1
|
Wozniak S, Feig M. Diffusion and Viscosity in Mixed Protein Solutions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617612. [PMID: 39416204 PMCID: PMC11483061 DOI: 10.1101/2024.10.10.617612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The viscosity and diffusion properties of crowded protein systems were investigated with molecular dynamics simulations of SH3 mixtures with different crowders, and results were compared with experimental data. The simulations accurately reproduced experimental trends across a wide range of protein concentrations, including highly crowded environments up to 300 g/L. Notably, viscosity increased with crowding but varied little between different crowder types, while diffusion rates were significantly reduced depending on protein-protein interaction strength. Analysis using the Stokes-Einstein relation indicated that the reduction in diffusion exceeded what was expected from viscosity changes alone, with the additional slow-down attributable to transient cluster formation driven by weakly attractive interactions. Contact kinetics analysis further revealed that longer-lived interactions contributed more significantly to reduced diffusion rates than short-lived interactions. This study also highlights the accuracy of current computational methodologies for capturing the dynamics of proteins in highly concentrated solutions and provides insights into the molecular mechanisms affecting protein mobility in crowded environments.
Collapse
Affiliation(s)
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Qin S, Zhou HX. Calculating Structure Factors of Protein Solutions by Atomistic Modeling of Protein-Protein Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587040. [PMID: 38585905 PMCID: PMC10996680 DOI: 10.1101/2024.03.27.587040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
We present a method, FMAPS(q), for calculating the structure factor, S ( q ) , of a protein solution, by extending our fast Fourier transform-based modeling of atomistic protein-protein interactions (FMAP) approach. The interaction energy consists of steric, nonpolar attractive, and electrostatic terms that are additive among all pairs of atoms between two protein molecules. In the present version, we invoke the free-rotation approximation, such that the structure factor is given by the Fourier transform of the protein center-center distribution function g C ( R ) . At low protein concentrations, g C ( R ) can be approximated as e - β W ( R ) , where W ( R ) is the potential of mean force along the center-center distance R . We calculate W ( R ) using FMAPB2, a member of the FMAP class of methods that is specialized for the second virial coefficient [Qin and Zhou, J Phys Chem B 123 (2019) 8203-8215]. For higher protein concentrations, we obtain S ( q ) by a modified random-phase approximation, which is a perturbation around the steric-only energy function. Without adjusting any parameters, the calculated structure factors for lysozyme and bovine serum albumin at various ionic strengths, temperatures, and protein concentrations are all in reasonable agreement with those measured by small-angle X-ray or neutron scattering. This initial success motivates further developments, including removing approximations and parameterizing the interaction energy function.
Collapse
Affiliation(s)
- Sanbo Qin
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
- Department of Physics, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
3
|
Ota C, Konishi T, Tanaka SI, Takano K. Induced Circular Dichroism Analysis of Thermally Induced Conformational Changes on Protein Binding Sites Under a Crowding Environment. Chemphyschem 2024; 25:e202300593. [PMID: 37845184 DOI: 10.1002/cphc.202300593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
Protein-ligand interactions in crowded cellular environments play a crucial role in biological functions. The crowded environment can perturb the overall protein structure and local conformation, thereby influencing the binding pathway of protein-ligand reactions within the cellular milieu. Therefore, a detailed understanding of the local conformation is crucial for elucidating the intricacies of protein-ligand interactions in crowded cellular environments. In this study, we investigated the feasibility of induced circular dichroism (ICD) using 8-anilinonaphthalene-1-sulfonic acid (ANS) for local conformational analysis at the binding site in a crowding environment. Bovine serum albumin (BSA) concentration-dependent measurements were performed to assess the feasibility of ANS-ICD for analyzing protein interior binding sites. The results showed distinct changes in the ANS-ICD spectra of BSA solutions, indicating their potential for analyzing the internal conformation of proteins. Moreover, temperature-dependent measurements were performed in dilute and crowding environments, revealing distinct denaturation pathways of BSA binding sites. Principal component analysis of ANS-ICD spectral changes revealed lower temperature pre-denaturation in the crowded solution than that in the diluted solution, suggesting destabilization of binding sites owing to self-crowding repulsive interactions. The established ANS-ICD method can provide valuable conformational insights into protein-ligand interactions in crowded cellular environments.
Collapse
Affiliation(s)
- Chikashi Ota
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Tomoya Konishi
- Department of Biomolecular Chemistry, Kyoto Prefectural University, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Shun-Ichi Tanaka
- Department of Biomolecular Chemistry, Kyoto Prefectural University, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Kazufumi Takano
- Department of Biomolecular Chemistry, Kyoto Prefectural University, Sakyo-ku, Kyoto, 606-8522, Japan
- Kazufumi Takano - Department of Biomolecular Chemistry, Kyoto Prefectural University, Sakyo-ku, Kyoto, 606-8522, Japan
| |
Collapse
|
4
|
Filianina M, Bin M, Berkowicz S, Reiser M, Li H, Timmermann S, Blankenburg M, Amann-Winkel K, Gutt C, Perakis F. Nanocrystallites Modulate Intermolecular Interactions in Cryoprotected Protein Solutions. J Phys Chem B 2023. [PMID: 37399586 DOI: 10.1021/acs.jpcb.3c02413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Studying protein interactions at low temperatures has important implications for optimizing cryostorage processes of biological tissue, food, and protein-based drugs. One of the major issues is related to the formation of ice nanocrystals, which can occur even in the presence of cryoprotectants and can lead to protein denaturation. The presence of ice nanocrystals in protein solutions poses several challenges since, contrary to microscopic ice crystals, they can be difficult to resolve and can complicate the interpretation of experimental data. Here, using a combination of small- and wide-angle X-ray scattering (SAXS and WAXS), we investigate the structural evolution of concentrated lysozyme solutions in a cryoprotected glycerol-water mixture from room temperature (T = 300 K) down to cryogenic temperatures (T = 195 K). Upon cooling, we observe a transition near the melting temperature of the solution (T ≈ 245 K), which manifests both in the temperature dependence of the scattering intensity peak position reflecting protein-protein length scales (SAXS) and the interatomic distances within the solvent (WAXS). Upon thermal cycling, a hysteresis is observed in the scattering intensity, which is attributed to the formation of nanocrystallites in the order of 10 nm. The experimental data are well described by the two-Yukawa model, which indicates temperature-dependent changes in the short-range attraction of the protein-protein interaction potential. Our results demonstrate that the nanocrystal growth yields effectively stronger protein-protein attraction and influences the protein pair distribution function beyond the first coordination shell.
Collapse
Affiliation(s)
- Mariia Filianina
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - Maddalena Bin
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - Sharon Berkowicz
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - Mario Reiser
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - Hailong Li
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
- Max Plank Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sonja Timmermann
- Department of Physics, Universität Siegen, Walter-Flex-Strasse 3, 57072 Siegen, Germany
| | - Malte Blankenburg
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Katrin Amann-Winkel
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
- Max Plank Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute of Physics, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Christian Gutt
- Department of Physics, Universität Siegen, Walter-Flex-Strasse 3, 57072 Siegen, Germany
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
5
|
Sonje J, Thakral S, Krueger S, Suryanarayanan R. Enabling Efficient Design of Biological Formulations Through Advanced Characterization. Pharm Res 2023; 40:1459-1477. [PMID: 36959413 DOI: 10.1007/s11095-023-03495-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/01/2023] [Indexed: 03/25/2023]
Abstract
The present review summarizes the use of differential scanning calorimetry (DSC) and scattering techniques in the context of protein formulation design and characterization. The scattering techniques include wide angle X-ray diffractometry (XRD), small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS). While DSC is valuable for understanding thermal behavior of the excipients, XRD provides critical information about physical state of solutes during freezing, annealing and in the final lyophile. However, as these techniques lack the sensitivity to detect biomolecule-related transitions, complementary characterization techniques such as small-angle scattering can provide valuable insights.
Collapse
Affiliation(s)
- Jayesh Sonje
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 308 Harvard St. SE, Minneapolis, MN, 55455, USA
- BioTherapeutics, Pharmaceutical Sciences, Pfizer Inc., 1 Burtt Road, Andover, USA
| | - Seema Thakral
- Boehringer Ingelheim Pharmaceuticals, Inc, 900 Ridgebury Road, Ridgefield, CT, 06877, USA
| | - Susan Krueger
- Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Raj Suryanarayanan
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 308 Harvard St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
6
|
Ashish. Visualizing how inclusion of higher reciprocal space in SWAXS data analysis improves shape restoration of biomolecules: case of lysozyme. J Biomol Struct Dyn 2022; 40:12975-12989. [PMID: 34569414 DOI: 10.1080/07391102.2021.1977704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Query remains whether use of increased resolution data from X-ray scattering aids in better understanding of the dynamic shape of the biomolecule in solution? To address this, we acquired Small/Wide angle X-ray scattering (SWAXS) data in the q range of 0.008 - 1.72 Å-1 from dilute solutions of lysozyme (0.9 to 5 mg/ml). Samples lacked any interparticulate effect and datasets showed Bragg peaks at q∼0.325, 0.65 and 1.4 Å-1, as reported before by other authors. Considering an averaged profile, we estimated shape parameters and distance distribution profiles of interatomic vectors by gradually increasing input qmax value. Interestingly, use of higher resolution led to emergence of new peaks amongst smaller vectors. Deconvolution of these peaks provided positions of smaller peaks which correlated well with an earlier theoretical work. These peaks arise from secondary structures or due to non-uniform internal motions within the larger shape of this protein. Dummy residue modeling considering uniform density yielded model(s) with holes or cavities when considering higher q values implying limitations of this method. Employing normal mode calculations, we searched for better fitting model of lysozyme using differentially ranged SWAXS data and a crystal structure of lysozyme as starting structure. Comparison of refined models with structures from crystallography and NMR data showed that use of data till mid q region resulted in adjustments near the center of mass of starting structure, and inclusion of higher resolution induced pan-structure adjustments. We conclude that high resolution SWAXS data analysis provides additional dimension towards understanding biomolecular structural dynamics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ashish
- CSIR-Institute of Microbial Technology, Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Catalini S, Lutz-Bueno V, Usuelli M, Diener M, Taschin A, Bartolini P, Foggi P, Paolantoni M, Mezzenga R, Torre R. Multi-length scale structural investigation of lysozyme self-assembly. iScience 2022; 25:104586. [PMID: 35784788 PMCID: PMC9240868 DOI: 10.1016/j.isci.2022.104586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Reactive amyloid oligomers are responsible for cytotoxicity in amyloid pathologies and because of their unstable nature characterizing their behavior is a challenge. The physics governing the self-assembly of proteins in crowded conditions is extremely complex and its comprehension, despite its paramount relevance to understanding molecular mechanisms inside cells and optimizing pharmaceutical processes, remains inconclusive. Here, we focus on the amyloid oligomerization process in self-crowded lysozyme aqueous solutions in acidic conditions. We reveal that the amyloid oligomers form at high protein concentration and low pH. Through multi-length scale spectroscopic investigations, we find that amyloid oligomers can further interconnect with each other by weak and non-specific interactions forming an extended network that leads to the percolation of the whole system. Our multi-length scale structural analysis follows the thermal history of amyloid oligomers from different perspectives and highlights the impact of hierarchical self-assembly of biological macromolecules on functional properties. Use of multi-length scale spectroscopies to characterize unstable amyloid oligomers Lysozyme form thermo-labile amyloid oligomers in self-crowded conditions Amyloid oligomers interact and form an extended hydrogel network Amyloid oligomers are responsible for the existence of the hydrogel matrix
Collapse
|
8
|
Pilla RT, Mani E. Competing effects of rotational diffusivity and activity on finite-sized clusters. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:245101. [PMID: 35334471 DOI: 10.1088/1361-648x/ac6137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Colloidal particles interacting via short-range attraction and long-range repulsion are known to stabilize finite-sized clusters under equilibrium conditions. In this work, the effect of self-propulsion speed (activity) and rotational diffusivity (Dr) on the phase behavior of such particles is investigated using Brownian dynamics simulations. The system exhibits rich phase behavior consisting of clusters of different kinds. The cluster size varies non-monotonically with activity: increasing first and decreasing at higher activity, thus driving cluster-to-fluid phase transition. Rotational diffusivity also facilitates the formation of clusters. Larger clusters could be stabilized at lowDrvalues while at highDrvalues, clusters are stable even at higher activities. The analysis of the static structure factor of the system confirms that rotational diffusivity delays the cluster-to-fluid transition driven by activity.
Collapse
Affiliation(s)
- Ravi Thej Pilla
- Polymer Engineering and Colloid Science Lab, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai-600036, India
| | - Ethayaraja Mani
- Polymer Engineering and Colloid Science Lab, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai-600036, India
| |
Collapse
|
9
|
Impact of lyoprotectors on protein-protein separation in the solid state: Neutron- and X-ray-scattering investigation. Biochim Biophys Acta Gen Subj 2022; 1866:130101. [PMID: 35151821 DOI: 10.1016/j.bbagen.2022.130101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Polyhydroxycompounds (PHC) are used as lyoprotectors to minimize aggregation of pharmaceutical proteins during freeze-drying and storage. METHODS Lysozyme/PHC mixtures with 1:1 and 1:3 (w/w) ratios are freeze-dried from either H2O or D2O solutions. Disaccharides (sucrose and trehalose), monosaccharide (glucose), and sugar alcohol (sorbitol) are used in the study. Small-angle neutron and X-ray scattering (SANS and SAXS) are applied to study protein-protein interaction in the freeze-dried samples. RESULTS Protein interaction peak in the freeze-dried mixtures has been detected by both SANS (D2O-based samples only) and SAXS (both D2O- and H2O-based). In the 1:1 mixtures, protein separation distances are similar (center-of-mass distance of approx. 31 Å) between all lyoprotectors studied. Mixtures with a higher content of the disaccharides (1:3 ratio) have a higher separation distance of approx 40 Å. The higher separation could reduce protein-protein contacts and therefore be associated with less favourable aggregation conditions. In the 1:3 mixtures with glucose and sorbitol, complex SANS and SAXS/WAXS patterns are observed. The pattern for the glucose sample indicate two populations of lysozyme molecules, while the origin of multiple SAXS peaks in the lysozyme/sorbitol 1:3 mixture is uncertain. CONCLUSIONS Protein-protein separation distance is determined predominantly by the lyoprotector/protein weight ratio. GENERAL SIGNIFICANCE Use of SANS and SAXS improves understanding of mechanisms of protein stabilization by sugars in freeze-dried formulations, and provide a tool to verify hypothesis on relationship between protein/protein separation and aggregation propensity in the dried state.
Collapse
|
10
|
Han Q, Binns J, Zhai J, Guo X, Ryan TM, Drummond CJ, Greaves TL. Insights on lysozyme aggregation in protic ionic liquid solvents by using small angle X-ray scattering and high throughput screening. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Beck C, Grimaldo M, Braun MK, Bühl L, Matsarskaia O, Jalarvo NH, Zhang F, Roosen-Runge F, Schreiber F, Seydel T. Temperature and salt controlled tuning of protein clusters. SOFT MATTER 2021; 17:8506-8516. [PMID: 34490428 DOI: 10.1039/d1sm00418b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The formation of molecular assemblies in protein solutions is of strong interest both from a fundamental viewpoint and for biomedical applications. While ordered and desired protein assemblies are indispensable for some biological functions, undesired protein condensation can induce serious diseases. As a common cofactor, the presence of salt ions is essential for some biological processes involving proteins, and in aqueous suspensions of proteins can also give rise to complex phase diagrams including homogeneous solutions, large aggregates, and dissolution regimes. Here, we systematically study the cluster formation approaching the phase separation in aqueous solutions of the globular protein BSA as a function of temperature (T), the protein concentration (cp) and the concentrations of the trivalent salts YCl3 and LaCl3 (cs). As an important complement to structural, i.e. time-averaged, techniques we employ a dynamical technique that can detect clusters even when they are transient on the order of a few nanoseconds. By employing incoherent neutron spectroscopy, we unambiguously determine the short-time self-diffusion of the protein clusters depending on cp, cs and T. We determine the cluster size in terms of effective hydrodynamic radii as manifested by the cluster center-of-mass diffusion coefficients D. For both salts, we find a simple functional form D(cp, cs, T) in the parameter range explored. The calculated inter-particle attraction strength, determined from the microscopic and short-time diffusive properties of the samples, increases with salt concentration and temperature in the regime investigated and can be linked to the macroscopic behavior of the samples.
Collapse
Affiliation(s)
- Christian Beck
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France.
| | - Marco Grimaldo
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France.
| | - Michal K Braun
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Lena Bühl
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Olga Matsarskaia
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France.
| | - Niina H Jalarvo
- Jülich Centre for Neutron Science (JCNS), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
- Chemical and Engineering Materials Division, Neutron Sciences Directorate, and JCNS Outstation at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831, USA
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Felix Roosen-Runge
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Malmö University, 20506 Malmö, Sweden.
- Division of Physical Chemistry, Lund University, Naturvetarvägen 14, 22100 Lund, Sweden
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Tilo Seydel
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France.
| |
Collapse
|
12
|
Cheng R, Li J, Ríos de Anda I, Taylor TWC, Faers MA, Anderson JLR, Seddon AM, Royall CP. Protein-polymer mixtures in the colloid limit: Aggregation, sedimentation, and crystallization. J Chem Phys 2021; 155:114901. [PMID: 34551522 DOI: 10.1063/5.0052122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
While proteins have been treated as particles with a spherically symmetric interaction, of course in reality, the situation is rather more complex. A simple step toward higher complexity is to treat the proteins as non-spherical particles and that is the approach we pursue here. We investigate the phase behavior of the enhanced green fluorescent protein (eGFP) under the addition of a non-adsorbing polymer, polyethylene glycol. From small angle x-ray scattering, we infer that the eGFP undergoes dimerization and we treat the dimers as spherocylinders with aspect ratio L/D - 1 = 1.05. Despite the complex nature of the proteins, we find that the phase behavior is similar to that of hard spherocylinders with an ideal polymer depletant, exhibiting aggregation and, in a small region of the phase diagram, crystallization. By comparing our measurements of the onset of aggregation with predictions for hard colloids and ideal polymers [S. V. Savenko and M. Dijkstra, J. Chem. Phys. 124, 234902 (2006) and Lo Verso et al., Phys. Rev. E 73, 061407 (2006)], we find good agreement, which suggests that the behavior of the eGFP is consistent with that of hard spherocylinders and ideal polymers.
Collapse
Affiliation(s)
- Rui Cheng
- HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - Jingwen Li
- HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | | | - Thomas W C Taylor
- HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | | | - J L Ross Anderson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Annela M Seddon
- HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - C Patrick Royall
- HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| |
Collapse
|
13
|
Royall CP, Faers MA, Fussell SL, Hallett JE. Real space analysis of colloidal gels: triumphs, challenges and future directions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:453002. [PMID: 34034239 DOI: 10.1088/1361-648x/ac04cb] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Colloidal gels constitute an important class of materials found in many contexts and with a wide range of applications. Yet as matter far from equilibrium, gels exhibit a variety of time-dependent behaviours, which can be perplexing, such as an increase in strength prior to catastrophic failure. Remarkably, such complex phenomena are faithfully captured by an extremely simple model-'sticky spheres'. Here we review progress in our understanding of colloidal gels made through the use of real space analysis and particle resolved studies. We consider the challenges of obtaining a suitable experimental system where the refractive index and density of the colloidal particles is matched to that of the solvent. We review work to obtain a particle-level mechanism for rigidity in gels and the evolution of our understanding of time-dependent behaviour, from early-time aggregation to ageing, before considering the response of colloidal gels to deformation and then move on to more complex systems of anisotropic particles and mixtures. Finally we note some more exotic materials with similar properties.
Collapse
Affiliation(s)
- C Patrick Royall
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
- HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom
- School of Chemistry, University of Bristol, Cantock Close, Bristol, BS8 1TS, United Kingdom
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol, BS8 1FD, United Kingdom
| | - Malcolm A Faers
- Bayer AG, Crop Science Division, Formulation Technology, Alfred Nobel Str. 50, 40789 Monheim, Germany
| | - Sian L Fussell
- School of Chemistry, University of Bristol, Cantock Close, Bristol, BS8 1TS, United Kingdom
- Bristol Centre for Functional Nanomaterials, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom
| | - James E Hallett
- Physical and Theoretical Chemistry Laboratory, South Parks Road, University of Oxford, OX1 3QZ, United Kingdom
| |
Collapse
|
14
|
Patwardhan A, Cheng N, Trejo J. Post-Translational Modifications of G Protein-Coupled Receptors Control Cellular Signaling Dynamics in Space and Time. Pharmacol Rev 2021; 73:120-151. [PMID: 33268549 PMCID: PMC7736832 DOI: 10.1124/pharmrev.120.000082] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family comprising >800 signaling receptors that regulate numerous cellular and physiologic responses. GPCRs have been implicated in numerous diseases and represent the largest class of drug targets. Although advances in GPCR structure and pharmacology have improved drug discovery, the regulation of GPCR function by diverse post-translational modifications (PTMs) has received minimal attention. Over 200 PTMs are known to exist in mammalian cells, yet only a few have been reported for GPCRs. Early studies revealed phosphorylation as a major regulator of GPCR signaling, whereas later reports implicated a function for ubiquitination, glycosylation, and palmitoylation in GPCR biology. Although our knowledge of GPCR phosphorylation is extensive, our knowledge of the modifying enzymes, regulation, and function of other GPCR PTMs is limited. In this review we provide a comprehensive overview of GPCR post-translational modifications with a greater focus on new discoveries. We discuss the subcellular location and regulatory mechanisms that control post-translational modifications of GPCRs. The functional implications of newly discovered GPCR PTMs on receptor folding, biosynthesis, endocytic trafficking, dimerization, compartmentalized signaling, and biased signaling are also provided. Methods to detect and study GPCR PTMs as well as PTM crosstalk are further highlighted. Finally, we conclude with a discussion of the implications of GPCR PTMs in human disease and their importance for drug discovery. SIGNIFICANCE STATEMENT: Post-translational modification of G protein-coupled receptors (GPCRs) controls all aspects of receptor function; however, the detection and study of diverse types of GPCR modifications are limited. A thorough understanding of the role and mechanisms by which diverse post-translational modifications regulate GPCR signaling and trafficking is essential for understanding dysregulated mechanisms in disease and for improving and refining drug development for GPCRs.
Collapse
Affiliation(s)
- Anand Patwardhan
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - Norton Cheng
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - JoAnn Trejo
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
15
|
Nogueira TPO, Frota HO, Piazza F, Bordin JR. Tracer diffusion in crowded solutions of sticky polymers. Phys Rev E 2020; 102:032618. [PMID: 33075900 DOI: 10.1103/physreve.102.032618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Macromolecular diffusion in strongly confined geometries and crowded environments is still to a large extent an open subject in soft matter physics and biology. In this paper, we employ large-scale Langevin dynamics simulations to investigate how the diffusion of a tracer is influenced by the combined action of excluded-volume and weak attractive crowder-tracer interactions. We consider two species of tracers, standard hard-core particles described by the Weeks-Chandler-Andersen (WCA) repulsive potential and core-softened (CS) particles, which model, e.g., globular proteins, charged colloids, and nanoparticles covered by polymeric brushes. These systems are characterized by the presence of two length scales in the interaction and can show waterlike anomalies in their diffusion, stemming from the inherent competition between different length scales. Here we report a comprehensive study of both diffusion and structure of these two tracer species in an environment crowded by quenched configurations of polymers at increasing density. We analyze in detail how the tracer-polymer affinity and the system density affect transport as compared to the emergence of specific static spatial correlations. In particular, we find that, while hardly any differences emerge in the diffusion properties of WCA and CS particles, the propensity to develop structural order for large crowding is strongly frustrated for CS particles. Surprisingly, for large enough affinity for the crowding matrix, the diffusion coefficient of WCA tracers display a nonmonotonic trend as their density is increased when compared to the zero affinity scenario. This waterlike anomaly turns out to be even larger than what observed for CS particle and appears to be rooted in a similar competition between excluded-volume and affinity effects.
Collapse
Affiliation(s)
- T P O Nogueira
- Departamento de Física, Instituto de Física e Matemática, Universidade Federal de Pelotas. Caixa Postal 354, 96001-970, Pelotas, Brazil
| | - H O Frota
- Department of Physics, Federal University of Amazonas, 69077-000 Manaus, AM, Brazil
| | - Francesco Piazza
- Université d'Orléans, Centre de Biophysique Moléculaire (CBM), CNRS UPR4301, Rue C. Sadron, 45071 Orléans, France
| | - José Rafael Bordin
- Departamento de Física, Instituto de Física e Matemática, Universidade Federal de Pelotas. Caixa Postal 354, 96001-970, Pelotas, Brazil
| |
Collapse
|
16
|
Phan-Xuan T, Bogdanova E, Millqvist Fureby A, Fransson J, Terry AE, Kocherbitov V. Hydration-Induced Structural Changes in the Solid State of Protein: A SAXS/WAXS Study on Lysozyme. Mol Pharm 2020; 17:3246-3258. [PMID: 32787275 PMCID: PMC7482395 DOI: 10.1021/acs.molpharmaceut.0c00351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
The stability of biologically produced
pharmaceuticals is the limiting
factor to various applications, which can be improved by formulation
in solid-state forms, mostly via lyophilization. Knowledge about the
protein structure at the molecular level in the solid state and its
transition upon rehydration is however scarce, and yet it most likely
affects the physical and chemical stability of the biological drug.
In this work, synchrotron small- and wide-angle X-ray scattering (SWAXS)
are used to characterize the structure of a model protein, lysozyme,
in the solid state and its structural transition upon rehydration
to the liquid state. The results show that the protein undergoes distortion
upon drying to adopt structures that can continuously fill the space
to remove the protein–air interface that may be formed upon
dehydration. Above a hydration threshold of 35 wt %, the native structure
of the protein is recovered. The evolution of SWAXS peaks as a function
of water content in a broad range of concentrations is discussed in
relation to the structural changes in the protein. The findings presented
here can be used for the design and optimization of solid-state formulations
of proteins with improved stability.
Collapse
Affiliation(s)
- Tuan Phan-Xuan
- Biomedical Science, Malmö University, 214 32 Malmö, Sweden.,Biofilms Research Center for Biointerfaces, Malmö University, 214 32 Malmö, Sweden.,Max IV Laboratory, Lund University, 224 84 Lund, Sweden
| | - Ekaterina Bogdanova
- Biomedical Science, Malmö University, 214 32 Malmö, Sweden.,Biofilms Research Center for Biointerfaces, Malmö University, 214 32 Malmö, Sweden
| | | | | | - Ann E Terry
- Max IV Laboratory, Lund University, 224 84 Lund, Sweden
| | - Vitaly Kocherbitov
- Biomedical Science, Malmö University, 214 32 Malmö, Sweden.,Biofilms Research Center for Biointerfaces, Malmö University, 214 32 Malmö, Sweden
| |
Collapse
|
17
|
Malescio G, Sciortino F. Aggregate formation in fluids with bounded repulsive core and competing interactions. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
von Bülow S, Siggel M, Linke M, Hummer G. Dynamic cluster formation determines viscosity and diffusion in dense protein solutions. Proc Natl Acad Sci U S A 2019; 116:9843-9852. [PMID: 31036655 PMCID: PMC6525548 DOI: 10.1073/pnas.1817564116] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We develop a detailed description of protein translational and rotational diffusion in concentrated solution on the basis of all-atom molecular dynamics simulations in explicit solvent. Our systems contain up to 540 fully flexible proteins with 3.6 million atoms. In concentrated protein solutions (100 mg/mL and higher), the proteins ubiquitin and lysozyme, as well as the protein domains third IgG-binding domain of protein G and villin headpiece, diffuse not as isolated particles, but as members of transient clusters between which they constantly exchange. A dynamic cluster model nearly quantitatively explains the increase in viscosity and the decrease in protein diffusivity with protein volume fraction, which both exceed the predictions from widely used colloid models. The Stokes-Einstein relations for translational and rotational diffusion remain valid, but the effective hydrodynamic radius grows linearly with protein volume fraction. This increase follows the observed increase in cluster size and explains the more dramatic slowdown of protein rotation compared with translation. Baxter's sticky-sphere model of colloidal suspensions captures the concentration dependence of cluster size, viscosity, and rotational and translational diffusion. The consistency between simulations and experiments for a diverse set of soluble globular proteins indicates that the cluster model applies broadly to concentrated protein solutions, with equilibrium dissociation constants for nonspecific protein-protein binding in the Kd ≈ 10-mM regime.
Collapse
Affiliation(s)
- Sören von Bülow
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Marc Siggel
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Max Linke
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany;
- Department of Physics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
19
|
Ota C, Takano K. Spectroscopic Analysis of Protein-Crowded Environments Using the Charge-Transfer Fluorescence Probe 8-Anilino-1-Naphthalenesulfonic Acid. Chemphyschem 2019; 20:1456-1466. [PMID: 30945450 DOI: 10.1002/cphc.201900226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/01/2019] [Indexed: 12/11/2022]
Abstract
The molecular behaviors of proteins under crowding conditions are crucial for understanding the protein actions in intracellular environments. Under a crowded environment, the distance between protein molecules is almost the same size as the molecular level, thus, both the excluded volume effect and short ranged soft chemical interaction on protein surface could induce the complicated influence on the protein behavior cooperatively. Recently, various kinds of analytical approaches from macroscopic to microscopic aspects have been made to evaluate the crowding effect. The method, however, has not been established to evaluate the surface specific interactions on protein surface. In this study, the analytical method to evaluate the crowding effect has been suggested by using a charge-transfer fluorescence probe, ANS. By employing the unique property of ANS attaching to charged residues on the surface of lysozyme, the crowding effect was focused, while the case was compared as a reference, in which ANS is confined in hydrophobic pockets of BSA. Consequently, the surface specific changes of fluorescence spectra were readily observed under the crowded environment, whereas the fluorescence spectra of ANS in protein inside did not change. This result suggests the fluorescence spectra of ANS binding to protein surface have the capability to estimate the crowding effect of proteins.
Collapse
Affiliation(s)
- Chikashi Ota
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Kazufumi Takano
- Department of Biomolecular Chemistry, Kyoto Prefectural University, Sakyo-ku, Kyoto, 606-8522, Japan
| |
Collapse
|
20
|
Liu Y, Xi Y. Colloidal systems with a short-range attraction and long-range repulsion: Phase diagrams, structures, and dynamics. Curr Opin Colloid Interface Sci 2019; 39. [PMID: 34140838 DOI: 10.1016/j.cocis.2019.01.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Colloidal systems with both a short-range attraction and long-range repulsion (SALR) have rich phases compared with the traditional hard sphere systems or sticky hard sphere systems. The competition between the short-range attraction and long-range repulsion results in the frustrated phase separation, which leads to the formation of intermediate range order (IRO) structures and introduces new phases to both equilibrium and nonequilibrium phase diagrams, such as clustered fluid, cluster percolated fluid, Wigner glass, and cluster glass. One hallmark feature of many SALR systems is the appearance of the IRO peak in the interparticle structure factor, which is associated with different types of IRO structures. The relationship between the IRO peak and the clustered fluid state has been careful investigated. Not surprisingly, the morphology of clusters in solutions can be affected and controlled by the SALR potential. And the effect of the SALR potential on the dynamic properties is also reviewed here. Even though much progress has been made in understanding SALR systems, many future works are still needed to have quantitative comparisons between experiments and simulations/theories and understand the differences from different experimental systems. Owing to the large parameter space available for SALR systems, many exciting features of SALR systems are not fully explored yet. Because proteins in low-salinity solutions have SALR interactions, the understanding of SALR systems can greatly help understand protein behavior in concentrated solutions or crowded conditions.
Collapse
Affiliation(s)
- Yun Liu
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.,Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA.,Department of Physics & Astronomy, University of Delaware, Newark, DE, 19716, USA
| | - Yuyin Xi
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.,Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
21
|
Stawski TM, van den Heuvel DB, Besselink R, Tobler DJ, Benning LG. Mechanism of silica-lysozyme composite formation unravelled by in situ fast SAXS. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:182-197. [PMID: 30746312 PMCID: PMC6350881 DOI: 10.3762/bjnano.10.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/11/2018] [Indexed: 05/31/2023]
Abstract
A quantitative understanding of aggregation mechanisms leading to the formation of composites of inorganic nanoparticles (NPs) and proteins in aqueous media is of paramount interest for colloid chemistry. In particular, the interactions between silica (SiO2) NPs and lysozyme (LZM) have attracted attention, because LZM is well-known to adsorb strongly to silica NPs, while at the same time preserving its enzymatic activity. The inherent nature of the aggregation processes leading to NP-LZM composites involves structural changes at length scales from few to at least hundreds of nanometres but also time scales much smaller than one second. To unravel these we used in situ synchrotron-based small-angle X-ray scattering (SAXS) and followed the subtle interparticle interactions in solution at a time resolution of 50 ms/frame (20 fps). We show that if the size of silica NPs (ca. 5 nm diameter) is matched by the dimensions of LZM, the evolving scattering patterns contain a unique structure-factor contribution originating from the presence of LZM. We developed a scattering model and applied it to analyse this structure function, which allowed us to extract structural information on the deformation of lysozyme molecules during aggregation, as well as to derive the mechanisms of composite formation.
Collapse
Affiliation(s)
- Tomasz M Stawski
- German Research Centre for Geosciences, GFZ, Interface Geochemistry, Telegrafenberg, 14473, Potsdam, Germany
| | - Daniela B van den Heuvel
- School of Earth and Environment, University of Leeds, Woodhouse Lane, LS2 9 JT, Leeds, UK
- Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern, Baltzerstrasse 3, 3012, Bern, Switzerland
| | - Rogier Besselink
- German Research Centre for Geosciences, GFZ, Interface Geochemistry, Telegrafenberg, 14473, Potsdam, Germany
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
| | - Dominique J Tobler
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Liane G Benning
- German Research Centre for Geosciences, GFZ, Interface Geochemistry, Telegrafenberg, 14473, Potsdam, Germany
- School of Earth and Environment, University of Leeds, Woodhouse Lane, LS2 9 JT, Leeds, UK
- Department of Earth Sciences, Free University of Berlin, Malteserstr. 74–100 / Building A, 12249, Berlin, Germany
| |
Collapse
|
22
|
Boire A, Renard D, Bouchoux A, Pezennec S, Croguennec T, Lechevalier V, Le Floch-Fouéré C, Bouhallab S, Menut P. Soft-Matter Approaches for Controlling Food Protein Interactions and Assembly. Annu Rev Food Sci Technol 2019; 10:521-539. [PMID: 30633568 DOI: 10.1146/annurev-food-032818-121907] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Animal- and plant-based proteins are present in a wide variety of raw and processed foods. They play an important role in determining the final structure of food matrices. Food proteins are diverse in terms of their biological origin, molecular structure, and supramolecular assembly. This diversity has led to segmented experimental studies that typically focus on one or two proteins but hinder a more general understanding of food protein structuring as a whole. In this review, we propose a unified view of how soft-matter physics can be used to control food protein assembly. We discuss physical models from polymer and colloidal science that best describe and predict the phase behavior of proteins. We explore the occurrence of phase transitions along two axes: increasing protein concentration and increasing molecular attraction. This review provides new perspectives on the link between the interactions, phase transitions, and assembly of proteins that can help in designing new food products and innovative food processing operations.
Collapse
Affiliation(s)
- Adeline Boire
- Biopolymères Interactions Assemblages, INRA UR1268, F-44300 Nantes, France;
| | - Denis Renard
- Biopolymères Interactions Assemblages, INRA UR1268, F-44300 Nantes, France;
| | - Antoine Bouchoux
- LISBP, Université de Toulouse, CNRS, INRA, INSA, F-31077 Toulouse, France
| | | | | | | | | | - Saïd Bouhallab
- STLO, INRA UMR1253, Agrocampus Ouest, F-35042 Rennes, France
| | - Paul Menut
- Montpellier SupAgro, 34060 Montpellier, France; .,Ingénierie Procédés Aliments, AgroParisTech, INRA, Université Paris-Saclay, 91300 Massy, France
| |
Collapse
|
23
|
Sleutel M, Van Driessche AES. Nucleation of protein crystals - a nanoscopic perspective. NANOSCALE 2018; 10:12256-12267. [PMID: 29947625 DOI: 10.1039/c8nr02867b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Macromolecular phase transitions bear great medical, scientific and industrial relevance, yet the molecular picture of their earliest beginnings is still far from complete. For decades, progress has been hampered by the challenges associated with studying stochastic nucleation phenomena occurring on nanoscopic length scales. In the last 5 years, however, the field has advanced with great strides due to the recent buildout of experimental techniques that allow us to observe details of the nucleation process on the nanoscale. In this review, we present a historical overview and state-of-the-art analysis of protein crystal nucleation from an experimentalist's perspective. After a short introduction of key concepts from classical nucleation theory, we discuss the advancements that have led to the development of alternative models of protein nucleation. We summarize the experimental proof in favour of these various models, but we also focus on some of their shortcomings and experimental blind spots. In our penultimate section we highlight recent works that have provided direct nanoscopic insight into the nucleation of protein crystals. We end with concluding paragraphs discussing outstanding questions and possible strategies to advance the field further in the future.
Collapse
Affiliation(s)
- Mike Sleutel
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | | |
Collapse
|
24
|
Berry J, Brangwynne CP, Haataja M. Physical principles of intracellular organization via active and passive phase transitions. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:046601. [PMID: 29313527 DOI: 10.1088/1361-6633/aaa61e] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Exciting recent developments suggest that phase transitions represent an important and ubiquitous mechanism underlying intracellular organization. We describe key experimental findings in this area of study, as well as the application of classical theoretical approaches for quantitatively understanding these data. We also discuss the way in which equilibrium thermodynamic driving forces may interface with the fundamentally out-of-equilibrium nature of living cells. In particular, time and/or space-dependent concentration profiles may modulate the phase behavior of biomolecules in living cells. We suggest future directions for both theoretical and experimental work that will shed light on the way in which biological activity modulates the assembly, properties, and function of viscoelastic states of living matter.
Collapse
Affiliation(s)
- Joel Berry
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, United States of America. Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | | | | |
Collapse
|
25
|
Riest J, Nägele G, Liu Y, Wagner NJ, Godfrin PD. Short-time dynamics of lysozyme solutions with competing short-range attraction and long-range repulsion: Experiment and theory. J Chem Phys 2018; 148:065101. [DOI: 10.1063/1.5016517] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Jonas Riest
- Forschungszentrum Jülich GmbH, ICS-3–Soft Condensed Matter, 52428 Jülich, Germany and Jülich-Aachen Research Alliance JARA–Soft Matter, 52425 Jülich, Germany
| | - Gerhard Nägele
- Forschungszentrum Jülich GmbH, ICS-3–Soft Condensed Matter, 52428 Jülich, Germany and Jülich-Aachen Research Alliance JARA–Soft Matter, 52425 Jülich, Germany
| | - Yun Liu
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA and Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Norman J. Wagner
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - P. Douglas Godfrin
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
26
|
Andersson M, Hansson P. Binding of Lysozyme to Spherical Poly(styrenesulfonate) Gels. Gels 2018; 4:E9. [PMID: 30674786 PMCID: PMC6318605 DOI: 10.3390/gels4010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/30/2017] [Accepted: 01/10/2018] [Indexed: 11/16/2022] Open
Abstract
Polyelectrolyte gels are useful as carriers of proteins and other biomacromolecules in, e.g., drug delivery. The rational design of such systems requires knowledge about how the binding and release are affected by electrostatic and hydrophobic interactions between the components. To this end we have investigated the uptake of lysozyme by weakly crosslinked spherical poly(styrenesulfonate) (PSS) microgels and macrogels by means of micromanipulator assisted light microscopy and small angle X-ray scattering (SAXS) in an aqueous environment. The results show that the binding process is an order of magnitude slower than for cytochrome c and for lysozyme binding to sodium polyacrylate gels under the same conditions. This is attributed to the formation of very dense protein-rich shells in the outer layers of the microgels with low permeability to the protein. The shells in macrogels contain 60 wt % water and nearly charge stoichiometric amounts of lysozyme and PSS in the form of dense complexes of radius 8 nm comprising 30⁻60 lysozyme molecules. With support from kinetic modelling results we propose that the rate of protein binding and the relaxation rate of the microgel are controlled by the protein mass transport through the shell, which is strongly affected by hydrophobic and electrostatic interactions. The mechanism explains, in turn, an observed dependence of the diffusion rate on the apparent degree of crosslinking of the networks.
Collapse
Affiliation(s)
- Martin Andersson
- Department of Pharmacy, Uppsala University, Box 580, SE-75123 Uppsala, Sweden.
| | - Per Hansson
- Department of Pharmacy, Uppsala University, Box 580, SE-75123 Uppsala, Sweden.
| |
Collapse
|
27
|
Affiliation(s)
- M. B. Sweatman
- School of Engineering, University of Edinburgh , Edinburgh, UK
| |
Collapse
|
28
|
Zhang F. Nonclassical nucleation pathways in protein crystallization. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:443002. [PMID: 28984274 DOI: 10.1088/1361-648x/aa8253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Classical nucleation theory (CNT), which was established about 90 years ago, has been very successful in many research fields, and continues to be the most commonly used theory in describing the nucleation process. For a fluid-to-solid phase transition, CNT states that the solute molecules in a supersaturated solution reversibly form small clusters. Once the cluster size reaches a critical value, it becomes thermodynamically stable and favored for further growth. One of the most important assumptions of CNT is that the nucleation process is described by one reaction coordinate and all order parameters proceed simultaneously. Recent studies in experiments, computer simulations and theory have revealed nonclassical features in the early stage of nucleation. In particular, the decoupling of order parameters involved during a fluid-to-solid transition leads to the so-called two-step nucleation mechanism, in which a metastable intermediate phase (MIP) exists between the initial supersaturated solution and the final crystals. Depending on the exact free energy landscapes, the MIPs can be a high density liquid phase, mesoscopic clusters, or a pre-ordered state. In this review, we focus on the studies of nonclassical pathways in protein crystallization and discuss the applications of the various scenarios of two-step nucleation theory. In particular, we focus on protein solutions in the presence of multivalent salts, which serve as a model protein system to study the nucleation pathways. We wish to point out the unique features of proteins as model systems for further studies.
Collapse
Affiliation(s)
- Fajun Zhang
- Universität Tübingen, Institut für Angewandte Physik, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|
29
|
Matsushita Y, Sekiguchi H, Wong CJ, Nishijima M, Ikezaki K, Hamada D, Goto Y, Sasaki YC. Nanoscale Dynamics of Protein Assembly Networks in Supersaturated Solutions. Sci Rep 2017; 7:13883. [PMID: 29093529 PMCID: PMC5665898 DOI: 10.1038/s41598-017-14022-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/02/2017] [Indexed: 11/21/2022] Open
Abstract
Proteins in solution are conventionally considered macromolecules. Dynamic microscopic structures in supersaturated protein solutions have received increasing attention in the study of protein crystallisation and the formation of misfolded aggregates. Here, we present a method for observing rotational dynamic structures that can detect the interaction of nanoscale lysozyme protein networks via diffracted X-ray tracking (DXT). Our DXT analysis demonstrated that the rearrangement behaviours of lysozyme networks or clusters, which are driven by local density and concentration fluctuations, generate force fields on the femtonewton to attonewton (fN – aN) scale. This quantitative parameter was previously observed in our experiments on supersaturated inorganic solutions. This commonality provides a way to clarify the solution structures of a variety of supersaturated solutions as well as to control nucleation and crystallisation in supersaturated solutions.
Collapse
Affiliation(s)
- Y Matsushita
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan
| | - H Sekiguchi
- Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo, Japan
| | - C Jae Wong
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan.,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Chiba, 277-8568, Japan
| | - M Nishijima
- Office for University - Industry Collaboration, Osaka University, 2-8, Yamadaoka, Suita, Osaka, Japan
| | - K Ikezaki
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan.,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Chiba, 277-8568, Japan
| | - D Hamada
- Graduate School of Engineering, Kobe University, 7-1-48 Minato-jima, Minami, Kobe, Hyogo, Japan.,SPring-8/RIKEN, 1-1-1 Kouto, Sayo, Hyogo, Japan
| | - Y Goto
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, Japan
| | - Y C Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan. .,Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo, Japan. .,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Chiba, 277-8568, Japan.
| |
Collapse
|
30
|
Barroso daSilva FL, Dias LG. Development of constant-pH simulation methods in implicit solvent and applications in biomolecular systems. Biophys Rev 2017; 9:699-728. [PMID: 28921104 PMCID: PMC5662048 DOI: 10.1007/s12551-017-0311-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/01/2017] [Indexed: 12/20/2022] Open
Abstract
pH is a critical parameter for biological and technological systems directly related with electrical charges. It can give rise to peculiar electrostatic phenomena, which also makes them more challenging. Due to the quantum nature of the process, involving the forming and breaking of chemical bonds, quantum methods should ideally by employed. Nevertheless, due to the very large number of ionizable sites, different macromolecular conformations, salt conditions, and all other charged species, the CPU time cost simply becomes prohibitive for computer simulations, making this a quite complex problem. Simplified methods based on Monte Carlo sampling have been devised and will be reviewed here, highlighting the updated state-of-the-art of this field, advantages, and limitations of different theoretical protocols for biomolecular systems (proteins and nucleic acids). Following a historical perspective, the discussion will be associated with the applications to protein interactions with other proteins, polyelectrolytes, and nanoparticles.
Collapse
Affiliation(s)
- Fernando Luís Barroso daSilva
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do café, s/no. - Universidade de São Paulo, BR-14040-903, Ribeirão Preto, SP, Brazil.
- UCD School of Physics, UCD Institute for Discovery, University College Dublin, Belfield, Dublin 4, Ireland.
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
| | - Luis Gustavo Dias
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Av. Bandeirantes, 3900 - Universidade de São Paulo, BR-14040-901, Ribeirão Preto, SP, Brazil
| |
Collapse
|
31
|
Braun MK, Grimaldo M, Roosen-Runge F, Hoffmann I, Czakkel O, Sztucki M, Zhang F, Schreiber F, Seydel T. Crowding-Controlled Cluster Size in Concentrated Aqueous Protein Solutions: Structure, Self- and Collective Diffusion. J Phys Chem Lett 2017; 8:2590-2596. [PMID: 28525282 DOI: 10.1021/acs.jpclett.7b00658] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We investigate the concentration-controlled formation of clusters in β-lactoglobulin (BLG) protein solutions combining structural and dynamical scattering techniques. The static structure factor from small-angle X-ray scattering as well as de-Gennes narrowing in the nanosecond diffusion function D(q) from neutron spin echo spectroscopy support a picture of cluster formation. Using neutron backscattering spectroscopy, a monotonous increase of the average hydrodynamic cluster radius is monitored over a broad protein concentration range, corresponding to oligomeric structures of BLG ranging from the native dimers up to roughly four dimers. The results suggest that BLG forms compact clusters that are static on the observation time scale of several nanoseconds. The presented analysis provides a general framework to access the structure and dynamics of macromolecular assemblies in solution.
Collapse
Affiliation(s)
- Michal K Braun
- Institut für Angewandte Physik, Universität Tübingen , Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Marco Grimaldo
- Institut für Angewandte Physik, Universität Tübingen , Auf der Morgenstelle 10, 72076 Tübingen, Germany
- Institut Laue-Langevin , 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Felix Roosen-Runge
- Institut Laue-Langevin , 71 Avenue des Martyrs, 38000 Grenoble, France
- Division of Physical Chemistry, Department of Chemistry, Lund University , Naturvetarvägen 14, 221 00 Lund, Sweden
| | - Ingo Hoffmann
- Institut Laue-Langevin , 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Orsolya Czakkel
- Institut Laue-Langevin , 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Michael Sztucki
- ESRF - The European Synchrotron , 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen , Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen , Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Tilo Seydel
- Institut Laue-Langevin , 71 Avenue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
32
|
Baskakova SS, Volkov VV, Laptinskaya TV, Lyasnikova MS, Voloshin AE, Koval’chuk MV. Nature of impurities during protein crystallization. CRYSTALLOGR REP+ 2017. [DOI: 10.1134/s1063774517010060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Xuan S, Gupta S, Li X, Bleuel M, Schneider GJ, Zhang D. Synthesis and Characterization of Well-Defined PEGylated Polypeptoids as Protein-Resistant Polymers. Biomacromolecules 2017; 18:951-964. [DOI: 10.1021/acs.biomac.6b01824] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | | | | | - Markus Bleuel
- NIST
Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | | | | |
Collapse
|
34
|
Liu Y. Intermediate scattering function for macromolecules in solutions probed by neutron spin echo. Phys Rev E 2017; 95:020501. [PMID: 28297913 DOI: 10.1103/physreve.95.020501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Indexed: 11/07/2022]
Abstract
The neutron-spin-echo method (NSE) is a powerful technique for studying internal dynamics of macromolecules in solutions because it can simultaneously probe length and time scales comparable to intramolecular density fluctuations of macromolecules. Recently, there has been increased, strong interest in studying protein internal motions using NSE. The coherent intermediate scattering function (ISF) measured by NSE depends on internal, rotational, and translational motions of macromolecules in solutions. It is thus critical, but highly nontrivial, to separate the internal motion from other motions in order to properly understand protein internal dynamics. Even though many experiments are performed at relatively high concentrations, current theories of calculating the ISF of concentrated protein solutions are either inaccurate or flawed by incorrect assumptions for realistic protein systems with anisotropic shapes. Here, a theoretical framework is developed to establish the quantitative relationship of different motions included in the ISF. This theory based on the dynamic decoupling approximation is applicable to a wide range of protein concentrations, including dilute cases. It is also, in general, useful for studying many other types of macromolecule systems studied by NSE.
Collapse
Affiliation(s)
- Yun Liu
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA and Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
35
|
Du P, Li A, Li X, Zhang Y, Do C, He L, Rick SW, John VT, Kumar R, Zhang D. Aggregation of cyclic polypeptoids bearing zwitterionic end-groups with attractive dipole–dipole and solvophobic interactions: a study by small-angle neutron scattering and molecular dynamics simulation. Phys Chem Chem Phys 2017; 19:14388-14400. [DOI: 10.1039/c7cp01602f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aggregation behavior of cyclic polypeptoids has been studied using experiments and simulations.
Collapse
Affiliation(s)
- Pu Du
- Department of Chemistry and Macromolecular Studies Group
- Louisiana State University
- Baton Rouge
- USA
| | - Ang Li
- Department of Chemistry and Macromolecular Studies Group
- Louisiana State University
- Baton Rouge
- USA
| | - Xin Li
- Department of Chemistry and Macromolecular Studies Group
- Louisiana State University
- Baton Rouge
- USA
| | - Yueheng Zhang
- Department of Chemical and Biomolecular Engineering
- Tulane University
- New Orleans
- USA
| | - Changwoo Do
- Biology and Soft Matter Division
- Neutron Sciences Directorate
- Oak Ridge National Laboratory
- Oak Ridge
- USA
| | - Lilin He
- Biology and Soft Matter Division
- Neutron Sciences Directorate
- Oak Ridge National Laboratory
- Oak Ridge
- USA
| | - Steven W. Rick
- Department of Chemistry
- University of New Orleans
- New Orleans
- USA
| | - Vijay T. John
- Department of Chemical and Biomolecular Engineering
- Tulane University
- New Orleans
- USA
| | - Revati Kumar
- Department of Chemistry and Macromolecular Studies Group
- Louisiana State University
- Baton Rouge
- USA
| | - Donghui Zhang
- Department of Chemistry and Macromolecular Studies Group
- Louisiana State University
- Baton Rouge
- USA
| |
Collapse
|
36
|
Das T, Lookman T, Bandi MM. Morphology dictated heterogeneous dynamics in two-dimensional aggregates. SOFT MATTER 2016; 12:9674-9682. [PMID: 27858040 DOI: 10.1039/c6sm02239a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Particulate aggregates occur in a variety of non-equilibrium steady-state morphologies ranging from finite-size compact crystalline structures to non-compact string-like conformations. This diversity is due to the competition between pair-wise short range attraction and long range repulsion between particles. We identify different microscopic mechanisms in action by following the simulated particle trajectories for different morphologies in two dimensions at a fixed density and temperature. In particular, we show that the compact clusters are governed by symmetric caging of particles by their nearest neighbors while sidewise asymmetric binding of particles leads to non-compact aggregates. The measured timescales for these two mechanisms are found to be distinctly different providing phenomenological evidence of a relation between microstructure and dynamics of particulate aggregates. Supporting these findings, the time dependent diffusivity is observed to differ across the morphological hierarchy, while the average long-time dynamics is, in general, sub-diffusive at 'low' temperatures. Finally, one generic relation between diffusivity and structural randomness, applicable to simple equilibrium systems, is validated for complex aggregate forming systems through further analysis of the same system at different temperatures.
Collapse
Affiliation(s)
- Tamoghna Das
- Collective Interactions Unit, OIST Graduate University, Onna, Okinawa 9040495, Japan.
| | - T Lookman
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - M M Bandi
- Collective Interactions Unit, OIST Graduate University, Onna, Okinawa 9040495, Japan.
| |
Collapse
|
37
|
Castellanos MM, Clark NJ, Watson MC, Krueger S, McAuley A, Curtis JE. Role of Molecular Flexibility and Colloidal Descriptions of Proteins in Crowded Environments from Small-Angle Scattering. J Phys Chem B 2016; 120:12511-12518. [DOI: 10.1021/acs.jpcb.6b10637] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maria Monica Castellanos
- NIST
Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, Maryland 20899, United States
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States
| | - Nicholas J. Clark
- NIST
Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, Maryland 20899, United States
| | - Max C. Watson
- NIST
Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, Maryland 20899, United States
| | - Susan Krueger
- NIST
Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, Maryland 20899, United States
| | - Arnold McAuley
- Department
of Drug Product Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Joseph E. Curtis
- NIST
Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
38
|
Almarza NG, Pȩkalski J, Ciach A. Effects of confinement on pattern formation in two dimensional systems with competing interactions. SOFT MATTER 2016; 12:7551-7563. [PMID: 27507622 DOI: 10.1039/c6sm01400c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Template-assisted pattern formation in monolayers of particles with competing short-range attraction and long-range repulsion interactions (SALR) is studied by Monte Carlo simulations in a simple generic model [N. G. Almarza et al., J. Chem. Phys., 2014, 140, 164708]. We focus on densities corresponding to formation of parallel stripes of particles and on monolayers laterally confined between straight parallel walls. We analyze both the morphology of the developed structures and the thermodynamic functions for broad ranges of temperature T and the separation L2 between the walls. At low temperature stripes parallel to the boundaries appear, with some corrugation when the distance between the walls does not match the bulk periodicity of the striped structure. The stripes integrity, however, is rarely broken for any L2. This structural order is lost at T = TK(L2) depending on L2 according to a Kelvin-like equation. Above the Kelvin temperature TK(L2) many topological defects such as breaking or branching of the stripes appear, but a certain anisotropy in the orientation of the stripes persists. Finally, at high temperature and away from the walls, the system behaves as an isotropic fluid of elongated clusters of various lengths and with various numbers of branches. For L2 optimal for the stripe pattern the heat capacity as a function of temperature takes the maximum at T = TK(L2).
Collapse
Affiliation(s)
- N G Almarza
- Instituto de Químca Física Rocasolano, CSIC, Serrano 119, E-28006 Madrid, Spain.
| | | | | |
Collapse
|
39
|
Baumketner A, Melnyk R, Holovko MF, Cai W, Costa D, Caccamo C. Softness and non-spherical shape define the phase behavior and the structural properties of lysozyme in aqueous solutions. J Chem Phys 2016; 144:015103. [PMID: 26747821 DOI: 10.1063/1.4939637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In this study, Boltzmann inversion is applied in conjunction with molecular dynamics simulations to derive inter-molecular potential for protein lysozyme in aqueous solution directly from experimental static structure factor. The potential has a soft repulsion at short distances and an attraction well at intermediate distances that give rise to the liquid-liquid phase separation. Moreover, Gibbs ensemble Monte Carlo simulations demonstrate that a non-spherical description of lysozyme is better suited to correctly reproduce the experimentally observed properties of such a phase separation. Our findings shed new light on the common problem in molecular and cell biology: "How to model proteins in their natural aqueous environments?"
Collapse
Affiliation(s)
- A Baumketner
- Institute for Condensed Matter Physics, NAS of Ukraine, 1 Svientsistsky St., Lviv 79011, Ukraine
| | - R Melnyk
- Institute for Condensed Matter Physics, NAS of Ukraine, 1 Svientsistsky St., Lviv 79011, Ukraine
| | - M F Holovko
- Institute for Condensed Matter Physics, NAS of Ukraine, 1 Svientsistsky St., Lviv 79011, Ukraine
| | - W Cai
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - D Costa
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina and Consorzio Nazionale Interuniversitario per la Fisica della Materia, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - C Caccamo
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina and Consorzio Nazionale Interuniversitario per la Fisica della Materia, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
40
|
Bollinger JA, Truskett TM. Fluids with competing interactions. I. Decoding the structure factor to detect and characterize self-limited clustering. J Chem Phys 2016. [DOI: 10.1063/1.4960338] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Jonathan A. Bollinger
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Thomas M. Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
41
|
Roos M, Ott M, Hofmann M, Link S, Rössler E, Balbach J, Krushelnitsky A, Saalwächter K. Coupling and Decoupling of Rotational and Translational Diffusion of Proteins under Crowding Conditions. J Am Chem Soc 2016; 138:10365-72. [PMID: 27434647 DOI: 10.1021/jacs.6b06615] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Molecular motion of biopolymers in vivo is known to be strongly influenced by the high concentration of organic matter inside cells, usually referred to as crowding conditions. To elucidate the effect of intermolecular interactions on Brownian motion of proteins, we performed (1)H pulsed-field gradient NMR and fluorescence correlation spectroscopy (FCS) experiments combined with small-angle X-ray scattering (SAXS) and viscosity measurements for three proteins, αB-crystalline (αBc), bovine serum albumin, and hen egg-white lysozyme (HEWL) in aqueous solution. Our results demonstrate that long-time translational diffusion quantitatively follows the expected increase of macro-viscosity upon increasing the protein concentration in all cases, while rotational diffusion as assessed by polarized FCS and previous multi-frequency (1)H NMR relaxometry experiments reveals protein-specific behavior spanning the full range between the limiting cases of full decoupling from (αBc) and full coupling to (HEWL) the macro-viscosity. SAXS was used to study the interactions between the proteins in solution, whereby it is shown that the three cases cover the range between a weakly interacting hard-sphere system (αBc) and screened Coulomb repulsion combined with short-range attraction (HEWL). Our results, as well as insights from the recent literature, suggest that the unusual rotational-translational coupling may be due to anisotropic interactions originating from hydrodynamic shape effects combined with high charge and possibly a patchy charge distribution.
Collapse
Affiliation(s)
- Matthias Roos
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg , 06099 Halle (Saale), Germany
| | - Maria Ott
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg , 06099 Halle (Saale), Germany
| | - Marius Hofmann
- Experimentalphysik II, Universität Bayreuth , 95440 Bayreuth, Germany
| | - Susanne Link
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg , 06099 Halle (Saale), Germany
| | - Ernst Rössler
- Experimentalphysik II, Universität Bayreuth , 95440 Bayreuth, Germany
| | - Jochen Balbach
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg , 06099 Halle (Saale), Germany
| | - Alexey Krushelnitsky
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg , 06099 Halle (Saale), Germany
| | - Kay Saalwächter
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg , 06099 Halle (Saale), Germany
| |
Collapse
|
42
|
Hiroi T, Okazumi Y, Littrell KC, Narita Y, Tanaka N, Shibayama M. Mechanism of heat-induced gelation for ovalbumin and its N-terminus cleaved form. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Cristiglio V, Grillo I, Fomina M, Wien F, Shalaev E, Novikov A, Brassamin S, Réfrégiers M, Pérez J, Hennet L. Combination of acoustic levitation with small angle scattering techniques and synchrotron radiation circular dichroism. Application to the study of protein solutions. Biochim Biophys Acta Gen Subj 2016; 1861:3693-3699. [PMID: 27155578 DOI: 10.1016/j.bbagen.2016.04.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND The acoustic levitation technique is a useful sample handling method for small solid and liquids samples, suspended in air by means of an ultrasonic field. This method was previously used at synchrotron sources for studying pharmaceutical liquids and protein solutions using x-ray diffraction and small angle x-ray scattering (SAXS). METHODS In this work we combined for the first time this containerless method with small angle neutron scattering (SANS) and synchrotron radiation circular dichroism (SRCD) to study the structural behavior of proteins in solutions during the water evaporation. SANS results are also compared with SAXS experiments. RESULTS The aggregation behavior of 45μl droplets of lysozyme protein diluted in water was followed during the continuous increase of the sample concentration by evaporating the solvent. The evaporation kinetics was followed at different drying stage by SANS and SAXS with a good data quality. In a prospective work using SRCD, we also studied the evolution of the secondary structure of the myoglobin protein in water solution in the same evaporation conditions. CONCLUSIONS Acoustic levitation was applied for the first time with SANS and the high performances of the used neutron instruments made it possible to monitor fast container-less reactions in situ. A preliminary work using SRCD shows the potentiality of its combination with acoustic levitation for studying the evolution of the protein structure with time. GENERAL SIGNIFICANCE This multi-techniques approach could give novel insights into crystallization and self-assembly phenomena of biological compound with promising potential applications in pharmaceutical, food and cosmetics industry. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.
Collapse
Affiliation(s)
- Viviana Cristiglio
- Institut Laue Langevin, 71 avenue des Martyrs, 38000 Grenoble cedex 2, France
| | - Isabelle Grillo
- Institut Laue Langevin, 71 avenue des Martyrs, 38000 Grenoble cedex 2, France
| | - Margarita Fomina
- Department of Physics and Chemistry, University of Palermo, via Archirafi 36, 90123 Palermo, Italy
| | - Frank Wien
- Synchrotron Soleil, L'Orme des Merisiers, BP 48, 91192 Gif sur Yvette Cedex, France
| | | | - Alexey Novikov
- CNRS-CEMHTI, University of Orléans, 1D avenue de la Recherche Scientifique, 45071, Orléans cedex 2, France
| | - Séverine Brassamin
- CNRS-CEMHTI, University of Orléans, 1D avenue de la Recherche Scientifique, 45071, Orléans cedex 2, France
| | - Matthieu Réfrégiers
- Synchrotron Soleil, L'Orme des Merisiers, BP 48, 91192 Gif sur Yvette Cedex, France
| | - Javier Pérez
- Synchrotron Soleil, L'Orme des Merisiers, BP 48, 91192 Gif sur Yvette Cedex, France
| | - Louis Hennet
- CNRS-CEMHTI, University of Orléans, 1D avenue de la Recherche Scientifique, 45071, Orléans cedex 2, France.
| |
Collapse
|
44
|
Yadav I, Aswal VK, Kohlbrecher J. Size-dependent interaction of silica nanoparticles with lysozyme and bovine serum albumin proteins. Phys Rev E 2016; 93:052601. [PMID: 27300945 DOI: 10.1103/physreve.93.052601] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 05/02/2023]
Abstract
The interaction of three different sized (diameter 10, 18, and 28 nm) anionic silica nanoparticles with two model proteins-cationic lysozyme [molecular weight (MW) 14.7 kDa)] and anionic bovine serum albumin (BSA) (MW 66.4 kDa) has been studied by UV-vis spectroscopy, dynamic light scattering (DLS), and small-angle neutron scattering (SANS). The adsorption behavior of proteins on the nanoparticles, measured by UV-vis spectroscopy, is found to be very different for lysozyme and BSA. Lysozyme adsorbs strongly on the nanoparticles and shows exponential behavior as a function of lysozyme concentration irrespective of the nanoparticle size. The total amount of adsorbed lysozyme, as governed by the surface-to-volume ratio, increases on lowering the size of the nanoparticles for a fixed volume fraction of the nanoparticles. On the other hand, BSA does not show any adsorption for all the different sizes of the nanoparticles. Despite having different interactions, both proteins induce similar phase behavior where the nanoparticle-protein system transforms from one phase (clear) to two phase (turbid) as a function of protein concentration. The phase behavior is modified towards the lower concentrations for both proteins with increasing the nanoparticle size. DLS suggests that the phase behavior arises as a result of the nanoparticles' aggregation on the addition of proteins. The size-dependent modifications in the interaction potential, responsible for the phase behavior, have been determined by SANS data as modeled using the two-Yukawa potential accounting for the repulsive and attractive interactions in the systems. The protein-induced interaction between the nanoparticles is found to be short-range attraction for lysozyme and long-range attraction for BSA. The magnitude of attractive interaction irrespective of protein type is enhanced with increase in the size of the nanoparticles. The total (attractive+repulsive) potential leading to two-phase formation is found to be more attractive for larger sized nanoparticles. The nanoparticle aggregates are characterized by mass fractal.
Collapse
Affiliation(s)
- Indresh Yadav
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Joachim Kohlbrecher
- Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 PSI Villigen, Switzerland
| |
Collapse
|
45
|
Wieland DCF, Garamus VM, Zander T, Krywka C, Wang M, Dedinaite A, Claesson PM, Willumeit-Römer R. Studying solutions at high shear rates: a dedicated microfluidics setup. JOURNAL OF SYNCHROTRON RADIATION 2016; 23:480-486. [PMID: 26917136 DOI: 10.1107/s1600577515024856] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
The development of a dedicated small-angle X-ray scattering setup for the investigation of complex fluids at different controlled shear conditions is reported. The setup utilizes a microfluidics chip with a narrowing channel. As a consequence, a shear gradient is generated within the channel and the effect of shear rate on structure and interactions is mapped spatially. In a first experiment small-angle X-ray scattering is utilized to investigate highly concentrated protein solutions up to a shear rate of 300000 s(-1). These data demonstrate that equilibrium clusters of lysozyme are destabilized at high shear rates.
Collapse
Affiliation(s)
- D C F Wieland
- Institute for Materials Research, Helmholtz-Zentrum Geestacht: Centre for Materials and Coast Research, Max-Planck-Strasse 1, Geesthacht 21502, Germany
| | - V M Garamus
- Institute for Materials Research, Helmholtz-Zentrum Geestacht: Centre for Materials and Coast Research, Max-Planck-Strasse 1, Geesthacht 21502, Germany
| | - T Zander
- Institute for Materials Research, Helmholtz-Zentrum Geestacht: Centre for Materials and Coast Research, Max-Planck-Strasse 1, Geesthacht 21502, Germany
| | - C Krywka
- Institute for Materials Research, Helmholtz-Zentrum Geestacht: Centre for Materials and Coast Research, Max-Planck-Strasse 1, Geesthacht 21502, Germany
| | - M Wang
- Department of Chemistry, Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, Stockholm 10044, Sweden
| | - A Dedinaite
- Department of Chemistry, Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, Stockholm 10044, Sweden
| | - P M Claesson
- Department of Chemistry, Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, Stockholm 10044, Sweden
| | - R Willumeit-Römer
- Institute for Materials Research, Helmholtz-Zentrum Geestacht: Centre for Materials and Coast Research, Max-Planck-Strasse 1, Geesthacht 21502, Germany
| |
Collapse
|
46
|
Audus DJ, Starr FW, Douglas JF. Coupling of isotropic and directional interactions and its effect on phase separation and self-assembly. J Chem Phys 2016; 144:074901. [PMID: 26896996 PMCID: PMC4995070 DOI: 10.1063/1.4941454] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The interactions of molecules and particles in solution often involve an interplay between isotropic and highly directional interactions that lead to a mutual coupling of phase separation and self-assembly. This situation arises, for example, in proteins interacting through hydrophobic and charged patch regions on their surface and in nanoparticles with grafted polymer chains, such as DNA. As a minimal model of complex fluids exhibiting this interaction coupling, we investigate spherical particles having an isotropic interaction and a constellation of five attractive patches on the particle's surface. Monte Carlo simulations and mean-field calculations of the phase boundaries of this model depend strongly on the relative strength of the isotropic and patch potentials, where we surprisingly find that analytic mean-field predictions become increasingly accurate as the directional interactions become increasingly predominant. We quantitatively account for this effect by noting that the effective interaction range increases with increasing relative directional to isotropic interaction strength. We also identify thermodynamic transition lines associated with self-assembly, extract the entropy and energy of association, and characterize the resulting cluster properties obtained from simulations using percolation scaling theory and Flory-Stockmayer mean-field theory. We find that the fractal dimension and cluster size distribution are consistent with those of lattice animals, i.e., randomly branched polymers swollen by excluded volume interactions. We also identify a universal functional form for the average molecular weight and a nearly universal functional form for a scaling parameter characterizing the cluster size distribution. Since the formation of branched clusters at equilibrium is a common phenomenon in nature, we detail how our analysis can be used in experimental characterization of such associating fluids.
Collapse
Affiliation(s)
- Debra J Audus
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Francis W Starr
- Physics Department, Wesleyan University, Middletown, Connecticut 06459, USA
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
47
|
Joshi PN, Purushottam L, Das NK, Mukherjee S, Rai V. Protein self-assembly induces promiscuous nucleophilic biocatalysis in Morita–Baylis–Hillman (MBH) reaction. RSC Adv 2016. [DOI: 10.1039/c5ra23949d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Self-assembled states of proteins render efficient promiscuous nucleophilic biocatalysis in MBH reaction in a green process.
Collapse
Affiliation(s)
- Pralhad N. Joshi
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal
- India
| | - Landa Purushottam
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal
- India
| | - Nirmal K. Das
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal
- India
| | - Saptarshi Mukherjee
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal
- India
| | - Vishal Rai
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal
- India
| |
Collapse
|
48
|
Pasquier C, Beaufils S, Bouchoux A, Rigault S, Cabane B, Lund M, Lechevalier V, Le Floch-Fouéré C, Pasco M, Pabœuf G, Pérez J, Pezennec S. Osmotic pressures of lysozyme solutions from gas-like to crystal states. Phys Chem Chem Phys 2016; 18:28458-28465. [DOI: 10.1039/c6cp03867k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Osmotic pressures of lysozyme solutions at concentrations up to 850 g L−1 show three regimes and a clear influence of ionic strength.
Collapse
Affiliation(s)
| | | | | | | | - Bernard Cabane
- Laboratoire CBI
- CNRS UMR 8231
- Université Pierre et Marie Curie
- Université Diderot
- ESPCI
| | - Mikael Lund
- Department of Theoretical Chemistry
- Lund University
- SE-22100 Lund
- Sweden
| | | | | | | | | | | | | |
Collapse
|
49
|
Roos M, Hofmann M, Link S, Ott M, Balbach J, Rössler E, Saalwächter K, Krushelnitsky A. The "long tail" of the protein tumbling correlation function: observation by (1)H NMR relaxometry in a wide frequency and concentration range. JOURNAL OF BIOMOLECULAR NMR 2015; 63:403-415. [PMID: 26582718 PMCID: PMC4662726 DOI: 10.1007/s10858-015-0001-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/11/2015] [Indexed: 05/14/2023]
Abstract
Inter-protein interactions in solution affect the auto-correlation function of Brownian tumbling not only in terms of a simple increase of the correlation time, they also lead to the appearance of a weak slow component ("long tail") of the correlation function due to a slowly changing local anisotropy of the microenvironment. The conventional protocol of correlation time estimation from the relaxation rate ratio R1/R2 assumes a single-component tumbling correlation function, and thus can provide incorrect results as soon as the "long tail" is of relevance. This effect, however, has been underestimated in many instances. In this work we present a detailed systematic study of the tumbling correlation function of two proteins, lysozyme and bovine serum albumin, at different concentrations and temperatures using proton field-cycling relaxometry combined with R1ρ and R2 measurements. Unlike high-field NMR relaxation methods, these techniques enable a detailed study of dynamics on a time scale longer than the normal protein tumbling correlation time and, thus, a reliable estimate of the parameters of the "long tail". In this work we analyze the concentration dependence of the intensity and correlation time of the slow component and perform simulations of high-field (15)N NMR relaxation data demonstrating the importance of taking the "long tail" in the analysis into account.
Collapse
Affiliation(s)
- Matthias Roos
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120, Halle, Germany
| | - Marius Hofmann
- Universität Bayreuth, Lehrstuhl Experimentalphysik II, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Susanne Link
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120, Halle, Germany
| | - Maria Ott
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120, Halle, Germany
| | - Jochen Balbach
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120, Halle, Germany
| | - Ernst Rössler
- Universität Bayreuth, Lehrstuhl Experimentalphysik II, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Kay Saalwächter
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120, Halle, Germany.
| | - Alexey Krushelnitsky
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120, Halle, Germany.
| |
Collapse
|
50
|
Vorontsova MA, Chan HY, Lubchenko V, Vekilov PG. Lack of Dependence of the Sizes of the Mesoscopic Protein Clusters on Electrostatics. Biophys J 2015; 109:1959-68. [PMID: 26536272 PMCID: PMC4643268 DOI: 10.1016/j.bpj.2015.09.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 12/21/2022] Open
Abstract
Protein-rich clusters of steady submicron size and narrow size distribution exist in protein solutions in apparent violation of the classical laws of phase equilibrium. Even though they contain a minor fraction of the total protein, evidence suggests that they may serve as essential precursors for the nucleation of ordered solids such as crystals, sickle-cell hemoglobin polymers, and amyloid fibrils. The cluster formation mechanism remains elusive. We use the highly basic protein lysozyme at nearly neutral and lower pH as a model and explore the response of the cluster population to the electrostatic forces, which govern numerous biophysical phenomena, including crystallization and fibrillization. We tune the strength of intermolecular electrostatic forces by varying the solution ionic strength I and pH and find that despite the weaker repulsion at higher I and pH, the cluster size remains constant. Cluster responses to the presence of urea and ethanol demonstrate that cluster formation is controlled by hydrophobic interactions between the peptide backbones, exposed to the solvent after partial protein unfolding that may lead to transient protein oligomers. These findings reveal that the mechanism of the mesoscopic clusters is fundamentally different from those underlying the two main classes of ordered protein solid phases, crystals and amyloid fibrils, and partial unfolding of the protein chain may play a significant role.
Collapse
Affiliation(s)
- Maria A Vorontsova
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas
| | - Ho Yin Chan
- Department of Physics, University of Houston, Houston, Texas
| | - Vassiliy Lubchenko
- Department of Physics, University of Houston, Houston, Texas; Department of Chemistry, University of Houston, Houston, Texas
| | - Peter G Vekilov
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas; Department of Chemistry, University of Houston, Houston, Texas.
| |
Collapse
|