1
|
Singh J, Randle MR, Walters BJ, Cox BC. The transcription factor Pou4f3 is essential for the survival of postnatal and adult mouse cochlear hair cells and normal hearing. Front Cell Neurosci 2024; 18:1369282. [PMID: 38566840 PMCID: PMC10985149 DOI: 10.3389/fncel.2024.1369282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Hair cells (HCs) of the cochlea are responsible for sound transduction and hearing perception in mammals. Genetic mutations in the transcription factor Pou4f3 cause non-syndromic autosomal dominant hearing loss in humans (DFNA15) which varies in the age of onset depending on the individual mutation. Mouse models with germline deletion or mutations in Pou4f3 have previously demonstrated its critical role in the maturation and survival of cochlear HCs during embryonic development. However, the role of Pou4f3 in auditory function and in the survival or maintenance of cochlear HCs after birth and during adulthood has not been studied. Methods Therefore, using the inducible CreER-loxP system, we deleted Pou4f3 from mouse cochlear HCs at different postnatal ages, relevant to specific stages of HC maturation and hearing function. Results and discussion Elevated auditory brainstem response thresholds and significant HC loss were detected in mice with Pou4f3 deletion compared to their control littermates, regardless of the age when Pou4f3 was deleted. However, HC loss occurred more rapidly when Pou4f3 was deleted from immature HCs. Additionally, HC loss caused by Pou4f3 deletion did not affect the number of cochlear supporting cells, but caused a delayed loss of spiral ganglion neurons at 4 months after the deletion. In conclusion, Pou4f3 is necessary for the survival of cochlear HCs and normal hearing at all postnatal ages regardless of their maturation state. Our data also suggest that Pou4f3 indirectly regulates the survival of spiral ganglion neurons.
Collapse
Affiliation(s)
- Jarnail Singh
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Michelle R. Randle
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Bradley J. Walters
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States
| | - Brandon C. Cox
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, United States
| |
Collapse
|
2
|
Draf C, Wyrick T, Chavez E, Pak K, Kurabi A, Leichtle A, Dazert S, Ryan AF. A Screen of Autophagy Compounds Implicates the Proteasome in Mammalian Aminoglycoside-Induced Hair Cell Damage. Front Cell Dev Biol 2021; 9:762751. [PMID: 34765606 PMCID: PMC8576371 DOI: 10.3389/fcell.2021.762751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/05/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction: Autophagy is a degradative pathway to safely break down and recycle dysfunctional cellular components. There is prior evidence of autophagy participation during hair cell (HC) damage. Our goal was to screen compounds targeting different aspects of autophagy for their effects on HC loss due to an ototoxic aminoglycoside, gentamicin (GM). Methods: The SELLECKChem autophagy compound library, consisting of 154 compounds with defined autophagy inducing or inhibitory activity, was used for targeted screening in vitro model of ototoxicity. Organ of Corti from postnatal days 3–5 pou4f3/GFP transgenic mice (HCs express green fluorescent protein) were utilized. The organs were micro-dissected, and basal and middle turns divided into micro-explants individually placed into the single wells of a 96-well plate. Samples were treated with 200 μM of GM plus three dosages of tested compound and cultured for 72 h. Negative controls were treated with media only; positive ototoxicity controls were treated with GM only. Results: The majority of the library compounds had no effect on GM-induced HC loss. However, 18 compounds exhibited a significant, protective effect, two compounds were protective at low dosage but showed enhanced GM toxicity at higher doses and one compound was toxic to HCs in the absence of GM. Conclusions: This study evaluated many autophagy compounds that have not been tested previously on HCs. The disparate results obtained underscore the complexity of autophagy events that can influence HC responses to aminoglycosides, but also implicate the proteosome as an important damage mechanism. The screening results can serve as basis for further studies with protective compounds as potential drug targets.
Collapse
Affiliation(s)
- Clara Draf
- Department of Surgery/Otolaryngology, University of California, San Diego, San Diego, CA, United States.,Department of Otolaryngology, St. Elisabeth-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Taylor Wyrick
- Department of Biology, University of California, San Diego, San Diego, CA, United States
| | - Eduardo Chavez
- Department of Surgery/Otolaryngology, University of California, San Diego, San Diego, CA, United States
| | - Kwang Pak
- Department of Surgery/Otolaryngology, University of California, San Diego, San Diego, CA, United States
| | - Arwa Kurabi
- Department of Surgery/Otolaryngology, University of California, San Diego, San Diego, CA, United States
| | - Anke Leichtle
- Department of Otolaryngology, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Stefan Dazert
- Department of Otolaryngology, St. Elisabeth-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Allen F Ryan
- Department of Surgery/Otolaryngology, University of California, San Diego, San Diego, CA, United States.,Department of Neurosciences, University of California, San Diego, San Diego, CA, United States.,VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
3
|
Spatiotemporally controlled overexpression of cyclin D1 triggers generation of supernumerary cells in the postnatal mouse inner ear. Hear Res 2020; 390:107951. [PMID: 32244147 DOI: 10.1016/j.heares.2020.107951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 02/04/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
The retinoblastoma family of pocket proteins (pRBs), composed of Rb1, p107, and p130 are negative regulators of cell-cycle progression. The deletion of any individual pRB in the auditory system triggers hair cells' (HCs) and supporting cells' (SCs) proliferation to different extents. Nevertheless, accessing their combined role in the inner ear through conditional or complete knockout methods is limited by the early mortality of the triple knockout. In quiescent cells, hyperphosphorylation and inactivation of the pRBs are maintained through the activity of the Cyclin-D1-cdk4/6 complex. Cyclin D1 (CycD1) is expressed in the embryonic and neonatal inner ear. In the mature organ of Corti (OC), CycD1 expression is significantly downregulated, paralleling the OC mitotic quiescence. Earlier studies showed that CycD1 overexpression leads to cell-cycle reactivation in cultures of inner ear explants. Here, we characterize a Cre-activated, Doxycycline (Dox)-controlled, conditional CycD1 overexpression model, which when bred to a tetracycline-controlled transcriptional activator and the Atoh1-cre mouse lines, allow for transient CycD1 overexpression and pRBs' downregulation in the inner ear in a reversible fashion. Analyses of postnatal mice's inner ears at various time points revealed the presence of supernumerary cells throughout the length of the cochlea and in the vestibular end-organs. Notably, most supernumerary cells were observed in the inner hair cells' (IHCs) region, expressed myosin VIIa (M7a), and showed no signs of apoptosis at any of the time points analyzed. Auditory and vestibular phenotypes were similar between the different genotypes and treatment groups. The fact that no significant differences were observed in auditory and vestibular function supports the notion that the supernumerary cells detected in the adult mice cochlea and macular end-organs may not impair auditory functions.
Collapse
|
4
|
Xia P, Liu Y, Chen J, Cheng Z. Cell Cycle Proteins as Key Regulators of Postmitotic Cell Death. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:641-650. [PMID: 31866779 PMCID: PMC6913832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cell cycle progression in dividing cells, characterized by faithful replication of the genomic materials and duplication of the original cell, is fundamental for growth and reproduction of all mammalian organisms. Functional maturation of postmitotic cells, however, requires cell cycle exit and terminal differentiation. In mature postmitotic cells, many cell cycle proteins remain to be expressed, or can be induced and reactivated in pathological conditions such as traumatic injury and degenerative diseases. Interestingly, elevated levels of cell cycle proteins in postmitotic cells often do not induce proliferation, but result in aberrant cell cycle reentry and cell death. At present, the cell cycle machinery is known predominantly for regulating cell cycle progression and cell proliferation, albeit accumulating evidence indicates that cell cycle proteins may also control cell death, especially in postmitotic tissues. Herein, we provide a brief summary of these findings and hope to highlight the connection between cell cycle reentry and postmitotic cell death. In addition, we also outline the signaling pathways that have been identified in cell cycle-related cell death. Advanced understanding of the molecular mechanisms underlying cell cycle-related death is of paramount importance because this knowledge can be applied to develop protective strategies against pathologies in postmitotic tissues. Moreover, a full-scope understanding of the cell cycle machinery will allow fine tuning to favor cell proliferation over cell death, thereby potentially promoting tissue regeneration.
Collapse
Affiliation(s)
| | | | | | - Zhaokang Cheng
- To whom all correspondence should be addressed: Zhaokang Cheng, PhD, Department of Pharmaceutical Sciences, Washington State University, PBS 423, 412 E. Spokane Falls Blvd. Spokane, WA 99202-2131; Tel: 509-358-7741,
| |
Collapse
|
5
|
Novel insights into inner ear development and regeneration for targeted hearing loss therapies. Hear Res 2019; 397:107859. [PMID: 31810596 DOI: 10.1016/j.heares.2019.107859] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/06/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Sensorineural hearing loss is the most common sensory deficit in humans. Despite the global scale of the problem, only limited treatment options are available today. The mammalian inner ear is a highly specialized postmitotic organ, which lacks proliferative or regenerative capacity. Since the discovery of hair cell regeneration in non-mammalian species however, much attention has been placed on identifying possible strategies to reactivate similar responses in humans. The development of successful regenerative approaches for hearing loss strongly depends on a detailed understanding of the mechanisms that control human inner ear cellular specification, differentiation and function, as well as on the development of robust in vitro cellular assays, based on human inner ear cells, to study these processes and optimize therapeutic interventions. We summarize here some aspects of inner ear development and strategies to induce regeneration that have been investigated in rodents. Moreover, we discuss recent findings in human inner ear development and compare the results with findings from animal models. Finally, we provide an overview of strategies for in vitro generation of human sensory cells from pluripotent and somatic progenitors that may provide a platform for drug development and validation of therapeutic strategies in vitro.
Collapse
|
6
|
Abstract
Auditory processing in the cochlea depends on the integrity of the mechanosensory hair cells. Over a lifetime, hearing loss can be acquired from numerous etiologies such as exposure to excessive noise, the use of ototoxic medications, bacterial or viral ear infections, head injuries, and the aging process. Loss of sensory hair cells is a common pathological feature of the varieties of acquired hearing loss. Additionally, the inner hair cell synapse can be damaged by mild insults. Therefore, surface preparations of cochlear epithelia, in combination with immunolabeling techniques and confocal imagery, are a very useful tool for the investigation of cochlear pathologies, including losses of ribbon synapses and sensory hair cells, changes in protein levels in hair cells and supporting cells, hair cell regeneration, and determination of report gene expression (i.e., GFP) for verification of successful transduction and identification of transduced cell types. The cochlea, a bony spiral-shaped structure in the inner ear, holds the auditory sensory end organ, the organ of Corti (OC). Sensory hair cells and surrounding supporting cells in the OC are contained in the cochlear duct and rest on the basilar membrane, organized in a tonotopic fashion with high-frequency detection occurring in the base and low-frequency in the apex. With the availability of molecular and genetic information and the ability to manipulate genes by knockout and knock-in techniques, mice have been widely used in biological research, including in hearing science. However, the adult mouse cochlea is miniscule, and the cochlear epithelium is encapsulated in a bony labyrinth, making microdissection difficult. Although dissection techniques have been developed and used in many laboratories, this modified microdissection method using cell and tissue adhesive is easier and more convenient. It can be used in all types of adult mouse cochleae following decalcification.
Collapse
Affiliation(s)
- Qiao-Jun Fang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina; MOE Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University
| | - Fan Wu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
| | - Renjie Chai
- MOE Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University
| | - Su-Hua Sha
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina;
| |
Collapse
|
7
|
Walters BJ, Cox BC. Approaches for the study of epigenetic modifications in the inner ear and related tissues. Hear Res 2019; 376:69-85. [PMID: 30679030 PMCID: PMC6456365 DOI: 10.1016/j.heares.2019.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/12/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022]
Abstract
DNA methylation and histone modifications such as methylation, acetylation, and phosphorylation, are two types of epigenetic modifications that alter gene expression. These additions to DNA regulatory elements or to the tails of histones can be inherited or can also occur de novo. Since epigenetic modifications can have significant effects on various processes at both the cellular and organismal level, there has been a rapid increase in research on this topic throughout all fields of biology in recent years. However, epigenetic research is relativity new for the inner ear field, likely due to the limited number of cells present and their quiescent nature. Here, we provide an overview of methods used to detect DNA methylation and histone modifications with a focus on those that have been validated for use with limited cell numbers and a discussion of the strengths and limitations for each. We also provide examples for how these methods have been used to investigate the epigenetic landscape in the inner ear and related tissues.
Collapse
Affiliation(s)
- Bradley J Walters
- Departments of Neurobiology and Anatomical Sciences, and of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Brandon C Cox
- Departments of Pharmacology and Surgery, Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA.
| |
Collapse
|
8
|
Abstract
Sensorineural hearing impairment is the most common sensory disorder and a major health and socio-economic issue in industrialized countries. It is primarily due to the degeneration of mechanosensory hair cells and spiral ganglion neurons in the cochlea via complex pathophysiological mechanisms. These occur following acute and/or chronic exposure to harmful extrinsic (e.g., ototoxic drugs, noise...) and intrinsic (e.g., aging, genetic) causative factors. No clinical therapies currently exist to rescue the dying sensorineural cells or regenerate these cells once lost. Recent studies have, however, provided renewed hope, with insights into the therapeutic targets allowing the prevention and treatment of ototoxic drug- and noise-induced, age-related hearing loss as well as cochlear cell degeneration. Moreover, genetic routes involving the replacement or corrective editing of mutant sequences or defected genes are showing promise, as are cell-replacement therapies to repair damaged cells for the future restoration of hearing in deaf people. This review begins by recapitulating our current understanding of the molecular pathways that underlie cochlear sensorineural damage, as well as the survival signaling pathways that can provide endogenous protection and tissue rescue. It then guides the reader through to the recent discoveries in pharmacological, gene and cell therapy research towards hearing protection and restoration as well as their potential clinical application.
Collapse
Affiliation(s)
- Jing Wang
- INSERM UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; and University of Montpellier, Montpellier, France
| | - Jean-Luc Puel
- INSERM UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; and University of Montpellier, Montpellier, France
| |
Collapse
|
9
|
El Amri M, Fitzgerald U, Schlosser G. MARCKS and MARCKS-like proteins in development and regeneration. J Biomed Sci 2018; 25:43. [PMID: 29788979 PMCID: PMC5964646 DOI: 10.1186/s12929-018-0445-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/07/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Myristoylated Alanine-Rich C-kinase Substrate (MARCKS) and MARCKS-like protein 1 (MARCKSL1) have a wide range of functions, ranging from roles in embryonic development to adult brain plasticity and the inflammatory response. Recently, both proteins have also been identified as important players in regeneration. Upon phosphorylation by protein kinase C (PKC) or calcium-dependent calmodulin-binding, MARCKS and MARCKSL1 translocate from the membrane into the cytosol, modulating cytoskeletal actin dynamics and vesicular trafficking and activating various signal transduction pathways. As a consequence, the two proteins are involved in the regulation of cell migration, secretion, proliferation and differentiation in many different tissues. MAIN BODY Throughout vertebrate development, MARCKS and MARCKSL1 are widely expressed in tissues derived from all germ layers, with particularly strong expression in the nervous system. They have been implicated in the regulation of gastrulation, myogenesis, brain development, and other developmental processes. Mice carrying loss of function mutations in either Marcks or Marcksl1 genes die shortly after birth due to multiple deficiencies including detrimental neural tube closure defects. In adult vertebrates, MARCKS and MARCKL1 continue to be important for multiple regenerative processes including peripheral nerve, appendage, and tail regeneration, making them promising targets for regenerative medicine. CONCLUSION This review briefly summarizes the molecular interactions and cellular functions of MARCKS and MARCKSL1 proteins and outlines their vital roles in development and regeneration.
Collapse
Affiliation(s)
- Mohamed El Amri
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Biomedical Sciences Building, Newcastle Road, Galway, Ireland
| | - Una Fitzgerald
- Galway Neuroscience Centre, School of Natural Sciences, Biomedical Sciences Building, National University of Ireland, Newcastle Road, Galway, Ireland
| | - Gerhard Schlosser
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Biomedical Sciences Building, Newcastle Road, Galway, Ireland. .,School of Natural Sciences and Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Biomedical Sciences Building, Newcastle Road, Galway, Ireland.
| |
Collapse
|
10
|
Burns JC, Stone JS. Development and regeneration of vestibular hair cells in mammals. Semin Cell Dev Biol 2017; 65:96-105. [PMID: 27864084 PMCID: PMC5423856 DOI: 10.1016/j.semcdb.2016.11.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
Vestibular sensation is essential for gaze stabilization, balance, and perception of gravity. The vestibular receptors in mammals, Type I and Type II hair cells, are located in five small organs in the inner ear. Damage to hair cells and their innervating neurons can cause crippling symptoms such as vertigo, visual field oscillation, and imbalance. In adult rodents, some Type II hair cells are regenerated and become re-innervated after damage, presenting opportunities for restoring vestibular function after hair cell damage. This article reviews features of vestibular sensory cells in mammals, including their basic properties, how they develop, and how they are replaced after damage. We discuss molecules that control vestibular hair cell regeneration and highlight areas in which our understanding of development and regeneration needs to be deepened.
Collapse
Affiliation(s)
- Joseph C Burns
- Decibel Therapeutics, 215 First St., Suite 430, Cambridge, MA 02142, USA.
| | - Jennifer S Stone
- Department of Otolaryngology/Head and Neck Surgery and The Virginia Merrill Bloedel Hearing Research Center, University of Washington School of Medicine, Box 357923, Seattle, WA 98195-7923, USA.
| |
Collapse
|
11
|
Zheng F, Zuo J. Cochlear hair cell regeneration after noise-induced hearing loss: Does regeneration follow development? Hear Res 2016; 349:182-196. [PMID: 28034617 DOI: 10.1016/j.heares.2016.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/22/2016] [Accepted: 12/20/2016] [Indexed: 12/14/2022]
Abstract
Noise-induced hearing loss (NIHL) affects a large number of military personnel and civilians. Regenerating inner-ear cochlear hair cells (HCs) is a promising strategy to restore hearing after NIHL. In this review, we first summarize recent transcriptome profile analysis of zebrafish lateral lines and chick utricles where spontaneous HC regeneration occurs after HC damage. We then discuss recent studies in other mammalian regenerative systems such as pancreas, heart and central nervous system. Both spontaneous and forced HC regeneration occurs in mammalian cochleae in vivo involving proliferation and direct lineage conversion. However, both processes are inefficient and incomplete, and decline with age. For direct lineage conversion in vivo in cochleae and in other systems, further improvement requires multiple factors, including transcription, epigenetic and trophic factors, with appropriate stoichiometry in appropriate architectural niche. Increasing evidence from other systems indicates that the molecular paths of direct lineage conversion may be different from those of normal developmental lineages. We therefore hypothesize that HC regeneration does not have to follow HC development and that epigenetic memory of supporting cells influences the HC regeneration, which may be a key to successful cochlear HC regeneration. Finally, we discuss recent efforts in viral gene therapy and drug discovery for HC regeneration. We hope that combination therapy targeting multiple factors and epigenetic signaling pathways will provide promising avenues for HC regeneration in humans with NIHL and other types of hearing loss.
Collapse
Affiliation(s)
- Fei Zheng
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 322, Memphis, TN 38105, United States.
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 322, Memphis, TN 38105, United States.
| |
Collapse
|
12
|
Li W, You D, Chen Y, Chai R, Li H. Regeneration of hair cells in the mammalian vestibular system. Front Med 2016; 10:143-51. [DOI: 10.1007/s11684-016-0451-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/11/2016] [Indexed: 11/25/2022]
|
13
|
Basch ML, Brown RM, Jen H, Groves AK. Where hearing starts: the development of the mammalian cochlea. J Anat 2016; 228:233-54. [PMID: 26052920 PMCID: PMC4718162 DOI: 10.1111/joa.12314] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2015] [Indexed: 12/11/2022] Open
Abstract
The mammalian cochlea is a remarkable sensory organ, capable of perceiving sound over a range of 10(12) in pressure, and discriminating both infrasonic and ultrasonic frequencies in different species. The sensory hair cells of the mammalian cochlea are exquisitely sensitive, responding to atomic-level deflections at speeds on the order of tens of microseconds. The number and placement of hair cells are precisely determined during inner ear development, and a large number of developmental processes sculpt the shape, size and morphology of these cells along the length of the cochlear duct to make them optimally responsive to different sound frequencies. In this review, we briefly discuss the evolutionary origins of the mammalian cochlea, and then describe the successive developmental processes that lead to its induction, cell cycle exit, cellular patterning and the establishment of topologically distinct frequency responses along its length.
Collapse
Affiliation(s)
- Martin L. Basch
- Department of NeuroscienceBaylor College of MedicineHoustonTXUSA
| | - Rogers M. Brown
- Program in Developmental BiologyBaylor College of MedicineHoustonTXUSA
| | - Hsin‐I Jen
- Program in Developmental BiologyBaylor College of MedicineHoustonTXUSA
| | - Andrew K. Groves
- Department of NeuroscienceBaylor College of MedicineHoustonTXUSA
- Program in Developmental BiologyBaylor College of MedicineHoustonTXUSA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
14
|
Montgomery SC, Cox BC. Whole Mount Dissection and Immunofluorescence of the Adult Mouse Cochlea. J Vis Exp 2016. [PMID: 26779585 DOI: 10.3791/53561] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The organ of Corti, housed in the cochlea of the inner ear, contains mechanosensory hair cells and surrounding supporting cells which are organized in a spiral shape and have a tonotopic gradient for sound detection. The mouse cochlea is approximately 6 mm long and often divided into three turns (apex, middle, and base) for analysis. To investigate cell loss, cell division, or mosaic gene expression, the whole mount or surface preparation of the cochlea is useful. This dissection method allows visualization of all cells within the organ of Corti when combined with immunostaining and confocal microscopy to image cells at different planes in the z-axis. Multiple optical cross-sections can also be obtained from these z-stack images. In addition, the whole mount dissection method can be used for scanning electron microscopy, although a different fixation method is needed. Here, we present a method to isolate the organ of Corti as three intact cochlear turns (apex, middle, and base). This method can be used for mice ranging from one week of age through adulthood and differs from the technique used for neonatal samples where calcification of the cochlea is incomplete. A slightly modified version can be used for dissection of the rat cochlea. We also demonstrate a procedure for immunostaining with fluorescently tagged antibodies.
Collapse
Affiliation(s)
- Scott C Montgomery
- Department of Surgery, Division of Otolaryngology, Southern Illinois University, School of Medicine
| | - Brandon C Cox
- Department of Surgery, Division of Otolaryngology, Southern Illinois University, School of Medicine; Department of Pharmacology, Southern Illinois University, School of Medicine;
| |
Collapse
|
15
|
Roccio M, Hahnewald S, Perny M, Senn P. Cell cycle reactivation of cochlear progenitor cells in neonatal FUCCI mice by a GSK3 small molecule inhibitor. Sci Rep 2015; 5:17886. [PMID: 26643939 PMCID: PMC4672274 DOI: 10.1038/srep17886] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/06/2015] [Indexed: 11/09/2022] Open
Abstract
Due to the lack of regenerative capacity of the mammalian auditory epithelium, sensory hair cell loss results in permanent hearing deficit. Nevertheless, a population of tissue resident stem/progenitor cells has been recently described. Identification of methods to trigger their activity could lead to exploitation of their potential therapeutically. Here we validate the use of transgenic mice reporting cell cycle progression (FUCCI), and stemness (Lgr5-GFP), as a valuable tool to identify regulators of cell cycle re-entry of supporting cells within the auditory epithelium. The small molecule compound CHIR99021 was used to inhibit GSK3 activity. This led to a significant increase in the fraction of proliferating sphere-forming cells, labeled by the FUCCI markers and in the percentage of Lgr5-GFP + cells, as well as a selective increase in the fraction of S-G2-M cells in the Lgr5 + population. Using whole mount cultures of the organ of Corti we detected a statistically significant increment in the fraction of proliferating Sox2 supporting cells after CHIR99021 treatment, but only rarely appearance of novel MyoVIIa+/Edu + hair cells. In conclusion, these tools provide a robust mean to identify novel regulators of auditory organ regeneration and to clarify the contribution of stem cell activity.
Collapse
Affiliation(s)
- M Roccio
- Laboratory of Inner Ear Research, Department of Clinical Research, University of Bern and University Department of Otorhinolaryngology, Head &Neck Surgery, Inselspital, Bern, Switzerland
| | - S Hahnewald
- Laboratory of Inner Ear Research, Department of Clinical Research, University of Bern and University Department of Otorhinolaryngology, Head &Neck Surgery, Inselspital, Bern, Switzerland
| | - M Perny
- Laboratory of Inner Ear Research, Department of Clinical Research, University of Bern and University Department of Otorhinolaryngology, Head &Neck Surgery, Inselspital, Bern, Switzerland.,Laboratory of Neuroinfectiology, Institute of Infectious Diseases (IFIK), University of Bern
| | - P Senn
- Laboratory of Inner Ear Research, Department of Clinical Research, University of Bern and University Department of Otorhinolaryngology, Head &Neck Surgery, Inselspital, Bern, Switzerland.,Department of Otorhinolaryngology, Head &Neck Surgery University Hospital Geneva (HUG), Switzerland
| |
Collapse
|
16
|
Atkinson PJ, Huarcaya Najarro E, Sayyid ZN, Cheng AG. Sensory hair cell development and regeneration: similarities and differences. Development 2015; 142:1561-71. [PMID: 25922522 DOI: 10.1242/dev.114926] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sensory hair cells are mechanoreceptors of the auditory and vestibular systems and are crucial for hearing and balance. In adult mammals, auditory hair cells are unable to regenerate, and damage to these cells results in permanent hearing loss. By contrast, hair cells in the chick cochlea and the zebrafish lateral line are able to regenerate, prompting studies into the signaling pathways, morphogen gradients and transcription factors that regulate hair cell development and regeneration in various species. Here, we review these findings and discuss how various signaling pathways and factors function to modulate sensory hair cell development and regeneration. By comparing and contrasting development and regeneration, we also highlight the utility and limitations of using defined developmental cues to drive mammalian hair cell regeneration.
Collapse
Affiliation(s)
- Patrick J Atkinson
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elvis Huarcaya Najarro
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zahra N Sayyid
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan G Cheng
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
17
|
pRb phosphorylation regulates the proliferation of supporting cells in gentamicin-damaged neonatal avian utricle. Neuroreport 2015; 25:1144-50. [PMID: 25100553 DOI: 10.1097/wnr.0000000000000241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The ability of nonmammalian vertebrates to regenerate hair cells (HCs) after damage-induced HC loss has stimulated and inspired research in the field of HC regeneration. The protein pRb encoded by retinoblastoma gene Rb1 forces sensory progenitor cells to exit cell cycle and maintain differentiated HCs and supporting cells (SCs) in a quiescent state. pRb function is regulated by phosphorylation through the MEK/ERK or the pRb/Raf-1 signaling pathway. In our previous study, we have shown that pRb phosphorylation is crucial for progenitor cell proliferation and survival during the early embryonic stage of avian otocyst sensory epithelium development. However, in damaged avian utricle, the role of pRb in regulating the cell cycling of SCs or HCs regeneration still remains unclear. To further elucidate the function of pRb phosphorylation on SCs re-entering the cell cycle triggered by gentamycin-induced HCs damage, we isolated neonatal chicken utricles and treated them with the MEK inhibitor U0126 or the pRb/Raf-1 inhibitor RRD-251, respectively in vitro. We found that after gentamycin-induced HCs damage, pRb phosphorylation is important for the quiescent SCs re-entering the cell cycle in the neonatal chicken utricle. In addition, the proliferation of SCs decreased in a dose-dependent manner in response to both U0126 and RRD-251, which indicates that both the MEK/ERK and the pRb/Raf-1 signaling pathway play important roles in pRb phosphorylation in damaged neonatal chicken utricle. Together, these findings on the function of pRb in damaged neonatal chicken utricle improve our understanding of the regulation of the cell cycle of SCs after HCs loss and may shed light on the mammalian HC regeneration from SCs in damaged organs.
Collapse
|
18
|
Tarang S, Doi SMSR, Gurumurthy CB, Harms D, Quadros R, Rocha-Sanchez SM. Generation of a Retinoblastoma (Rb)1-inducible dominant-negative (DN) mouse model. Front Cell Neurosci 2015; 9:52. [PMID: 25755634 PMCID: PMC4337335 DOI: 10.3389/fncel.2015.00052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 02/03/2015] [Indexed: 11/13/2022] Open
Abstract
Retinoblastoma 1 (Rb1) is an essential gene regulating cellular proliferation, differentiation, and homeostasis. To exert these functions, Rb1 is recruited and physically interacts with a growing variety of signaling pathways. While Rb1 does not appear to be ubiquitously expressed, its expression has been confirmed in a variety of hematopoietic and neuronal-derived cells, including the inner ear hair cells (HCs). Studies in transgenic mice demonstrate that complete germline or conditional Rb1 deletion leads to abnormal cell proliferation, followed by massive apoptosis; making it difficult to fully address Rb1's biochemical activities. To overcome these limitations, we developed a tetracycline-inducible TetO-CB-myc6-Rb1 (CBRb) mouse model to achieve transient and inducible dominant-negative (DN) inhibition of the endogenous RB1 protein. Our strategy involved fusing the Rb1 gene to the lysosomal protease pre-procathepsin B (CB), thus allowing for further routing of the DN-CBRb fusion protein and its interacting complexes for proteolytic degradation. Moreover, reversibility of the system is achieved upon suppression of doxycycline (Dox) administration. Preliminary characterization of DN-CBRb mice bred to a ubiquitous rtTA mouse line demonstrated a significant inhibition of the endogenous RB1 protein in the inner ear and in a number of other organs where RB1 is expressed. Examination of the postnatal (P) DN-CBRb mice inner ear at P10 and P28 showed the presence of supernumerary inner HCs (IHCs) in the lower turns of the cochleae, which corresponds to the described expression domain of the endogenous Rb1 gene. Selective and reversible suppression of gene expression is both an experimental tool for defining function and a potential means to medical therapy. Given the limitations associated with Rb1-null mice lethality, this model provides a valuable resource for understanding RB1 activity, relative contribution to HC regeneration and its potential therapeutic application.
Collapse
Affiliation(s)
- Shikha Tarang
- Department of Oral Biology, Creighton University School of Dentistry Omaha, NE,USA
| | - Songila M S R Doi
- Department of Oral Biology, Creighton University School of Dentistry Omaha, NE,USA
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center Omaha, NE, USA
| | - Donald Harms
- Mouse Genome Engineering Core Facility, Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center Omaha, NE, USA
| | - Rolen Quadros
- Mouse Genome Engineering Core Facility, Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center Omaha, NE, USA
| | | |
Collapse
|
19
|
Auditory hair cell-specific deletion of p27Kip1 in postnatal mice promotes cell-autonomous generation of new hair cells and normal hearing. J Neurosci 2015; 34:15751-63. [PMID: 25411503 DOI: 10.1523/jneurosci.3200-14.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hearing in mammals relies upon the transduction of sound by hair cells (HCs) in the organ of Corti within the cochlea of the inner ear. Sensorineural hearing loss is a widespread and permanent disability due largely to a lack of HC regeneration in mammals. Recent studies suggest that targeting the retinoblastoma (Rb)/E2F pathway can elicit proliferation of auditory HCs. However, previous attempts to induce HC proliferation in this manner have resulted in abnormal cochlear morphology, HC death, and hearing loss. Here we show that cochlear HCs readily proliferate and survive following neonatal, HC-specific, conditional knock-out of p27(Kip1) (p27CKO), a tumor suppressor upstream of Rb. Indeed, HC-specific p27CKO results in proliferation of these cells without the upregulation of the supporting cell or progenitor cell proteins, Prox1 or Sox2, suggesting that they remain HCs. Furthermore, p27CKO leads to a significant addition of postnatally derived HCs that express characteristic synaptic and stereociliary markers and survive to adulthood, although a portion of the newly derived inner HCs exhibit cytocauds and lack VGlut3 expression. Despite this, p27CKO mice exhibit normal hearing as measured by evoked auditory brainstem responses, which suggests that the newly generated HCs may contribute to, or at least do not greatly detract from, function. These results show that p27(Kip1) actively maintains HC quiescence in postnatal mice, and suggest that inhibition of p27(Kip1) in residual HCs represents a potential strategy for cell-autonomous auditory HC regeneration.
Collapse
|
20
|
Wan G, Gómez-Casati ME, Gigliello AR, Liberman MC, Corfas G. Neurotrophin-3 regulates ribbon synapse density in the cochlea and induces synapse regeneration after acoustic trauma. eLife 2014; 3. [PMID: 25329343 PMCID: PMC4227045 DOI: 10.7554/elife.03564] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/09/2014] [Indexed: 12/23/2022] Open
Abstract
Neurotrophin-3 (Ntf3) and brain derived neurotrophic factor (Bdnf) are critical for sensory neuron survival and establishment of neuronal projections to sensory epithelia in the embryonic inner ear, but their postnatal functions remain poorly understood. Using cell-specific inducible gene recombination in mice we found that, in the postnatal inner ear, Bbnf and Ntf3 are required for the formation and maintenance of hair cell ribbon synapses in the vestibular and cochlear epithelia, respectively. We also show that supporting cells in these epithelia are the key endogenous source of the neurotrophins. Using a new hair cell CreER(T) line with mosaic expression, we also found that Ntf3's effect on cochlear synaptogenesis is highly localized. Moreover, supporting cell-derived Ntf3, but not Bbnf, promoted recovery of cochlear function and ribbon synapse regeneration after acoustic trauma. These results indicate that glial-derived neurotrophins play critical roles in inner ear synapse density and synaptic regeneration after injury.
Collapse
Affiliation(s)
- Guoqiang Wan
- F M Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| | - Maria E Gómez-Casati
- F M Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| | - Angelica R Gigliello
- F M Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| | - M Charles Liberman
- Department of Otology and Laryngology, Harvard Medical School, Boston, United States
| | - Gabriel Corfas
- F M Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| |
Collapse
|
21
|
Abstract
Aging is marked by changes that affect organs and resident stem cell function. Shorting of telomeres, DNA damage, oxidative stress, deregulation of genes and proteins, impaired cell-cell communication, and an altered systemic environment cause the eventual demise of cells. At the same time, reparative activities also decline. It is intriguing to correlate aging with the decline of regenerative abilities. Animal models with strong regenerative capabilities imply that aging processes might not be affecting regeneration. In this review, we selectively present age-dependent changes in stem/progenitor cells that are vital for tissue homeostasis and repair. In addition, the aging effect on regeneration following injury in organs such as lung, skeletal muscle, heart, nervous system, cochlear hair, lens, and liver are discussed. These tissues are also known for diseases such as heart attack, stroke, cognitive impairment, cataract, and hearing loss that occur mostly during aging in humans. Conclusively, vertebrate regeneration declines with age with the loss of stem/progenitor cell function. Future studies on improving the function of stem cells, along with studies in fish and amphibians where regeneration does not decline with age, will undoubtedly provide insights into both processes.
Collapse
Affiliation(s)
- Konstantinos Sousounis
- Department of Biology and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, Ohio, USA
| | - Joelle A Baddour
- Department of Chemical and Materials Engineering and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, Ohio, USA
| | - Panagiotis A Tsonis
- Department of Biology and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, Ohio, USA.
| |
Collapse
|
22
|
Cox BC, Chai R, Lenoir A, Liu Z, Zhang L, Nguyen DH, Chalasani K, Steigelman KA, Fang J, Rubel EW, Cheng AG, Zuo J. Spontaneous hair cell regeneration in the neonatal mouse cochlea in vivo. Development 2014; 141:816-29. [PMID: 24496619 DOI: 10.1242/dev.103036] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Loss of cochlear hair cells in mammals is currently believed to be permanent, resulting in hearing impairment that affects more than 10% of the population. Here, we developed two genetic strategies to ablate neonatal mouse cochlear hair cells in vivo. Both Pou4f3(DTR/+) and Atoh1-CreER™; ROSA26(DTA/+) alleles allowed selective and inducible hair cell ablation. After hair cell loss was induced at birth, we observed spontaneous regeneration of hair cells. Fate-mapping experiments demonstrated that neighboring supporting cells acquired a hair cell fate, which increased in a basal to apical gradient, averaging over 120 regenerated hair cells per cochlea. The normally mitotically quiescent supporting cells proliferated after hair cell ablation. Concurrent fate mapping and labeling with mitotic tracers showed that regenerated hair cells were derived by both mitotic regeneration and direct transdifferentiation. Over time, regenerated hair cells followed a similar pattern of maturation to normal hair cell development, including the expression of prestin, a terminal differentiation marker of outer hair cells, although many new hair cells eventually died. Hair cell regeneration did not occur when ablation was induced at one week of age. Our findings demonstrate that the neonatal mouse cochlea is capable of spontaneous hair cell regeneration after damage in vivo. Thus, future studies on the neonatal cochlea might shed light on the competence of supporting cells to regenerate hair cells and on the factors that promote the survival of newly regenerated hair cells.
Collapse
Affiliation(s)
- Brandon C Cox
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gene-expression analysis of hair cell regeneration in the zebrafish lateral line. Proc Natl Acad Sci U S A 2014; 111:E1383-92. [PMID: 24706903 DOI: 10.1073/pnas.1402898111] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Deafness caused by the terminal loss of inner ear hair cells is one of the most common sensory diseases. However, nonmammalian animals (e.g., birds, amphibians, and fish) regenerate damaged hair cells. To understand better the reasons underpinning such disparities in regeneration among vertebrates, we set out to define at high resolution the changes in gene expression associated with the regeneration of hair cells in the zebrafish lateral line. We performed RNA-Seq analyses on regenerating support cells purified by FACS. The resulting expression data were subjected to pathway enrichment analyses, and the differentially expressed genes were validated in vivo via whole-mount in situ hybridizations. We discovered that cell cycle regulators are expressed hours before the activation of Wnt/β-catenin signaling following hair cell death. We propose that Wnt/β-catenin signaling is not involved in regulating the onset of proliferation but governs proliferation at later stages of regeneration. In addition, and in marked contrast to mammals, our data clearly indicate that the Notch pathway is significantly down-regulated shortly after injury, thus uncovering a key difference between the zebrafish and mammalian responses to hair cell injury. Taken together, our findings lay the foundation for identifying differences in signaling pathway regulation that could be exploited as potential therapeutic targets to promote either sensory epithelium or hair cell regeneration in mammals.
Collapse
|
24
|
Liu Q, Chen P, Wang J. Molecular mechanisms and potentials for differentiating inner ear stem cells into sensory hair cells. Dev Biol 2014; 390:93-101. [PMID: 24680894 DOI: 10.1016/j.ydbio.2014.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/15/2014] [Accepted: 03/18/2014] [Indexed: 12/31/2022]
Abstract
In mammals, hair cells may be damaged or lost due to genetic mutation, infectious disease, chemical ototoxicity, noise and other factors, causing permanent sensorineural deafness. Regeneration of hair cells is a basic pre-requisite for recovery of hearing in deaf animals. The inner ear stem cells in the organ of Corti and vestibular utricle are the most ideal precursors for regeneration of inner ear hair cells. This review highlights some recent findings concerning the proliferation and differentiation of inner ear stem cells. The differentiation of inner ear stem cells into hair cells involves a series of signaling pathways and regulatory factors. This paper offers a comprehensive analysis of the related studies.
Collapse
Affiliation(s)
- Quanwen Liu
- Institute of Cell and Development, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Ping Chen
- Institute of Cell and Development, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China; Department of Cell Biology and Otolaryngology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Jinfu Wang
- Institute of Cell and Development, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
25
|
Toward Translating Molecular Ear Development to Generate Hair Cells from Stem Cells. ADULT STEM CELLS 2014. [DOI: 10.1007/978-1-4614-9569-7_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Disrupting the interaction between retinoblastoma protein and Raf-1 leads to defects in progenitor cell proliferation and survival during early inner ear development. PLoS One 2013; 8:e83726. [PMID: 24391814 PMCID: PMC3877085 DOI: 10.1371/journal.pone.0083726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 11/07/2013] [Indexed: 11/19/2022] Open
Abstract
The retinoblastoma protein (pRb) is required for cell-cycle exit of embryonic mammalian hair cells but is not required for hair cell fate determination and early differentiation, and this provides a strategy for hair cell regeneration by manipulating the pRb pathway. To reveal the mechanism of pRb functional modification in the inner ear, we compared the effects of attenuated pRb phosphorylation by an inhibitor of the Mitogen-Activated Protein (MAP) kinase pathway and an inhibitor of the Rb-Raf-1 interaction on cultured chicken otocysts. We demonstrated that the activity of pRb is correlated with its phosphorylation state, which is regulated by a newly established cell cycle-independent pathway mediated by the physical interaction between Raf-1 and pRb. The phosphorylation of pRb plays an important role during the early stage of inner ear development, and attenuated phosphorylation in progenitor cells leads to cell cycle arrest and increased apoptosis along with a global down-regulation of the genes involved in cell cycle progression. Our study provides novel routes to modulate pRb function for hair cell regeneration.
Collapse
|
27
|
Disrupting Rb-Raf-1 interaction inhibits hair cell regeneration in zebrafish lateral line neuromasts. Neuroreport 2013; 24:190-5. [PMID: 23381351 DOI: 10.1097/wnr.0b013e32835e3279] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Zebrafish neuromast is an ideal model for investigating hair cell (HC) death and regeneration following ototoxic insults. HC undergoes rapid and robust replacement in larval zebrafish after neomycin damage. However, the origin of new HCs remains unclear. Our data showed that asymmetric cell division was involved in the process of HC regeneration in zebrafish lateral line neuromasts. Furthermore, a small molecule RRD251, which disrupted the physical interaction between RB and Raf-1 and then blocked the phosphorylation of Rb, could have inhibited the HC regeneration from supporting cell proliferation. Our results indicate that Rb-Raf-1 interaction plays an important role in spontaneous HC regeneration in zebrafish.
Collapse
|
28
|
Kopecky BJ, Jahan I, Fritzsch B. Correct timing of proliferation and differentiation is necessary for normal inner ear development and auditory hair cell viability. Dev Dyn 2013. [PMID: 23193000 DOI: 10.1002/dvdy.23910] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Hearing restoration through hair cell regeneration will require revealing the dynamic interactions between proliferation and differentiation during development to avoid the limited viability of regenerated hair cells. Pax2-Cre N-Myc conditional knockout (CKO) mice highlighted the need of N-Myc for proper neurosensory development and possible redundancy with L-Myc. The late-onset hair cell death in the absence of early N-Myc expression could be due to mis-regulation of genes necessary for neurosensory formation and maintenance, such as Neurod1, Atoh1, Pou4f3, and Barhl1. RESULTS Pax2-Cre N-Myc L-Myc double CKO mice show that proliferation and differentiation are linked together through Myc and in the absence of both Mycs, altered proliferation and differentiation result in morphologically abnormal ears. In particular, the organ of Corti apex is re-patterned into a vestibular-like organization and the base is truncated and fused with the saccule. CONCLUSIONS These data indicate that therapeutic approaches to restore hair cells must take into account a dynamic interaction of proliferation and differentiation regulation of basic Helix-Loop-Helix transcription factors in attempts to stably replace lost cochlear hair cells. In addition, our data indicate that Myc is an integral component of the evolutionary transformation process that resulted in the organ of Corti development.
Collapse
|
29
|
Coupling the cell cycle to development and regeneration of the inner ear. Semin Cell Dev Biol 2013; 24:507-13. [PMID: 23665151 DOI: 10.1016/j.semcdb.2013.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 04/23/2013] [Indexed: 12/19/2022]
Abstract
Cell cycle exit and acquirement of a postmitotic state is essential for the proper development of organs. In the present review, we examine the role of the cell cycle control in the sensory epithelia of the mammalian inner ear. We describe the roles of the core cell cycle regulators in the proliferation of prosensory cells and in the initiation and maintenance of terminal mitosis of the sensory epithelia. We also discuss how other intracellular signalling may influence the cell cycle. Finally, we address the question of whether manipulations of the cell cycle may have the potential to create replacement cells for the damaged inner sensory epithelia.
Collapse
|
30
|
Burns JC, Corwin JT. A historical to present-day account of efforts to answer the question: "what puts the brakes on mammalian hair cell regeneration?". Hear Res 2013; 297:52-67. [PMID: 23333259 PMCID: PMC3594491 DOI: 10.1016/j.heares.2013.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 12/20/2012] [Accepted: 01/07/2013] [Indexed: 12/17/2022]
Abstract
Hearing and balance deficits often affect humans and other mammals permanently, because their ears stop producing hair cells within a few days after birth. But production occurs throughout life in the ears of sharks, bony fish, amphibians, reptiles, and birds allowing them to replace lost hair cells and quickly recover after temporarily experiencing the kinds of sensory deficits that are irreversible for mammals. Since the mid 1970s, researchers have been asking what puts the brakes on hair cell regeneration in mammals. Here we evaluate the headway that has been made and assess current evidence for alternative mechanistic hypotheses that have been proposed to account for the limits to hair cell regeneration in mammals.
Collapse
Affiliation(s)
- Joseph C Burns
- Department of Neuroscience, University of Virginia, School of Medicine, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
31
|
Zhao LD, Li L, Wu N, Li DK, Ren LL, Guo WW, Sun JH, Liu HZ, Chen ZT, Xing GQ, Yang SM. Migration and differentiation of mouse embryonic stem cells transplanted into mature cochlea of rats with aminoglycoside-induced hearing loss. Acta Otolaryngol 2013; 133:136-43. [PMID: 23050670 DOI: 10.3109/00016489.2012.720029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION Mouse embryonic stem cells (ESCs) transplanted into the scala tympani are able to migrate in the cochlea of rats deafened with aminoglycoside and partly restore the structure of sensory epithelia of the inner ear. OBJECTIVES To explore the migration and differentiation of enhanced green fluorescence protein (EGFP)-expressing ESCs by transplanting them into the scala tympani of rats with amikacin sulfate-induced hearing loss. METHODS Adult Sprague-Dawley (SD) rats were deafened with amikacin sulfate. Mouse ESCs expressing EGFP (EGFP-ESCs) were transplanted into the scala tympani. The migration and differentiation were observed at different time points. RESULTS EGFP-ESCs transplanted into normal cochlea did not migrate, but those in the amikacin-damaged cochlea could survive and migrate into the scala media and the vestibular cisterna. For the first time, we observed that the EGFP-ESCs migrated into the scala media, took the place of the organ of Corti, and formed a structure just like the cochlear tunnel. Some grafted stem cells even expressed myosin VIIa, the molecular marker of hair cells. Some nerve fibers reached to the bottom of the hair cell-like cells. The ESCs migrated into the vestibule and restored the sensory epithelia of the ampullary crest. The number of the transplanted ESCs reduced over the 6 week period of the study.
Collapse
Affiliation(s)
- Li-Dong Zhao
- Department of Otolaryngology-Head & Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
INTRODUCTION For most types of hearing impairments, a definitive therapy would rest on the ability to restore hair cells and the spiral ganglion neurons. The only established technique to treat deafness is based on the functional replacement of hair cells with a cochlear implant, but this still has important limitations. SOURCES OF DATA A systematic revision of the relevant literature is presented. AREAS OF AGREEMENT New curative strategies, ranging from stem cells to gene and molecular therapy, are under development. AREAS OF CONTROVERSY Although still experimental, they have delivered some initial promissory results that allow us to look at them with cautious optimism. GROWING POINTS The isolation of human auditory cells, the generation of protocols to control their differentiation into sensory lineages, their promising application in vivo and the identification of key genes to target molecularly offer an exciting landscape. AREAS TIMELY FOR DEVELOPING RESEARCH In this chapter, I discuss the latest advances in the field and how they are being translated into a clinical application.
Collapse
Affiliation(s)
- Marcelo N Rivolta
- University of Sheffield, Firth Court Bldg, Western Bank, Sheffield, UK.
| |
Collapse
|
33
|
Lu N, Chen Y, Wang Z, Chen G, Lin Q, Chen ZY, Li H. Sonic hedgehog initiates cochlear hair cell regeneration through downregulation of retinoblastoma protein. Biochem Biophys Res Commun 2012; 430:700-5. [PMID: 23211596 DOI: 10.1016/j.bbrc.2012.11.088] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 11/20/2012] [Indexed: 01/28/2023]
Abstract
Cell cycle re-entry by cochlear supporting cells and/or hair cells is considered one of the best approaches for restoring hearing loss as a result of hair cell damage. To identify mechanisms that can be modulated to initiate cell cycle re-entry and hair cell regeneration, we studied the effect of activating the sonic hedgehog (Shh) pathway. We show that Shh signaling in postnatal rat cochleae damaged by neomycin leads to renewed proliferation of supporting cells and hair cells. Further, proliferating supporting cells are likely to transdifferentiate into hair cells. Shh treatment leads to inhibition of retinoblastoma protein (pRb) by increasing phosphorylated pRb and reducing retinoblastoma gene transcription. This results in upregulation of cyclins B1, D2, and D3, and CDK1. These results suggest that Shh signaling induces cell cycle re-entry in cochlear sensory epithelium and the production of new hair cells, in part by attenuating pRb function. This study provides an additional route to modulate pRb function with important implications in mammalian hair cell regeneration.
Collapse
Affiliation(s)
- Na Lu
- Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Mitosis in neurons: Roughex and APC/C maintain cell cycle exit to prevent cytokinetic and axonal defects in Drosophila photoreceptor neurons. PLoS Genet 2012; 8:e1003049. [PMID: 23209426 PMCID: PMC3510051 DOI: 10.1371/journal.pgen.1003049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 09/11/2012] [Indexed: 02/02/2023] Open
Abstract
The mechanisms of cell cycle exit by neurons remain poorly understood. Through genetic and developmental analysis of Drosophila eye development, we found that the cyclin-dependent kinase-inhibitor Roughex maintains G1 cell cycle exit during differentiation of the R8 class of photoreceptor neurons. The roughex mutant neurons re-enter the mitotic cell cycle and progress without executing cytokinesis, unlike non-neuronal cells in the roughex mutant that perform complete cell divisions. After mitosis, the binucleated R8 neurons usually transport one daughter nucleus away from the cell body into the developing axon towards the brain in a kinesin-dependent manner resembling anterograde axonal trafficking. Similar cell cycle and photoreceptor neuron defects occurred in mutants for components of the Anaphase Promoting Complex/Cyclosome. These findings indicate a neuron-specific defect in cytokinesis and demonstrate a critical role for mitotic cyclin downregulation both to maintain cell cycle exit during neuronal differentiation and to prevent axonal defects following failed cytokinesis. Neurons generally differentiate and never divide again. One barrier to understanding the mechanisms has been the paucity of genetic mutations that result in neuronal cell cycles. Here we show that mutation in three genes lead to cell cycle re-entry by a particular class of developing photoreceptor neurons in the fly retina. Strikingly, these neurons do not complete cell division but only divide their nuclei. The binucleated neurons then typically retain one nucleus in its normal location in the cell body, while transporting the other into the growing axon like other axonal material. Our findings identify Cyclin A regulation as crucial to maintaining cell cycle exit by at least some neurons and identify a neuron-specific defect in cell division as a further barrier to neuron proliferation. Because defects in transporting axonal material have been implicated in the origin of multiple neurodegenerative diseases, our findings also suggest a possible connection between defective cell cycle regulation and neuronal cell death.
Collapse
|
35
|
Postnatal development, maturation and aging in the mouse cochlea and their effects on hair cell regeneration. Hear Res 2012; 297:68-83. [PMID: 23164734 DOI: 10.1016/j.heares.2012.11.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/22/2012] [Accepted: 11/07/2012] [Indexed: 12/23/2022]
Abstract
The organ of Corti in the mammalian inner ear is comprised of mechanosensory hair cells (HCs) and nonsensory supporting cells (SCs), both of which are believed to be terminally post-mitotic beyond late embryonic ages. Consequently, regeneration of HCs and SCs does not occur naturally in the adult mammalian cochlea, though recent evidence suggests that these cells may not be completely or irreversibly quiescent at earlier postnatal ages. Furthermore, regenerative processes can be induced by genetic and pharmacological manipulations, but, more and more reports suggest that regenerative potential declines as the organ of Corti continues to age. In numerous mammalian systems, such effects of aging on regenerative potential are well established. However, in the cochlea, the problem of regeneration has not been traditionally viewed as one of aging. This is an important consideration as current models are unable to elicit widespread regeneration or full recovery of function at adult ages yet regenerative therapies will need to be developed specifically for adult populations. Still, the advent of gene targeting and other genetic manipulations has established mice as critically important models for the study of cochlear development and HC regeneration and suggests that auditory HC regeneration in adult mammals may indeed be possible. Thus, this review will focus on the pursuit of regeneration in the postnatal and adult mouse cochlea and highlight processes that occur during postnatal development, maturation, and aging that could contribute to an age-related decline in regenerative potential. Second, we will draw upon the wealth of knowledge pertaining to age related senescence in tissues outside of the ear to synthesize new insights and potentially guide future research aimed at promoting HC regeneration in the adult cochlea.
Collapse
|
36
|
MYC gene delivery to adult mouse utricles stimulates proliferation of postmitotic supporting cells in vitro. PLoS One 2012; 7:e48704. [PMID: 23119091 PMCID: PMC3484123 DOI: 10.1371/journal.pone.0048704] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/01/2012] [Indexed: 01/01/2023] Open
Abstract
The inner ears of adult humans and other mammals possess a limited capacity for regenerating sensory hair cells, which can lead to permanent auditory and vestibular deficits. During development and regeneration, undifferentiated supporting cells within inner ear sensory epithelia can self-renew and give rise to new hair cells; however, these otic progenitors become depleted postnatally. Therefore, reprogramming differentiated supporting cells into otic progenitors is a potential strategy for restoring regenerative potential to the ear. Transient expression of the induced pluripotency transcription factors, Oct3/4, Klf4, Sox2, and c-Myc reprograms fibroblasts into neural progenitors under neural-promoting culture conditions, so as a first step, we explored whether ectopic expression of these factors can reverse supporting cell quiescence in whole organ cultures of adult mouse utricles. Co-infection of utricles with adenoviral vectors separately encoding Oct3/4, Klf4, Sox2, and the degradation-resistant T58A mutant of c-Myc (c-MycT58A) triggered significant levels of supporting cell S-phase entry as assessed by continuous BrdU labeling. Of the four factors, c-MycT58A alone was both necessary and sufficient for the proliferative response. The number of BrdU-labeled cells plateaued between 5–7 days after infection, and then decreased ∼60% by 3 weeks, as many cycling cells appeared to enter apoptosis. Switching to differentiation-promoting culture medium at 5 days after ectopic expression of c-MycT58A temporarily attenuated the loss of BrdU-labeled cells and accompanied a very modest but significant expansion of the sensory epithelium. A small number of the proliferating cells in these cultures labeled for the hair cell marker, myosin VIIA, suggesting they had begun differentiating towards a hair cell fate. The results indicate that ectopic expression of c-MycT58A in combination with methods for promoting cell survival and differentiation may restore regenerative potential to supporting cells within the adult mammalian inner ear.
Collapse
|
37
|
Regulation of p27Kip1 by Sox2 maintains quiescence of inner pillar cells in the murine auditory sensory epithelium. J Neurosci 2012; 32:10530-40. [PMID: 22855803 DOI: 10.1523/jneurosci.0686-12.2012] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sox2 plays critical roles in cell fate specification during development and in stem cell formation; however, its role in postmitotic cells is largely unknown. Sox2 is highly expressed in supporting cells (SCs) of the postnatal mammalian auditory sensory epithelium, which unlike non-mammalian vertebrates remains quiescent even after sensory hair cell damage. Here, we induced the ablation of Sox2, specifically in SCs at three different postnatal ages (neonatal, juvenile and adult) in mice. In neonatal mice, Sox2-null inner pillar cells (IPCs, a subtype of SCs) proliferated and generated daughter cells, while other SC subtypes remained quiescent. Furthermore, p27(Kip1), a cell cycle inhibitor, was absent in Sox2-null IPCs. Similarly, upon direct deletion of p27(Kip1), p27(Kip1)-null IPCs also proliferated but retained Sox2 expression. Interestingly, cell cycle control of IPCs by Sox2-mediated expression of p27(Kip1) gradually declined with age. In addition, deletion of Sox2 or p27(Kip1) did not cause a cell fate change. Finally, chromatin immunoprecipitation with Sox2 antibodies and luciferase reporter assays with the p27(Kip1) promoter support that Sox2 directly activates p27(Kip1) transcription in postmitotic IPCs. Hence, in contrast to the well known activity of Sox2 in promoting proliferation and cell fate determination, our data demonstrate that Sox2 plays a novel role as a key upstream regulator of p27(Kip1) to maintain the quiescent state of postmitotic IPCs. Our studies suggest that manipulating Sox2 or p27(Kip1) expression is an effective approach to inducing proliferation of neonatal auditory IPCs, an initial but necessary step toward restoring hearing in mammals.
Collapse
|
38
|
Kopecky B, Fritzsch B. The myc road to hearing restoration. Cells 2012; 1:667-98. [PMID: 24710525 PMCID: PMC3901154 DOI: 10.3390/cells1040667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/12/2012] [Accepted: 09/14/2012] [Indexed: 01/01/2023] Open
Abstract
Current treatments for hearing loss, the most common neurosensory disorder, do not restore perfect hearing. Regeneration of lost organ of Corti hair cells through forced cell cycle re-entry of supporting cells or through manipulation of stem cells, both avenues towards a permanent cure, require a more complete understanding of normal inner ear development, specifically the balance of proliferation and differentiation required to form and to maintain hair cells. Direct successful alterations to the cell cycle result in cell death whereas regulation of upstream genes is insufficient to permanently alter cell cycle dynamics. The Myc gene family is uniquely situated to synergize upstream pathways into downstream cell cycle control. There are three Mycs that are embedded within the Myc/Max/Mad network to regulate proliferation. The function of the two ear expressed Mycs, N-Myc and L-Myc were unknown less than two years ago and their therapeutic potentials remain speculative. In this review, we discuss the roles the Mycs play in the body and what led us to choose them to be our candidate gene for inner ear therapies. We will summarize the recently published work describing the early and late effects of N-Myc and L-Myc on hair cell formation and maintenance. Lastly, we detail the translational significance of our findings and what future work must be performed to make the ultimate hearing aid: the regeneration of the organ of Corti.
Collapse
Affiliation(s)
- Benjamin Kopecky
- Department of Biology, 143 Biology Building, University of Iowa, Iowa City, IA 52242, USA.
| | - Bernd Fritzsch
- Department of Biology, 143 Biology Building, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
39
|
Abstract
The regeneration of mechanoreceptive hair cells occurs throughout life in non-mammalian vertebrates and allows them to recover from hearing and balance deficits that affect humans and other mammals permanently. The irreversibility of comparable deficits in mammals remains unexplained, but often has been attributed to steep embryonic declines in cellular production. However, recent results suggest that gravity-sensing hair cells in murine utricles may increase in number during neonatal development, raising the possibility that young mice might retain sufficient cellular plasticity for mitotic hair cell regeneration. To test for this we used neomycin to kill hair cells in utricles cultured from mice of different ages and found that proliferation increased tenfold in damaged utricles from the youngest neonates. To kill hair cells in vivo, we generated a novel mouse model that uses an inducible, hair cell-specific CreER allele to drive expression of diphtheria toxin fragment A (DTA). In newborns, induction of DTA expression killed hair cells and resulted in significant, mitotic hair cell replacement in vivo, which occurred days after the normal cessation of developmental mitoses that produce hair cells. DTA expression induced in 5-d-old mice also caused hair cell loss, but no longer evoked mitotic hair cell replacement. These findings show that regeneration limits arise in vivo during the postnatal period when the mammalian balance epithelium's supporting cells differentiate unique cytological characteristics and lose plasticity, and they support the notion that the differentiation of those cells may directly inhibit regeneration or eliminate an essential, but as yet unidentified pool of stem cells.
Collapse
|
40
|
Pan N, Kopecky B, Jahan I, Fritzsch B. Understanding the evolution and development of neurosensory transcription factors of the ear to enhance therapeutic translation. Cell Tissue Res 2012; 349:415-32. [PMID: 22688958 DOI: 10.1007/s00441-012-1454-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/18/2012] [Indexed: 01/08/2023]
Abstract
Reconstructing a functional organ of Corti is the ultimate target towards curing hearing loss. Despite the impressive technical gains made over the last few years, many complications remain ahead for the two main restoration avenues: in vitro transformation of pluripotent cells into hair cell-like cells and adenovirus-mediated gene therapy. Most notably, both approaches require a more complete understanding of the molecular networks that ensure specific cell types form in the correct places to allow proper function of the restored organ of Corti. Important to this understanding are the basic helix-loop-helix (bHLH) transcription factors (TFs) that are highly diverse and serve to increase functional complexity but their evolutionary implementation in the inner ear neurosensory development is less conspicuous. To this end, we review the evolutionary and developmentally dynamic interactions of the three bHLH TFs that have been identified as the main players in neurosensory evolution and development, Neurog1, Neurod1 and Atoh1. These three TFs belong to the neurogenin/atonal family and evolved from a molecular precursor that likely regulated single sensory cell development in the ectoderm of metazoan ancestors but are now also expressed in other parts of the body, including the brain. They interact extensively via intracellular and intercellular cross-regulation to establish the two main neurosensory cell types of the ear, the hair cells and sensory neurons. Furthermore, the level and duration of their expression affect the specification of hair cell subtypes (inner hair cells vs. outer hair cells). We propose that appropriate manipulation of these TFs through their characterized binding sites may offer a solution by itself, or in conjunction with the two other approaches currently pursued by others, to restore the organ of Corti.
Collapse
Affiliation(s)
- Ning Pan
- Department of Biology, University of Iowa, College of Liberal Arts and Sciences, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
41
|
Cox BC, Liu Z, Lagarde MMM, Zuo J. Conditional gene expression in the mouse inner ear using Cre-loxP. J Assoc Res Otolaryngol 2012; 13:295-322. [PMID: 22526732 PMCID: PMC3346893 DOI: 10.1007/s10162-012-0324-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/19/2012] [Indexed: 10/28/2022] Open
Abstract
In recent years, there has been significant progress in the use of Cre-loxP technology for conditional gene expression in the inner ear. Here, we introduce the basic concepts of this powerful technology, emphasizing the differences between Cre and CreER. We describe the creation and Cre expression pattern of each Cre and CreER mouse line that has been reported to have expression in auditory and vestibular organs. We compare the Cre expression patterns between Atoh1-CreER(TM) and Atoh1-CreER(T2) and report a new line, Fgfr3-iCreER(T2), which displays inducible Cre activity in cochlear supporting cells. We also explain how results can vary when transgenic vs. knock-in Cre/CreER alleles are used to alter gene expression. We discuss practical issues that arise when using the Cre-loxP system, such as the use of proper controls, Cre efficiency, reporter expression efficiency, and Cre leakiness. Finally, we introduce other methods for conditional gene expression, including Flp recombinase and the tetracycline-inducible system, which can be combined with Cre-loxP mouse models to investigate conditional expression of more than one gene.
Collapse
Affiliation(s)
- Brandon C. Cox
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 USA
| | - Zhiyong Liu
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 USA
| | - Marcia M. Mellado Lagarde
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 USA
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 USA
| |
Collapse
|
42
|
Liu Z, Owen T, Fang J, Srinivasan RS, Zuo J. In vivo Notch reactivation in differentiating cochlear hair cells induces Sox2 and Prox1 expression but does not disrupt hair cell maturation. Dev Dyn 2012; 241:684-96. [PMID: 22354878 DOI: 10.1002/dvdy.23754] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Notch signaling is active in mouse cochlear prosensory progenitors but declines in differentiating sensory hair cells (HCs). Overactivation of the Notch1 intracellular domain (NICD) in progenitors blocks HC fate commitment and/or differentiation. However, it is not known whether reactivation of NICD in differentiating HCs also interrupts their developmental program and reactivates its downstream targets. RESULTS By analyzing Atoh1(CreER+) ; Rosa26-NICD(loxp/+) or Atoh1(CreER+) ; Rosa26-NICD(loxp/+) ; RBP-J(loxp/loxp) mice, we demonstrated that ectopic NICD in differentiating HCs caused reactivation of Sox2 and Prox1 in an RBP-J-dependent manner. Interestingly, Prox1 reactivation was exclusive to outer HCs (OHCs). In addition, lineage tracing analysis of Prox1(CreER/+) ; Rosa26-EYFP(loxp/+) and Prox1(CreEGFP/+) ; Rosa26-EYFP(loxp/+) mice showed that nearly all HCs experiencing Prox1 expression were OHCs. Surprisingly, these HCs still matured normally with expression of prestin, wild-type-like morphology, and uptake of FM4-64FX dye at adult ages. CONCLUSIONS Our results suggest that the developmental program of cochlear differentiating HCs is refractory to Notch reactivation and that Notch is an upstream regulator of Sox2 and Prox1 in cochlear development. In addition, our results support that Sox2 and Prox1 should not be the main blockers for terminal differentiation of HCs newly regenerated from postnatal cochlear SCs that still maintain Sox2 and Prox1 expression.
Collapse
Affiliation(s)
- Zhiyong Liu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | |
Collapse
|
43
|
Polycystin-1 is required for stereocilia structure but not for mechanotransduction in inner ear hair cells. J Neurosci 2011; 31:12241-50. [PMID: 21865467 DOI: 10.1523/jneurosci.6531-10.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The polycystic kidney disease-1 (Pkd1) gene encodes a large transmembrane protein (polycystin-1, or PC-1) that is reported to function as a fluid flow sensor in the kidney. As a member of the transient receptor potential family, PC-1 has also been hypothesized to play a role in the elusive mechanoelectrical transduction (MET) channel in inner ear hair cells. Here, we analyze two independent mouse models of PC-1, a knock-in (KI) mutant line and a hair cell-specific inducible Cre-mediated knock-out line. Both models exhibit normal MET channel function at neonatal ages despite hearing loss and ultrastructural abnormalities of sterecilia that remain properly polarized at adult ages. These findings demonstrate that PC-1 plays an essential role in stereocilia structure and maintenance but not directly in MET channel function or planar cell polarity. We also demonstrate that PC-1 is colocalized with F-actin in hair cell stereocilia in vivo, using a hemagglutinin-tagged PC-1 KI mouse model, and in renal epithelial cell microvilli in vitro. These results not only demonstrate a novel role for PC-1 in the cochlea, but also suggest insight into the development of polycystic kidney disease.
Collapse
|
44
|
Loponen H, Ylikoski J, Albrecht JH, Pirvola U. Restrictions in cell cycle progression of adult vestibular supporting cells in response to ectopic cyclin D1 expression. PLoS One 2011; 6:e27360. [PMID: 22073316 PMCID: PMC3206952 DOI: 10.1371/journal.pone.0027360] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 10/14/2011] [Indexed: 11/19/2022] Open
Abstract
Sensory hair cells and supporting cells of the mammalian inner ear are quiescent cells, which do not regenerate. In contrast, non-mammalian supporting cells have the ability to re-enter the cell cycle and produce replacement hair cells. Earlier studies have demonstrated cyclin D1 expression in the developing mouse supporting cells and its downregulation along maturation. In explant cultures of the mouse utricle, we have here focused on the cell cycle control mechanisms and proliferative potential of adult supporting cells. These cells were forced into the cell cycle through adenoviral-mediated cyclin D1 overexpression. Ectopic cyclin D1 triggered robust cell cycle re-entry of supporting cells, accompanied by changes in p27(Kip1) and p21(Cip1) expressions. Main part of cell cycle reactivated supporting cells were DNA damaged and arrested at the G2/M boundary. Only small numbers of mitotic supporting cells and rare cells with signs of two successive replications were found. Ectopic cyclin D1-triggered cell cycle reactivation did not lead to hyperplasia of the sensory epithelium. In addition, a part of ectopic cyclin D1 was sequestered in the cytoplasm, reflecting its ineffective nuclear import. Combined, our data reveal intrinsic barriers that limit proliferative capacity of utricular supporting cells.
Collapse
Affiliation(s)
- Heidi Loponen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Jeffrey H. Albrecht
- Division of Gastroenterology, Hennepin County Medical Center, Minneapolis, Minnesota, United States of America
| | - Ulla Pirvola
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
45
|
Jamesdaniel S, Hu B, Kermany MH, Jiang H, Ding D, Coling D, Salvi R. Noise induced changes in the expression of p38/MAPK signaling proteins in the sensory epithelium of the inner ear. J Proteomics 2011; 75:410-24. [PMID: 21871588 DOI: 10.1016/j.jprot.2011.08.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 08/04/2011] [Accepted: 08/08/2011] [Indexed: 12/20/2022]
Abstract
Noise exposure is a major cause of hearing loss. Classical methods of studying protein involvement have provided a basis for understanding signaling pathways that mediate hearing loss and damage repair but do not lend themselves to studying large networks of proteins that are likely to increase or decrease during noise trauma. To address this issue, antibody microarrays were used to quantify the very early changes in protein expression in three distinct regions of the chinchilla cochlea 2h after exposure to a 0.5-8 kHz band of noise for 2h at 112 dB SPL. The noise exposure caused significant functional impairment 2h post-exposure which only partially recovered. Distortion product otoacoustic emissions were abolished 2h after the exposure, but at 4 weeks post-exposure, otoacoustic emissions were present, but still greatly depressed. Cochleograms obtained 4 weeks post-exposure demonstrated significant loss of outer hair cells in the basal 60% of the cochlea corresponding to frequencies in the noise spectrum. A comparative analysis of the very early (2h post-exposure) noise-induced proteomic changes indicated that the sensory epithelium, lateral wall and modiolus differ in their biological response to noise. Bioinformatic analysis of the cochlear protein profile using "The Database for Annotation, Visualization and Integrated Discovery 2008" (DAVID - http://david.abcc. ncifcrf.gov) revealed the initiation of the cell death process in sensory epithelium and modiolus. An increase in Fas and phosphorylation of FAK and p38/MAPK in the sensory epithelium suggest that noise-induced stress signals at the cell membrane are transmitted to the nucleus by Fas and focal adhesion signaling through the p38/MAPK signaling pathway. Up-regulation of downstream nuclear proteins E2F3 and WSTF in immunoblots and microarrays along with their immunolocalization in the outer hair cells supported the pivotal role of p38/MAPK signaling in the mechanism underlying noise-induced hearing loss.
Collapse
Affiliation(s)
- Samson Jamesdaniel
- Center for Hearing and Deafness, University at Buffalo, the State University of New York, Buffalo, NY 14214, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Rocha-Sanchez SM, Scheetz LR, Contreras M, Weston MD, Korte M, McGee J, Walsh EJ. Mature mice lacking Rbl2/p130 gene have supernumerary inner ear hair cells and supporting cells. J Neurosci 2011; 31:8883-93. [PMID: 21677172 PMCID: PMC3132102 DOI: 10.1523/jneurosci.5821-10.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 04/14/2011] [Accepted: 04/20/2011] [Indexed: 11/21/2022] Open
Abstract
Adult mammalian auditory hair cells (HCs) and their associated supporting cells (SCs) do not proliferate, and HC death leads to irreversible neurosensory hearing loss and balance impairment. In nonmammalian vertebrates, loss of HCs induces mitotic proliferation of adjacent nonsensory SCs and/or direct SC transdifferentiation to generate replacement cells. This results in the structural and functional recovery of the nonmammalian sensory systems. Potential replacement of mammalian auditory HCs, either by transplanting cells or by transforming existing cells through molecular therapy, has long been proposed. However, HC replacement strategies with clear therapeutic potential remain elusive. The retinoblastoma (pRB) family of cell cycle regulators, Rb1, Rbl1 (p107), and Rbl2 (p130), regulate the G(1)- to S-phase transition in proliferating cells. In the inner ear, the biochemical and molecular pathways involving pRBs, particularly p107 and p130, are relatively unexplored and their therapeutic suitability is yet to be determined. In this study, we analyzed the cochleae of adult p130 knock-out (p130(-/-)) mice and showed that lack of the p130 gene results in extra rows of HCs and SCs in the more apical regions of the cochlea. No evidence of transdifferentiation of these supernumerary SCs into HCs was observed in the p130(-/-) mouse. Nevertheless, unscheduled proliferation of SCs in the adult p130(-/-) cochlea coupled to downregulation of bona fide cell cycle inhibitors provides a mechanistic basis for the role of p130 as a regulator of SC and HC mitotic quiescence in the more apical regions of the cochlea. Interestingly, p130(-/-) mice exhibited nearly normal peripheral auditory sensitivity.
Collapse
MESH Headings
- Acoustic Stimulation
- Age Factors
- Animals
- Animals, Newborn
- Cell Proliferation
- Ear, Inner/cytology
- Ear, Inner/embryology
- Embryo, Mammalian
- Evoked Potentials, Auditory, Brain Stem/genetics
- Female
- Gene Expression Regulation, Developmental/genetics
- Hair Cells, Auditory, Inner/physiology
- Immunoprecipitation
- Labyrinth Supporting Cells/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myosin VIIa
- Myosins/metabolism
- Otoacoustic Emissions, Spontaneous/genetics
- Receptors, Nerve Growth Factor/metabolism
- Retinoblastoma Protein/deficiency
- SOXB1 Transcription Factors/metabolism
- Tubulin/metabolism
Collapse
Affiliation(s)
- Sonia M Rocha-Sanchez
- Department of Oral Biology, Creighton University School of Dentistry, Omaha, Nebraska 68178, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Kopecky B, Fritzsch B. Regeneration of Hair Cells: Making Sense of All the Noise. Pharmaceuticals (Basel) 2011; 4:848-879. [PMID: 21966254 PMCID: PMC3180915 DOI: 10.3390/ph4060848] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/04/2011] [Accepted: 06/08/2011] [Indexed: 12/17/2022] Open
Abstract
Hearing loss affects hundreds of millions of people worldwide by dampening or cutting off their auditory connection to the world. Current treatments for sensorineural hearing loss (SNHL) with cochlear implants are not perfect, leaving regenerative medicine as the logical avenue to a perfect cure. Multiple routes to regeneration of damaged hair cells have been proposed and are actively pursued. Each route not only requires a keen understanding of the molecular basis of ear development but also faces the practical limitations of stem cell regulation in the delicate inner ear where topology of cell distribution is essential. Improvements in our molecular understanding of the minimal essential genes necessary for hair cell formation and recent advances in stem cell manipulation, such as seen with inducible pluripotent stem cells (iPSCs) and epidermal neural crest stem cells (EPI-NCSCs), have opened new possibilities to advance research in translational stem cell therapies for individuals with hearing loss. Despite this, more detailed network maps of gene expression are needed, including an appreciation for the roles of microRNAs (miRs), key regulators of transcriptional gene networks. To harness the true potential of stem cells for hair cell regeneration, basic science and clinical medicine must work together to expedite the transition from bench to bedside by elucidating the full mechanisms of inner ear hair cell development, including a focus on the role of miRs, and adapting this knowledge safely and efficiently to stem cell technologies.
Collapse
Affiliation(s)
- Benjamin Kopecky
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
48
|
Oesterle EC, Chien WM, Campbell S, Nellimarla P, Fero ML. p27(Kip1) is required to maintain proliferative quiescence in the adult cochlea and pituitary. Cell Cycle 2011; 10:1237-48. [PMID: 21403466 DOI: 10.4161/cc.10.8.15301] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell cycle inhibitors, such as the cyclin-dependent kinase (Cdk) inhibitor proteins and retinoblastoma (Rb) family members, control exit from the cell cycle during the development of a variety of terminally differentiated tissues. It is unclear whether sustained expression of these proteins is required to prevent cell cycle re-entry in quiescent and terminally differentiated cells. The organ of Corti (cochlear sensory epithelium) and pars intermedia (intermediate lobe of the pituitary) are two tissues that share the characteristic of ongoing cell division in mice lacking either the p27(Kip1) Cdk inhibitor, Ink4 proteins, or Rb. Here, we use tamoxifen-inducible mouse models to delete p27(Kip1) in postnatal animals and show this is sufficient to induce proliferation in both the organ of Corti and pars intermedia. Thus, these tissues remain sensitive to the presence of p27(Kip1) even after their developmental exit from the cell cycle. The neonatal cochlea displayed heightened sensitivity to changes in p27(Kip1) expression, with a proliferative response higher than that of constitutive null mice. In adults, the proliferative response was reduced but was accompanied by increased cell survival. In contrast, re-establishment of normal p27(Kip1) expression in animals with established pituitary tumors, in an inducible "knock-on" model, led to cessation of pituitary tumor growth, indicating the cells had maintained their susceptibility to p27-mediated growth suppression. Although restoration of p27(Kip1) did not induce apoptosis, it did lead to resolution of pathological features and normalization of gene expression. Our data underscore the importance of p27(Kip1) expression in the maintenance of cellular quiescence and terminal differentiation.
Collapse
Affiliation(s)
- Elizabeth C Oesterle
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, USA.
| | | | | | | | | |
Collapse
|
49
|
Staecker H, Praetorius M, Brough DE. Development of gene therapy for inner ear disease: Using bilateral vestibular hypofunction as a vehicle for translational research. Hear Res 2011; 276:44-51. [PMID: 21251965 DOI: 10.1016/j.heares.2011.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 01/10/2011] [Accepted: 01/11/2011] [Indexed: 12/16/2022]
Abstract
Despite the significant impact of hearing and balance disorders on the general population there are currently no dedicated pharmaceuticals that target the inner ear. Advances in molecular biology and neuroscience have improved our understanding of the inner ear allowing the development of a range of molecular targets that have the potential to treat both hearing and balance disorders. One of the principal advantages of the inner ear is that it is accessible through a variety of approaches that would allow a potential to be delivered locally rather than systemically. This significantly broadens the potential medications that can be developed and opens the possibility of local gene delivery as a therapeutic intervention. Several potential clinical targets have been identified including delivery of neurotrophin expressing genes as an adjunct to cochlear implantation, delivery of protective genes to prevent trauma and the development of strategies for regenerating inner ear sensory cells. In order to translate these potential therapeutics into humans we will want to optimize the gene delivery methodology, dosing and activity of the drug for therapeutic value. To this end we have developed a series of adenovectors that efficiently transduce the inner ear. The use of these gene delivery approaches are attractive for the potential of hair cell regeneration after loss induced by trauma or ototoxins. This approach is particularly suited for the development of molecular therapies targeted at the vestibular system given that no device based therapeutic such a cochlear implant available for vestibular loss.
Collapse
Affiliation(s)
- Hinrich Staecker
- Dept. Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, MS 3010, 3901 Rainbow Blvd, Kansas City, KS 66209, USA.
| | | | | |
Collapse
|
50
|
Huang M, Sage C, Tang Y, Lee SG, Petrillo M, Hinds PW, Chen ZY. Overlapping and distinct pRb pathways in the mammalian auditory and vestibular organs. Cell Cycle 2011; 10:337-51. [PMID: 21239885 DOI: 10.4161/cc.10.2.14640] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Retinoblastoma gene (Rb1) is required for proper cell cycle exit in the developing mouse inner ear and its deletion in the embryo leads to proliferation of sensory progenitor cells that differentiate into hair cells and supporting cells. In a conditional hair cell Rb1 knockout mouse, Pou4f3-Cre-pRb(-/-), pRb(-/-) utricular hair cells differentiate and survive into adulthood whereas differentiation and survival of pRb(-/-) cochlear hair cells are impaired. To comprehensively survey the pRb pathway in the mammalian inner ear, we performed microarray analysis of (pRb(-/-) cochlea and utricle. The comparative analysis shows that the core pathway shared between pRb(-/-) cochlea and utricle is centered on E2F, the key pathway that mediates pRb function. A majority of differentially expressed genes and enriched pathways are not shared but uniquely associated with pRb(-/-) cochlea or utricle. In pRb(-/-) cochlea, pathways involved in early inner ear development such as Wnt/β-catenin and Notch were enriched, whereas pathways involving in proliferation and survival are enriched in pRb(-/-) utricle. Clustering analysis showed that the pRb(-/-) inner ear has characteristics of a younger control inner ear, an indication of delayed differentiation. We created a transgenic mouse model (ER-Cre-pRb(flox/flox)) in which Rb1 can be acutely deleted postnatally. Acute Rb1 deletion in the adult mouse fails to induce proliferation or cell death in inner ear, strongly indicating that Rb1 loss in these postmitotic tissues can be effectively compensated for, or that pRb-mediated changes in the postmitotic compartment result in events that are functionally irreversible once enacted. This study thus supports the concept that pRb-regulated pathways relevant to hair cell development, encompassing proliferation, differentiation and survival, act predominantly during early development.
Collapse
Affiliation(s)
- Mingqian Huang
- Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|