bdelloid rotifers, a class of invertebrates in which males are thus far unknown. Contrary to expectations, we find a variety of active TEs in bdelloid genomes, at an overall frequency within the range seen in sexual species. We find no evidence that TEs are spread by cryptic recombination or restrained by unusual DNA repair mechanisms. Instead, we find that that TE content evolves relatively slowly in bdelloids and that gene families involved in RNAi-mediated TE suppression have undergone significant expansion, which might mitigate the deleterious effects of active TEs and compensate for the consequences of long-term asexuality.
Collapse
Affiliation(s)
- Reuben W Nowell
- Department of Zoology, University of OxfordOxfordUnited Kingdom
- Department of Life Sciences, Imperial College London, Silwood Park CampusAscot, BerkshireUnited Kingdom
| | - Christopher G Wilson
- Department of Zoology, University of OxfordOxfordUnited Kingdom
- Department of Life Sciences, Imperial College London, Silwood Park CampusAscot, BerkshireUnited Kingdom
| | - Pedro Almeida
- Department of Life Sciences, Imperial College London, Silwood Park CampusAscot, BerkshireUnited Kingdom
- Division of Biosciences, University College LondonLondonUnited Kingdom
| | - Philipp H Schiffer
- Institute of Zoology, Section Developmental Biology, University of Cologne, KölnWormlabGermany
| | - Diego Fontaneto
- National Research Council of Italy, Water Research InstituteVerbania PallanzaItaly
| | - Lutz Becks
- Community Dynamics Group, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary BiologyPlönGermany
- Aquatic Ecology and Evolution, University of KonstanzKonstanzGermany
| | - Fernando Rodriguez
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological LaboratoryWoods Hole, MAUnited States
| | - Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological LaboratoryWoods Hole, MAUnited States
| | - Timothy G Barraclough
- Department of Zoology, University of OxfordOxfordUnited Kingdom
- Department of Life Sciences, Imperial College London, Silwood Park CampusAscot, BerkshireUnited Kingdom
| |
Collapse
|
17
|
A structurally conserved human and Tetrahymena telomerase catalytic core. Proc Natl Acad Sci U S A 2020; 117:31078-31087. [PMID: 33229538 DOI: 10.1073/pnas.2011684117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Telomerase is a ribonucleoprotein complex that counteracts the shortening of chromosome ends due to incomplete replication. Telomerase contains a catalytic core of telomerase reverse transcriptase (TERT) and telomerase RNA (TER). However, what defines TERT and separates it from other reverse transcriptases remains a subject of debate. A recent cryoelectron microscopy map of Tetrahymena telomerase revealed the structure of a previously uncharacterized TERT domain (TRAP) with unanticipated interactions with the telomerase essential N-terminal (TEN) domain and roles in telomerase activity. Both TEN and TRAP are absent in the putative Tribolium TERT that has been used as a model for telomerase for over a decade. To investigate the conservation of TRAP and TEN across species, we performed multiple sequence alignments and statistical coupling analysis on all identified TERTs and find that TEN and TRAP have coevolved as telomerase-specific domains. Integrating the data from bioinformatic analysis and the structure of Tetrahymena telomerase, we built a pseudoatomic model of human telomerase catalytic core that accounts for almost all of the cryoelectron microscopy density in a published map, including TRAP in previously unassigned density as well as telomerase RNA domains essential for activity. This more complete model of the human telomerase catalytic core illustrates how domains of TER and TERT, including the TEN-TRAP complex, can interact in a conserved manner to regulate telomere synthesis.
Collapse
|
18
|
Peska V, Garcia S. Origin, Diversity, and Evolution of Telomere Sequences in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:117. [PMID: 32153618 PMCID: PMC7046594 DOI: 10.3389/fpls.2020.00117] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/27/2020] [Indexed: 05/18/2023]
Abstract
Telomeres are basic structures of eukaryote genomes. They distinguish natural chromosome ends from double-stranded breaks in DNA and protect chromosome ends from degradation or end-to-end fusion with other chromosomes. Telomere sequences are usually tandemly arranged minisatellites, typically following the formula (TxAyGz)n. Although they are well conserved across large groups of organisms, recent findings in plants imply that their diversity has been underestimated. Changes in telomeres are of enormous evolutionary importance as they can affect whole-genome stability. Even a small change in the telomere motif of each repeat unit represents an important interference in the system of sequence-specific telomere binding proteins. Here, we provide an overview of telomere sequences, considering the latest phylogenomic evolutionary framework of plants in the broad sense (Archaeplastida), in which new telomeric sequences have recently been found in diverse and economically important families such as Solanaceae and Amaryllidaceae. In the family Lentibulariaceae and in many groups of green algae, deviations from the typical plant telomeric sequence have also been detected recently. Ancestry and possible homoplasy in telomeric motifs, as well as extant gaps in knowledge are discussed. With the increasing availability of genomic approaches, it is likely that more telomeric diversity will be uncovered in the future. We also discuss basic methods used for telomere identification and we explain the implications of the recent discovery of plant telomerase RNA on further research about the role of telomerase in eukaryogenesis or on the molecular causes and consequences of telomere variability.
Collapse
Affiliation(s)
- Vratislav Peska
- Department of Cell Biology and Radiobiology, The Czech Academy of Sciences, Institute of Biophysics, Brno, Czechia
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Barcelona, Spain
| |
Collapse
|
19
|
Markova DN, Christensen SM, Betrán E. Telomere-Specialized Retroelements in Drosophila: Adaptive Symbionts of the Genome, Neutral, or in Conflict? Bioessays 2019; 42:e1900154. [PMID: 31815300 DOI: 10.1002/bies.201900154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/31/2019] [Indexed: 12/17/2022]
Abstract
Linear chromosomes shorten in every round of replication. In Drosophila, telomere-specialized long interspersed retrotransposable elements (LINEs) belonging to the jockey clade offset this shortening by forming head-to-tail arrays at Drosophila telomere ends. As such, these telomeric LINEs have been considered adaptive symbionts of the genome, protecting it from premature decay, particularly as Drosophila lacks a conventional telomerase holoenzyme. However, as reviewed here, recent work reveals a high degree of variation and turnover in the telomere-specialized LINE lineages across Drosophila. There appears to be no absolute requirement for LINE activity to maintain telomeres in flies, hence the suggestion that the telomere-specialized LINEs may instead be neutral or in conflict with the host, rather than adaptive.
Collapse
Affiliation(s)
- Dragomira N Markova
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Shawn M Christensen
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Esther Betrán
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| |
Collapse
|
20
|
Wang Y, Sušac L, Feigon J. Structural Biology of Telomerase. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032383. [PMID: 31451513 DOI: 10.1101/cshperspect.a032383] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Telomerase is a DNA polymerase that extends the 3' ends of chromosomes by processively synthesizing multiple telomeric repeats. It is a unique ribonucleoprotein (RNP) containing a specialized telomerase reverse transcriptase (TERT) and telomerase RNA (TER) with its own template and other elements required with TERT for activity (catalytic core), as well as species-specific TER-binding proteins important for biogenesis and assembly (core RNP); other proteins bind telomerase transiently or constitutively to allow association of telomerase and other proteins with telomere ends for regulation of DNA synthesis. Here we describe how nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography of TER and protein domains helped define the structure and function of the core RNP, laying the groundwork for interpreting negative-stain and cryo electron microscopy (cryo-EM) density maps of Tetrahymena thermophila and human telomerase holoenzymes. As the resolution has improved from ∼30 Å to ∼5 Å, these studies have provided increasingly detailed information on telomerase architecture and mechanism.
Collapse
Affiliation(s)
- Yaqiang Wang
- Department of Chemistry and Biochemistry, University of California Los Angeles (UCLA), Los Angeles, California 90095-1569
| | - Lukas Sušac
- Department of Chemistry and Biochemistry, University of California Los Angeles (UCLA), Los Angeles, California 90095-1569
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California Los Angeles (UCLA), Los Angeles, California 90095-1569
| |
Collapse
|
21
|
Kojima KK. Structural and sequence diversity of eukaryotic transposable elements. Genes Genet Syst 2019; 94:233-252. [DOI: 10.1266/ggs.18-00024] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Kenji K. Kojima
- Genetic Information Research Institute
- Department of Life Sciences, National Cheng Kung University
| |
Collapse
|
22
|
Mondal D, Dutta S, Chakrabarty U, Mallik A, Mandal N. Development and characterization of white spot disease linked microsatellite DNA markers in Penaeus monodon, and their application to determine the population diversity, cluster and structure. J Invertebr Pathol 2019; 168:107275. [PMID: 31715182 DOI: 10.1016/j.jip.2019.107275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 11/03/2019] [Accepted: 11/07/2019] [Indexed: 11/15/2022]
Abstract
Pathogens that are introduced suddenly to natural populations can potentially cause quick changes to the genetics and diversity of the host. In the past three decades, white spot syndrome virus (WSSV) has caused damaging epizootics in Penaeus monodon populations. In this study, we developed WSSV resistance- or susceptibility-linked microsatellite DNA markers, and their effectiveness was validated experimentally. WSSV-resistant marker linked retroelements and genes that may have an important role in WSSV-resistance phenomena were partially identified. Allelic data of 1,694 samples from nine distinct geographic locations in India were revealed that populations from Digha and Kochi were highly dispersed, and also showed higher genetic diversity, higher population diversity, and lower prevalence of disease resistance. A very high level of gene flow was observed within all populations and a very high level of genetic variation was present within populations. Two genetically admixture population clusters were estimated in nature. WSSV-resistance has a significant link with genetic diversity, population cluster and population diversity. Microsatellite marker analysis characterized genetic divergence, diversity and structure among wild populations.
Collapse
Affiliation(s)
- Debabrata Mondal
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII-M, Kolkata 700054, West Bengal, India
| | - Sourav Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII-M, Kolkata 700054, West Bengal, India
| | - Usri Chakrabarty
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII-M, Kolkata 700054, West Bengal, India
| | - Ajoy Mallik
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII-M, Kolkata 700054, West Bengal, India; Department of Zoology, Dinabandhu Mahavidyalaya, Bongaon, North 24 Parganas, West Bengal, India
| | - Nripendranath Mandal
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII-M, Kolkata 700054, West Bengal, India.
| |
Collapse
|
23
|
Abstract
Transposable elements (TEs) are mobile DNA sequences that colonize genomes and threaten genome integrity. As a result, several mechanisms appear to have emerged during eukaryotic evolution to suppress TE activity. However, TEs are ubiquitous and account for a prominent fraction of most eukaryotic genomes. We argue that the evolutionary success of TEs cannot be explained solely by evasion from host control mechanisms. Rather, some TEs have evolved commensal and even mutualistic strategies that mitigate the cost of their propagation. These coevolutionary processes promote the emergence of complex cellular activities, which in turn pave the way for cooption of TE sequences for organismal function.
Collapse
Affiliation(s)
- Rachel L Cosby
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Ni-Chen Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
24
|
Saint-Leandre B, Nguyen SC, Levine MT. Diversification and collapse of a telomere elongation mechanism. Genome Res 2019; 29:920-931. [PMID: 31138619 PMCID: PMC6581046 DOI: 10.1101/gr.245001.118] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 05/14/2019] [Indexed: 12/18/2022]
Abstract
In most eukaryotes, telomerase counteracts chromosome erosion by adding repetitive sequence to terminal ends. Drosophila melanogaster instead relies on specialized retrotransposons that insert exclusively at telomeres. This exchange of goods between host and mobile element-wherein the mobile element provides an essential genome service and the host provides a hospitable niche for mobile element propagation-has been called a "genomic symbiosis." However, these telomere-specialized, jockey family retrotransposons may actually evolve to "selfishly" overreplicate in the genomes that they ostensibly serve. Under this model, we expect rapid diversification of telomere-specialized retrotransposon lineages and, possibly, the breakdown of this ostensibly symbiotic relationship. Here we report data consistent with both predictions. Searching the raw reads of the 15-Myr-old melanogaster species group, we generated de novo jockey retrotransposon consensus sequences and used phylogenetic tree-building to delineate four distinct telomere-associated lineages. Recurrent gains, losses, and replacements account for this retrotransposon lineage diversity. In Drosophila biarmipes, telomere-specialized elements have disappeared completely. De novo assembly of long reads and cytogenetics confirmed this species-specific collapse of retrotransposon-dependent telomere elongation. Instead, telomere-restricted satellite DNA and DNA transposon fragments occupy its terminal ends. We infer that D. biarmipes relies instead on a recombination-based mechanism conserved from yeast to flies to humans. Telomeric retrotransposon diversification and disappearance suggest that persistently "selfish" machinery shapes telomere elongation across Drosophila rather than completely domesticated, symbiotic mobile elements.
Collapse
Affiliation(s)
- Bastien Saint-Leandre
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Son C Nguyen
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mia T Levine
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
25
|
Guliaev AS, Semyenova SK. MGERT: a pipeline to retrieve coding sequences of mobile genetic elements from genome assemblies. Mob DNA 2019; 10:21. [PMID: 31114637 PMCID: PMC6515669 DOI: 10.1186/s13100-019-0163-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/26/2019] [Indexed: 12/17/2022] Open
Abstract
Background Genomes of eukaryotes are inhabited by myriads of mobile genetic elements (MGEs) – transposons and retrotransposons - which play a great role in genome plasticity and evolution. A lot of computational tools were developed to annotate them either in genomic assemblies or raw reads using de novo or homology-based approaches. But there has been no pipeline enabling users to get coding and flanking sequences of MGEs suitable for a downstream analysis from genome assemblies. Results We developed a new pipeline, MGERT (Mobile Genetic Elements Retrieving Tool), that automates all the steps necessary to obtain protein-coding sequences of mobile genetic elements from genomic assemblies even if no previous knowledge on MGE content of a particular genome is available. Conclusions Using MGERT, researchers can easily find MGEs, their coding and flanking sequences in the genome of interest. Thus, this pipeline helps researchers to focus on the biological analysis of MGEs rather than excessive scripting and pipelining. Electronic supplementary material The online version of this article (10.1186/s13100-019-0163-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrei S Guliaev
- Laboratory of Genome Organization, Institute of Gene Biology of the Russian Academy of Sciences, Vavilov Str., 34/5, Moscow, 119334 Russia
| | - Seraphima K Semyenova
- Laboratory of Genome Organization, Institute of Gene Biology of the Russian Academy of Sciences, Vavilov Str., 34/5, Moscow, 119334 Russia
| |
Collapse
|
26
|
Abstract
Transposable elements (TEs) are ubiquitous in both prokaryotes and eukaryotes, and the dynamic character of their interaction with host genomes brings about numerous evolutionary innovations and shapes genome structure and function in a multitude of ways. In traditional classification systems, TEs are often being depicted in simplistic ways, based primarily on the key enzymes required for transposition, such as transposases/recombinases and reverse transcriptases. Recent progress in whole-genome sequencing and long-read assembly, combined with expansion of the familiar range of model organisms, resulted in identification of unprecedentedly long transposable units spanning dozens or even hundreds of kilobases, initially in prokaryotic and more recently in eukaryotic systems. Here, we focus on such oversized eukaryotic TEs, including retrotransposons and DNA transposons, outline their complex and often combinatorial nature and closely intertwined relationship with viruses, and discuss their potential for participating in transfer of long stretches of DNA in eukaryotes.
Collapse
Affiliation(s)
- Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts
- Corresponding author: E-mail:
| | - Irina A Yushenova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts
| |
Collapse
|
27
|
Network-based microsynteny analysis identifies major differences and genomic outliers in mammalian and angiosperm genomes. Proc Natl Acad Sci U S A 2019; 116:2165-2174. [PMID: 30674676 PMCID: PMC6369804 DOI: 10.1073/pnas.1801757116] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Studying the organization of genes within genomes across broad evolutionary timescales can advance our understanding of the evolution of traits and clades. We have used a network approach to investigate genome dynamics of mammals and angiosperms. In general, genome organization and gene microcollinearity is much more conserved in mammals than in flowering plants. We then identified the genomic outliers or “rebel genes,” within each clade. Genes that have moved are unusual for mammals, whereas highly conserved single-copy genes are exceptional for plants. How conservation and changes in synteny or fundamental differences in genome organization have contributed to the evolution of lineages could be a new scientific frontier. A comprehensive analysis of relative gene order, or microsynteny, can provide valuable information for understanding the evolutionary history of genes and genomes, and ultimately traits and species, across broad phylogenetic groups and divergence times. We have used our network-based phylogenomic synteny analysis pipeline to first analyze the overall patterns and major differences between 87 mammalian and 107 angiosperm genomes. These two important groups have both evolved and radiated over the last ∼170 MYR. Secondly, we identified the genomic outliers or “rebel genes” within each clade. We theorize that rebel genes potentially have influenced trait and lineage evolution. Microsynteny networks use genes as nodes and syntenic relationships between genes as edges. Networks were decomposed into clusters using the Infomap algorithm, followed by phylogenomic copy-number profiling of each cluster. The differences in syntenic properties of all annotated gene families, including BUSCO genes, between the two clades are striking: most genes are single copy and syntenic across mammalian genomes, whereas most genes are multicopy and/or have lineage-specific distributions for angiosperms. We propose microsynteny scores as an alternative and complementary metric to BUSCO for assessing genome assemblies. We further found that the rebel genes are different between the two groups: lineage-specific gene transpositions are unusual in mammals, whereas single-copy highly syntenic genes are rare for flowering plants. We illustrate several examples of mammalian transpositions, such as brain-development genes in primates, and syntenic conservation across angiosperms, such as single-copy genes related to photosynthesis. Future experimental work can test if these are indeed rebels with a cause.
Collapse
|
28
|
Multigenome analysis implicates miniature inverted-repeat transposable elements (MITEs) in metabolic diversification in eudicots. Proc Natl Acad Sci U S A 2018; 115:E6650-E6658. [PMID: 29941591 PMCID: PMC6048515 DOI: 10.1073/pnas.1721318115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Recently discovered biosynthetic gene clusters in plants are a striking example of the nonrandom complex structure of eukaryotic genomes. The mechanisms underpinning the formation of these clustered pathways are not understood. Here we carry out a systematic analysis of transposable elements associated with clustered terpene biosynthetic genes in plant genomes, and find evidence to suggest a role for miniature inverted-repeat transposable elements in cluster formation in eudicots. Our analyses provide insights into potential mechanisms of cluster assembly. They also shed light on the emergence of a “block” mechanism for the foundation of new terpene clusters in the eudicots in which microsyntenic blocks of terpene synthase and cytochrome P450 gene pairs duplicate, providing templates for the evolution of new pathways. Plants produce a plethora of natural products, including many drugs. It has recently emerged that the genes encoding different natural product pathways may be organized as biosynthetic gene clusters in plant genomes, with >30 examples reported so far. Despite superficial similarities with microbes, these clusters have not arisen by horizontal gene transfer, but rather by gene duplication, neofunctionalization, and relocation via unknown mechanisms. Previously we reported that two Arabidopsis thaliana biosynthetic gene clusters are located in regions of the genome that are significantly enriched in transposable elements (TEs). Other plant biosynthetic gene clusters also harbor abundant TEs. TEs can mediate genomic rearrangement by providing homologous sequences that enable illegitimate recombination and gene relocation. Thus, TE-mediated recombination may contribute to plant biosynthetic gene cluster formation. TEs may also facilitate establishment of regulons. However, a systematic analysis of the TEs associated with plant biosynthetic gene clusters has not been carried out. Here we investigate the TEs associated with clustered terpene biosynthetic genes in multiple plant genomes and find evidence to suggest a role for miniature inverted-repeat transposable elements in cluster formation in eudicots. Through investigation of the newly sequenced Amborella trichopoda, Aquilegia coerulea, and Kalanchoe fedtschenkoi genomes, we further show that the “block” mechanism of founding of biosynthetic gene clusters through duplication and diversification of pairs of terpene synthase and cytochrome P450 genes that is prevalent in the eudicots arose around 90–130 million years ago, after the appearance of the basal eudicots and before the emergence of the superrosid clade.
Collapse
|
29
|
Border collies of the genome: domestication of an autonomous retrovirus-like transposon. Curr Genet 2018; 65:71-78. [PMID: 29931377 DOI: 10.1007/s00294-018-0857-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/23/2022]
Abstract
Retrotransposons often spread rapidly through eukaryotic genomes until they are neutralized by host-mediated silencing mechanisms, reduced by recombination and mutation, and lost or transformed into benevolent entities. But the Ty1 retrotransposon appears to have been domesticated to guard the genome of Saccharomyces cerevisiae.
Collapse
|
30
|
Jiang J, Wang Y, Sušac L, Chan H, Basu R, Zhou ZH, Feigon J. Structure of Telomerase with Telomeric DNA. Cell 2018; 173:1179-1190.e13. [PMID: 29775593 PMCID: PMC5995583 DOI: 10.1016/j.cell.2018.04.038] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/22/2018] [Accepted: 04/26/2018] [Indexed: 01/05/2023]
Abstract
Telomerase is an RNA-protein complex (RNP) that extends telomeric DNA at the 3' ends of chromosomes using its telomerase reverse transcriptase (TERT) and integral template-containing telomerase RNA (TER). Its activity is a critical determinant of human health, affecting aging, cancer, and stem cell renewal. Lack of atomic models of telomerase, particularly one with DNA bound, has limited our mechanistic understanding of telomeric DNA repeat synthesis. We report the 4.8 Å resolution cryoelectron microscopy structure of active Tetrahymena telomerase bound to telomeric DNA. The catalytic core is an intricately interlocked structure of TERT and TER, including a previously structurally uncharacterized TERT domain that interacts with the TEN domain to physically enclose TER and regulate activity. This complete structure of a telomerase catalytic core and its interactions with telomeric DNA from the template to telomere-interacting p50-TEB complex provides unanticipated insights into telomerase assembly and catalytic cycle and a new paradigm for a reverse transcriptase RNP.
Collapse
Affiliation(s)
- Jiansen Jiang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yaqiang Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lukas Sušac
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Henry Chan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ritwika Basu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
31
|
Rodriguez F, Arkhipova IR. Transposable elements and polyploid evolution in animals. Curr Opin Genet Dev 2018; 49:115-123. [PMID: 29715568 DOI: 10.1016/j.gde.2018.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/08/2018] [Accepted: 04/11/2018] [Indexed: 01/07/2023]
Abstract
Polyploidy in animals is much less common than in plants, where it is thought to be pervasive in all higher plant lineages. Recent studies have highlighted the impact of polyploidization and the associated process of diploidy restoration on the evolution and speciation of selected taxonomic groups in the animal kingdom: from vertebrates represented by salmonid fishes and African clawed frogs to invertebrates represented by parasitic root-knot nematodes and bdelloid rotifers. In this review, we focus on the unique and diverse roles that transposable elements may play in these processes, from marking and diversifying subgenome-specific chromosome sets before hybridization, to influencing genome restructuring during rediploidization, to affecting subgenome-specific regulatory evolution, and occasionally providing opportunities for domestication and gene amplification to restore and improve functionality. There is still much to be learned from the future comparative genomic studies of chromosome-sized and haplotype-aware assemblies, and from postgenomic studies elucidating genetic and epigenetic regulatory phenomena across short and long evolutionary distances in the metazoan tree of life.
Collapse
Affiliation(s)
- Fernando Rodriguez
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
32
|
Transposon control mechanisms in telomere biology. Curr Opin Genet Dev 2018; 49:56-62. [DOI: 10.1016/j.gde.2018.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/26/2018] [Accepted: 03/08/2018] [Indexed: 11/23/2022]
|
33
|
Current Perspectives of Telomerase Structure and Function in Eukaryotes with Emerging Views on Telomerase in Human Parasites. Int J Mol Sci 2018; 19:ijms19020333. [PMID: 29364142 PMCID: PMC5855555 DOI: 10.3390/ijms19020333] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
Replicative capacity of a cell is strongly correlated with telomere length regulation. Aberrant lengthening or reduction in the length of telomeres can lead to health anomalies, such as cancer or premature aging. Telomerase is a master regulator for maintaining replicative potential in most eukaryotic cells. It does so by controlling telomere length at chromosome ends. Akin to cancer cells, most single-cell eukaryotic pathogens are highly proliferative and require persistent telomerase activity to maintain constant length of telomere and propagation within their host. Although telomerase is key to unlimited cellular proliferation in both cases, not much was known about the role of telomerase in human parasites (malaria, Trypanosoma, etc.) until recently. Since telomerase regulation is mediated via its own structural components, interactions with catalytic reverse transcriptase and several factors that can recruit and assemble telomerase to telomeres in a cell cycle-dependent manner, we compare and discuss here recent findings in telomerase biology in cancer, aging and parasitic diseases to give a broader perspective of telomerase function in human diseases.
Collapse
|
34
|
Arkhipova IR. Using bioinformatic and phylogenetic approaches to classify transposable elements and understand their complex evolutionary histories. Mob DNA 2017; 8:19. [PMID: 29225705 PMCID: PMC5718144 DOI: 10.1186/s13100-017-0103-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022] Open
Abstract
In recent years, much attention has been paid to comparative genomic studies of transposable elements (TEs) and the ensuing problems of their identification, classification, and annotation. Different approaches and diverse automated pipelines are being used to catalogue and categorize mobile genetic elements in the ever-increasing number of prokaryotic and eukaryotic genomes, with little or no connectivity between different domains of life. Here, an overview of the current picture of TE classification and evolutionary relationships is presented, updating the diversity of TE types uncovered in sequenced genomes. A tripartite TE classification scheme is proposed to account for their replicative, integrative, and structural components, and the need to expand in vitro and in vivo studies of their structural and biological properties is emphasized. Bioinformatic studies have now become front and center of novel TE discovery, and experimental pursuits of these discoveries hold great promise for both basic and applied science.
Collapse
Affiliation(s)
- Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543 USA
| |
Collapse
|
35
|
Arkhipova IR, Yushenova IA, Rodriguez F. Giant Reverse Transcriptase-Encoding Transposable Elements at Telomeres. Mol Biol Evol 2017; 34:2245-2257. [PMID: 28575409 PMCID: PMC5850863 DOI: 10.1093/molbev/msx159] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transposable elements are omnipresent in eukaryotic genomes and have a profound impact on chromosome structure, function and evolution. Their structural and functional diversity is thought to be reasonably well-understood, especially in retroelements, which transpose via an RNA intermediate copied into cDNA by the element-encoded reverse transcriptase, and are characterized by a compact structure. Here, we report a novel type of expandable eukaryotic retroelements, which we call Terminons. These elements can attach to G-rich telomeric repeat overhangs at the chromosome ends, in a process apparently facilitated by complementary C-rich repeats at the 3′-end of the RNA template immediately adjacent to a hammerhead ribozyme motif. Terminon units, which can exceed 40 kb in length, display an unusually complex and diverse structure, and can form very long chains, with host genes often captured between units. As the principal polymerizing component, Terminons contain Athena reverse transcriptases previously described in bdelloid rotifers and belonging to the enigmatic group of Penelope-like elements, but can additionally accumulate multiple cooriented ORFs, including DEDDy 3′-exonucleases, GDSL esterases/lipases, GIY-YIG-like endonucleases, rolling-circle replication initiator (Rep) proteins, and putatively structural ORFs with coiled-coil motifs and transmembrane domains. The extraordinary length and complexity of Terminons and the high degree of interfamily variability in their ORF content challenge the current views on the structural organization of eukaryotic retroelements, and highlight their possible connections with the viral world and the implications for the elevated frequency of gene transfer.
Collapse
Affiliation(s)
- Irina R Arkhipova
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, MA
| | - Irina A Yushenova
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, MA
| | - Fernando Rodriguez
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, MA
| |
Collapse
|
36
|
Novikova O, Belfort M. Mobile Group II Introns as Ancestral Eukaryotic Elements. Trends Genet 2017; 33:773-783. [PMID: 28818345 DOI: 10.1016/j.tig.2017.07.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/06/2017] [Accepted: 07/24/2017] [Indexed: 01/09/2023]
Abstract
The duality of group II introns, capable of carrying out both self-splicing and retromobility reactions, is hypothesized to have played a profound role in the evolution of eukaryotes. These introns likely provided the framework for the emergence of eukaryotic retroelements, spliceosomal introns and other key components of the spliceosome. Group II introns are found in all three domains of life and are therefore considered to be exceptionally successful mobile genetic elements. Initially identified in organellar genomes, group II introns are found in bacteria, chloroplasts, and mitochondria of plants and fungi, but not in nuclear genomes. Although there is no doubt that prokaryotic and organellar group II introns are evolutionary related, there are remarkable differences in survival strategies between them. Furthermore, an evolutionary relationship of group II introns to eukaryotic retroelements, including telomeres, and spliceosomes is unmistakable.
Collapse
Affiliation(s)
- Olga Novikova
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA; Department of Biomedical Sciences, School of Public Health, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA.
| |
Collapse
|
37
|
Drosophila: Retrotransposons Making up Telomeres. Viruses 2017; 9:v9070192. [PMID: 28753967 PMCID: PMC5537684 DOI: 10.3390/v9070192] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/27/2022] Open
Abstract
Drosophila and extant species are the best-studied telomerase exception. In this organism, telomere elongation is coupled with targeted retrotransposition of Healing Transposon (HeT-A) and Telomere Associated Retrotransposon (TART) with sporadic additions of Telomere Associated and HeT-A Related (TAHRE), all three specialized non-Long Terminal Repeat (non-LTR) retrotransposons. These three very special retroelements transpose in head to tail arrays, always in the same orientation at the end of the chromosomes but never in interior locations. Apparently, retrotransposon and telomerase telomeres might seem very different, but a detailed view of their mechanisms reveals similarities explaining how the loss of telomerase in a Drosophila ancestor could successfully have been replaced by the telomere retrotransposons. In this review, we will discover that although HeT-A, TART, and TAHRE are still the only examples to date where their targeted transposition is perfectly tamed into the telomere biology of Drosophila, there are other examples of retrotransposons that manage to successfully integrate inside and at the end of telomeres. Because the aim of this special issue is viral integration at telomeres, understanding the base of the telomerase exceptions will help to obtain clues on similar strategies that mobile elements and viruses could have acquired in order to ensure their survival in the host genome.
Collapse
|
38
|
de la Peña M, Cervera A. Circular RNAs with hammerhead ribozymes encoded in eukaryotic genomes: The enemy at home. RNA Biol 2017; 14:985-991. [PMID: 28448743 PMCID: PMC5680766 DOI: 10.1080/15476286.2017.1321730] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A new family of non-autonomous retrotransposons with self-cleaving hammerhead ribozymes, the so called retrozymes, has recently been found encoded in diverse plant genomes. These retroelements can be actively transcribed, and their RNAs accumulate in the cells as abundant non-coding circular RNAs (circRNAs) of small size (600–1000 nt). Related circRNAs with self-cleaving ribozymes had already been described in plants, and belong to a group of infectious RNA agents with an uncertain origin: the viroids and viroid-like satellites of plant RNA viruses. These pathogenic circRNAs show many structural similarities with retrozyme circRNAs, and both have been found to occur in flowering plants as heterogeneous RNA molecules of positive and negative polarities. Taking all these data together, we hypothesize that circRNAs encoded by genomic retrozymes could have given origin to infectious circRNAs with self-cleaving ribozymes. Moreover, we propose that retrozymes in time could have evolved from the ancient family of Penelope-like retroelements, which also harbour hammerhead ribozymes. Putative retrozyme sequences with hammerhead ribozymes have been detected as well in metazoan genomes, opening the door to a common occurrence of circRNAs with self-cleaving motifs among eukaryotes.
Collapse
Affiliation(s)
- Marcos de la Peña
- a Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València) C/ Ingeniero Fausto Elio s/n , Valencia , Spain
| | - Amelia Cervera
- a Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València) C/ Ingeniero Fausto Elio s/n , Valencia , Spain
| |
Collapse
|
39
|
Lai AG, Pouchkina-Stantcheva N, Di Donfrancesco A, Kildisiute G, Sahu S, Aboobaker AA. The protein subunit of telomerase displays patterns of dynamic evolution and conservation across different metazoan taxa. BMC Evol Biol 2017; 17:107. [PMID: 28441946 PMCID: PMC5405514 DOI: 10.1186/s12862-017-0949-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Most animals employ telomerase, which consists of a catalytic subunit known as the telomerase reverse transcriptase (TERT) and an RNA template, to maintain telomere ends. Given the importance of TERT and telomere biology in core metazoan life history traits, like ageing and the control of somatic cell proliferation, we hypothesised that TERT would have patterns of sequence and regulatory evolution reflecting the diverse life histories across the Animal Kingdom. RESULTS We performed a complete investigation of the evolutionary history of TERT across animals. We show that although TERT is almost ubiquitous across Metazoa, it has undergone substantial sequence evolution within canonical motifs. Beyond the known canonical motifs, we also identify and compare regions that are highly variable between lineages, but show conservation within phyla. Recent data have highlighted the importance of alternative splice forms of TERT in non-canonical functions and although animals may share some conserved introns, we find that the selection of exons for alternative splicing appears to be highly variable, and regulation by alternative splicing appears to be a very dynamic feature of TERT evolution. We show that even within a closely related group of triclad flatworms, where alternative splicing of TERT was previously correlated with reproductive strategy, we observe highly diverse splicing patterns. CONCLUSIONS Our work establishes that the evolutionary history and structural evolution of TERT involves previously unappreciated levels of change and the emergence of lineage specific motifs. The sequence conservation we describe within phyla suggests that these new motifs likely serve essential biological functions of TERT, which along with changes in splicing, underpin diverse functions of TERT important for animal life histories.
Collapse
Affiliation(s)
- Alvina G Lai
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
| | | | | | - Gerda Kildisiute
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Sounak Sahu
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - A Aziz Aboobaker
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
| |
Collapse
|
40
|
Rodriguez F, Kenefick AW, Arkhipova IR. LTR-Retrotransposons from Bdelloid Rotifers Capture Additional ORFs Shared between Highly Diverse Retroelement Types. Viruses 2017; 9:v9040078. [PMID: 28398238 PMCID: PMC5408684 DOI: 10.3390/v9040078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/04/2017] [Accepted: 04/04/2017] [Indexed: 12/16/2022] Open
Abstract
Rotifers of the class Bdelloidea, microscopic freshwater invertebrates, possess a highlydiversified repertoire of transposon families, which, however, occupy less than 4% of genomic DNA in the sequenced representative Adineta vaga. We performed a comprehensive analysis of A. vaga retroelements, and found that bdelloid long terminal repeat (LTR)retrotransposons, in addition to conserved open reading frame (ORF) 1 and ORF2 corresponding to gag and pol genes, code for an unusually high variety of ORF3 sequences. Retrovirus-like LTR families in A. vaga belong to four major lineages, three of which are rotiferspecific and encode a dUTPase domain. However only one lineage contains a canonical envlike fusion glycoprotein acquired from paramyxoviruses (non-segmented negative-strand RNA viruses), although smaller ORFs with transmembrane domains may perform similar roles. A different ORF3 type encodes a GDSL esterase/lipase, which was previously identified as ORF1 in several clades of non-LTR retrotransposons, and implicated in membrane targeting. Yet another ORF3 type appears in unrelated LTR-retrotransposon lineages, and displays strong homology to DEDDy-type exonucleases involved in 3'-end processing of RNA and single-stranded DNA. Unexpectedly, each of the enzymatic ORF3s is also associated with different subsets of Penelope-like Athena retroelement families. The unusual association of the same ORF types with retroelements from different classes reflects their modular structure with a high degree of flexibility, and points to gene sharing between different groups of retroelements.
Collapse
Affiliation(s)
- Fernando Rodriguez
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA.
| | - Aubrey W Kenefick
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA.
- Present address: UC Davis Genome Center-GBSF, University of California, Davis, CA 95616, USA.
| | - Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA.
| |
Collapse
|
41
|
de la Peña M, García-Robles I, Cervera A. The Hammerhead Ribozyme: A Long History for a Short RNA. Molecules 2017; 22:molecules22010078. [PMID: 28054987 PMCID: PMC6155905 DOI: 10.3390/molecules22010078] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/28/2016] [Accepted: 12/29/2016] [Indexed: 01/22/2023] Open
Abstract
Small nucleolytic ribozymes are a family of naturally occurring RNA motifs that catalyse a self-transesterification reaction in a highly sequence-specific manner. The hammerhead ribozyme was the first reported and the most extensively studied member of this family. However, and despite intense biochemical and structural research for three decades since its discovery, the history of this model ribozyme seems to be far from finished. The hammerhead ribozyme has been regarded as a biological oddity typical of small circular RNA pathogens of plants. More recently, numerous and new variations of this ribozyme have been found to inhabit the genomes of organisms from all life kingdoms, although their precise biological functions are not yet well understood.
Collapse
Affiliation(s)
- Marcos de la Peña
- Instituto de Biología Molecular y Celular de Plantas (IBMCP) (CSIC-UPV), C/Ingeniero Fausto Elio s/n, 46022 Valencia, Spain.
| | - Inmaculada García-Robles
- Department of Genetics, University of Valencia, C/Dr. Moliner 50, Burjassot, 46100 Valencia, Spain.
| | - Amelia Cervera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP) (CSIC-UPV), C/Ingeniero Fausto Elio s/n, 46022 Valencia, Spain.
| |
Collapse
|
42
|
Negi P, Rai AN, Suprasanna P. Moving through the Stressed Genome: Emerging Regulatory Roles for Transposons in Plant Stress Response. FRONTIERS IN PLANT SCIENCE 2016; 7:1448. [PMID: 27777577 PMCID: PMC5056178 DOI: 10.3389/fpls.2016.01448] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/12/2016] [Indexed: 05/02/2023]
Abstract
The recognition of a positive correlation between organism genome size with its transposable element (TE) content, represents a key discovery of the field of genome biology. Considerable evidence accumulated since then suggests the involvement of TEs in genome structure, evolution and function. The global genome reorganization brought about by transposon activity might play an adaptive/regulatory role in the host response to environmental challenges, reminiscent of McClintock's original 'Controlling Element' hypothesis. This regulatory aspect of TEs is also garnering support in light of the recent evidences, which project TEs as "distributed genomic control modules." According to this view, TEs are capable of actively reprogramming host genes circuits and ultimately fine-tuning the host response to specific environmental stimuli. Moreover, the stress-induced changes in epigenetic status of TE activity may allow TEs to propagate their stress responsive elements to host genes; the resulting genome fluidity can permit phenotypic plasticity and adaptation to stress. Given their predominating presence in the plant genomes, nested organization in the genic regions and potential regulatory role in stress response, TEs hold unexplored potential for crop improvement programs. This review intends to present the current information about the roles played by TEs in plant genome organization, evolution, and function and highlight the regulatory mechanisms in plant stress responses. We will also briefly discuss the connection between TE activity, host epigenetic response and phenotypic plasticity as a critical link for traversing the translational bridge from a purely basic study of TEs, to the applied field of stress adaptation and crop improvement.
Collapse
Affiliation(s)
| | | | - Penna Suprasanna
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research CentreTrombay, India
| |
Collapse
|
43
|
Abstract
Telomerase is the eukaryotic solution to the ‘end-replication problem’ of linear chromosomes by synthesising the highly repetitive DNA constituent of telomeres, the nucleoprotein cap that protects chromosome termini. Functioning as a ribonucleoprotein (RNP) enzyme, telomerase is minimally composed of the highly conserved catalytic telomerase reverse transcriptase (TERT) and essential telomerase RNA (TR) component. Beyond merely providing the template for telomeric DNA synthesis, TR is an innate telomerase component and directly facilitates enzymatic function. TR accomplishes this by having evolved structural elements for stable assembly with the TERT protein and the regulation of the telomerase catalytic cycle. Despite its prominence and prevalence, TR has profoundly diverged in length, sequence, and biogenesis pathway among distinct evolutionary lineages. This diversity has generated numerous structural and mechanistic solutions for ensuring proper RNP formation and high fidelity telomeric DNA synthesis. Telomerase provides unique insights into RNA and protein coevolution within RNP enzymes.
Collapse
Affiliation(s)
- Joshua D Podlevsky
- a School of Molecular Sciences, Arizona State University , Tempe , AZ , USA
| | - Julian J-L Chen
- a School of Molecular Sciences, Arizona State University , Tempe , AZ , USA
| |
Collapse
|
44
|
Sonnenberg ASM, Gao W, Lavrijssen B, Hendrickx P, Sedaghat-Tellgerd N, Foulongne-Oriol M, Kong WS, Schijlen EGWM, Baars JJP, Visser RGF. A detailed analysis of the recombination landscape of the button mushroom Agaricus bisporus var. bisporus. Fungal Genet Biol 2016; 93:35-45. [PMID: 27288752 DOI: 10.1016/j.fgb.2016.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 05/13/2016] [Accepted: 06/01/2016] [Indexed: 11/28/2022]
Abstract
The button mushroom (Agaricus bisporus) is one of the world's most cultivated mushroom species, but in spite of its economic importance generation of new cultivars by outbreeding is exceptional. Previous genetic analyses of the white bisporus variety, including all cultivars and most wild isolates revealed that crossing over frequencies are low, which might explain the lack of introducing novel traits into existing cultivars. By generating two high quality whole genome sequence assemblies (one de novo and the other by improving the existing reference genome) of the first commercial white hybrid Horst U1, a detailed study of the crossover (CO) landscape was initiated. Using a set of 626 SNPs in a haploid offspring of 139 single spore isolates and whole genome sequencing on a limited number of homo- and heterokaryotic single spore isolates, we precisely mapped all COs showing that they are almost exclusively restricted to regions of about 100kb at the chromosome ends. Most basidia of A. bisporus var. bisporus produce two spores and pair preferentially via non-sister nuclei. Combined with the COs restricted to the chromosome ends, these spores retain most of the heterozygosity of the parent thus explaining how present-day white cultivars are genetically so close to the first hybrid marketed in 1980. To our knowledge this is the first example of an organism which displays such specific CO landscape.
Collapse
Affiliation(s)
- Anton S M Sonnenberg
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, 6708 PB Wageningen, The Netherlands.
| | - Wei Gao
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, 6708 PB Wageningen, The Netherlands
| | - Brian Lavrijssen
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, 6708 PB Wageningen, The Netherlands
| | - Patrick Hendrickx
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, 6708 PB Wageningen, The Netherlands
| | - Narges Sedaghat-Tellgerd
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, 6708 PB Wageningen, The Netherlands
| | - Marie Foulongne-Oriol
- INRA, UR1264 MycSA, Mycologie et Sécurité des Aliments, F-33883 Villenave d'Ornon, France
| | - Won-Sik Kong
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Elio G W M Schijlen
- PRI Bioscience, Wageningen University & Research Centre, 6708 PB Wageningen, The Netherlands
| | - Johan J P Baars
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, 6708 PB Wageningen, The Netherlands
| | - Richard G F Visser
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
45
|
Lin X, Faridi N, Casola C. An Ancient Transkingdom Horizontal Transfer of Penelope-Like Retroelements from Arthropods to Conifers. Genome Biol Evol 2016; 8:1252-66. [PMID: 27190138 PMCID: PMC4860704 DOI: 10.1093/gbe/evw076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Comparative genomics analyses empowered by the wealth of sequenced genomes have revealed numerous instances of horizontal DNA transfers between distantly related species. In eukaryotes, repetitive DNA sequences known as transposable elements (TEs) are especially prone to move across species boundaries. Such horizontal transposon transfers, or HTTs, are relatively common within major eukaryotic kingdoms, including animals, plants, and fungi, while rarely occurring across these kingdoms. Here, we describe the first case of HTT from animals to plants, involving TEs known as Penelope-like elements, or PLEs, a group of retrotransposons closely related to eukaryotic telomerases. Using a combination of in situ hybridization on chromosomes, polymerase chain reaction experiments, and computational analyses we show that the predominant PLE lineage, EN(+)PLEs, is highly diversified in loblolly pine and other conifers, but appears to be absent in other gymnosperms. Phylogenetic analyses of both protein and DNA sequences reveal that conifers EN(+)PLEs, or Dryads, form a monophyletic group clustering within a clade of primarily arthropod elements. Additionally, no EN(+)PLEs were detected in 1,928 genome assemblies from 1,029 nonmetazoan and nonconifer genomes from 14 major eukaryotic lineages. These findings indicate that Dryads emerged following an ancient horizontal transfer of EN(+)PLEs from arthropods to a common ancestor of conifers approximately 340 Ma. This represents one of the oldest known interspecific transmissions of TEs, and the most conspicuous case of DNA transfer between animals and plants.
Collapse
Affiliation(s)
- Xuan Lin
- Department of Ecosystem Science and Management, Texas A&M University
| | - Nurul Faridi
- Department of Ecosystem Science and Management, Texas A&M University Southern Institute of Forest Genetics, USDA Forest Service Southern Research Station, Saucier, Mississippi
| | - Claudio Casola
- Department of Ecosystem Science and Management, Texas A&M University
| |
Collapse
|
46
|
Abstract
Transposable elements have had a profound impact on the structure and function of mammalian genomes. The retrotransposon Long INterspersed Element-1 (LINE-1 or L1), by virtue of its replicative mobilization mechanism, comprises ∼17% of the human genome. Although the vast majority of human LINE-1 sequences are inactive molecular fossils, an estimated 80-100 copies per individual retain the ability to mobilize by a process termed retrotransposition. Indeed, LINE-1 is the only active, autonomous retrotransposon in humans and its retrotransposition continues to generate both intra-individual and inter-individual genetic diversity. Here, we briefly review the types of transposable elements that reside in mammalian genomes. We will focus our discussion on LINE-1 retrotransposons and the non-autonomous Short INterspersed Elements (SINEs) that rely on the proteins encoded by LINE-1 for their mobilization. We review cases where LINE-1-mediated retrotransposition events have resulted in genetic disease and discuss how the characterization of these mutagenic insertions led to the identification of retrotransposition-competent LINE-1s in the human and mouse genomes. We then discuss how the integration of molecular genetic, biochemical, and modern genomic technologies have yielded insight into the mechanism of LINE-1 retrotransposition, the impact of LINE-1-mediated retrotransposition events on mammalian genomes, and the host cellular mechanisms that protect the genome from unabated LINE-1-mediated retrotransposition events. Throughout this review, we highlight unanswered questions in LINE-1 biology that provide exciting opportunities for future research. Clearly, much has been learned about LINE-1 and SINE biology since the publication of Mobile DNA II thirteen years ago. Future studies should continue to yield exciting discoveries about how these retrotransposons contribute to genetic diversity in mammalian genomes.
Collapse
|
47
|
Abstract
This review focuses on recent developments in our understanding of group II intron function, the relationships of these introns to retrotransposons and spliceosomes, and how their common features have informed thinking about bacterial group II introns as key elements in eukaryotic evolution. Reverse transcriptase-mediated and host factor-aided intron retrohoming pathways are considered along with retrotransposition mechanisms to novel sites in bacteria, where group II introns are thought to have originated. DNA target recognition and movement by target-primed reverse transcription infer an evolutionary relationship among group II introns, non-LTR retrotransposons, such as LINE elements, and telomerase. Additionally, group II introns are almost certainly the progenitors of spliceosomal introns. Their profound similarities include splicing chemistry extending to RNA catalysis, reaction stereochemistry, and the position of two divalent metals that perform catalysis at the RNA active site. There are also sequence and structural similarities between group II introns and the spliceosome's small nuclear RNAs (snRNAs) and between a highly conserved core spliceosomal protein Prp8 and a group II intron-like reverse transcriptase. It has been proposed that group II introns entered eukaryotes during bacterial endosymbiosis or bacterial-archaeal fusion, proliferated within the nuclear genome, necessitating evolution of the nuclear envelope, and fragmented giving rise to spliceosomal introns. Thus, these bacterial self-splicing mobile elements have fundamentally impacted the composition of extant eukaryotic genomes, including the human genome, most of which is derived from close relatives of mobile group II introns.
Collapse
|
48
|
A Small RNA-Based Immune System Defends Germ Cells against Mobile Genetic Elements. Stem Cells Int 2015; 2016:7595791. [PMID: 26681955 PMCID: PMC4670677 DOI: 10.1155/2016/7595791] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/11/2015] [Indexed: 11/17/2022] Open
Abstract
Transposons are mobile genetic elements that threaten the survival of species by destabilizing the germline genomes. Limiting the spread of these selfish elements is imperative. Germ cells employ specialized small regulatory RNA pathways to restrain transposon activity. PIWI proteins and Piwi-interacting RNAs (piRNAs) silence transposons at the transcriptional and posttranscriptional level with loss-of-function mutant animals universally exhibiting sterility often associated with germ cell defects. This short review aims to illustrate basic strategies of piRNA-guided defense against transposons. Mechanisms of piRNA silencing are most readily studied in Drosophila melanogaster, which serves as a model to delineate molecular concepts and as a reference for mammalian piRNA systems. PiRNA pathways utilize two major strategies to handle the challenges of transposon control: (1) the hard-wired molecular memory of prior transpositions enables recognition of mobile genetic elements and discriminates transposons from host genes; (2) a feed-forward adaptation mechanism shapes piRNA populations to selectively combat the immediate threat of transposon transcripts. In flies, maternally contributed PIWI-piRNA complexes bolster both of these lines of defense and ensure transgenerational immunity. While recent studies have provided a conceptual framework of what could be viewed as an ancient immune system, we are just beginning to appreciate its many molecular innovations.
Collapse
|
49
|
Virus world as an evolutionary network of viruses and capsidless selfish elements. Microbiol Mol Biol Rev 2015; 78:278-303. [PMID: 24847023 DOI: 10.1128/mmbr.00049-13] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Viruses were defined as one of the two principal types of organisms in the biosphere, namely, as capsid-encoding organisms in contrast to ribosome-encoding organisms, i.e., all cellular life forms. Structurally similar, apparently homologous capsids are present in a huge variety of icosahedral viruses that infect bacteria, archaea, and eukaryotes. These findings prompted the concept of the capsid as the virus "self" that defines the identity of deep, ancient viral lineages. However, several other widespread viral "hallmark genes" encode key components of the viral replication apparatus (such as polymerases and helicases) and combine with different capsid proteins, given the inherently modular character of viral evolution. Furthermore, diverse, widespread, capsidless selfish genetic elements, such as plasmids and various types of transposons, share hallmark genes with viruses. Viruses appear to have evolved from capsidless selfish elements, and vice versa, on multiple occasions during evolution. At the earliest, precellular stage of life's evolution, capsidless genetic parasites most likely emerged first and subsequently gave rise to different classes of viruses. In this review, we develop the concept of a greater virus world which forms an evolutionary network that is held together by shared conserved genes and includes both bona fide capsid-encoding viruses and different classes of capsidless replicons. Theoretical studies indicate that selfish replicons (genetic parasites) inevitably emerge in any sufficiently complex evolving ensemble of replicators. Therefore, the key signature of the greater virus world is not the presence of a capsid but rather genetic, informational parasitism itself, i.e., various degrees of reliance on the information processing systems of the host.
Collapse
|
50
|
Piégu B, Bire S, Arensburger P, Bigot Y. A survey of transposable element classification systems--a call for a fundamental update to meet the challenge of their diversity and complexity. Mol Phylogenet Evol 2015; 86:90-109. [PMID: 25797922 DOI: 10.1016/j.ympev.2015.03.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 10/25/2022]
Abstract
The increase of publicly available sequencing data has allowed for rapid progress in our understanding of genome composition. As new information becomes available we should constantly be updating and reanalyzing existing and newly acquired data. In this report we focus on transposable elements (TEs) which make up a significant portion of nearly all sequenced genomes. Our ability to accurately identify and classify these sequences is critical to understanding their impact on host genomes. At the same time, as we demonstrate in this report, problems with existing classification schemes have led to significant misunderstandings of the evolution of both TE sequences and their host genomes. In a pioneering publication Finnegan (1989) proposed classifying all TE sequences into two classes based on transposition mechanisms and structural features: the retrotransposons (class I) and the DNA transposons (class II). We have retraced how ideas regarding TE classification and annotation in both prokaryotic and eukaryotic scientific communities have changed over time. This has led us to observe that: (1) a number of TEs have convergent structural features and/or transposition mechanisms that have led to misleading conclusions regarding their classification, (2) the evolution of TEs is similar to that of viruses by having several unrelated origins, (3) there might be at least 8 classes and 12 orders of TEs including 10 novel orders. In an effort to address these classification issues we propose: (1) the outline of a universal TE classification, (2) a set of methods and classification rules that could be used by all scientific communities involved in the study of TEs, and (3) a 5-year schedule for the establishment of an International Committee for Taxonomy of Transposable Elements (ICTTE).
Collapse
Affiliation(s)
- Benoît Piégu
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France
| | - Solenne Bire
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France; Institute of Biotechnology, University of Lausanne, Center for Biotechnology UNIL-EPFL, 1015 Lausanne, Switzerland
| | - Peter Arensburger
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France; Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768, United States.
| | - Yves Bigot
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France.
| |
Collapse
|