1
|
Zhang T, Zou L. Enhancers in T Cell development and malignant lesions. Cell Death Discov 2024; 10:406. [PMID: 39284807 PMCID: PMC11405840 DOI: 10.1038/s41420-024-02160-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Enhancers constitute a vital category of cis-regulatory elements with a Mediator complex within DNA sequences, orchestrating gene expression by activating promoters. In the development of T cells, some enhancers regulate the critical genes, which might also regulate T cell malignant lesions. This review is to comprehensively elucidate the contributions of enhancers in both normal T cell development and its malignant pathogenesis, proposing the idea that the precise subunits of the Mediator complex are the potential drug target for disrupting the specific gene enhancer for T cell malignant diseases.
Collapse
Affiliation(s)
- Tong Zhang
- Clinical Medicine Research Department, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China.
- Postgraduate School in Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Lin Zou
- Clinical Medicine Research Department, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China.
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China.
| |
Collapse
|
2
|
Abstract
A fundamental question in developmental immunology is how bipotential thymocyte precursors generate both CD4+ helper and CD8+ cytotoxic T cell lineages. The MHC specificity of αβ T cell receptors (TCRs) on precursors is closely correlated with cell fate-determining processes, prompting studies to characterize how variations in TCR signaling are linked with genetic programs establishing lineage-specific gene expression signatures, such as exclusive CD4 or CD8 expression. The key transcription factors ThPOK and Runx3 have been identified as mediating development of helper and cytotoxic T cell lineages, respectively. Together with increasing knowledge of epigenetic regulators, these findings have advanced our understanding of the transcription factor network regulating the CD4/CD8 dichotomy. It has also become apparent that CD4+ T cells retain developmental plasticity, allowing them to acquire cytotoxic activity in the periphery. Despite such advances, further studies are necessary to identify the molecular links between TCR signaling and the nuclear machinery regulating expression of ThPOK and Runx3.
Collapse
Affiliation(s)
- Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan;
| |
Collapse
|
3
|
Ng C, Aichinger M, Nguyen T, Au C, Najar T, Wu L, Mesa KR, Liao W, Quivy JP, Hubert B, Almouzni G, Zuber J, Littman DR. The histone chaperone CAF-1 cooperates with the DNA methyltransferases to maintain Cd4 silencing in cytotoxic T cells. Genes Dev 2019; 33:669-683. [PMID: 30975723 PMCID: PMC6546056 DOI: 10.1101/gad.322024.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
In this study, Ng et al. investigated the maintenance of silent gene states and how the Cd4 gene is stably repressed in CD8+ T cells. Using CRISPR and shRNA screening, they identified the histone chaperone CAF-1 as a critical component for Cd4 repression and propose that the heritable silencing of the Cd4 gene in CD8+ T cells exploits cooperative functions among the DNA methyltransferases, CAF-1, and histone-modifying enzymes. The transcriptional repression of alternative lineage genes is critical for cell fate commitment. Mechanisms by which locus-specific gene silencing is initiated and heritably maintained during cell division are not clearly understood. To study the maintenance of silent gene states, we investigated how the Cd4 gene is stably repressed in CD8+ T cells. Through CRISPR and shRNA screening, we identified the histone chaperone CAF-1 as a critical component for Cd4 repression. We found that the large subunit of CAF-1, Chaf1a, requires the N-terminal KER domain to associate with the histone deacetylases HDAC1/2 and the histone demethylase LSD1, enzymes that also participate in Cd4 silencing. When CAF-1 was lacking, Cd4 derepression was markedly enhanced in the absence of the de novo DNA methyltransferase Dnmt3a but not the maintenance DNA methyltransferase Dnmt1. In contrast to Dnmt1, Dnmt3a deficiency did not significantly alter levels of DNA methylation at the Cd4 locus. Instead, Dnmt3a deficiency sensitized CD8+ T cells to Cd4 derepression mediated by compromised functions of histone-modifying factors, including the enzymes associated with CAF-1. Thus, we propose that the heritable silencing of the Cd4 gene in CD8+ T cells exploits cooperative functions among the DNA methyltransferases, CAF-1, and histone-modifying enzymes.
Collapse
Affiliation(s)
- Charles Ng
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Martin Aichinger
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Tung Nguyen
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Christy Au
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Tariq Najar
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Lin Wu
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Kai R Mesa
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Will Liao
- New York Genome Center, New York, New York 10013, USA
| | - Jean-Pierre Quivy
- UMR3664, Centre National de la Recherche Scientifique, Equipe Labellisée Ligue Contre le Cancer, Institut Curie, PSL Research University, F-75005 Paris, France
| | | | - Genevieve Almouzni
- UMR3664, Centre National de la Recherche Scientifique, Equipe Labellisée Ligue Contre le Cancer, Institut Curie, PSL Research University, F-75005 Paris, France
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Dan R Littman
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA.,Howard Hughes Medical Institute, New York, New York 10016, USA
| |
Collapse
|
4
|
Issuree PDA, Ng CP, Littman DR. Heritable Gene Regulation in the CD4:CD8 T Cell Lineage Choice. Front Immunol 2017; 8:291. [PMID: 28382035 PMCID: PMC5360760 DOI: 10.3389/fimmu.2017.00291] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/28/2017] [Indexed: 12/04/2022] Open
Abstract
The adaptive immune system is dependent on functionally distinct lineages of T cell antigen receptor αβ-expressing T cells that differentiate from a common progenitor in the thymus. CD4+CD8+ progenitor thymocytes undergo selection following interaction with MHC class I and class II molecules bearing peptide self-antigens, giving rise to CD8+ cytotoxic and CD4+ helper or regulatory T cell lineages, respectively. The strict correspondence of CD4 and CD8 expression with distinct cellular phenotypes has made their genes useful surrogates for investigating molecular mechanisms of lineage commitment. Studies of Cd4 and Cd8 transcriptional regulation have uncovered cis-regulatory elements that are critical for mediating epigenetic modifications at distinct stages of development to establish heritable transcriptional programs. In this review, we examine the epigenetic mechanisms involved in Cd4 and Cd8 gene regulation during T cell lineage specification and highlight the features that make this an attractive system for uncovering molecular mechanisms of heritability.
Collapse
Affiliation(s)
- Priya D A Issuree
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine , New York, NY , USA
| | - Charles P Ng
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine , New York, NY , USA
| | - Dan R Littman
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
5
|
Seo W, Muroi S, Akiyama K, Taniuchi I. Distinct requirement of Runx complexes for TCRβ enhancer activation at distinct developmental stages. Sci Rep 2017; 7:41351. [PMID: 28150718 PMCID: PMC5288706 DOI: 10.1038/srep41351] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 12/20/2016] [Indexed: 12/30/2022] Open
Abstract
A TCRβ enhancer, known as the Eβ enhancer, plays a critical role in V(D)J recombination and transcription of the Tcrb gene. However, the coordinated action of trans-acting factors in the activation of Eβ during T cell development remains uncharacterized. Here, we characterized the roles of Runx complexes in the regulation of the Eβ function. A single mutation at one of the two Runx binding motifs within the Eβ severely impaired Tcrb activation at the initiation phase in immature thymocytes. However, TCRβ expression level in mature thymocytes that developed under such a single Runx site mutation was similar to that of the control. In contrast, mutations at two Runx motifs eliminated Eβ activity, demonstrating that Runx complex binding is essential to initiate Eβ activation. In cells expressing Tcrb harboring rearranged V(D)J structure, Runx complexes are dispensable to maintain TCRβ expression, whereas Eβ itself is continuously required for TCRβ expression. These findings imply that Runx complexes are essential for Eβ activation at the initiation phase, but are not necessary for maintaining Eβ activity at later developmental stages. Collectively, our results indicate that the requirements of trans-acting factor for Eβ activity are differentially regulated, depending on the developmental stage and cellular activation status.
Collapse
Affiliation(s)
- Wooseok Seo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Sawako Muroi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kaori Akiyama
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
6
|
Tsuchiya Y, Naito T, Tenno M, Maruyama M, Koseki H, Taniuchi I, Naoe Y. ThPOK represses CXXC5, which induces methylation of histone H3 lysine 9 in Cd40lg promoter by association with SUV39H1: implications in repression of CD40L expression in CD8+ cytotoxic T cells. J Leukoc Biol 2016; 100:327-38. [PMID: 26896487 DOI: 10.1189/jlb.1a0915-396rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/01/2016] [Indexed: 12/31/2022] Open
Abstract
CD40 ligand is induced in CD4(+) Th cells upon TCR stimulation and provides an activating signal to B cells, making CD40 ligand an important molecule for Th cell function. However, the detailed molecular mechanisms, whereby CD40 ligand becomes expressed on the cell surface in T cells remain unclear. Here, we showed that CD40 ligand expression in CD8(+) cytotoxic T cells was suppressed by combined epigenetic regulations in the promoter region of the Cd40lg gene, such as the methylation of CpG dinucleotides, histone H3 lysine 9, histone H3 lysine 27, and histone H4 lysine 20. As the transcription factor Th-inducing pox virus and zinc finger/Kruppel-like factor (encoded by the Zbtb7b gene) is critical in Th cell development, we focused on the role of Th-inducing pox virus and zinc finger/Kruppel-like factor in CD40 ligand expression. We found that CD40 ligand expression is moderately induced by retroviral Thpok transduction into CD8(+) cytotoxic T cells, which was accompanied by a reduction of histone H3 lysine 9 methylation and histone H3 lysine 27 methylation in the promoter region of the Cd40lg gene. Th-inducing pox virus and zinc finger/Kruppel-like factor directly inhibited the expression of murine CXXC5, a CXXC-type zinc finger protein that induced histone H3 lysine 9 methylation, in part, through an interaction with the histone-lysine N-methyltransferase SUV39H1. In addition, to inhibit CD40 ligand induction in activated CD4(+) T cells by the CXXC5 transgene, our findings indicate that CXXC5 was one of the key molecules contributing to repressing CD40 ligand expression in CD8(+) cytotoxic T cells.
Collapse
Affiliation(s)
- Yukako Tsuchiya
- Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Taku Naito
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and
| | - Mari Tenno
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and
| | - Mitsuo Maruyama
- Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and
| | - Yoshinori Naoe
- Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan;
| |
Collapse
|
7
|
Abstract
During blood cell development, hematopoietic stem cells generate diverse mature populations via several rounds of binary fate decisions. At each bifurcation, precursors adopt one fate and inactivate the alternative fate either stochastically or in response to extrinsic stimuli and stably maintain the selected fates. Studying of these processes would contribute to better understanding of etiology of immunodeficiency and leukemia, which are caused by abnormal gene regulation during the development of hematopoietic cells. The CD4(+) helper versus CD8(+) cytotoxic T-cell fate decision serves as an excellent model to study binary fate decision processes. These two cell types are derived from common precursors in the thymus. Positive selection of their TCRs by self-peptide presented on either MHC class I or class II triggers their fate decisions along with mutually exclusive retention and silencing of two coreceptors, CD4 and CD8. In the past few decades, extensive effort has been made to understand the T-cell fate decision processes by studying regulation of genes encoding the coreceptors and selection processes. These studies have identified several key transcription factors and gene regulatory networks. In this chapter, I will discuss recent advances in our understanding of the binary cell fate decision processes of T cells.
Collapse
Affiliation(s)
- Takeshi Egawa
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA.
| |
Collapse
|
8
|
Cleveland SM, Goodings C, Tripathi RM, Elliott N, Thompson MA, Guo Y, Shyr Y, Davé UP. LMO2 induces T-cell leukemia with epigenetic deregulation of CD4. Exp Hematol 2014; 42:581-93.e5. [PMID: 24792354 PMCID: PMC4241760 DOI: 10.1016/j.exphem.2014.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 04/18/2014] [Accepted: 04/23/2014] [Indexed: 02/05/2023]
Abstract
In this study, we present a remarkable clonal cell line, 32080, derived from a CD2-Lmo2- transgenic T-cell leukemia with differentiation arrest at the transition from the intermediate single positive to double positive stages of T-cell development. We observed that 32080 cells had a striking variegated pattern in CD4 expression. There was cell-to-cell variability, with some cells expressing no CD4 and others expressing high CD4. The two populations were isogenic and yet differed in their rates of apoptosis and sensitivity to glucocorticoid. We sorted the 32080 line for CD4-positive or CD4-negative cells and observed them in culture. After 1 week, both sorted populations showed variegated CD4 expression, like the parental line, showing that the two populations could interconvert. We determined that cell replication was necessary to transit from CD4(+) to CD4(-) and CD4(-) to CD4(+). Lmo2 knockdown decreased CD4 expression, while inhibition of intracellular NOTCH1 or histone deacetylase activity induced CD4 expression. Enforced expression of RUNX1 repressed CD4 expression. We analyzed the CD4 locus by Histone 3 chromatin immunoprecipitation and found silencing marks in the CD4(-) cells and activating marks in the CD4(+) population. The 32080 cell line is a striking model of intermediate single positive to double positive T-cell plasticity and invokes a novel mechanism for LMO2's oncogenic functions.
Collapse
Affiliation(s)
- Susan M Cleveland
- Tennessee Valley Healthcare System and the Vanderbilt University Medical Center, Departments of Medicine and Cancer Biology, Nashville, Tennessee, USA
| | - Charnise Goodings
- Tennessee Valley Healthcare System and the Vanderbilt University Medical Center, Departments of Medicine and Cancer Biology, Nashville, Tennessee, USA
| | - Rati M Tripathi
- Tennessee Valley Healthcare System and the Vanderbilt University Medical Center, Departments of Medicine and Cancer Biology, Nashville, Tennessee, USA
| | - Natalina Elliott
- Tennessee Valley Healthcare System and the Vanderbilt University Medical Center, Departments of Medicine and Cancer Biology, Nashville, Tennessee, USA
| | - Mary Ann Thompson
- Vanderbilt University Medical Center, Department of Pathology, Microbiology, and Immunology, Nashville, Tennessee, USA
| | - Yan Guo
- Center for Quantitative Sciences, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yu Shyr
- Center for Quantitative Sciences, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Utpal P Davé
- Tennessee Valley Healthcare System and the Vanderbilt University Medical Center, Departments of Medicine and Cancer Biology, Nashville, Tennessee, USA.
| |
Collapse
|
9
|
Transcriptional control of CD4 and CD8 coreceptor expression during T cell development. Cell Mol Life Sci 2013; 70:4537-53. [PMID: 23793512 PMCID: PMC3827898 DOI: 10.1007/s00018-013-1393-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 11/24/2022]
Abstract
The differentiation and function of peripheral helper and cytotoxic T cell lineages is coupled with the expression of CD4 and CD8 coreceptor molecules, respectively. This indicates that the control of coreceptor gene expression is closely linked with the regulation of CD4/CD8 lineage decision of DP thymocytes. Research performed during the last two decades revealed comprehensive mechanistic insight into the developmental stage- and subset/lineage-specific regulation of Cd4, Cd8a and Cd8b1 (Cd8) gene expression. These studies provided important insight into transcriptional control mechanisms during T cell development and into the regulation of cis-regulatory networks in general. Moreover, the identification of transcription factors involved in the regulation of CD4 and CD8 significantly advanced the knowledge of the transcription factor network regulating CD4/CD8 cell-fate choice of DP thymocytes. In this review, we provide an overview of the identification and characterization of CD4/CD8 cis-regulatory elements and present recent progress in our understanding of how these cis-regulatory elements control CD4/CD8 expression during T cell development and in peripheral T cells. In addition, we describe the transcription factors implicated in the regulation of coreceptor gene expression and discuss how these factors are integrated into the transcription factor network that regulates CD4/CD8 cell-fate choice of DP thymocytes.
Collapse
|
10
|
Wan M, Kaundal R, Huang H, Zhao J, Yang X, Chaiyachati BH, Li S, Chi T. A general approach for controlling transcription and probing epigenetic mechanisms: application to the CD4 locus. THE JOURNAL OF IMMUNOLOGY 2013; 190:737-47. [PMID: 23293358 DOI: 10.4049/jimmunol.1201278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Synthetic regulatory proteins such as tetracycline (tet)-controlled transcription factors are potentially useful for repression as well as ectopic activation of endogenous genes and also for probing their regulatory mechanisms, which would offer a versatile genetic tool advantageous over conventional gene targeting methods. In this study, we provide evidence supporting this concept using Cd4 as a model. CD4 is expressed in double-positive and CD4 cells but irreversibly silenced in CD8 cells. The silencing is mediated by heterochromatin established during CD8 lineage development via transient action of the Cd4 silencer; once established, the heterochromatin becomes self-perpetuating independently of the Cd4 silencer. Using a tet-sensitive Cd4 allele harboring a removable Cd4 silencer, we found that a tet-controlled repressor recapitulated the phenotype of Cd4-deficient mice, inhibited Cd4 expression in a reversible and dose-dependent manner, and could surprisingly replace the Cd4 silencer to induce irreversible Cd4 silencing in CD8 cells, thus suggesting the Cd4 silencer is not the (only) determinant of heterochromatin formation. In contrast, a tet-controlled activator reversibly disrupted Cd4 silencing in CD8 cells. The Cd4 silencer impeded this disruption but was not essential for its reversal, which revealed a continuous role of the silencer in mature CD8 cells while exposing a remarkable intrinsic self-regenerative ability of heterochromatin after forced disruption. These data demonstrate an effective approach for gene manipulation and provide insights into the epigenetic Cd4 regulatory mechanisms that are otherwise difficult to obtain.
Collapse
Affiliation(s)
- Mimi Wan
- Department of Immunobiology, Yale University Medical School, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Wan M, Gu H, Wang J, Huang H, Zhao J, Kaundal RK, Yu M, Kushwaha R, Chaiyachati BH, Deerhake E, Chi T. Inducible mouse models illuminate parameters influencing epigenetic inheritance. Development 2013; 140:843-52. [PMID: 23325759 DOI: 10.1242/dev.088229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Environmental factors can stably perturb the epigenome of exposed individuals and even that of their offspring, but the pleiotropic effects of these factors have posed a challenge for understanding the determinants of mitotic or transgenerational inheritance of the epigenetic perturbation. To tackle this problem, we manipulated the epigenetic states of various target genes using a tetracycline-dependent transcription factor. Remarkably, transient manipulation at appropriate times during embryogenesis led to aberrant epigenetic modifications in the ensuing adults regardless of the modification patterns, target gene sequences or locations, and despite lineage-specific epigenetic programming that could reverse the epigenetic perturbation, thus revealing extraordinary malleability of the fetal epigenome, which has implications for 'metastable epialleles'. However, strong transgenerational inheritance of these perturbations was observed only at transgenes integrated at the Col1a1 locus, where both activating and repressive chromatin modifications were heritable for multiple generations; such a locus is unprecedented. Thus, in our inducible animal models, mitotic inheritance of epigenetic perturbation seems critically dependent on the timing of the perturbation, whereas transgenerational inheritance additionally depends on the location of the perturbation. In contrast, other parameters examined, particularly the chromatin modification pattern and DNA sequence, appear irrelevant.
Collapse
Affiliation(s)
- Mimi Wan
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Guo L, Chen C, Liang Q, Karim MZ, Gorska MM, Alam R. Nuclear translocation of MEK1 triggers a complex T cell response through the corepressor silencing mediator of retinoid and thyroid hormone receptor. THE JOURNAL OF IMMUNOLOGY 2012; 190:159-67. [PMID: 23225884 DOI: 10.4049/jimmunol.1201657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
MEK1 phosphorylates ERK1/2 and regulates T cell generation, differentiation, and function. MEK1 has recently been shown to translocate to the nucleus. Its nuclear function is largely unknown. By studying human CD4 T cells, we demonstrate that a low level of MEK1 is present in the nucleus of CD4 T cells under basal conditions. T cell activation further increases the nuclear translocation of MEK1. MEK1 interacts with the nuclear receptor corepressor silencing mediator of retinoid and thyroid hormone receptor (SMRT). MEK1 reduces the nuclear level of SMRT in an activation-dependent manner. MEK1 is recruited to the promoter of c-Fos upon TCR stimulation. Conversely, SMRT is bound to the c-Fos promoter under basal conditions and is removed upon TCR stimulation. We examined the role of SMRT in regulation of T cell function. Small interfering RNA-mediated knockdown of SMRT results in a biphasic effect on cytokine production. The production of the cytokines IL-2, IL-4, IL-10, and IFN-γ increases in the early phase (8 h) and then decreases in the late phase (48 h). The late-phase decrease is associated with inhibition of T cell proliferation. The late-phase inhibition of T cell activation is, in part, mediated by IL-10 that is produced in the early phase and, in part, by β-catenin signaling. Thus, we have identified a novel nuclear function of MEK1. MEK1 triggers a complex pattern of early T cell activation, followed by a late inhibition through its interaction with SMRT. This biphasic dual effect most likely reflects a homeostatic regulation of T cell function by MEK1.
Collapse
Affiliation(s)
- Lei Guo
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
13
|
Carlin SM, Khoo MLM, Ma DD, Moore JJ. Notch signalling inhibits CD4 expression during initiation and differentiation of human T cell lineage. PLoS One 2012; 7:e45342. [PMID: 23071513 PMCID: PMC3470571 DOI: 10.1371/journal.pone.0045342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/21/2012] [Indexed: 11/18/2022] Open
Abstract
The Delta/Notch signal transduction pathway is central to T cell differentiation from haemopoietic stem cells (HSCs). Although T cell development is well characterized using expression of cell surface markers, the detailed mechanisms driving differentiation have not been established. This issue becomes central with observations that adult HSCs exhibit poor differentiation towards the T cell lineage relative to neonatal or embryonic precursors. This study investigates the contribution of Notch signalling and stromal support cells to differentiation of adult and Cord Blood (CB) human HSCs, using the Notch signalling OP9Delta co-culture system. Co-cultured cells were assayed at weekly intervals during development for phenotype markers using flow cytometry. Cells were also assayed for mRNA expression at critical developmental stages. Expression of the central thymocyte marker CD4 was initiated independently of Notch signalling, while cells grown with Notch signalling had reduced expression of CD4 mRNA and protein. Interruption of Notch signalling in partially differentiated cells increased CD4 mRNA and protein expression, and promoted differentiation to CD4+ CD8+ T cells. We identified a set of genes related to T cell development that were initiated by Notch signalling, and also a set of genes subsequently altered by Notch signal interruption. These results demonstrate that while Notch signalling is essential for establishment of the T cell lineage, at later stages of differentiation, its removal late in differentiation promotes more efficient DP cell generation. Notch signalling adds to signals provided by stromal cells to allow HSCs to differentiate to T cells via initiation of transcription factors such as HES1, GATA3 and TCF7. We also identify gene expression profile differences that may account for low generation of T cells from adult HSCs.
Collapse
Affiliation(s)
- Stephen M. Carlin
- Blood Stem Cells and Cancer Research, St Vincent's Centre for Applied Medical Research, Sydney, New South Wales, Australia
| | - Melissa L. M. Khoo
- Blood Stem Cells and Cancer Research, St Vincent's Centre for Applied Medical Research, Sydney, New South Wales, Australia
| | - David D. Ma
- Blood Stem Cells and Cancer Research, St Vincent's Centre for Applied Medical Research, Sydney, New South Wales, Australia
- Haematology Department, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - John J. Moore
- Haematology Department, St Vincent's Hospital, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
14
|
Yu M, Mazor T, Huang H, Huang HT, Kathrein KL, Woo AJ, Chouinard CR, Labadorf A, Akie TE, Moran TB, Xie H, Zacharek S, Taniuchi I, Roeder RG, Kim CF, Zon LI, Fraenkel E, Cantor AB. Direct recruitment of polycomb repressive complex 1 to chromatin by core binding transcription factors. Mol Cell 2012; 45:330-43. [PMID: 22325351 DOI: 10.1016/j.molcel.2011.11.032] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 09/15/2011] [Accepted: 11/23/2011] [Indexed: 01/27/2023]
Abstract
Polycomb repressive complexes (PRCs) play key roles in developmental epigenetic regulation. Yet the mechanisms that target PRCs to specific loci in mammalian cells remain incompletely understood. In this study we show that Bmi1, a core component of Polycomb Repressive Complex 1 (PRC1), binds directly to the Runx1/CBFβ transcription factor complex. Genome-wide studies in megakaryocytic cells demonstrate significant chromatin occupancy overlap between the PRC1 core component Ring1b and Runx1/CBFβ and functional regulation of a considerable fraction of commonly bound genes. Bmi1/Ring1b and Runx1/CBFβ deficiencies generate partial phenocopies of one another in vivo. We also show that Ring1b occupies key Runx1 binding sites in primary murine thymocytes and that this occurs via PRC2-independent mechanisms. Genetic depletion of Runx1 results in reduced Ring1b binding at these sites in vivo. These findings provide evidence for site-specific PRC1 chromatin recruitment by core binding transcription factors in mammalian cells.
Collapse
Affiliation(s)
- Ming Yu
- Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Roles of VWRPY motif-mediated gene repression by Runx proteins during T-cell development. Immunol Cell Biol 2012; 90:827-30. [PMID: 22370763 DOI: 10.1038/icb.2012.6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Runx transcription factor family proteins have essential roles during T-cell development by either activating or repressing target genes. For instance, lineage- and stage-specific expression of Cd4 and ThPOK is controlled by a transcriptional silencer embedded in each locus, whose activity requires bindings of Runx complexes. The evolutionarily conserved VWRPY penta-peptide sequences in Runx proteins have been shown to be responsible for repressive function as a platform to recruit Groucho/TLE transcriptional corepressors. However, it remains elusive whether requirement for the VWRPY motif differs among Runx target genes. By examining mice lacking VWRPY motifs in both Runx1 and Runx3 proteins, here, we show a full and partial derepression of Cd4 and ThPOK in CD8-linegae T cells, respectively. Thus, whereas Cd4 silencing completely depends on the VWRPY motif, both VWRPY-dependent and -independent mechanisms operate to repress ThPOK gene. These results indicate that Runx proteins utilize different modes to repress expression of different target genes.
Collapse
|
16
|
Wang L, Xiong Y, Bosselut R. Maintaining CD4-CD8 lineage integrity in T cells: where plasticity serves versatility. Semin Immunol 2011; 23:360-7. [PMID: 21963088 PMCID: PMC3740965 DOI: 10.1016/j.smim.2011.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 08/19/2011] [Indexed: 01/10/2023]
Abstract
The divergence of the two αβ T cell subsets defined by the mutually exclusive expression of CD4 and CD8 glycoproteins is an important event during the intrathymic differentiation of T lymphocytes. This reviews briefly summarizes the mechanisms that promote commitment to the CD4 or CD8 lineage in the thymus, and discusses the transcription factor circuits and epigenetic mechanisms that concur to maintain lineage integrity in post-thymic cells and yet allow effector cell differentiation.
Collapse
Affiliation(s)
- Lie Wang
- Laboratory of Immune Cell Biology, Center for Cancer Research (CCR), NCI, NIH, Bethesda, MD 20892-4259, USA
| | | | | |
Collapse
|
17
|
Transcription factor AP4 modulates reversible and epigenetic silencing of the Cd4 gene. Proc Natl Acad Sci U S A 2011; 108:14873-8. [PMID: 21873191 DOI: 10.1073/pnas.1112293108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CD4 coreceptor expression is negatively regulated through activity of the Cd4 silencer in CD4(-)CD8(-) double-negative (DN) thymocytes and CD8(+) cytotoxic lineage T cells. Whereas Cd4 silencing is reversed during transition from DN to CD4(+)CD8(+) double-positive stages, it is maintained through heritable epigenetic processes following its establishment in mature CD8(+) T cells. We previously demonstrated that the Runx family of transcription factors is required for Cd4 silencing both in DN thymocytes and CD8(+) T cells. However, additional factors that cooperate with Runx proteins in the process of Cd4 silencing remain unknown. To identify collaborating factors, we used microarray and RNAi-based approaches and found the basic helix-loop-helix ZIP transcription factor AP4 to have an important role in Cd4 regulation. AP4 interacts with Runx1 in cells in which Cd4 is silenced, and is required for Cd4 silencing in immature DN thymocytes through binding to the proximal enhancer. Furthermore, although AP4-deficient CD8(+) T cells appeared to normally down-regulate CD4 expression, AP4 deficiency significantly increased the frequency of CD4-expressing effector/memory CD8(+) T cells in mice harboring point mutations in the Cd4 silencer. Our results suggest that AP4 contributes to Cd4 silencing both in DN and CD8(+) T cells by enforcing checkpoints for appropriate timing of CD4 expression and its epigenetic silencing.
Collapse
|
18
|
Yin G, Li J, Wan Y, Hou R, Li X, Zhang J, Cheng T, Zhang K. Abnormality of RUNX1 signal transduction in psoriatic CD34+ bone marrow cells. Br J Dermatol 2011; 164:1043-51. [DOI: 10.1111/j.1365-2133.2010.10192.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Harker N, Garefalaki A, Menzel U, Ktistaki E, Naito T, Georgopoulos K, Kioussis D. Pre-TCR signaling and CD8 gene bivalent chromatin resolution during thymocyte development. THE JOURNAL OF IMMUNOLOGY 2011; 186:6368-77. [PMID: 21515796 DOI: 10.4049/jimmunol.1003567] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The CD8 gene is silent in CD4(-)CD8(-) double-negative thymocytes, expressed in CD4(+)CD8(+) double-positive cells, and silenced in cells committing to the CD4(+) single-positive (SP) lineage, remaining active in the CD8(+) SP lineage. In this study, we show that the chromatin of the CD8 locus is remodeled in C57BL/6 and B6/J Rag1(-/-) MOM double-negative thymocytes as indicated by DNaseI hypersensitivity and widespread bivalent chromatin marks. Pre-TCR signaling coincides with chromatin bivalency resolution into monovalent activating modifications in double-positive and CD8 SP cells. Shortly after commitment to CD4 SP cell lineage, monovalent repressive characteristics and chromatin inaccessibility are established. Differential binding of Ikaros, NuRD, and heterochromatin protein 1α on the locus during these processes may participate in the complex regulation of CD8.
Collapse
Affiliation(s)
- Nicola Harker
- Division of Molecular Immunology, National Institute for Medical Research, Medical Research Council, London NW7 1AA, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
20
|
The epigenetic landscape of lineage choice: lessons from the heritability of CD4 and CD8 expression. Curr Top Microbiol Immunol 2011; 356:165-88. [PMID: 21989924 PMCID: PMC4417357 DOI: 10.1007/82_2011_175] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Developing αβ T cells choose between the helper and cytotoxic lineages, depending upon the specificity of their T cell receptors for MHC molecules. The expression of the CD4 co-receptor on helper cells and the CD8 co-receptor on cytotoxic cells is intimately linked to this decision, and their regulation at the transcriptional level has been the subject of intense study to better understand lineage choice. Indeed, as the fate of developing T cells is decided, the expression status of these genes is accordingly locked. Genetic models have revealed important transcriptional elements and the ability to manipulate these elements in the framework of development has added a new perspective on the temporal nature of their function and the epigenetic maintenance of gene expression. We examine here novel insights into epigenetic mechanisms that have arisen through the study of these genes.
Collapse
|
21
|
Abstract
The helper versus cytotoxic-lineage choice of CD4(+)CD8(+) DP thymocytes correlates with MHC restriction of their T cell receptors and the termination of either CD8 or CD4 coreceptor expression. It has been hypothesized that transcription factors regulating the expression of the Cd4/Cd8 coreceptor genes must play a role in regulating the lineage decision of DP thymocytes. Indeed, progress made during the past decade led to the identification of several transcription factors that regulate CD4/CD8 expression that are as well important regulators of helper/cytotoxic cell fate choice. These studies provided insight into the molecular link between the regulation of coreceptor expression and lineage decision. However, studies initiated by the identification of ThPOK, a central transcription factor for helper T cell development, have offered another perspective on the cross-regulation between these two processes. Here, we review advances in our understanding of regulatory circuits composed of transcription factors and their link to epigenetic mechanisms, which play essential roles in specifying and sealing cell lineage identity during the CD4/CD8 commitment process of DP thymocytes.
Collapse
Affiliation(s)
- Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, Research Center for Allergy and Immunology, RIKEN, Suehiro-cho, Turumi-ku, Yokohama, Kanagawa, Japan
| | | |
Collapse
|
22
|
Wang L, Xiong Y, Bosselut R. Tenuous paths in unexplored territory: From T cell receptor signaling to effector gene expression during thymocyte selection. Semin Immunol 2010; 22:294-302. [PMID: 20537906 DOI: 10.1016/j.smim.2010.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 04/23/2010] [Indexed: 11/17/2022]
Abstract
During the last step of alphabeta T cell development, thymocytes that have rearranged genes encoding TCR chains and express CD4 and CD8 coreceptors are selected on the basis of their TCR reactivity to escape programmed cell death and become mature CD4 or CD8 T cells. This process is triggered by intrathymic TCR signaling, that activates 'sensor' transcription factors 'constitutively' expressed in DP thymocytes. Eventually, TCR-signaled thymocytes evolve effector transcriptional circuits that control basal metabolism, migration, survival and initiation of lineage-specific gene expression. This review examines how components of the 'sensing' transcription apparatus responds to positive selection signals, and highlights important differences with mature T cell responses. In a second part, we evaluate current observations and hypotheses on the connections between sensing transcription factors and effector circuitries.
Collapse
Affiliation(s)
- Lie Wang
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4259, USA
| | | | | |
Collapse
|
23
|
Yu M, Riva L, Xie H, Schindler Y, Moran TB, Cheng Y, Yu D, Hardison R, Weiss MJ, Orkin SH, Bernstein BE, Fraenkel E, Cantor AB. Insights into GATA-1-mediated gene activation versus repression via genome-wide chromatin occupancy analysis. Mol Cell 2009; 36:682-95. [PMID: 19941827 PMCID: PMC2800995 DOI: 10.1016/j.molcel.2009.11.002] [Citation(s) in RCA: 252] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 09/05/2009] [Accepted: 10/30/2009] [Indexed: 01/29/2023]
Abstract
The transcription factor GATA-1 is required for terminal erythroid maturation and functions as an activator or repressor depending on gene context. Yet its in vivo site selectivity and ability to distinguish between activated versus repressed genes remain incompletely understood. In this study, we performed GATA-1 ChIP-seq in erythroid cells and compared it to GATA-1-induced gene expression changes. Bound and differentially expressed genes contain a greater number of GATA-binding motifs, a higher frequency of palindromic GATA sites, and closer occupancy to the transcriptional start site versus nondifferentially expressed genes. Moreover, we show that the transcription factor Zbtb7a occupies GATA-1-bound regions of some direct GATA-1 target genes, that the presence of SCL/TAL1 helps distinguish transcriptional activation versus repression, and that polycomb repressive complex 2 (PRC2) is involved in epigenetic silencing of a subset of GATA-1-repressed genes. These data provide insights into GATA-1-mediated gene regulation in vivo.
Collapse
Affiliation(s)
- Ming Yu
- Department of Pediatric Hematology-Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Laura Riva
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Huafeng Xie
- Department of Pediatric Hematology-Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yocheved Schindler
- Department of Pediatric Hematology-Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tyler B. Moran
- Department of Pediatric Hematology-Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yong Cheng
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Duonan Yu
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ross Hardison
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Mitchell J Weiss
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stuart H. Orkin
- Department of Pediatric Hematology-Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Bradley E. Bernstein
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School and the Broad Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA, USA
| | - Alan B. Cantor
- Department of Pediatric Hematology-Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Amigo JD, Ackermann GE, Cope JJ, Yu M, Cooney JD, Ma D, Langer NB, Shafizadeh E, Shaw GC, Horsely W, Trede NS, Davidson AJ, Barut BA, Zhou Y, Wojiski SA, Traver D, Moran TB, Kourkoulis G, Hsu K, Kanki JP, Shah DI, Lin HF, Handin RI, Cantor AB, Paw BH. The role and regulation of friend of GATA-1 (FOG-1) during blood development in the zebrafish. Blood 2009; 114:4654-63. [PMID: 19729519 PMCID: PMC2780302 DOI: 10.1182/blood-2008-12-189910] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 08/06/2009] [Indexed: 01/24/2023] Open
Abstract
The nuclear protein FOG-1 binds transcription factor GATA-1 to facilitate erythroid and megakaryocytic maturation. However, little is known about the function of FOG-1 during myeloid and lymphoid development or how FOG-1 expression is regulated in any tissue. We used in situ hybridization, gain- and loss-of-function studies in zebrafish to address these problems. Zebrafish FOG-1 is expressed in early hematopoietic cells, as well as heart, viscera, and paraspinal neurons, suggesting that it has multifaceted functions in organogenesis. We found that FOG-1 is dispensable for endoderm specification but is required for endoderm patterning affecting the expression of late-stage T-cell markers, independent of GATA-1. The suppression of FOG-1, in the presence of normal GATA-1 levels, induces severe anemia and thrombocytopenia and expands myeloid-progenitor cells, indicating that FOG-1 is required during erythroid/myeloid commitment. To functionally interrogate whether GATA-1 regulates FOG-1 in vivo, we used bioinformatics combined with transgenic assays. Thus, we identified 2 cis-regulatory elements that control the tissue-specific gene expression of FOG-1. One of these enhancers contains functional GATA-binding sites, indicating the potential for a regulatory loop in which GATA factors control the expression of their partner protein FOG-1.
Collapse
Affiliation(s)
- Julio D Amigo
- Department of Medicine, Division of Hematology, Brigham & Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Huang H, Yu M, Akie TE, Moran TB, Woo AJ, Tu N, Waldon Z, Lin YY, Steen H, Cantor AB. Differentiation-dependent interactions between RUNX-1 and FLI-1 during megakaryocyte development. Mol Cell Biol 2009; 29:4103-15. [PMID: 19470763 PMCID: PMC2715817 DOI: 10.1128/mcb.00090-09] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 02/21/2009] [Accepted: 05/16/2009] [Indexed: 01/13/2023] Open
Abstract
The transcription factor RUNX-1 plays a key role in megakaryocyte differentiation and is mutated in cases of myelodysplastic syndrome and leukemia. In this study, we purified RUNX-1-containing multiprotein complexes from phorbol ester-induced L8057 murine megakaryoblastic cells and identified the ets transcription factor FLI-1 as a novel in vivo-associated factor. The interaction occurs via direct protein-protein interactions and results in synergistic transcriptional activation of the c-mpl promoter. Interestingly, the interaction fails to occur in uninduced cells. Gel filtration chromatography confirms the differentiation-dependent binding and shows that it correlates with the assembly of a complex also containing the key megakaryocyte transcription factors GATA-1 and Friend of GATA-1 (FOG-1). Phosphorylation analysis of FLI-1 with uninduced versus induced L8057 cells suggests the loss of phosphorylation at serine 10 in the induced state. Substitution of Ser10 with the phosphorylation mimic aspartic acid selectively impairs RUNX-1 binding, abrogates transcriptional synergy with RUNX-1, and dominantly inhibits primary fetal liver megakaryocyte differentiation in vitro. Conversely, substitution with alanine, which blocks phosphorylation, augments differentiation of primary megakaryocytes. We propose that dephosphorylation of FLI-1 is a key event in the transcriptional regulation of megakaryocyte maturation. These findings have implications for other cell types where interactions between runx and ets family proteins occur.
Collapse
Affiliation(s)
- Hui Huang
- Children's Hospital Boston, 300 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wan M, Zhang J, Lai D, Jani A, Prestone-Hurlburt P, Zhao L, Ramachandran A, Schnitzler GR, Chi T. Molecular basis of CD4 repression by the Swi/Snf-like BAF chromatin remodeling complex. Eur J Immunol 2009; 39:580-8. [PMID: 19180471 DOI: 10.1002/eji.200838909] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Brg1/Brm-associated factor (BAF) chromatin remodeling complex directly binds the CD4 silencer and is essential for CD4 repression during T-cell development, because deletion of the ATPase subunit Brg1 or a dominant negative mutant of BAF57 each impairs CD4 repression in early thymocytes. Paradoxically, BAF57 is dispensable for remodeling nucleosomes in vitro or for binding of the BAF complex to the CD4 silencer in vivo. Thus, it is unclear whether BAF57-dependent CD4 repression involves chromatin remodeling and, if so, how the remodeling translates into CD4 repression. Here we show that nucleosomes at the CD4 silencer occupy multiple translational frames. BAF57 dominant negative mutant does not alter these frames, but reduces the accessibility of the entire silencer without affecting the flanking regions, concomitant with localized accumulation of linker histone H1 and eviction of Runx1, a key repressor of CD4 transcription that directly binds the CD4 silencer. Our data indicate that precise nucleosome positioning is not critical for the CD4 silencer function and that BAF57 participates in remodeling H1-containing chromatin at the CD4 silencer, which enables Runx1 to access the silencer and repress CD4. In addition to BAF57, multiple other subunits in the BAF complex are also dispensable for chromatin remodelling in vitro. Our data suggest that these subunits could also help remodel chromatin at a step after the recruitment of the BAF complex to target genes.
Collapse
Affiliation(s)
- Mimi Wan
- Department of Immunobiology, Yale University Medical School, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Induction of TLR4-target genes entails calcium/calmodulin-dependent regulation of chromatin remodeling. Proc Natl Acad Sci U S A 2009; 106:1169-74. [PMID: 19164553 DOI: 10.1073/pnas.0811274106] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Upon toll-like receptor 4 (TLR4) signaling in macrophages, the mammalian Swi/Snf-like BAF chromatin remodeling complex is recruited to many TLR4 target genes where it remodels their chromatin to promote transcription. Here, we show that, surprisingly, recruitment is not sufficient for chromatin remodeling; a second event, dependent on calcium/calmodulin (CaM), is additionally required. Calcium/CaM directly binds the HMG domain of the BAF57 subunit within the BAF complex. Calcium/CaM antagonists, including a CaM-binding peptide derived from BAF57, abolish BAF-dependent remodeling and gene expression without compromising BAF recruitment. BAF57 RNAi and BAF57 dominant negative mutants defective in CaM binding similarly impair the induction of BAF target genes. Our data implicate calcium/CaM in TLR4 signaling, and reveal a previously undescribed, recruitment-independent mode of regulation of the BAF complex that is probably achieved through a direct CaM-BAF interaction.
Collapse
|
28
|
|
29
|
Jani A, Wan M, Zhang J, Cui K, Wu J, Preston-Hurlburt P, Khatri R, Zhao K, Chi T. A novel genetic strategy reveals unexpected roles of the Swi-Snf-like chromatin-remodeling BAF complex in thymocyte development. ACTA ACUST UNITED AC 2008; 205:2813-25. [PMID: 18955569 PMCID: PMC2585832 DOI: 10.1084/jem.20080938] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have developed a general strategy for creating littermates bearing either a tissue-specific point mutation or deletion in any target gene, and used the method to dissect the roles of Brg, the ATPase subunit of the chromatin-remodeling Brg-associated factor (BAF) complex, in early thymocyte development. We found that a point mutation that inactivates the Brg ATPase recapitulates multiple defects previously described for Brg deletion (Chi, T.H., M. Wan, P.P. Lee, K. Akashi, D. Metzger, P. Chambon, C.B. Wilson, and G.R. Crabtree. 2003. Immunity. 19:169-182). However, the point mutant helps reveal unexpected roles of Brg in CD25 repression and CD4 activation. Surprisingly, CD4 activation occurs independently of the Brg ATPase and is perhaps mediated by physical interactions between Brg and the CD4 locus. Our study thus suggests that the BAF complex harbors novel activities that can be necessary and even sufficient for stimulating transcription from an endogenous chromatin template in the absence of Brg-dependent remodeling of that template. We conclude that conditional point mutants, rarely used in mammalian genetics, can help uncover important gene functions undetectable or overlooked in deletion mutants.
Collapse
Affiliation(s)
- Anant Jani
- Department of Immunobiology, Yale University Medical School, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Singer A, Adoro S, Park JH. Lineage fate and intense debate: myths, models and mechanisms of CD4- versus CD8-lineage choice. Nat Rev Immunol 2008; 8:788-801. [PMID: 18802443 DOI: 10.1038/nri2416] [Citation(s) in RCA: 347] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Following successful gene rearrangement at alphabeta T-cell receptor (TCR) loci, developing thymocytes express both CD4 and CD8 co-receptors and undergo a life-or-death selection event, which is known as positive selection, to identify cells that express TCRs with potentially useful ligand specificities. Positively selected thymocytes must then differentiate into either CD4(+) helper T cells or CD8(+) cytotoxic T cells, a crucial decision known as CD4/CD8-lineage choice. In this Review, we summarize recent advances in our understanding of the cellular and molecular events involved in lineage-fate decision and discuss them in the context of the major models of CD4/CD8-lineage choice.
Collapse
Affiliation(s)
- Alfred Singer
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|