1
|
Xu L, Jang H, Nussinov R. Allosteric modulation of NF1 GAP: Differential distributions of catalytically competent populations in loss-of-function and gain-of-function mutants. Protein Sci 2025; 34:e70042. [PMID: 39840811 PMCID: PMC11751910 DOI: 10.1002/pro.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/13/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Neurofibromin (NF1), a Ras GTPase-activating protein (GAP), catalyzes Ras-mediated GTP hydrolysis and thereby negatively regulates the Ras/MAPK pathway. NF1 mutations can cause neurofibromatosis type 1 manifesting tumors, and neurodevelopmental disorders. Exactly how the missense mutations in the GAP-related domain of NF1 (NF1GRD) allosterically impact NF1 GAP to promote these distinct pathologies is unclear. Especially tantalizing is the question of how same-domain, same-residue NF1GRD variants exhibit distinct clinical phenotypes. Guided by clinical data, we take up this dilemma. We sampled the conformational ensembles of NF1GRD in complex with GTP-bound K-Ras4B by performing molecular dynamics simulations. Our results show that mutations in NF1GRD retain the active conformation of K-Ras4B but with biased propensities of the catalytically competent populations of K-Ras4B-NF1GRD complex. In agreement with clinical depiction and experimental tagging, compared to the wild type, NF1GRD E1356A and E1356V mutants effectively act through loss-of-function and gain-of-function mechanisms, leading to neurofibromatosis and developmental disorders, respectively. Allosteric modulation of NF1GRD GAP activity through biasing the conformational ensembles in the different states is further demonstrated by the diminished GAP activity by NF1GRD isoform 2, further manifesting propensities of conformational ensembles as powerful predictors of protein function. Taken together, our work identifies a NF1GRD hotspot that could allosterically tune GAP function, suggests targeting Ras oncogenic mutations by restoring NF1 catalytic activity, and offers a molecular mechanism for NF1 phenotypes determined by their distinct conformational propensities.
Collapse
Affiliation(s)
- Liang Xu
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation LaboratoryNational Cancer InstituteFrederickMarylandUSA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation LaboratoryNational Cancer InstituteFrederickMarylandUSA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation LaboratoryNational Cancer InstituteFrederickMarylandUSA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
2
|
Healy FM, Turner AL, Marensi V, MacEwan DJ. Mediating kinase activity in Ras-mutant cancer: potential for an individualised approach? Front Pharmacol 2024; 15:1441938. [PMID: 39372214 PMCID: PMC11450236 DOI: 10.3389/fphar.2024.1441938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
It is widely acknowledged that there is a considerable number of oncogenic mutations within the Ras superfamily of small GTPases which are the driving force behind a multitude of cancers. Ras proteins mediate a plethora of kinase pathways, including the MAPK, PI3K, and Ral pathways. Since Ras was considered undruggable until recently, pharmacological targeting of pathways downstream of Ras has been attempted to varying success, though drug resistance has often proven an issue. Nuances between kinase pathway activation in the presence of various Ras mutants are thought to contribute to the resistance, however, the reasoning behind activation of different pathways in different Ras mutational contexts is yet to be fully elucidated. Indeed, such disparities often depend on cancer type and disease progression. However, we are in a revolutionary age of Ras mutant targeted therapy, with direct-targeting KRAS-G12C inhibitors revolutionising the field and achieving FDA-approval in recent years. However, these are only beneficial in a subset of patients. Approximately 90% of Ras-mutant cancers are not KRAS-G12C mutant, and therefore raises the question as to whether other distinct amino acid substitutions within Ras may one day be targetable in a similar manner, and indeed whether better understanding of the downstream pathways these various mutants activate could further improve therapy. Here, we discuss the favouring of kinase pathways across an array of Ras-mutant oncogenic contexts and assess recent advances in pharmacological targeting of various Ras mutants. Ultimately, we will examine the utility of individualised pharmacological approaches to Ras-mediated cancer.
Collapse
Affiliation(s)
- Fiona M. Healy
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Amy L. Turner
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Vanessa Marensi
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Chester Medical School, University of Chester, Chester, United Kingdom
| | - David J. MacEwan
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
3
|
Warnock JL, Ball JA, Najmi SM, Henes M, Vazquez A, Koshnevis S, Wieden HJ, Conn GL, Ghalei H. Differential roles of putative arginine fingers of AAA + ATPases Rvb1 and Rvb2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593962. [PMID: 38798342 PMCID: PMC11118528 DOI: 10.1101/2024.05.13.593962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The evolutionarily conserved AAA+ ATPases Rvb1 and Rvb2 proteins form a heteromeric complex (Rvb1/2) required for assembly or remodeling of macromolecular complexes in essential cellular processes ranging from chromatin remodeling to ribosome biogenesis. Rvb1 and Rvb2 have a high degree of sequence and structural similarity, and both contain the classical features of ATPases of their clade, including an N-terminal AAA+ subdomain with the Walker A motif, an insertion domain that typically interacts with various binding partners, and a C-terminal AAA+ subdomain containing a Walker B motif, the Sensor I and II motifs, and an arginine finger. In this study, we find that despite the high degree of structural similarity, Rvb1 and Rvb2 have distinct active sites that impact their activities and regulation within the Rvb1/2 complex. Using a combination of biochemical and genetic approaches, we show that replacing the homologous arginine fingers of Rvb1 and Rvb2 with different amino acids not only has distinct effects on the catalytic activity of the complex, but also impacts cell growth, and the Rvb1/2 interactions with binding partners. Using molecular dynamics simulations, we find that changes near the active site of Rvb1 and Rvb2 cause long-range effects on the protein dynamics in the insertion domain, suggesting a molecular basis for how enzymatic activity within the catalytic site of ATP hydrolysis can be relayed to other domains of the Rvb1/2 complex to modulate its function. Further, we show the impact that the arginine finger variants have on snoRNP biogenesis and validate the findings from molecular dynamics simulations using a targeted genetic screen. Together, our results reveal new aspects of the regulation of the Rvb1/2 complex by identifying a relay of long-range molecular communication from the ATPase active site of the complex to the binding site of cofactors. Most importantly, our findings suggest that despite high similarity and cooperation within the same protein complex, the two proteins have evolved with unique properties critical for the regulation and function of the Rvb1/2 complex.
Collapse
Affiliation(s)
- Jennifer L. Warnock
- Emory University School of Medicine, Department of Biochemistry, Atlanta, Georgia, USA
| | - Jacob A. Ball
- Emory University School of Medicine, Department of Biochemistry, Atlanta, Georgia, USA
| | - Saman M. Najmi
- Emory University School of Medicine, Department of Biochemistry, Atlanta, Georgia, USA
| | - Mina Henes
- Emory University School of Medicine, Department of Biochemistry, Atlanta, Georgia, USA
- Graduate Program in Biochemistry, Cell & Developmental Biology (BCDB), Emory University, Atlanta, Georgia, USA
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Amanda Vazquez
- Department of Microbiology, Faculty of Science, University of Manitoba, Manitoba, Canada
| | - Sohail Koshnevis
- Emory University School of Medicine, Department of Biochemistry, Atlanta, Georgia, USA
| | - Hans-Joachim Wieden
- Department of Microbiology, Faculty of Science, University of Manitoba, Manitoba, Canada
| | - Graeme L. Conn
- Emory University School of Medicine, Department of Biochemistry, Atlanta, Georgia, USA
| | - Homa Ghalei
- Emory University School of Medicine, Department of Biochemistry, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Shankar S, Chew TW, Chichili VPR, Low BC, Sivaraman J. Structural basis for the distinct roles of non-conserved Pro116 and conserved Tyr124 of BCH domain of yeast p50RhoGAP. Cell Mol Life Sci 2024; 81:216. [PMID: 38740643 PMCID: PMC11090974 DOI: 10.1007/s00018-024-05238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024]
Abstract
p50RhoGAP is a key protein that interacts with and downregulates the small GTPase RhoA. p50RhoGAP is a multifunctional protein containing the BNIP-2 and Cdc42GAP Homology (BCH) domain that facilitates protein-protein interactions and lipid binding and the GAP domain that regulates active RhoA population. We recently solved the structure of the BCH domain from yeast p50RhoGAP (YBCH) and showed that it maintains the adjacent GAP domain in an auto-inhibited state through the β5 strand. Our previous WT YBCH structure shows that a unique kink at position 116 thought to be made by a proline residue between alpha helices α6 and α7 is essential for the formation of intertwined dimer from asymmetric monomers. Here we sought to establish the role and impact of this Pro116. However, the kink persists in the structure of P116A mutant YBCH domain, suggesting that the scaffold is not dictated by the proline residue at this position. We further identified Tyr124 (or Tyr188 in HBCH) as a conserved residue in the crucial β5 strand. Extending to the human ortholog, when substituted to acidic residues, Tyr188D or Tyr188E, we observed an increase in RhoA binding and self-dimerization, indicative of a loss of inhibition of the GAP domain by the BCH domain. These results point to distinct roles and impact of the non-conserved and conserved amino acid positions in regulating the structural and functional complexity of the BCH domain.
Collapse
Affiliation(s)
- Srihari Shankar
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Ti Weng Chew
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | | | - Boon Chuan Low
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore.
- NUS College, National University of Singapore, Singapore, 138593, Singapore.
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| |
Collapse
|
5
|
Mann D, Labudda K, Zimmermann S, Vocke KU, Gasper R, Kötting C, Hofmann E. ATP binding and ATP hydrolysis in full-length MsbA monitored via time-resolved Fourier transform infrared spectroscopy. Biol Chem 2023:hsz-2023-0122. [PMID: 37185095 DOI: 10.1515/hsz-2023-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
The essential Escherichia coli ATPase MsbA is a lipid flippase that serves as a prototype for multi drug resistant ABC transporters. Its physiological function is the transport of lipopolisaccharides to build up the outer membranes of gram negative bacteria. Although several structural and biochemical studies of MsbA have been conducted previously, a detailed picture of the dynamic processes that link ATP hydrolysis to allocrit transport remains elusive. We report here for the first time time-resolved Fourier transform infrared (FTIR) spectroscopic measurements of the ATP binding and ATP hydrolysis reaction of full-length MsbA and determined reaction rates at 288 K of k 1 = 0.49 ± 0.28 s-1 and k 2 = 0.014 ± 0.003 s-1, respectively. We further verified these rates with photocaged NPEcgAppNHp where only nucleotide binding was observable and the negative mutant MsbA-H537A that showed slow hydrolysis (k 2 < 2 × 10-4 s-1). Besides single turnover kinetics, FTIR measurements also deliver IR signatures of all educts, products and the protein. ADP remains protein-bound after ATP hydrolysis. In addition, the spectral changes observed for the two variants MsbA-S378A and MsbA-S482A correlated with the loss of hydrogen bonding to the γ-phosphate of ATP. This study paves the way for FTIR-spectroscopic investigations of allocrite transport in full-length MsbA.
Collapse
Affiliation(s)
- Daniel Mann
- Ruhr University Bochum, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Forschungszentrum Jülich GmbH, Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons / ER-C-3: Structural Biology, D-52425 Jülich, Germany
- Forschungszentrum Jülich GmbH, Institute for Biological Information Processing / IBI-6 Cellular Structural Biology, D-52425 Jülich, Germany
| | - Kristin Labudda
- Ruhr University Bochum, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Ruhr University Bochum, Protein Crystallography, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Ruhr University Bochum, Center for Protein Diagnostics (PRODI), Biospectroscopy, D-44780 Bochum, Germany
| | - Sophie Zimmermann
- Ruhr University Bochum, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Ruhr University Bochum, Protein Crystallography, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Kai Ulrich Vocke
- Ruhr University Bochum, Protein Crystallography, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Raphael Gasper
- Ruhr University Bochum, Protein Crystallography, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Max Planck Institute of Molecular Physiology, Crystallography and Biophysics Facility, D-44227 Dortmund, Germany
| | - Carsten Kötting
- Ruhr University Bochum, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Ruhr University Bochum, Center for Protein Diagnostics (PRODI), Biospectroscopy, D-44780 Bochum, Germany
| | - Eckhard Hofmann
- Ruhr University Bochum, Protein Crystallography, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
| |
Collapse
|
6
|
Sarkar S, Goswami D. Lifetime of actin-dependent protein nanoclusters. Biophys J 2023; 122:290-300. [PMID: 36518075 PMCID: PMC9892618 DOI: 10.1016/j.bpj.2022.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/23/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Protein nanoclusters (PNCs) are dynamic collections of a few proteins that spatially organize in nanometer-length clusters. PNCs are one of the principal forms of spatial organization of membrane proteins, and they have been shown or hypothesized to be important in various cellular processes, including cell signaling. PNCs show remarkable diversity in size, shape, and lifetime. In particular, the lifetime of PNCs can vary over a wide range of timescales. The diversity in size and shape can be explained by the interaction of the clustering proteins with the actin cytoskeleton or the lipid membrane, but very little is known about the processes that determine the lifetime of the nanoclusters. In this paper, using mathematical modeling of the cluster dynamics, we model the biophysical processes that determine the lifetime of actin-dependent PNCs. In particular, we investigated the role of actin aster fragmentation, which had been suggested to be a key determinant of the PNC lifetime, and we found that it is important only for a small class of PNCs. A simple extension of our model allowed us to investigate the kinetics of protein-ligand interaction near PNCs. We found an anomalous increase in the lifetime of ligands near PNCs, which agrees remarkably well with experimental data on RAS-RAF kinetics. In particular, analysis of the RAS-RAF data through our model provides falsifiable predictions and novel hypotheses that will not only shed light on the role of RAS-RAF kinetics in various cancers, but also will be useful in studying membrane protein clustering in general.
Collapse
Affiliation(s)
- Sumantra Sarkar
- The Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico; Theoretical Biophysics (T-6) Group, Los Alamos National Laboratory, Los Alamos, New Mexico; Department of Physics, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
| | - Debanjan Goswami
- NCI RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, Maryland.
| |
Collapse
|
7
|
Hajredini F, Alphonse S, Ghose R. BY-kinases: Protein tyrosine kinases like no other. J Biol Chem 2022; 299:102737. [PMID: 36423682 PMCID: PMC9800525 DOI: 10.1016/j.jbc.2022.102737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
BY-kinases (for bacterial tyrosine kinases) constitute a family of protein tyrosine kinases that are highly conserved in the bacterial kingdom and occur most commonly as essential components of multicomponent assemblies responsible for the biosynthesis, polymerization, and export of complex polysaccharides involved in biofilm or capsule formation. BY-kinase function has been attributed to a cyclic process involving formation of an oligomeric species, its disassembly into constituent monomers, and subsequent reassembly, depending on the overall phosphorylation level of a C-terminal cluster of tyrosine residues. However, the relationship of this process to the active/inactive states of the enzyme and the mechanism of its integration into the polysaccharide production machinery remain unclear. Here, we synthesize the substantial body of biochemical, cell-biological, structural, and computational data, acquired over the nearly 3 decades since the discovery of BY-kinases, to suggest means by which they fulfill their physiological function. We propose a mechanism involving temporal coordination of the assembly/disassembly process with the autokinase activity of the enzyme and its ability to be dephosphorylated by its counteracting phosphatase. We speculate that this temporal control enables BY-kinases to function as molecular timers that coordinate the diverse processes involved in the synthesis, polymerization, and export of complex sugar derivatives. We suggest that BY-kinases, which deploy distinctive catalytic domains resembling P-loop nucleoside triphosphatases, have uniquely adapted this ancient fold to drive functional processes through exquisite spatiotemporal control over protein-protein interactions and conformational changes. It is our hope that the hypotheses proposed here will facilitate future experiments targeting these unique protein kinases.
Collapse
Affiliation(s)
- Fatlum Hajredini
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York, USA,PhD Programs in Biochemistry, The Graduate Center of CUNY, New York, New York, USA
| | - Sébastien Alphonse
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York, USA
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York, USA,PhD Programs in Biochemistry, The Graduate Center of CUNY, New York, New York, USA,PhD Programs in Chemistry, The Graduate Center of CUNY, New York, New York, USA,PhD Programs in Physics, The Graduate Center of CUNY, New York, New York, USA,For correspondence: Ranajeet Ghose
| |
Collapse
|
8
|
Ngo VA, Garcia AE. Millisecond molecular dynamics simulations of KRas-dimer formation and interfaces. Biophys J 2022; 121:3730-3744. [PMID: 35462078 PMCID: PMC9617078 DOI: 10.1016/j.bpj.2022.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/28/2022] [Accepted: 04/19/2022] [Indexed: 11/02/2022] Open
Abstract
Ras dimers have been proposed as building blocks for initiating the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) cellular signaling pathway. To better examine the structure of possible dimer interfaces, the dynamics of Ras dimerization, and its potential signaling consequences, we performed molecular dynamics simulations totaling 1 ms of sampling, using an all-atom model of two full-length, farnesylated, guanosine triphosphate (GTP)-bound, wild-type KRas4b proteins diffusing on 29%POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine)-mixed POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membranes. Our simulations unveil an ensemble of thermodynamically weak KRas dimers spanning multiple conformations. The most stable conformations, having the largest interface areas, involve helix α2 and a hypervariable region (HVR). Among the dimer conformations, we found that the HVR of each KRas has frequent interactions with various parts of the dimer, thus potentially mediating the dimerization. Some dimer configurations have one KRas G-domain elevated above the lipid bilayer surface by residing on top of the other G-domain, thus likely contributing to the recruitment of cytosolic Raf kinases in the context of a stably formed multi-protein complex. We identified a variant of the α4-α5 KRas-dimer interface that is similar to the interfaces obtained with fluorescence resonance energy transfer (FRET) data of HRas on lipid bilayers. Interestingly, we found two arginine fingers, R68 and R149, that directly interact with the beta-phosphate of the GTP bound in KRas, in a manner similar to what is observed in a crystal structure of GAP-HRas complex, which can facilitate the GTP hydrolysis via the arginine finger of GTPase-activating protein (GAP).
Collapse
Affiliation(s)
- Van A Ngo
- Advanced Computing for Life Sciences and Engineering Group, Science Engagement Section, National Center for Computational Sciences, Oak Ridge National Lab, Oak Ridge, Tennessee; Center for Nonlinear Studies (CNLS), Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Angel E Garcia
- Center for Nonlinear Studies (CNLS), Los Alamos National Laboratory, Los Alamos, New Mexico.
| |
Collapse
|
9
|
Kozlova MI, Shalaeva DN, Dibrova DV, Mulkidjanian AY. Common Mechanism of Activated Catalysis in P-loop Fold Nucleoside Triphosphatases-United in Diversity. Biomolecules 2022; 12:1346. [PMID: 36291556 PMCID: PMC9599734 DOI: 10.3390/biom12101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/20/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
To clarify the obscure hydrolysis mechanism of ubiquitous P-loop-fold nucleoside triphosphatases (Walker NTPases), we analysed the structures of 3136 catalytic sites with bound Mg-NTP complexes or their analogues. Our results are presented in two articles; here, in the second of them, we elucidated whether the Walker A and Walker B sequence motifs-common to all P-loop NTPases-could be directly involved in catalysis. We found that the hydrogen bonds (H-bonds) between the strictly conserved, Mg-coordinating Ser/Thr of the Walker A motif ([Ser/Thr]WA) and aspartate of the Walker B motif (AspWB) are particularly short (even as short as 2.4 ångströms) in the structures with bound transition state (TS) analogues. Given that a short H-bond implies parity in the pKa values of the H-bond partners, we suggest that, in response to the interactions of a P-loop NTPase with its cognate activating partner, a proton relocates from [Ser/Thr]WA to AspWB. The resulting anionic [Ser/Thr]WA alkoxide withdraws a proton from the catalytic water molecule, and the nascent hydroxyl attacks the gamma phosphate of NTP. When the gamma-phosphate breaks away, the trapped proton at AspWB passes by the Grotthuss relay via [Ser/Thr]WA to beta-phosphate and compensates for its developing negative charge that is thought to be responsible for the activation barrier of hydrolysis.
Collapse
Affiliation(s)
- Maria I. Kozlova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria N. Shalaeva
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria V. Dibrova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Armen Y. Mulkidjanian
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
| |
Collapse
|
10
|
Kozlova MI, Shalaeva DN, Dibrova DV, Mulkidjanian AY. Common Patterns of Hydrolysis Initiation in P-loop Fold Nucleoside Triphosphatases. Biomolecules 2022; 12:1345. [PMID: 36291554 PMCID: PMC9599529 DOI: 10.3390/biom12101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/20/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
The P-loop fold nucleoside triphosphate (NTP) hydrolases (also known as Walker NTPases) function as ATPases, GTPases, and ATP synthases, are often of medical importance, and represent one of the largest and evolutionarily oldest families of enzymes. There is still no consensus on their catalytic mechanism. To clarify this, we performed the first comparative structural analysis of more than 3100 structures of P-loop NTPases that contain bound substrate Mg-NTPs or their analogues. We proceeded on the assumption that structural features common to these P-loop NTPases may be essential for catalysis. Our results are presented in two articles. Here, in the first, we consider the structural elements that stimulate hydrolysis. Upon interaction of P-loop NTPases with their cognate activating partners (RNA/DNA/protein domains), specific stimulatory moieties, usually Arg or Lys residues, are inserted into the catalytic site and initiate the cleavage of gamma phosphate. By analyzing a plethora of structures, we found that the only shared feature was the mechanistic interaction of stimulators with the oxygen atoms of gamma-phosphate group, capable of causing its rotation. One of the oxygen atoms of gamma phosphate coordinates the cofactor Mg ion. The rotation must pull this oxygen atom away from the Mg ion. This rearrangement should affect the properties of the other Mg ligands and may initiate hydrolysis according to the mechanism elaborated in the second article.
Collapse
Affiliation(s)
- Maria I. Kozlova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria N. Shalaeva
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria V. Dibrova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Armen Y. Mulkidjanian
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
| |
Collapse
|
11
|
Le Roux Ö, Pershing NLK, Kaltenbrun E, Newman NJ, Everitt JI, Baldelli E, Pierobon M, Petricoin EF, Counter CM. Genetically manipulating endogenous Kras levels and oncogenic mutations in vivo influences tissue patterning of murine tumorigenesis. eLife 2022; 11:e75715. [PMID: 36069770 PMCID: PMC9451540 DOI: 10.7554/elife.75715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 08/02/2022] [Indexed: 12/04/2022] Open
Abstract
Despite multiple possible oncogenic mutations in the proto-oncogene KRAS, unique subsets of these mutations are detected in different cancer types. As KRAS mutations occur early, if not being the initiating event, these mutational biases are ostensibly a product of how normal cells respond to the encoded oncoprotein. Oncogenic mutations can impact not only the level of active oncoprotein, but also engagement with proteins. To attempt to separate these two effects, we generated four novel Cre-inducible (LSL) Kras alleles in mice with the biochemically distinct G12D or Q61R mutations and encoded by native (nat) rare or common (com) codons to produce low or high protein levels. While there were similarities, each allele also induced a distinct transcriptional response shortly after activation in vivo. At one end of the spectrum, activating the KrasLSL-natG12D allele induced transcriptional hallmarks suggestive of an expansion of multipotent cells, while at the other end, activating the KrasLSL-comQ61R allele led to hallmarks of hyperproliferation and oncogenic stress. Evidence suggests that these changes may be a product of signaling differences due to increased protein expression as well as the specific mutation. To determine the impact of these distinct responses on RAS mutational patterning in vivo, all four alleles were globally activated, revealing that hematolymphopoietic lesions were permissive to the level of active oncoprotein, squamous tumors were permissive to the G12D mutant, while carcinomas were permissive to both these features. We suggest that different KRAS mutations impart unique signaling properties that are preferentially capable of inducing tumor initiation in a distinct cell-specific manner.
Collapse
Affiliation(s)
- Özgün Le Roux
- Department of Pharmacology & Cancer Biology, Duke University Medical CenterDurhamUnited States
| | - Nicole LK Pershing
- Department of Pharmacology & Cancer Biology, Duke University Medical CenterDurhamUnited States
| | - Erin Kaltenbrun
- Department of Pharmacology & Cancer Biology, Duke University Medical CenterDurhamUnited States
| | - Nicole J Newman
- Department of Pharmacology & Cancer Biology, Duke University Medical CenterDurhamUnited States
| | - Jeffrey I Everitt
- Department of Pathology, Duke University Medical CenterDurhamUnited States
| | - Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason UniversityManassasUnited States
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason UniversityManassasUnited States
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason UniversityManassasUnited States
| | - Christopher M Counter
- Department of Pharmacology & Cancer Biology, Duke University Medical CenterDurhamUnited States
| |
Collapse
|
12
|
Li M, Wang Y, Fan J, Zhuang H, Liu Y, Ji D, Lu S. Mechanistic Insights into the Long-range Allosteric Regulation of KRAS Via Neurofibromatosis Type 1 (NF1) Scaffold Upon SPRED1 Loading. J Mol Biol 2022; 434:167730. [PMID: 35872068 DOI: 10.1016/j.jmb.2022.167730] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 07/08/2022] [Indexed: 01/17/2023]
Abstract
Allosteric regulation is the most direct and efficient way of regulating protein function, wherein proteins transmit the perturbations at one site to another distinct functional site. Deciphering the mechanism of allosteric regulation is of vital importance for the comprehension of both physiological and pathological events in vivo as well as the rational allosteric drug design. However, it remains challenging to elucidate dominant allosteric signal transduction pathways, especially for large and multi-component protein machineries where long-range allosteric regulation exits. One of the quintessential examples having long-range allosteric regulation is the ternary complex, SPRED1-RAS-neurofibromin type 1 (NF1, a RAS GTPase-activating protein), in which SPRED1 facilitates RAS-GTP hydrolysis by interacting with NF1 at a distal, allosteric site from the RAS binding site. To address the underlying mechanism, we performed extensive Gaussian accelerated molecular dynamics simulations and Markov state model analysis of KRAS-NF1 complex in the presence and absence of SPRED1. Our findings suggested that SPRED1 loading allosterically enhanced KRAS-NF1 binding, but hindered conformational transformation of the NF1 catalytic center for RAS hydrolysis. Moreover, we unveiled the possible allosteric pathways upon SPRED1 binding through difference contact network analysis. This study not only provided an in-depth mechanistic insight into the allosteric regulation of KRAS by SPRED1, but also shed light on the investigation of long-range allosteric regulation among complex macromolecular systems.
Collapse
Affiliation(s)
- Minyu Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yuanhao Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Jigang Fan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Haiming Zhuang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yaqin Liu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Dong Ji
- Department of Anesthesiology, Changhai Hospital, Navy Medical University, Shanghai 200433, China.
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.
| |
Collapse
|
13
|
Zeng J, Chen J, Xia F, Cui Q, Deng X, Xu X. Identification of functional substates of KRas during GTP hydrolysis with enhanced sampling simulations. Phys Chem Chem Phys 2022; 24:7653-7665. [PMID: 35297922 PMCID: PMC8972078 DOI: 10.1039/d2cp00274d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As the hub of major signaling pathways, Ras proteins are implicated in 19% of tumor-caused cancers due to perturbations in their conformational and/or catalytic properties. Despite numerous studies, the functions of the conformational substates for the most important isoform, KRas, remain elusive. In this work, we perform an extensive simulation analysis on the conformational landscape of KRas in its various chemical states during the GTP hydrolysis cycle: the reactant state KRasGTP·Mg2+, the intermediate state KRasGDP·Pi·Mg2+ and the product state KRasGDP·Mg2+. The results from enhanced sampling simulations reveal that State 1 of KRasGTP·Mg2+ has multiple stable substates in solution, one of which might account for interacting with GEFs. State 2 of KRasGTP·Mg2+ features two substates "Tyr32in" and "Tyr32out", which are poised to interact with effectors and GAPs, respectively. For the intermediate state KRasGDP·Pi·Mg2+, Gln61 and Pi are found to assume a broad set of conformations, which might account for the weak oncogenic effect of Gln61 mutations in KRas in contrast to the situation in HRas and NRas. Finally, the product state KRasGDP·Mg2+ has more than two stable substates in solution, pointing to a conformation-selection mechanism for complexation with GEFs. Based on these results, some specific inhibition strategies for targeting the binding sites of the high-energy substates of KRas during GTP hydrolysis are discussed.
Collapse
Affiliation(s)
- Juan Zeng
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China
| | - Jian Chen
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China.
| | - Fei Xia
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China.
| | - Qiang Cui
- Departments of Chemistry, Physics and Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361101, China.
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China.
| |
Collapse
|
14
|
Hajredini F, Ghose R. An ATPase with a twist: A unique mechanism underlies the activity of the bacterial tyrosine kinase, Wzc. SCIENCE ADVANCES 2021; 7:eabj5836. [PMID: 34550748 PMCID: PMC8457666 DOI: 10.1126/sciadv.abj5836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BY-kinases constitute a protein tyrosine kinase family that encodes unique catalytic domains that deviate from those of eukaryotic kinases resembling P-loop nucleotide triphosphatases (NTPases) instead. We have used computational and supporting biochemical approaches using the catalytic domain of the Escherichia coli BY-kinase, Wzc, to illustrate mechanistic divergences between BY-kinases and NTPases despite their deployment of similar catalytic motifs. In NTPases, the “arginine finger” drives the reactive conformation of ATP while also displacing its solvation shell, thereby making favorable enthalpic and entropic contributions toward βγ-bond cleavage. In BY-kinases, the reactive state of ATP is enabled by ATP·Mg2+-induced global conformational transitions coupled to the conformation of the Walker-A lysine. While the BY-kinase arginine finger does promote the desolvation of ATP, it does so indirectly by generating an ordered active site in combination with other structural elements. Bacteria, using these mechanistic variations, have thus repurposed an ancient fold to phosphorylate on tyrosine.
Collapse
Affiliation(s)
- Fatlum Hajredini
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
- PhD Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
- PhD Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
- PhD Program in Chemistry, The Graduate Center of CUNY, New York, NY 10016, USA
- PhD Program in Physics, The Graduate Center of CUNY, New York, NY 10016, USA
- Corresponding author.
| |
Collapse
|
15
|
Osaka N, Hirota Y, Ito D, Ikeda Y, Kamata R, Fujii Y, Chirasani VR, Campbell SL, Takeuchi K, Senda T, Sasaki AT. Divergent Mechanisms Activating RAS and Small GTPases Through Post-translational Modification. Front Mol Biosci 2021; 8:707439. [PMID: 34307463 PMCID: PMC8295990 DOI: 10.3389/fmolb.2021.707439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
RAS is a founding member of the RAS superfamily of GTPases. These small 21 kDa proteins function as molecular switches to initialize signaling cascades involved in various cellular processes, including gene expression, cell growth, and differentiation. RAS is activated by GTP loading and deactivated upon GTP hydrolysis to GDP. Guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) accelerate GTP loading and hydrolysis, respectively. These accessory proteins play a fundamental role in regulating activities of RAS superfamily small GTPase via a conserved guanine binding (G)-domain, which consists of five G motifs. The Switch regions lie within or proximal to the G2 and G3 motifs, and undergo dynamic conformational changes between the GDP-bound "OFF" state and GTP-bound "ON" state. They play an important role in the recognition of regulatory factors (GEFs and GAPs) and effectors. The G4 and G5 motifs are the focus of the present work and lie outside Switch regions. These motifs are responsible for the recognition of the guanine moiety in GTP and GDP, and contain residues that undergo post-translational modifications that underlie new mechanisms of RAS regulation. Post-translational modification within the G4 and G5 motifs activates RAS by populating the GTP-bound "ON" state, either through enhancement of intrinsic guanine nucleotide exchange or impairing GAP-mediated down-regulation. Here, we provide a comprehensive review of post-translational modifications in the RAS G4 and G5 motifs, and describe the role of these modifications in RAS activation as well as potential applications for cancer therapy.
Collapse
Affiliation(s)
- Natsuki Osaka
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Yoshihisa Hirota
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Doshun Ito
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - Yoshiki Ikeda
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Ryo Kamata
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Yuki Fujii
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - Venkat R. Chirasani
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sharon L. Campbell
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Koh Takeuchi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Science and Technology, Tokyo, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
- Department of Accelerator Science, School of High Energy Accelerator Science, SOKENDAI (The Graduate University for Advanced Studies), Tsukuba, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Atsuo T. Sasaki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Cancer Biology, University of Cincinnati College of Medicine, Columbus, OH, United States
- Department of Neurosurgery, Brain Tumor Center at UC Gardner Neuroscience Institute, Cincinnati, OH, United States
| |
Collapse
|
16
|
Khrenova MG, Grigorenko BL, Nemukhin AV. Molecular Modeling Reveals the Mechanism of Ran-RanGAP-Catalyzed Guanosine Triphosphate Hydrolysis without an Arginine Finger. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maria G. Khrenova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences, Moscow 119071, Russia
| | - Bella L. Grigorenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 19334, Russia
| | - Alexander V. Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 19334, Russia
| |
Collapse
|
17
|
Khrenova MG, Bulavko ES, Mulashkin FD, Nemukhin AV. Mechanism of Guanosine Triphosphate Hydrolysis by the Visual Proteins Arl3-RP2: Free Energy Reaction Profiles Computed with Ab Initio Type QM/MM Potentials. Molecules 2021; 26:3998. [PMID: 34208932 PMCID: PMC8271468 DOI: 10.3390/molecules26133998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022] Open
Abstract
We report the results of calculations of the Gibbs energy profiles of the guanosine triphosphate (GTP) hydrolysis by the Arl3-RP2 protein complex using molecular dynamics (MD) simulations with ab initio type QM/MM potentials. The chemical reaction of GTP hydrolysis to guanosine diphosphate (GDP) and inorganic phosphate (Pi) is catalyzed by GTPases, the enzymes, which are responsible for signal transduction in live cells. A small GTPase Arl3, catalyzing the GTP → GDP reaction in complex with the activating protein RP2, constitute an essential part of the human vision cycle. To simulate the reaction mechanism, a model system is constructed by motifs of the crystal structure of the Arl3-RP2 complexed with a substrate analog. After selection of reaction coordinates, energy profiles for elementary steps along the reaction pathway GTP + H2O → GDP + Pi are computed using the umbrella sampling and umbrella integration procedures. QM/MM MD calculations are carried out, interfacing the molecular dynamics program NAMD and the quantum chemistry program TeraChem. Ab initio type QM(DFT)/MM potentials are computed with atom-centered basis sets 6-31G** and two hybrid functionals (PBE0-D3 and ωB97x-D3) of the density functional theory, describing a large QM subsystem. Results of these simulations of the reaction mechanism are compared to those obtained with QM/MM calculations on the potential energy surface using a similar description of the QM part. We find that both approaches, QM/MM and QM/MM MD, support the mechanism of GTP hydrolysis by GTPases, according to which the catalytic glutamine side chain (Gln71, in this system) actively participates in the reaction. Both approaches distinguish two parts of the reaction: the cleavage of the phosphorus-oxygen bond in GTP coupled with the formation of Pi, and the enzyme regeneration. Newly performed QM/MM MD simulations confirmed the profile predicted in the QM/MM minimum energy calculations, called here the pathway-I, and corrected its relief at the first elementary step from the enzyme-substrate complex. The QM/MM MD simulations also revealed another mechanism at the part of enzyme regeneration leading to pathway-II. Pathway-II is more consistent with the experimental kinetic data of the wild-type complex Arl3-RP2, whereas pathway-I explains the role of the mutation Glu138Gly in RP2 slowing down the hydrolysis rate.
Collapse
Affiliation(s)
- Maria G. Khrenova
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (M.G.K.); (F.D.M.)
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Egor S. Bulavko
- Biology Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia;
| | - Fedor D. Mulashkin
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (M.G.K.); (F.D.M.)
| | - Alexander V. Nemukhin
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (M.G.K.); (F.D.M.)
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina 4, 119334 Moscow, Russia
| |
Collapse
|
18
|
Eren M, Tuncbag N, Jang H, Nussinov R, Gursoy A, Keskin O. Normal Mode Analysis of KRas4B Reveals Partner Specific Dynamics. J Phys Chem B 2021; 125:5210-5221. [PMID: 33978412 PMCID: PMC9969846 DOI: 10.1021/acs.jpcb.1c00891] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ras GTPase interacts with its regulators and downstream effectors for its critical function in cellular signaling. Targeting the disrupted mechanisms in Ras-related human cancers requires understanding the distinct dynamics of these protein-protein interactions. We performed normal mode analysis (NMA) of KRas4B in wild-type or mutant monomeric and neurofibromin-1 (NF1), Son of Sevenless 1 (SOS1) or Raf-1 bound dimeric conformational states to reveal partner-specific dynamics of the protein. Gaussian network model (GNM) analysis showed that the known KRas4B lobes further partition into subdomains upon binding to its partners. Furthermore, KRas4B interactions with different partners suppress the flexibility in not only their binding sites but also distant residues in the allosteric lobe in a partner-specific way. The conformational changes can be driven by intrinsic residue fluctuations of the open state KRas4B-GDP, as we illustrated with anisotropic network model (ANM) analysis. The allosteric paths connecting the nucleotide binding residues to the allosteric site at α3-L7 portray differences in the inactive and active states. These findings help in understanding the partner-specific KRas4B dynamics, which could be utilized for therapeutic targeting.
Collapse
Affiliation(s)
| | - Nurcan Tuncbag
- Chemical and Biological Engineering, College of Engineering, and School of Medicine, Koc University, 34450 Istanbul, Turkey
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland 21702, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
19
|
Targeting KRAS mutant cancers by preventing signaling transduction in the MAPK pathway. Eur J Med Chem 2020; 211:113006. [PMID: 33228976 DOI: 10.1016/j.ejmech.2020.113006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 01/06/2023]
Abstract
KRAS genes are the most commonly mutated oncogenes in cancer. Unfortunately, effective therapeutic strategies for targeting KRAS mutant cancers have proven to be difficult to obtain. A key reason for this setback is due to the lack of success direct KRAS mutant inhibitors have received. Researchers have turned their efforts away from targeting the KRAS nucleotide-binding site directly and towards targeting other areas of the MAPK signaling pathway to block KRAS function. Researchers found that inhibiting enzymes and protein-protein interactions involved in the MAPK signaling pathway inhibit the activation of KRAS mutant therefore can lead to a potential therapeutic for KRAS mutated cancers. Throughout the past two decades, various indirect inhibitors have been designed and tested. EGFR and MEK inhibitors have presented with less success; however, significant advances have been made when targeting the plasma membrane localization process and the allosteric site of KRAS mutant. Farnesyltransferase and allosteric inhibitors have both advanced to human clinical trials. This comprehensive review presents the most recent developments of direct and indirect KRAS mutant inhibitors. This review summarizes published data on the inhibitory and anti-cancer activity of compounds that target KRAS activation as well as highlights the most promising strategies for targeting KRAS mutant cancers.
Collapse
|
20
|
Riccardi C, Perrone L, Napolitano F, Sampaolo S, Melone MAB. Understanding the Biological Activities of Vitamin D in Type 1 Neurofibromatosis: New Insights into Disease Pathogenesis and Therapeutic Design. Cancers (Basel) 2020; 12:E2965. [PMID: 33066259 PMCID: PMC7602022 DOI: 10.3390/cancers12102965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/18/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Vitamin D is a fat-soluble steroid hormone playing a pivotal role in calcium and phosphate homeostasis as well as in bone health. Vitamin D levels are not exclusively dependent on food intake. Indeed, the endogenous production-occurring in the skin and dependent on sun exposure-contributes to the majority amount of vitamin D present in the body. Since vitamin D receptors (VDRs) are ubiquitous and drive the expression of hundreds of genes, the interest in vitamin D has tremendously grown and its role in different diseases has been extensively studied. Several investigations indicated that vitamin D action extends far beyond bone health and calcium metabolism, showing broad effects on a variety of critical illnesses, including cancer, infections, cardiovascular and autoimmune diseases. Epidemiological studies indicated that low circulating vitamin D levels inversely correlate with cutaneous manifestations and bone abnormalities, clinical hallmarks of neurofibromatosis type 1 (NF1). NF1 is an autosomal dominant tumour predisposition syndrome causing significant pain and morbidity, for which limited treatment options are available. In this context, vitamin D or its analogues have been used to treat both skin and bone lesions in NF1 patients, alone or combined with other therapeutic agents. Here we provide an overview of vitamin D, its characteristic nutritional properties relevant for health benefits and its role in NF1 disorder. We focus on preclinical and clinical studies that demonstrated the clinical correlation between vitamin D status and NF1 disease, thus providing important insights into disease pathogenesis and new opportunities for targeted therapy.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy;
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Lorena Perrone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Filomena Napolitano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Simone Sampaolo
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, BioLife Building (015-00), 1900 North 12th Street, Philadelphia, PA 19122-6078, USA
| |
Collapse
|
21
|
Translation of the long-term fundamental studies on viral DNA packaging motors into nanotechnology and nanomedicine. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1103-1129. [DOI: 10.1007/s11427-020-1752-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
|
22
|
Abstract
Infrared difference spectroscopy probes vibrational changes of proteins upon their perturbation. Compared with other spectroscopic methods, it stands out by its sensitivity to the protonation state, H-bonding, and the conformation of different groups in proteins, including the peptide backbone, amino acid side chains, internal water molecules, or cofactors. In particular, the detection of protonation and H-bonding changes in a time-resolved manner, not easily obtained by other techniques, is one of the most successful applications of IR difference spectroscopy. The present review deals with the use of perturbations designed to specifically change the protein between two (or more) functionally relevant states, a strategy often referred to as reaction-induced IR difference spectroscopy. In the first half of this contribution, I review the technique of reaction-induced IR difference spectroscopy of proteins, with special emphasis given to the preparation of suitable samples and their characterization, strategies for the perturbation of proteins, and methodologies for time-resolved measurements (from nanoseconds to minutes). The second half of this contribution focuses on the spectral interpretation. It starts by reviewing how changes in H-bonding, medium polarity, and vibrational coupling affect vibrational frequencies, intensities, and bandwidths. It is followed by band assignments, a crucial aspect mostly performed with the help of isotopic labeling and site-directed mutagenesis, and complemented by integration and interpretation of the results in the context of the studied protein, an aspect increasingly supported by spectral calculations. Selected examples from the literature, predominately but not exclusively from retinal proteins, are used to illustrate the topics covered in this review.
Collapse
|
23
|
Grigorenko BL, Kots ED, Nemukhin AV. Diversity of mechanisms in Ras-GAP catalysis of guanosine triphosphate hydrolysis revealed by molecular modeling. Org Biomol Chem 2020; 17:4879-4891. [PMID: 31041977 DOI: 10.1039/c9ob00463g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanism of the deceptively simple reaction of guanosine triphosphate (GTP) hydrolysis catalyzed by the cellular protein Ras in complex with the activating protein GAP is an important issue because of the significance of this reaction in cancer research. We show that molecular modeling of GTP hydrolysis in the Ras-GAP active site reveals a diversity of mechanisms of the intrinsic chemical reaction depending on molecular groups at position 61 in Ras occupied by glutamine in the wild-type enzyme. First, a comparison of reaction energy profiles computed at the quantum mechanics/molecular mechanics (QM/MM) level shows that an assignment of the Gln61 side chain in the wild-type Ras either to QM or to MM parts leads to different scenarios corresponding to the glutamine-assisted or the substrate-assisted mechanisms. Second, replacement of Gln61 by the nitro-analog of glutamine (NGln) or by Glu, applied in experimental studies, results in two more scenarios featuring the so-called two-water and the concerted-type mechanisms. The glutamine-assisted mechanism in the wild-type Ras-GAP, in which the conserved Gln61 plays a decisive role, switching between the amide and imide tautomer forms, is consistent with the known experimental results of structural, kinetic and spectroscopy studies. The results emphasize the role of the Ras residue Gln61 in Ras-GAP catalysis and explain the retained catalytic activity of the Ras-GAP complex towards GTP hydrolysis in the Gln61NGln and Gln61Glu mutants of Ras.
Collapse
Affiliation(s)
- Bella L Grigorenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | |
Collapse
|
24
|
Mattox TE, Chen X, Maxuitenko YY, Keeton AB, Piazza GA. Exploiting RAS Nucleotide Cycling as a Strategy for Drugging RAS-Driven Cancers. Int J Mol Sci 2019; 21:ijms21010141. [PMID: 31878223 PMCID: PMC6982188 DOI: 10.3390/ijms21010141] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
Oncogenic mutations in RAS genes result in the elevation of cellular active RAS protein levels and increased signal propagation through downstream pathways that drive tumor cell proliferation and survival. These gain-of-function mutations drive over 30% of all human cancers, presenting promising therapeutic potential for RAS inhibitors. However, many have deemed RAS “undruggable” after nearly 40 years of failed drug discovery campaigns aimed at identifying a RAS inhibitor with clinical activity. Here we review RAS nucleotide cycling and the opportunities that RAS biochemistry presents for developing novel RAS inhibitory compounds. Additionally, compounds that have been identified to inhibit RAS by exploiting various aspects of RAS biology and biochemistry will be covered. Our current understanding of the biochemical properties of RAS, along with reports of direct-binding inhibitors, both provide insight on viable strategies for the discovery of novel clinical candidates with RAS inhibitory activity.
Collapse
Affiliation(s)
- Tyler E. Mattox
- Drug Discovery Research Center, University of South Alabama Mitchell Cancer Institute, Mobile, AL 36604, USA; (X.C.); (Y.Y.M.); (A.B.K.); (G.A.P.)
- Correspondence:
| | - Xi Chen
- Drug Discovery Research Center, University of South Alabama Mitchell Cancer Institute, Mobile, AL 36604, USA; (X.C.); (Y.Y.M.); (A.B.K.); (G.A.P.)
- ADT Pharmaceuticals, Orange Beach, AL 36561, USA
| | - Yulia Y. Maxuitenko
- Drug Discovery Research Center, University of South Alabama Mitchell Cancer Institute, Mobile, AL 36604, USA; (X.C.); (Y.Y.M.); (A.B.K.); (G.A.P.)
| | - Adam B. Keeton
- Drug Discovery Research Center, University of South Alabama Mitchell Cancer Institute, Mobile, AL 36604, USA; (X.C.); (Y.Y.M.); (A.B.K.); (G.A.P.)
- ADT Pharmaceuticals, Orange Beach, AL 36561, USA
| | - Gary A. Piazza
- Drug Discovery Research Center, University of South Alabama Mitchell Cancer Institute, Mobile, AL 36604, USA; (X.C.); (Y.Y.M.); (A.B.K.); (G.A.P.)
- ADT Pharmaceuticals, Orange Beach, AL 36561, USA
| |
Collapse
|
25
|
Koike R, Ota M. All Atom Motion Tree detects side chain-related motions and their coupling with domain motion in proteins. Biophys Physicobiol 2019; 16:280-286. [PMID: 31984182 PMCID: PMC6976028 DOI: 10.2142/biophysico.16.0_280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/25/2019] [Indexed: 12/24/2022] Open
Abstract
Structural changes of proteins are closely related with their molecular function. We previously developed a computational tool, Motion Tree (MT), to compare protein structures and describe structural changes using solely the Cα atoms. Here, we have extended MT to incorporate all heavy atoms to analyze side chain-related (SCR) motions. All Atom Motion Tree (AAMT) was applied to 76 proteins that exhibited a simple domain motion identified by MT. AAMT also detected 921 SCR motions. We examined the coupling of domain and SCR motions and classified the structural changes in terms of coupling. The statistical results indicated that it is common for coupled SCR motions to also couple with the domain motion. The classification correlates properties of domain motions and SCR motions. The AAMT results suggest that a large domain motion with a sizable domain boundary is accompanied by SCR motions composed of more than a single residue, which induces further couplings of SCR motions.
Collapse
Affiliation(s)
- Ryotaro Koike
- Graduate School of Informatics, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Motonori Ota
- Graduate School of Informatics, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
26
|
Rabara D, Tran TH, Dharmaiah S, Stephens RM, McCormick F, Simanshu DK, Holderfield M. KRAS G13D sensitivity to neurofibromin-mediated GTP hydrolysis. Proc Natl Acad Sci U S A 2019; 116:22122-22131. [PMID: 31611389 PMCID: PMC6825300 DOI: 10.1073/pnas.1908353116] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
KRAS mutations occur in ∼35% of colorectal cancers and promote tumor growth by constitutively activating the mitogen-activated protein kinase (MAPK) pathway. KRAS mutations at codons 12, 13, or 61 are thought to prevent GAP protein-stimulated GTP hydrolysis and render KRAS-mutated colorectal cancers unresponsive to epidermal growth factor receptor (EGFR) inhibitors. We report here that KRAS G13-mutated cancer cells are frequently comutated with NF1 GAP but NF1 is rarely mutated in cancers with KRAS codon 12 or 61 mutations. Neurofibromin protein (encoded by the NF1 gene) hydrolyzes GTP directly in complex with KRAS G13D, and KRAS G13D-mutated cells can respond to EGFR inhibitors in a neurofibromin-dependent manner. Structures of the wild type and G13D mutant of KRAS in complex with neurofibromin (RasGAP domain) provide the structural basis for neurofibromin-mediated GTP hydrolysis. These results reveal that KRAS G13D is responsive to neurofibromin-stimulated hydrolysis and suggest that a subset of KRAS G13-mutated colorectal cancers that are neurofibromin-competent may respond to EGFR therapies.
Collapse
Affiliation(s)
- Dana Rabara
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Timothy H Tran
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Srisathiyanarayanan Dharmaiah
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Robert M Stephens
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701;
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701;
| | - Matthew Holderfield
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701;
| |
Collapse
|
27
|
Molt RW, Pellegrini E, Jin Y. A GAP-GTPase-GDP-P i Intermediate Crystal Structure Analyzed by DFT Shows GTP Hydrolysis Involves Serial Proton Transfers. Chemistry 2019; 25:8484-8488. [PMID: 31038818 PMCID: PMC6771576 DOI: 10.1002/chem.201901627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/28/2019] [Indexed: 01/01/2023]
Abstract
Cell signaling by small G proteins uses an ON to OFF signal based on conformational changes following the hydrolysis of GTP to GDP and release of dihydrogen phosphate (Pi ). The catalytic mechanism of GTP hydrolysis by RhoA is strongly accelerated by a GAP protein and is now well defined, but timing of inorganic phosphate release and signal change remains unresolved. We have generated a quaternary complex for RhoA-GAP-GDP-Pi . Its 1.75 Å crystal structure shows geometry for ionic and hydrogen bond coordination of GDP and Pi in an intermediate state. It enables the selection of a QM core for DFT exploration of a 20 H-bonded network. This identifies serial locations of the two mobile protons from the original nucleophilic water molecule, showing how they move in three rational steps to form a stable quaternary complex. It also suggests how two additional proton transfer steps can facilitate Pi release.
Collapse
Affiliation(s)
- Robert W. Molt
- Department of Biochemistry & Molecular BiologyIndiana University School of MedicineIndianapolisIndiana46202USA
- ENSCO, Inc.4849 North Wickham RoadMelbourneFlorida32940USA
| | - Erika Pellegrini
- 9 European Molecular Biology Laboratory71 Avenue des Martyrs, CS 9018138042Grenoble, Cedex 9France
| | - Yi Jin
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityCardiffCF10 3ATUK
| |
Collapse
|
28
|
Calixto AR, Moreira C, Pabis A, Kötting C, Gerwert K, Rudack T, Kamerlin SCL. GTP Hydrolysis Without an Active Site Base: A Unifying Mechanism for Ras and Related GTPases. J Am Chem Soc 2019; 141:10684-10701. [PMID: 31199130 DOI: 10.1021/jacs.9b03193] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
GTP hydrolysis is a biologically crucial reaction, being involved in regulating almost all cellular processes. As a result, the enzymes that catalyze this reaction are among the most important drug targets. Despite their vital importance and decades of substantial research effort, the fundamental mechanism of enzyme-catalyzed GTP hydrolysis by GTPases remains highly controversial. Specifically, how do these regulatory proteins hydrolyze GTP without an obvious general base in the active site to activate the water molecule for nucleophilic attack? To answer this question, we perform empirical valence bond simulations of GTPase-catalyzed GTP hydrolysis, comparing solvent- and substrate-assisted pathways in three distinct GTPases, Ras, Rab, and the Gαi subunit of a heterotrimeric G-protein, both in the presence and in the absence of the corresponding GTPase activating proteins. Our results demonstrate that a general base is not needed in the active site, as the preferred mechanism for GTP hydrolysis is a conserved solvent-assisted pathway. This pathway involves the rate-limiting nucleophilic attack of a water molecule, leading to a short-lived intermediate that tautomerizes to form H2PO4- and GDP as the final products. Our fundamental biochemical insight into the enzymatic regulation of GTP hydrolysis not only resolves a decades-old mechanistic controversy but also has high relevance for drug discovery efforts. That is, revisiting the role of oncogenic mutants with respect to our mechanistic findings would pave the way for a new starting point to discover drugs for (so far) "undruggable" GTPases like Ras.
Collapse
Affiliation(s)
- Ana R Calixto
- Department of Chemistry-BMC , Uppsala University , Box 576, S-751 23 Uppsala , Sweden
| | - Cátia Moreira
- Department of Chemistry-BMC , Uppsala University , Box 576, S-751 23 Uppsala , Sweden
| | - Anna Pabis
- Department of Cell and Molecular Biology , Uppsala University , BMC Box 596, S-751 24 , Uppsala , Sweden
| | - Carsten Kötting
- Department of Biophysics , Ruhr University Bochum , 44801 Bochum , Germany
| | - Klaus Gerwert
- Department of Biophysics , Ruhr University Bochum , 44801 Bochum , Germany
| | - Till Rudack
- Department of Biophysics , Ruhr University Bochum , 44801 Bochum , Germany
| | - Shina C L Kamerlin
- Department of Chemistry-BMC , Uppsala University , Box 576, S-751 23 Uppsala , Sweden
| |
Collapse
|
29
|
Guo P, Driver D, Zhao Z, Zheng Z, Chan C, Cheng X. Controlling the Revolving and Rotating Motion Direction of Asymmetric Hexameric Nanomotor by Arginine Finger and Channel Chirality. ACS NANO 2019; 13:6207-6223. [PMID: 31067030 PMCID: PMC6595433 DOI: 10.1021/acsnano.8b08849] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nanomotors in nanotechnology are as important as engines in daily life. Many ATPases are nanoscale biomotors classified into three categories based on the motion mechanisms in transporting substrates: linear, rotating, and the recently discovered revolving motion. Most biomotors adopt a multisubunit ring-shaped structure that hydrolyzes ATP to generate force. How these biomotors control the motion direction and regulate the sequential action of their multiple subunits is intriguing. Many ATPases are hexameric with each monomer containing a conserved arginine finger. This review focuses on recent findings on how the arginine finger controls motion direction and coordinates adjacent subunit interactions in both revolving and rotating biomotors. Mechanisms of intersubunit interactions and sequential movements of individual subunits are evidenced by the asymmetrical appearance of one dimer and four monomers in high-resolution structural complexes. The arginine finger is situated at the interface of two subunits and extends into the ATP binding pocket of the downstream subunit. An arginine finger mutation results in deficiency in ATP binding/hydrolysis, substrate binding, and transport, highlighting the importance of the arginine finger in regulating energy transduction and motor function. Additionally, the roles of channel chirality and channel size are discussed as related to controlling one-way trafficking and differentiating the revolving and rotating mechanisms. Finally, the review concludes by discussing the conformational changes and entropy conversion triggered by ATP binding/hydrolysis, offering a view different from the traditional concept of ATP-mediated mechanochemical energy coupling. The elucidation of the motion mechanism and direction control in ATPases could facilitate nanomotor fabrication in nanotechnology.
Collapse
Affiliation(s)
- Peixuan Guo
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
- E-mail:
| | - Dana Driver
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Zhengyi Zhao
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Zhen Zheng
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Chun Chan
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Xiaolin Cheng
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| |
Collapse
|
30
|
Wauters L, Terheyden S, Gilsbach BK, Leemans M, Athanasopoulos PS, Guaitoli G, Wittinghofer A, Gloeckner CJ, Versées W, Kortholt A. Biochemical and kinetic properties of the complex Roco G-protein cycle. Biol Chem 2019; 399:1447-1456. [PMID: 30067506 DOI: 10.1515/hsz-2018-0227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022]
Abstract
Roco proteins have come into focus after mutations in the gene coding for the human Roco protein Leucine-rich repeat kinase 2 (LRRK2) were discovered to be one of the most common genetic causes of late onset Parkinson's disease. Roco proteins are characterized by a Roc domain responsible for GTP binding and hydrolysis, followed by a COR dimerization device. The regulation and function of this RocCOR domain tandem is still not completely understood. To fully biochemically characterize Roco proteins, we performed a systematic survey of the kinetic properties of several Roco protein family members, including LRRK2. Together, our results show that Roco proteins have a unique G-protein cycle. Our results confirm that Roco proteins have a low nucleotide affinity in the micromolar range and thus do not strictly depend on G-nucleotide exchange factors. Measurement of multiple and single turnover reactions shows that neither Pi nor GDP release are rate-limiting, while this is the case for the GAP-mediated GTPase reaction of some small G-proteins like Ras and for most other high affinity Ras-like proteins, respectively. The KM values of the reactions are in the range of the physiological GTP concentration, suggesting that LRRK2 functioning might be regulated by the cellular GTP level.
Collapse
Affiliation(s)
- Lina Wauters
- VIB-VUB Center for Structural Biology, Pleinlaan 2, B-1050 Brussels, Belgium.,Department of Cell Biochemistry, University of Groningen, Groningen NL-9747 AG, The Netherlands.,Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Susanne Terheyden
- Department of Cell Biochemistry, University of Groningen, Groningen NL-9747 AG, The Netherlands.,Structural Biology Group, Max-Planck Institute of Molecular Physiology, D-44227 Dortmund, Germany
| | - Bernd K Gilsbach
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, D-72076 Tübingen, Germany
| | - Margaux Leemans
- VIB-VUB Center for Structural Biology, Pleinlaan 2, B-1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | | | - Giambattista Guaitoli
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, D-72076 Tübingen, Germany
| | - Alfred Wittinghofer
- Structural Biology Group, Max-Planck Institute of Molecular Physiology, D-44227 Dortmund, Germany
| | - Christian Johannes Gloeckner
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, D-72076 Tübingen, Germany.,University of Tübingen, Institute for Ophthalmic Research, Center for Ophthalmology, D-72076 Tübingen, Germany
| | - Wim Versées
- VIB-VUB Center for Structural Biology, Pleinlaan 2, B-1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen NL-9747 AG, The Netherlands
| |
Collapse
|
31
|
Gupta AK, Wang X, Pagba CV, Prakash P, Sarkar-Banerjee S, Putkey J, Gorfe AA. Multi-target, ensemble-based virtual screening yields novel allosteric KRAS inhibitors at high success rate. Chem Biol Drug Des 2019; 94:1441-1456. [PMID: 30903639 DOI: 10.1111/cbdd.13519] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/01/2019] [Accepted: 03/03/2019] [Indexed: 01/11/2023]
Abstract
RAS mutations account for >15% of all human tumors, and of these ~85% are due to mutations in a particular RAS gene: KRAS. Recent studies revealed that KRAS harbors four druggable allosteric sites. Here, we have (a) used molecular simulations to generate ensembles of wild type and four major oncogenic KRAS mutants (G12V, G12D, G13D, and Q61H); (b) characterized the druggability of each allosteric pocket in each protein; (c) conducted extensive ensemble-based virtual screening using pocket-tailored ligand libraries; (d) prioritized hits through hierarchical postdocking analysis; and (e) validated predicted hits with NMR. Of the 785 diverse potential hits identified by our in silico analysis, we tested 90 for their ability to bind KRAS using NMR and found that nine cause backbone amide chemical shift perturbations of residues near the functionally responsive switch loops, suggesting potential binding. We conducted detailed biophysical analyses on a novel indole-based compound to demonstrate the potential of our workflow to yield lead compounds. We believe the detailed information documented in this work regarding the druggability profile of each allosteric site and the chemical fingerprints of compounds that target them will serve as vital resources for future structure-based drug design efforts against KRAS, a high-value target for cancer therapy.
Collapse
Affiliation(s)
- Amit K Gupta
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Xu Wang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Cynthia V Pagba
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Priyanka Prakash
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Suparna Sarkar-Banerjee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - John Putkey
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
32
|
Scheffzek K, Shivalingaiah G. Ras-Specific GTPase-Activating Proteins-Structures, Mechanisms, and Interactions. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a031500. [PMID: 30104198 DOI: 10.1101/cshperspect.a031500] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ras-specific GTPase-activating proteins (RasGAPs) down-regulate the biological activity of Ras proteins by accelerating their intrinsic rate of GTP hydrolysis, basically by a transition state stabilizing mechanism. Oncogenic Ras is commonly not sensitive to RasGAPs caused by interference of mutants with the electronic or steric requirements of the transition state, resulting in up-regulation of activated Ras in respective cells. RasGAPs are modular proteins containing a helical catalytic RasGAP module surrounded by smaller domains that are frequently involved in the subcellular localization or contributing to regulatory features of their host proteins. In this review, we summarize current knowledge about RasGAP structure, mechanism, regulation, and dual-substrate specificity and discuss in some detail neurofibromin, one of the most important negative Ras regulators in cellular growth control and neuronal function.
Collapse
Affiliation(s)
- Klaus Scheffzek
- Division of Biological Chemistry (Biocenter), Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Giridhar Shivalingaiah
- Division of Biological Chemistry (Biocenter), Medical University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
33
|
Peters DT, Kay L, Eswaran J, Lakey JH, Soundararajan M. Human Miro Proteins Act as NTP Hydrolases through a Novel, Non-Canonical Catalytic Mechanism. Int J Mol Sci 2018; 19:ijms19123839. [PMID: 30513825 PMCID: PMC6321465 DOI: 10.3390/ijms19123839] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 01/13/2023] Open
Abstract
Mitochondria are highly dynamic organelles that play a central role in multiple cellular processes, including energy metabolism, calcium homeostasis and apoptosis. Miro proteins (Miros) are “atypical” Ras superfamily GTPases that display unique domain architecture and subcellular localisation regulating mitochondrial transport, autophagy and calcium sensing. Here, we present systematic catalytic domain characterisation and structural analyses of human Miros. Despite lacking key conserved catalytic residues (equivalent to Ras Y32, T35, G60 and Q61), the Miro N-terminal GTPase domains display GTPase activity. Surprisingly, the C-terminal GTPase domains previously assumed to be “relic” domains were also active. Moreover, Miros show substrate promiscuity and function as NTPases. Molecular docking and structural analyses of Miros revealed unusual features in the Switch I and II regions, facilitating promiscuous substrate binding and suggesting the usage of a novel hydrolytic mechanism. The key substitution in position 13 in the Miros leads us to suggest the existence of an “internal arginine finger”, allowing an unusual catalytic mechanism that does not require GAP protein. Together, the data presented here indicate novel catalytic functions of human Miro atypical GTPases through altered catalytic mechanisms.
Collapse
Affiliation(s)
- Daniel T Peters
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Laura Kay
- Department of Applied Sciences Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
| | - Jeyanthy Eswaran
- Northern Institute for Cancer Research, Newcastle University, Herschel Building, Newcastle upon Tyne, NE1 7RU, UK.
| | - Jeremy H Lakey
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Meera Soundararajan
- Department of Applied Sciences Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
| |
Collapse
|
34
|
Affiliation(s)
- Valerie Vaissier Welborn
- Kenneth S. Pitzer Center for Theoretical Chemistry and Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry and Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
35
|
Grigorenko BL, Khrenova MG, Nemukhin AV. Amide-imide tautomerization in the glutamine side chain in enzymatic and photochemical reactions in proteins. Phys Chem Chem Phys 2018; 20:23827-23836. [PMID: 30202846 DOI: 10.1039/c8cp04817g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Amide-imide tautomerization presents a pervasive class of chemical transformations in organic chemistry of natural compounds. In this Perspective, we describe two distinctively different protein systems, in which the amide-imide tautomerization in the glutamine side chain takes place in enzymatic or photochemical reactions. First, hydrolysis of guanosine triphosphate (GTP) catalyzed by the Ras-GAP protein complex suggests the occurrence of the imide tautomer of glutamine in reaction intermediates. Second, photoexcitation of flavin-binding protein domains (BLUFs) initiates a chain of reactions in the chromophore-binding pocket, including amide-imide tautomerization of glutamine. Mechanisms of these reactions at the atomic level have been revealed in quantum mechanics/molecular mechanics (QM/MM) simulations. To reinforce conclusions on the critical role of amide-imide tautomerization of glutamine in these reactions we describe results of new quantum chemistry and QM/MM calculations for relevant molecular model systems. We reexamine results of the recent IR spectroscopy studies of BLUF domains, which provide experimental evidences of Gln tautomerization in proteins. We also propose to validate the glutamine-assisted mechanism of enzymatic GTP hydrolysis by using IR spectroscopy in a proper range of wavenumbers.
Collapse
Affiliation(s)
- Bella L Grigorenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russian Federation.
| | | | | |
Collapse
|
36
|
Tichauer RH, Favre G, Cabantous S, Landa G, Hemeryck A, Brut M. Water Distribution within Wild-Type NRas Protein and Q61 Mutants during Unrestrained QM/MM Dynamics. Biophys J 2018; 115:1417-1430. [PMID: 30224050 DOI: 10.1016/j.bpj.2018.07.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 10/28/2022] Open
Abstract
Point mutations in p21ras are associated with ∼30% of human tumors by disrupting its GTP hydrolysis cycle, which is critical to its molecular switch function in cellular signaling pathways. In this work, we investigate the impact of Gln 61 substitutions in the structure of the p21N-ras active site and particularly focus on water reorganization around GTP, which appears to be crucial to evaluate favorable and unfavorable hydration sites for hydrolysis. The NRas-GTP complex is analyzed using a hybrid quantum mechanics/molecular mechanics approach, treating for the first time to our knowledge transient water molecules at the ab initio level and leading to results that account for the electrostatic coupling between the protein complex and the solvent. We show that for the wild-type protein, water molecules are found around the GTP γ-phosphate group, forming an arch extended from residues 12 to 35. Two density peaks are observed, supporting previous results that suggest the presence of two water molecules in the active site, one in the vicinity of residue 35 and a second one stabilized by hydrogen bonds formed with nitrogen backbone atoms of residues 12 and 60. The structural changes observed in NRas Gln 61 mutants result in the drastic delocalization of water molecules that we discuss. In mutants Q61H and Q61K, for which water distribution is overlocalized next to residue 60, the second density peak supports the hypothesis of a second water molecule. We also conclude that Gly 60 indirectly participates in GTP hydrolysis by correctly positioning transient water molecules in the protein complex and that Gln 61 has an indirect steric effect in stabilizing the preorganized catalytic site.
Collapse
Affiliation(s)
- Ruth H Tichauer
- LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Gilles Favre
- Cancer Research Center of Toulouse, INSERM U1037, Toulouse, France; Université de Toulouse, Toulouse, France
| | - Stéphanie Cabantous
- Cancer Research Center of Toulouse, INSERM U1037, Toulouse, France; Université de Toulouse, Toulouse, France
| | - Georges Landa
- LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anne Hemeryck
- LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie Brut
- LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
37
|
Li Y, Zhang Y, Großerüschkamp F, Stephan S, Cui Q, Kötting C, Xia F, Gerwert K. Specific Substates of Ras To Interact with GAPs and Effectors: Revealed by Theoretical Simulations and FTIR Experiments. J Phys Chem Lett 2018; 9:1312-1317. [PMID: 29488771 PMCID: PMC6692134 DOI: 10.1021/acs.jpclett.8b00342] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The oncogenic Ras protein adopts various specific conformational states to execute its function in signal transduction. The large number of Ras structures obtained from X-ray and NMR experiments illustrates the diverse conformations that Ras adopts. It is difficult, however, to connect specific structural features with Ras functions. We report the free-energy landscape of Ras·GTP based on extensive explicit solvent simulations. The free-energy map clearly shows that the functional state 2 of Ras·GTP in fact has two distinct substates, denoted here as "Tyr32in" and "Tyr32out". Unbiased MD simulations show that the two substrates interconvert on the submicrosecond scale in solution, pointing to a novel mechanism for Ras·GTP to selectively interact with GAPs and effectors. This proposal is further supported by time-resolved FTIR experiments, which demonstrate that Tyr32 destabilizes the Ras·GAP complex and facilitates an efficient termination of Ras signaling.
Collapse
Affiliation(s)
- Yang Li
- School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
- School of Information Science and Engineering , Shandong Agricultural University , Taian 271018 , China
| | - Yuwei Zhang
- School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
| | | | - Sara Stephan
- Department of Biophysics , Ruhr-University Bochum , ND 04 North , 44780 Bochum , Germany
| | - Qiang Cui
- Department of Chemistry and Theoretical Chemistry Institute , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Carsten Kötting
- Department of Biophysics , Ruhr-University Bochum , ND 04 North , 44780 Bochum , Germany
| | - Fei Xia
- School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai 200062 , China
| | - Klaus Gerwert
- Department of Biophysics , Ruhr-University Bochum , ND 04 North , 44780 Bochum , Germany
| |
Collapse
|
38
|
Kotyada C, Maulik A, Srivastava A, Singh M. Mechanistic Insights into the Differential Catalysis by RheB and Its Mutants: Y35A and Y35A-D65A. ACS OMEGA 2017; 2:6691-6702. [PMID: 29750207 PMCID: PMC5937686 DOI: 10.1021/acsomega.7b01025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/28/2017] [Indexed: 06/08/2023]
Abstract
RheB GTPase is a Ras-related molecular switch, which regulates the mTOR signaling pathway by cycling between the active [guanosine triphosphate (GTP)] state and inactive [guanine diphosphate (GDP)] state. Impairment of GTPase activity because of mutations in several small GTPases is known to be associated with several cancers. The conventional GTPase mechanism such as in H-Ras requires a conserved glutamine (Q64) in the switch-II region of RheB to align the catalytic water molecule for efficient GTP hydrolysis. The conformation of this conserved glutamine is different in RheB, resulting in an altered conformation of the entire switch-II region. Studies on the atypical switch-II conformation in RheB revealed a distinct, noncanonical mode of GTP hydrolysis. An RheB mutant Y35A was previously shown to exclusively enhance the intrinsic GTPase activity of RheB, whereas the Y35A-D65A double mutant was shown to reduce the elevated GTPase activity. Here, we have used all-atom molecular dynamics (MD) simulations for comprehensive understanding of the conformational dynamics associated with the fast (Y35A) and slow (Y35A-D65A) hydrolyzing mutants of RheB. Using a combination of starting models from PDB structures and in-silico generated mutant structures, we discuss the observed conformational deviations in wild type (WT) versus mutants. Our results show that a number of interactions of RheB with phosphates of GTP as well as Mg2+ are destabilized in Y35A mutant in the switch-I region. We report distinct water dynamics at the active site of WT and mutants. Furthermore, principal component analysis showed significant differences in the conformational space sampled by the WT and mutants. Our observations provide improved understanding of the noncanonical GTP hydrolysis mechanism adopted by RheB and its modulation by Y35A and Y35A-D65A mutants.
Collapse
Affiliation(s)
- Chaithanya Kotyada
- Molecular
Biophysics Unit and NMR Research Centre, Indian Institute of
Science, Bengaluru 560012, India
| | - Aditi Maulik
- Molecular
Biophysics Unit and NMR Research Centre, Indian Institute of
Science, Bengaluru 560012, India
| | - Anand Srivastava
- Molecular
Biophysics Unit and NMR Research Centre, Indian Institute of
Science, Bengaluru 560012, India
| | - Mahavir Singh
- Molecular
Biophysics Unit and NMR Research Centre, Indian Institute of
Science, Bengaluru 560012, India
| |
Collapse
|
39
|
Das S. Importance of an Orchestrate Participation of each Individual Residue Present at a Catalytic Site. Mol Inform 2017; 37:e1700105. [PMID: 29024508 DOI: 10.1002/minf.201700105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/27/2017] [Indexed: 12/23/2022]
Abstract
GTP hydrolysis is indispensable to keep a living cell healthy. Nature has evolved so many enzymes to enhance the slow GTP hydrolysis. Rab GTPases are evolved to regulate vesicle trafficking. GTPase activating proteins (GAPs) accelerates their intrinsic slow GTP hydrolysis in order to maintain the sustainability between cellular events. Any malfunction/interference in this hydrolysis disrupts normal cellular events and causes severe diseases. In this study, GTP hydrolysis mechanism of Rab33B catalyzed by TBC-domain GAP protein Gyp1p has been decoded using extensive ab initio QM/MM metadynamics simulations. An organized coupled movement of individual residues present at the catalytic site is found to be the key factor for this reaction. An unorganized coupled movement leads the hydrolysis through very high energy pathways. This also reveals that the chemical transformations occurring at a catalytic site are residue specific.
Collapse
Affiliation(s)
- Santanu Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, MP, India
| |
Collapse
|
40
|
Johnson CW, Reid D, Parker JA, Salter S, Knihtila R, Kuzmic P, Mattos C. The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem 2017; 292:12981-12993. [PMID: 28630043 PMCID: PMC5546037 DOI: 10.1074/jbc.m117.778886] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/09/2017] [Indexed: 11/06/2022] Open
Abstract
H-Ras, K-Ras, and N-Ras are small GTPases that are important in the control of cell proliferation, differentiation, and survival, and their mutants occur frequently in human cancers. The G-domain, which catalyzes GTP hydrolysis and mediates downstream signaling, is 95% conserved between the Ras isoforms. Because of their very high sequence identity, biochemical studies done on H-Ras have been considered representative of all three Ras proteins. We show here that this is not a valid assumption. Using enzyme kinetic assays under identical conditions, we observed clear differences between the three isoforms in intrinsic catalysis of GTP by Ras in the absence and presence of the Ras-binding domain (RBD) of the c-Raf kinase protein (Raf-RBD). Given their identical active sites, isoform G-domain differences must be allosteric in origin, due to remote isoform-specific residues that affect conformational states. We present the crystal structure of N-Ras bound to a GTP analogue and interpret the kinetic data in terms of structural features specific for H-, K-, and N-Ras.
Collapse
Affiliation(s)
- Christian W Johnson
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Derion Reid
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Jillian A Parker
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Shores Salter
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Ryan Knihtila
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | | | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115.
| |
Collapse
|
41
|
Gerwert K, Mann D, Kötting C. Common mechanisms of catalysis in small and heterotrimeric GTPases and their respective GAPs. Biol Chem 2017; 398:523-533. [PMID: 28245182 DOI: 10.1515/hsz-2016-0314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/15/2017] [Indexed: 01/15/2023]
Abstract
GTPases are central switches in cells. Their dysfunctions are involved in severe diseases. The small GTPase Ras regulates cell growth, differentiation and apoptosis by transmitting external signals to the nucleus. In one group of oncogenic mutations, the 'switch-off' reaction is inhibited, leading to persistent activation of the signaling pathway. The switch reaction is regulated by GTPase-activating proteins (GAPs), which catalyze GTP hydrolysis in Ras, and by guanine nucleotide exchange factors, which catalyze the exchange of GDP for GTP. Heterotrimeric G-proteins are activated by G-protein coupled receptors and are inactivated by GTP hydrolysis in the Gα subunit. Their GAPs are called regulators of G-protein signaling. In the same way that Ras serves as a prototype for small GTPases, Gαi1 is the most well-studied Gα subunit. By utilizing X-ray structural models, time-resolved infrared-difference spectroscopy, and biomolecular simulations, we elucidated the detailed molecular reaction mechanism of the GTP hydrolysis in Ras and Gαi1. In both proteins, the charge distribution of GTP is driven towards the transition state, and an arginine is precisely positioned to facilitate nucleophilic attack of water. In addition to these mechanistic details of GTP hydrolysis, Ras dimerization as an emerging factor in signal transduction is discussed in this review.
Collapse
Affiliation(s)
- Klaus Gerwert
- Department of Biophysics, Ruhr-University Bochum, Universitätsstrasse 150, D-44801 Bochum
| | - Daniel Mann
- Department of Biophysics, Ruhr-University Bochum, Universitätsstrasse 150, D-44801 Bochum
| | - Carsten Kötting
- Department of Biophysics, Ruhr-University Bochum, Universitätsstrasse 150, D-44801 Bochum
| |
Collapse
|
42
|
Mechanism of the intrinsic arginine finger in heterotrimeric G proteins. Proc Natl Acad Sci U S A 2016; 113:E8041-E8050. [PMID: 27911799 DOI: 10.1073/pnas.1612394113] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterotrimeric G proteins are crucial molecular switches that maintain a large number of physiological processes in cells. The signal is encoded into surface alterations of the Gα subunit that carries GTP in its active state and GDP in its inactive state. The ability of the Gα subunit to hydrolyze GTP is essential for signal termination. Regulator of G protein signaling (RGS) proteins accelerates this process. A key player in this catalyzed reaction is an arginine residue, Arg178 in Gαi1, which is already an intrinsic part of the catalytic center in Gα in contrast to small GTPases, at which the corresponding GTPase-activating protein (GAP) provides the arginine "finger." We applied time-resolved FTIR spectroscopy in combination with isotopic labeling and site-directed mutagenesis to reveal the molecular mechanism, especially of the role of Arg178 in the intrinsic Gαi1 mechanism and the RGS4-catalyzed mechanism. Complementary biomolecular simulations (molecular mechanics with molecular dynamics and coupled quantum mechanics/molecular mechanics) were performed. Our findings show that Arg178 is bound to γ-GTP for the intrinsic Gαi1 mechanism and pushed toward a bidentate α-γ-GTP coordination for the Gαi1·RGS4 mechanism. This movement induces a charge shift toward β-GTP, increases the planarity of γ-GTP, and thereby catalyzes the hydrolysis.
Collapse
|
43
|
Decaneto E, Suladze S, Rosin C, Havenith M, Lubitz W, Winter R. Pressure and Temperature Effects on the Activity and Structure of the Catalytic Domain of Human MT1-MMP. Biophys J 2016; 109:2371-81. [PMID: 26636948 DOI: 10.1016/j.bpj.2015.10.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/12/2015] [Accepted: 10/19/2015] [Indexed: 11/19/2022] Open
Abstract
Membrane type 1-matrix metalloproteinase (MT1-MMP or MMP-14) is a zinc-transmembrane metalloprotease involved in the degradation of extracellular matrix and tumor invasion. While changes in solvation of MT1-MMP have been recently studied, little is known about the structural and energetic changes associated with MT1-MMP while interacting with substrates. Steady-state kinetic and thermodynamic data (including activation energies and activation volumes) were measured over a wide range of temperatures and pressures by means of a stopped-flow fluorescence technique. Complementary temperature- and pressure-dependent Fourier-transform infrared measurements provided corresponding structural information of the protein. MT1-MMP is stable and active over a wide range of temperatures (10-55 °C). A small conformational change was detected at 37 °C, which is responsible for the change in activity observed at the same temperature. Pressure decreases the enzymatic activity until complete inactivation occurs at 2 kbar. The inactivation is associated with changes in the rate-limiting step of the reaction caused by additional hydration of the active site upon compression and/or minor conformational changes in the active site region. Based on these data, an energy and volume diagram could be established for the various steps of the enzymatic reaction.
Collapse
Affiliation(s)
- Elena Decaneto
- Max Planck Institute for Chemical Energy Conversion, Mülheim a. d. Ruhr, Germany; Department of Physical Chemistry II, Ruhr-University Bochum, Bochum, Germany
| | - Saba Suladze
- Department of Chemistry and Chemical Biology, Physical Chemistry, Technische Universität Dortmund, Dortmund, Germany
| | - Christopher Rosin
- Department of Chemistry and Chemical Biology, Physical Chemistry, Technische Universität Dortmund, Dortmund, Germany
| | - Martina Havenith
- Department of Physical Chemistry II, Ruhr-University Bochum, Bochum, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Mülheim a. d. Ruhr, Germany
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Physical Chemistry, Technische Universität Dortmund, Dortmund, Germany.
| |
Collapse
|
44
|
Khrenova MG, Grigorenko BL, Nemukhin AV. Theoretical vibrational spectroscopy of intermediates and the reaction mechanism of the guanosine triphosphate hydrolysis by the protein complex Ras-GAP. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 166:68-72. [PMID: 27214270 DOI: 10.1016/j.saa.2016.04.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 04/17/2016] [Accepted: 04/27/2016] [Indexed: 06/05/2023]
Abstract
The structures and vibrational spectra of the reacting species upon guanosine triphosphate (GTP) hydrolysis to guanosine diphosphate and inorganic phosphate (Pi) trapped inside the protein complex Ras-GAP were analyzed following the results of QM/MM simulations. The frequencies of the phosphate vibrations referring to the reactants and to Pi were compared to those observed in the experimental FTIR studies. A good correlation between the theoretical and experimental vibrational data provides a strong support to the reaction mechanism of GTP hydrolysis by the Ras-GAP enzyme system revealed by the recent QM/MM modeling. Evolution of the vibrational bands associated with the inorganic phosphate Pi during the elementary stages of GTP hydrolysis is predicted.
Collapse
Affiliation(s)
- Maria G Khrenova
- Chemistry Department, M.V. Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia
| | - Bella L Grigorenko
- Chemistry Department, M.V. Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia; N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119334, Russia
| | - Alexander V Nemukhin
- Chemistry Department, M.V. Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia; N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119334, Russia.
| |
Collapse
|
45
|
Abstract
SUMMARYCells must respond to a diverse, complex, and ever-changing mix of signals, using a fairly limited set of parts. Changes in protein level, protein localization, protein activity, and protein-protein interactions are critical aspects of signal transduction, allowing cells to respond highly specifically to a nearly limitless set of cues and also to vary the sensitivity, duration, and dynamics of the response. Signal-dependent changes in levels of gene expression and protein synthesis play an important role in regulation of protein levels, whereas posttranslational modifications of proteins regulate their degradation, localization, and functional interactions. Protein ubiquitylation, for example, can direct proteins to the proteasome for degradation or provide a signal that regulates their interactions and/or location within the cell. Similarly, protein phosphorylation by specific kinases is a key mechanism for augmenting protein activity and relaying signals to other proteins that possess domains that recognize the phosphorylated residues.
Collapse
Affiliation(s)
- Michael J Lee
- David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Michael B Yaffe
- David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
46
|
Tang BL. Rab32/38 and the xenophagic restriction of intracellular bacteria replication. Microbes Infect 2016; 18:595-603. [PMID: 27256464 DOI: 10.1016/j.micinf.2016.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 12/18/2022]
Abstract
Rab GTPases' subversion by intracellular pathogens during infection has been extensively documented. Recent findings have implicated a key intracellular bacterial restriction/containment function for Rab32/38 in Salmonella species in macrophages and Listeria monocytogenes in dendritic cells. Rab32/38 aids the phagolysosome maturation, and mediates a parallel xenophagy mechanism by engaging prohibitins.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry and NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.
| |
Collapse
|
47
|
Houk AL, Givens RS, Elles CG. Two-Photon Activation of p-Hydroxyphenacyl Phototriggers: Toward Spatially Controlled Release of Diethyl Phosphate and ATP. J Phys Chem B 2016; 120:3178-86. [PMID: 26962676 DOI: 10.1021/acs.jpcb.5b12150] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Two-photon activation of the p-hydroxyphenacyl (pHP) photoactivated protecting group is demonstrated for the first time using visible light at 550 nm from a pulsed laser. Broadband two-photon absorption measurements reveal a strong two-photon transition (>10 GM) near 4.5 eV that closely resembles the lowest-energy band at the same total excitation energy in the one-photon absorption spectrum of the pHP chromophore. The polarization dependence of the two-photon absorption band is consistent with excitation to the same S3 ((1)ππ*) excited state for both one- and two-photon activation. Monitoring the progress of the uncaging reaction under nonresonant excitation at 550 nm confirms a quadratic intensity dependence and that two-photon activation of the uncaging reaction is possible using visible light in the range 500-620 nm. Deprotonation of the pHP chromophore under mildly basic conditions shifts the absorption band to lower energy (3.8 eV) in both the one- and two-photon absorption spectra, suggesting that two-photon activation of the pHP chromophore may be possible using light in the range 550-720 nm. The results of these measurements open the possibility of spatially and temporally selective release of biologically active compounds from the pHP protecting group using visible light from a pulsed laser.
Collapse
Affiliation(s)
- Amanda L Houk
- Department of Chemistry, University of Kansas , Lawrence, Kansas 66045, United States
| | - Richard S Givens
- Department of Chemistry, University of Kansas , Lawrence, Kansas 66045, United States
| | - Christopher G Elles
- Department of Chemistry, University of Kansas , Lawrence, Kansas 66045, United States
| |
Collapse
|
48
|
Siddiqui KS. Defying the activity–stability trade-off in enzymes: taking advantage of entropy to enhance activity and thermostability. Crit Rev Biotechnol 2016; 37:309-322. [DOI: 10.3109/07388551.2016.1144045] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Khawar Sohail Siddiqui
- Department of Life Sciences, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Kingdom of Saudi Arabia
| |
Collapse
|
49
|
Jin Y, Molt RW, Waltho JP, Richards NGJ, Blackburn GM. (19)F NMR and DFT Analysis Reveal Structural and Electronic Transition State Features for RhoA-Catalyzed GTP Hydrolysis. Angew Chem Int Ed Engl 2016; 55:3318-22. [PMID: 26822702 PMCID: PMC4770445 DOI: 10.1002/anie.201509477] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/14/2016] [Indexed: 11/13/2022]
Abstract
Molecular details for RhoA/GAP catalysis of the hydrolysis of GTP to GDP are poorly understood. We use (19)F NMR chemical shifts in the MgF3(-) transition state analogue (TSA) complex as a spectroscopic reporter to indicate electron distribution for the γ-PO3(-) oxygens in the corresponding TS, implying that oxygen coordinated to Mg has the greatest electron density. This was validated by QM calculations giving a picture of the electronic properties of the transition state (TS) for nucleophilic attack of water on the γ-PO3(-) group based on the structure of a RhoA/GAP-GDP-MgF3(-) TSA complex. The TS model displays a network of 20 hydrogen bonds, including the GAP Arg85' side chain, but neither phosphate torsional strain nor general base catalysis is evident. The nucleophilic water occupies a reactive location different from that in multiple ground state complexes, arising from reorientation of the Gln-63 carboxamide by Arg85' to preclude direct hydrogen bonding from water to the target γ-PO3(-) group.
Collapse
Affiliation(s)
- Yi Jin
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Robert W Molt
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Jonathan P Waltho
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK.
- Manchester Institute of Biotechnology, Manchester, M1 7DN, UK.
| | - Nigel G J Richards
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.
| | - G Michael Blackburn
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
50
|
Lu S, Jang H, Nussinov R, Zhang J. The Structural Basis of Oncogenic Mutations G12, G13 and Q61 in Small GTPase K-Ras4B. Sci Rep 2016; 6:21949. [PMID: 26902995 PMCID: PMC4763299 DOI: 10.1038/srep21949] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/04/2016] [Indexed: 02/08/2023] Open
Abstract
Ras mediates cell proliferation, survival and differentiation. Mutations in K-Ras4B are predominant at residues G12, G13 and Q61. Even though all impair GAP-assisted GTP → GDP hydrolysis, the mutation frequencies of K-Ras4B in human cancers vary. Here we aim to figure out their mechanisms and differential oncogenicity. In total, we performed 6.4 μs molecular dynamics simulations on the wild-type K-Ras4B (K-Ras4B(WT)-GTP/GDP) catalytic domain, the K-Ras4B(WT)-GTP-GAP complex, and the mutants (K-Ras4B(G12C/G12D/G12V)-GTP/GDP, K-Ras4B(G13D)-GTP/GDP, K-Ras4B(Q61H)-GTP/GDP) and their complexes with GAP. In addition, we simulated 'exchanged' nucleotide states. These comprehensive simulations reveal that in solution K-Ras4B(WT)-GTP exists in two, active and inactive, conformations. Oncogenic mutations differentially elicit an inactive-to-active conformational transition in K-Ras4B-GTP; in K-Ras4B(G12C/G12D)-GDP they expose the bound nucleotide which facilitates the GDP-to-GTP exchange. These mechanisms may help elucidate the differential mutational statistics in K-Ras4B-driven cancers. Exchanged nucleotide simulations reveal that the conformational transition is more accessible in the GTP-to-GDP than in the GDP-to-GTP exchange. Importantly, GAP not only donates its R789 arginine finger, but stabilizes the catalytically-competent conformation and pre-organizes catalytic residue Q61; mutations disturb the R789/Q61 organization, impairing GAP-mediated GTP hydrolysis. Together, our simulations help provide a mechanistic explanation of key mutational events in one of the most oncogenic proteins in cancer.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD 21702, USA
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| |
Collapse
|